
A Semantic-Agent Framework for PaaS
Interoperability

Position Paper

Suchismita Hoare
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

s.b.hoare@herts.ac.uk

Na Helian and Nathan Baddoo
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

n.helian@herts.ac.uk

Abstract—Cloud Platform as a Service (PaaS) is poised for a
wider adoption by its relevant stakeholders, especially Cloud
application developers. Despite this, the service model is still
plagued with several adoption inhibitors, one of which is lack of
interoperability between proprietary application infrastructure
services of public PaaS solutions. Although there is some progress
in addressing the general PaaS interoperability issue through
various devised solutions focused primarily on API compatibility
and platform-agnostic application design models, interoperability
specific to differentiated services provided by the existing public
PaaS providers and the resultant disparity owing to the offered
services’ semantics has not been addressed effectively, yet. The
literature indicates that this dimension of PaaS interoperability is
awaiting evolution in the state-of-the-art.

This paper proposes the initial system design of a PaaS
interoperability (IntPaaS) framework to be developed through
the integration of semantic and agent technologies to enable
transparent interoperability between incompatible PaaS services.
This will involve uniform description through semantic
annotation of PaaS provider services utilizing the OWL-S
ontology, creating a knowledgebase that enables software agents
to automatically search for suitable services to support Cloud-
based Greenfield application development. The rest of the paper
discusses the identified research problem along with the proposed
solution to address the issue.

Keywords—Cloud; PaaS service; interoperability; OWL-S;
ontology; semantic; agent; service description; service search;
service composition

I. INTRODUCTION

Platform as a Service (PaaS), or more specifically
application PaaS (aPaaS), is a rapidly growing segment of
Cloud Computing, offering application infrastructure services
through abstracted development and deployment environments
for Cloud application developers. Although developers can
benefit immensely from this service model, the inherent
heterogeneity in the available PaaS offerings is a major
deterrent to its widespread adoption, because it poses various
interoperability challenges [1]. PaaS adoption is impacted by,
among other factors, a lack of comprehensive services
supporting all aspects of Cloud application lifecycle [2] and a

lack of interoperability among proprietary APIs and
incompatible services of the current public PaaS solutions.
Rafique et al. [3] observes PaaS vendors do not support
application infrastructure services uniformly. Therefore, even
when specific language-based platforms are used, users or
developers can encounter interoperability issues owing to
differences in underpinning platforms and supported Cloud
services like file and data storage, messaging, task queues etc.
This hinders simultaneous use and substitutability of available
services for the development and deployment of Cloud
applications and calls for a focus on PaaS service/platform
interoperability.

Interoperability has numerous interpretations in the
literature and encompasses the aspects of effective
collaboration of disparate systems, resources, and services [1].
For PaaS, often misinterpreted as ‘portability’, it encompasses
the software entities of Application, Service and Platform.
Among these, Service interoperability (the ability of using
services across multiple Cloud platforms through a unified
management interface) and Platform interoperability (the
ability of using platform components, either part of an IaaS or a
PaaS offer, to interoperate); the two dimensions coinciding
when the functionalities of platform components are exposed
as services [4], are relevant interoperability dimensions for this
study. Also, for the purposes of this paper, interoperability can
be considered to be synonymous with integration, i.e, the
ability of diverse services offered by the same or multiple
providers to seamlessly interoperate to aid the development and
deployment of Cloud applications [1], [5]. This study proposes
to focus on ‘service/platform’ interoperability, assessing the
scope of integration of multiple services offered by disparate
providers through semantic description of PaaS services, and
trying to resolve their incompatibilities to address the
interoperability issue.

The rest of the paper is structured as follows: Section 2
presents the background and related work. Section 3 proposes
an interoperability framework for PaaS. Section 4 describes the
tool and technologies to be used to design and implement the
proposed framework. Section 5 discusses future direction of
this work and Section 6 concludes.

II. BACKGROUND AND RELATED WORK

The extant literature highlights the need for reducing
interoperability barriers to foster an open market for its players
and indicates a research gap in the area of interoperable PaaS
solutions requiring simultaneous and/or interchangeable use of
multiple PaaS services and capabilities [1], [2] to support the
various phases of the Cloud application lifecycle. Di Martino
[6] states that a contributing factor to the PaaS interoperability
issue is the disparity in the offered services’ semantics, i.e.,
non-uniform representation of services. This calls for a
mechanism that establishes standardization of service
descriptions leveraging devised domain ontology. This is likely
to enable efficient service retrieval based on a semantic match
between description of services being sought and description of
services offered by PaaS providers. The use of agents
(representing service requesters and providers) in this can
facilitate automated retrieval of the required services [7]. The
following establishes the needed background of this work
through an overview of a selection of industry projects and
academic research efforts relevant to the research area.

Cloud PaaS interoperability is an active research area that
several ongoing research projects both in the industry and
academia are trying to address. Some of the recent PaaS
interoperability initiatives by standardization groups, industry
and the research community include efforts in devising:

i) Standard APIs (e.g., Cloud Application Management
for Platforms or CAMP) that attempt to homogenize
and provide generic platform-agnostic PaaS APIs
and common APIs (Cloud4SOA and PaaS Manager)
that harmonize heterogeneous APIs through
abstractions.

ii) Open-source APIs (e.g., OpenShift, Cloud Foundry,

Heroku and Docker) that aim to become de-facto
standards by providing access to source code.

iii) Agnostic Patterns (e.g., CloudPatterns.org

community) that enable interoperation through
detection of similarities among services on the basis
of their logical descriptions [4].

iv) Model-Driven Engineering (e.g., MODAClouds,
Artist and PaaSage projects) that enables platform-
agnostic design of Cloud applications.

However, these initiatives are mainly focused on enabling

application ‘portability’ through either facilitating platform-
agnostic code or migration of application code and data among
platforms. As opposed to this general PaaS interoperability,
PaaS ‘semantic interoperability’ enables PaaS offerings to
address semantic incompatibilities (by devising a common
vocabulary using ontology) and communicate. The primary
semantic interoperability conflicts are specific to the levels of
management (owing to proprietary API functions), service
(resulting from proprietary platform services) and data [8]. The
initiatives aligned to PaaS semantic interoperability are
discussed here in Table I.

TABLE I. ANALYSIS OF PAAS INTEROPERABILITY/PORTABILITY
INITIATIVES

Initiative Domain Agent-
based

Ontology-
based

Scope

Cloud4SOA
[9]

PaaS (API) (OWL 2) Abstractions
among PaaS

offerings
Androcec et
al. [10]

PaaS (API) (OWL) Resources

Parhi et al.
[11]

IaaS
(service)



(OWL)

Description
of Cloud
service

providers
and their
attributes

Di Martino
et al. [12]

PaaS
(service)

(OWL-S)

Semantic
description

(Service Bus
queue

service of
MS Azure)

mOSAIC [6] IaaS, PaaS
(API)



(OWL &
OWL-S)

Intelligent
discovery of

Cloud
services

Cloudle [13] IaaS, PaaS,
SaaS



(no formal
ontology
language)

Cloud
services

discovery
and

similarity
reasoning

As can be inferred from the table, PaaS semantic
interoperability initiatives can be broadly classified into two
primary categories, semantic frameworks and multi-agent
systems, as relevant here;

A. Semantic frameworks (ontology-based initiatives)

Some of the ontology-based initiatives and approaches that
aim to address the PaaS interoperability challenge through
efforts to resolve semantic ambiguities of PaaS APIs include
the following:

The Cloud4SOA project aims to devise a distributed
reference marketplace architecture consisting of five layers
including a Semantic layer as the backbone and a Distributed
Repository layer that intermediates between the platform and
existing PaaS offerings [14]. The ontology language selected
for the implementation of the semantic layer of this reference
architecture is an extended Web Ontology Language (OWL 2).
To support the developed ontology model, Cloud4SOA
provides a harmonized API and provider-specific adapters to
bridge their disparities [9].

The work by Androcec et al. [10] proposes a novel PaaS
API ontology for a shared understanding of the main concepts
of the APIs of Cloud providers. The developed ontology using
Web Ontology Language (OWL) defines several classes and
categories of operations related to PaaS API resources.

While the two initiatives discussed above focus on
semantics of PaaS APIs, they fail to explore the service
(disparities in service descriptions) level of PaaS semantic
interoperability. The literature [6] claims that differences in
provider services owing to proprietary terms and semantics and

a lack of uniform representation of services is one of the
contributing factors to the interoperability issue. The literature
[15], [16] also observes that principled definition of PaaS
services is a vital requirement for achieving service
interoperability among heterogeneous PaaSs to facilitate
service discovery and composition. This definition can be
achieved through a taxonomy or ontology devised for PaaS
services (domain ontology) and annotation of specific service
instances on the basis of the domain ontology. This is still an
incipient area of research.

Some of the initiatives focused on enabling
service/platform semantic interoperability, and therefore
directly relevant for this work include:

A work by Parhi et al. [11] presents a semantic-multiagent
based service description and discovery prototype to resolve
Cloud services’ dissimilarities and to assist in the retrieval of
appropriate services. The authors outline a search process using
multiple agents and mention implementation of the entire
system (including negotiation and service composition) as
planned future work. However, the initiative is focused on the
IaaS layer of the Cloud stack (setting up the object and data
properties of Amazon EC2). This study aims to extend the
work by adopting the general methodology with suitable
modifications to assist PaaS service description and discovery
phases, besides implementing PaaS service composition.

A more PaaS-specific effort for service/platform
interoperability can be found in a recent initiative by Di
Martino et al. [12] which proposes a semantic description of a
Microsoft Azure Cloud service (namely the Service Bus
messaging service) based on the powerful expressiveness of the
Web Ontology Language for Services (OWL-S). The authors
comment that this semantic representation of a PaaS provider
service is the first step in reconciling differences in cross-
platform concepts and in enabling automatic discovery and
composition of Cloud services. Also that enriched with proper
inference rules and description of a number of providers’
services, it has the potential to evolve into a knowledgebase of
a framework supporting inter-Cloud interoperability and
portability. This is a research direction that has not received
much attention yet.

This study intends to build on and extend the last two
approaches discussed above to devise a solution for Cloud
PaaS service/platform interoperability.

B. Multi-Agent systems

The first initiative relevant here is the Open-source API and
Platform for multiple Clouds (mOSAIC) that encompasses
both IaaS and PaaS layers. The Cloud Agency of this system
evidences how agent-based technologies (in conjunction with a
semantic model) can alleviate interoperability and portability
issues [6]. The Cloudle project [13] represents another multi-
agent effort that proposes an agent-based search engine for
Cloud service discovery utilizing Cloud ontology.

However, these multi-agent initiatives fail to devise a
semantic representation of individual services offered by
platforms, which is important from an automatic reasoning
perspective that enables mapping between provider-specific

services based on the identified similarities. Also, the devised
multi-agent systems are either generic or specific to the IaaS
service model and/or hybrid deployment model [12],
presenting a scope for designing a dedicated multi-agent
system (using semantics synergistically) for the PaaS service
model.

A categorization of services to support easy discovery,
coupled with an abstract semantic and computable description
of services enabling automated comparison and mapping
(based on machine-processable meaning) between the provider
services and their composition [12] has the potential to resolve
the interoperability issue. In line with this, the next section
proposes a PaaS-specific semantic-agent interoperability
model.

III. PROPOSED PAAS INTEROPERABILITY FRAMEWORK:
INTPAAS

This section presents the proposed interoperability
framework (IntPaaS), which aims to integrate ontology and
multiple agents for service description and discovery. This will
comprise of a definition of the domain model of the PaaS layer
(functional concepts, attributes and relations) and semantic
annotation of PaaS services’ functionalities (using the OWL-S
ontology language) coupled with an agent-based search
mechanism (aimed at automatic discovery and composition) to
determine similarities and resolve heterogeneities among
multiple public aPaaS services.

Fig. 1. The IntPaaS semantic-agent Architecture

A. System Architecture

The overall architecture of the proposed IntPaaS framework
is presented in Fig. 1. The system comprises of various
components and software agents assisting the description and
discovery of appropriate PaaS services. The general approach
to be undertaken towards the development and the primary
components of the framework are:

1) Service Description and Storage Component
The fundamental element of the proposed semantic-agent

architecture for PaaS service discovery and composition is a
shared knowledge plane comprised of a semantic model and
reasoning rules to govern agent interactions. The two main

tasks involved in the development of the semantic model are:
i) definition of a PaaS domain ontology (OWL-S classes,
properties, etc.) for functional description and systematic
classification in a taxonomic hierarchy, and ii) creation of an
OWL-S description (consisting of Service, Profile and Process
classes) for specific service instances. The semantically
annotated service descriptions will be mapped to the domain
ontology [17] to resolve semantic dissimilarities. OWL-S, a
unified knowledge representation language of the semantic
Web, will be leveraged for semantic markup of services as it
enables suitable ontological representations to be used by
agents [10].

The ProviderAgent plays a central role in this, assisting in
the annotation of syntactic service specifications obtained from
the PaaS providers into OWL-S ontological (semantic)
descriptions and registering the service to a PaaS Service
Repository (PSR), an OWL-S Resource Description
Framework (RDF) repository.

2) Service Search Component
The first step involved in this is a request generated at the

Web interface for a specific service by a PaaS service
consumer. Following this, a request for service (RFS) [11] will
be generated and passed on to the service matching component
of the architecture.

The ConsumerAgent will accept user queries (PaaS service
requests) and pass them on to the DiscoveryAgent, maintaining
communication with the latter through Agent Communication
Language (or ACL) based on SPARQL. The automated
matching and retrieval of services will be carried out by the
DiscoveryAgent, in conjunction with the PaaS Service
Discovery System (PSDS).

3) Service Matching and Retrieval Component
The next step constitutes matching and retrieval of

appropriate services to meet user requirements. The registered
semantic descriptions (annotated pre-condition and post-
condition parameters and service operations) of services will be
leveraged and functionality-based similarity analysis will be
carried out. This will involve logic reasoning to establish
semantic relevance of a provider service to the requested
service. The result of the search will be communicated by the
DiscoveryAgent to the ConsumerAgent using messages based
on SPARQL.

The proposed framework will adopt a layered approach for
service search. The two tiers of search include:

i) SPARQL query processing – The DiscoveryAgent will
facilitate discovery of the requested PaaS service(s) from the
PSDS by processing the received service request(s) to generate
a suitable search criteria (in the form of a SPARQL query) for
easy processing by reasoners.

ii) Service matching – The PSDS search engine will
interface with the PSR, consulting and reasoning (based on
semantic similarity) about the semantically annotated services
and returning the result (in XML) to the DiscoveryAgent;
enabling dynamic and autonomous discovery of suitable PaaS
services. The matchmaking mechanism in the PSDS will utilize

the service Profile of the developed ontology, querying the
RDF repository with SPARQL.

The final step, i.e., service composition, will involve an
interoperability evaluation. A prototype (to be developed using
Java) will be implemented to map to the services of some
prominent public PaaS solutions to assess their semantic
interoperability. The framework will be evaluated through the
composition of relevant retrieved services for the development
of a Cloud application, establishing the scope of using other
similar services interchangeably in the process.

IV. IMPLEMENTATION – TOOLS AND TECHNOLOGIES

The tools and technologies to be used for the design and
implementation of the proposed framework include:

A. Experiment Platform

Some of the available options for this are Cloud9 IDE,
CodeRun Studio, Eclipse Orion. However, the Java language is
not supported in these IDEs. The online tools that support Java
for coding in the Cloud include Ideone and eXo Cloud IDE. As
Ideone is more of a pastebin (supporting compilation and
debugging) that does not permit the creation of projects [18],
the experimental platform chosen for the project is the eXo
Cloud IDE.

B. Ontology Language

OWL-S, an upper ontology which is based on the W3C
standard OWL ontology and used to describe the semantics of
services, will be leveraged to create the ontology for the
proposed framework. OWL-S has the dual function of
introducing ontology to describe the concepts of services’
domain and generic concepts for describing the services
themselves and the way they relate to the domain ontology via
Input, Output, Precondition and Effects. The expressive
semantics of this ontology for services enables semantically
rich descriptions facilitating automated machine reasoning over
services and domain descriptions, enabling intelligent
discovery, invocation and composition of services. The
ontology is constituted of three main classes, with a Service
class providing a point of reference for these classes: i) Profile,
describing the functionality of a service (through the functional
properties of hasParameter, hasInput, hasOutput,
hasPrecondition and hasResult along with non-functional
attributes such as serviceName, serviceCategory,
textDescription, etc.) that assists in advertising and discovering
services; ii) Process (atomic or composite), informing how the
service works, providing information that enables service-
seeking agents to perform a deeper analysis of the services for
their composition; and iii) Grounding, specifying how the
service is activated (through details on port numbers,
communication protocols, message formats, etc.), thereby
mapping an ‘abstract’ grounding (service profile and process)
to a ‘concrete’ grounding (service API) [19], [12]. These
classes together facilitate the use of services by agents.

C. Ontology Editor

The ontology for the framework will be implemented using
Protégé Desktop 4.3.0 (build 304) ontology editor (an OWL-

specific IDE), along with Java Virtual Machine (JVM)1.
However, an issue is that OWL-S, which makes use of OWL
Full constructs, is not natively supported by Protégé. Although
this makes the use of OWL-S in Protégé difficult, the issue can
be addressed through the use of the OWL-S editor (Build 24)2
as a Protégé plug-in. GraphViz3 graph visualization software
will be used to represent structural information of the
developed ontology.

D. Other APIs and tools

Other APIs and tools to be used for development of the
framework include:

i) JADE 3.4 agent system – The Java Agent
Development Framework, which assists in the
implementation of multi-agent systems4, will be
used for developing the agents. The configuration
of the JADE-based system will be controlled via
the Web interface of the proposed framework.

ii) Apache Jena 2.5.5 Semantic Web framework5
– This API will be used to facilitate
interconnection of the ProviderAgent and the
OWL-S knowledge base.

iii) SPARQL 1.1 Query Language6 – SPARQL,
which is recommended by W3C as the standard
Query Language for OWL (and is supported by
many tools including Protégé and Jena), will be
leveraged to query RDF data stored in the PSR.
The tool to assist in this is ARQ, a SPARQL 1.1
compliant engine supported by Jena.

These tools and APIs selected for implementation of the
architecture are the most prominent ones for the intended
purposes and are Java-compliant.

V. FUTURE DIRECTION

This study proposes to establish separate semantic
descriptions of services to establish a knowledgebase enabling
semantic matching of heterogeneous application infrastructure
services of prominent public aPaaS providers. A list of
important terms derived from some of the existing PaaS
services will be used to represent the classes of the ontology
and will then be organized into a hierarchical taxonomy to
represent the PaaS domain ontology. The base concepts of the
domain ontology will be leveraged for semantic annotation of
PaaS service instances, to resolve their incompatibilities and
facilitate opportunistic use of suitable differentiated PaaS
provider services by multiple agents. Service matchmaking will
involve the integration of a semantic algorithm that operates on
service functionality.

The work by Di Martino et al. [12] has devised a semantic
description (using OWL-S ontology) for the Service Bus
service of Windows Azure platform. However, the work does
not compare it with similar services provided by some of the
other existing PaaS provider, and thus fail to extend it to
explore the interoperability dimension. This study proposes to
explore the opportunity of establishing interoperability between

the offered services of some of the public aPaaS providers
through synergistic use of the devised domain ontology for
PaaS and agents that are able to reason over and access
functionally similar services from the knowledgebase.

VI. CONCLUSION

Cloud application PaaS has the potential to lead to a new
paradigm of Cloud application development. In spite of this, its
wider adoption has been hindered by a lack of interoperability
between provider services coupled with the unavailability of
comprehensive services supporting the Cloud application
lifecycle. Interoperability is an important concern and an active
area of research, with various initiatives in the industry and
academia trying to address it. However, the proposed solutions
focused on API standardization, Model-driven Engineering,
Semantic Framework, Multi-agent system, etc. have failed to
resolve this issue. In view of the fact that PaaS service/platform
interoperability is an area awaiting further progress, this work
proposes an interoperability architecture based on semantic
(encompassing PaaS services’ description using OWL-S) and
multi-agent (encompassing population of semantic service
repository, service search and composition) technologies as the
first step to an effective solution. The synergistic union of these
two technologies is, to the best of our knowledge, a novel
approach in the PaaS service/platform interoperability space.
The study is ongoing and will be extended through the
development and testing of a proof-of-concept implementation
in the future to investigate the technical challenges involved in
enabling this interoperability.

ACKNOWLEDGMENT

Our thanks to IEEE eXpress Conference Publishing for
allowing us to modify the template they have developed.

REFERENCES
[1] E. Kamateri, N. Loutas, D. Zeginis, J. Ahtes, F. D'Andria, S. Bocconi, P.

Gouvas, G. Ledakis, F. Ravagli, O. Lobunets, and K. A. Tarabanis,
“Cloud4SOA: A semantic-interoperability paas solution for multi-cloud
platform management and portability,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 8135, Berlin Heidelberg:
Springer, 2013, pp. 64–78.

[2] M. Pezzini and B. J. Lheureux. (2011, Mar 07). Integration Platform as a
Service: Moving Integration to the Cloud. Gartner, Inc. [Online].
Available: https://www.gartner.com/doc/1575414/integration-platform-
service-moving-integration. (URL)

[3] A. Rafique, S. Walraven, B. Lagaisse, T. Desair, and W. Joosen,
“Towards portability and interoperability support in middleware for
hybrid clouds,” in Conf. 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Toronto, ON,
2014, pp. 7–12.

[4] B. Di Martino, G. Cretella, A. Esposito, “Cloud Portability and
Interoperability,” in Cloud Portability and Interoperability: Issues and
Current Trends, 1st ed. Springer International Publishing, 2015, ch. 1,
sec. 1.2, pp. 01-14.

[5] V. K. Dileep and R.V. Sivabalan., “Challenges in Achieving
Interoperability in Cloud Computing,” Aust. J. Basic & Appl. Sci., vol. 9,
no. 16, pp. 36-43, 2015.

[6] B. Di Martino, “Applications Portability and Services Interoperability
among Multiple Clouds,” IEEE Cloud Computing, vol. 1, no. 1, pp. 74–
77, May. 2014.

1
http://protegewiki.stanford.edu/wiki/P4_3_Release_Announcement

2 http://projects.semwebcentral.org/projects/owlseditor/
3 http://www.graphviz.org/
4

http://jade.tilab.com/
5 https://jena.apache.org/
6 https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

[7] S. Bromuri, V. Urovi, M. Morge, K. Stathis, and F. Toni, “A multi-agent
system for service discovery, selection and negotiation,” in Proc. Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Dubrovnik, Croatia, 2009, vol. 2, pp. 1423–1424.

[8] N. Loutas, E. Kamateri, K. Tarabanis, and D’Andria, F., (2011). D1.2
Cloud4SOA Cloud Semantic Interoperability Framework. [Online].
Available:
http://www.cloud4soa.com/sites/default/files/D1.2_Cloud4SOA%20Clo
ud%20Semantic%20Interoperability%20Framework.pdf. (URL)

[9] A. Corradi, L. Foschini, A. Pernafini, F. Bosi, V. Laudizio, and M.
Seralessandri, “Cloud PaaS Brokering in Action: The Cloud4SOA
Management Infrastructure,” in Conf. 2015 IEEE 82nd Vehicular
Technology Conference (VTC2015-Fall), Boston, MA, 2015, pp. 1–7.

[10] D. Androcec, N. Vrcek, and P. Kungas, “Service-Level Interoperability
Issues of Platform as a Service,” in Congr. 2015 IEEE World Congress
on Services, 2015, pp. 349–356.

[11] M. Parhi, B. K. Pattanayak, and M. R. Patra, “A Multi-agent-Based
Framework for Cloud Service Description and Discovery Using
Ontology,” in Advances in Intelligent Systems and Computing, vol. 308,
India: Springer, 2015, pp. 337–348.

[12] B. Di Martino, G. Cretella, A. Esposito, and R. G. Sperandeo, “Semantic
Representation of Cloud Services: A Case Study for Microsoft Windows
Azure,” in Conf. 2014 International Conference on Intelligent
Networking and Collaborative Systems, Salerno, Italy, 2014, pp. 647–
652.

[13] K. M. Sim, “Agent-Based Cloud Computing,” IEEE Trans. Services
Computing, vol. 5, no. 4, pp. 564–577, Nov. 2012.

[14] F. D'Andria, S. Bocconi, J. G. Cruz, J. Ahtes, and D. Zeginis,
“Cloud4SOA: Multi-cloud Application Management Across PaaS
Offerings,” in Symp. 2012 14th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara,
Romania, 2012, pp. 407–414.

[15] K. Stravoskoufos, A. Preventis, S. Sotiriadis, and E. G. M. Petrakis
(2014) “A survey on approaches for interoperability and portability of
cloud computing services,” 2014, pp. 112–117.

[16] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, “A
Federated Multi-cloud PaaS Infrastructure,” in Conf. 2012 IEEE Fifth
International Conference on Cloud Computing, Honolulu, HI, 2012, pp.
392–399.

[17] D. Elenius. (2005). The OWL-S Editor – A Domain-Specific Extension
to Protégé [Online]. Available:
http://protege.stanford.edu/conference/2005/submissions/abstracts/accep
ted-abstract-elenius.pdf. (URL)

[18] L. M. Gadhikar, L. Mohan, M. Chaudhari, P. Sawant, and Y. Bhusara,
“Browser based IDE to code in the cloud,” in Advances in Intelligent
Systems and Computing, vol. 203, S. Patnaik, P. Tripathy and S. Naik,
Ed. Berlin Heidelberg: Springer, 2013, pp. 59–69.

[19] D. Elenius. (2004). Modeling Services with Protégé [Online]. Available:
http://protege.stanford.edu/conference/2004/posters/Elenius.pdf. (URL)

