
Informational parasites in code evolution

Andrés C. Burgos1

Daniel Polani2

1,2Adaptive Systems Research Group, University of Hertfordshire, Hatfield, UK
1a.c.burgos@herts.ac.uk

May 22, 2015

Abstract

In a previous study, we considered an information-theoretic model of code evolution. In
this model, agents bet on (common) environmental conditions using their sensory information
as well as that obtained from messages of other agents, which is determined by an interaction
probability (the structure of the population). For an agent to understand another agent’s
messages, the former must either know the identity of the latter, or the code producing the
messages must be universally interpretable.

A universal code, however, introduces a vulnerability: a parasitic entity can take advantage
of it. Here, we investigate this problem. In our specific setting, we consider a parasite to be
an agent that tries to inflict as much damage as possible in the mutual understanding of the
population (i.e. the parasite acts as a disinformation agent). We show that, after introducing
a parasite in the population, the former adopts a code such that it captures the information
about the environment that is missing in the population. Such an agent would be of great
value, but only if the rest of the population can understand its messages. However, it is of
little use here, since the parasite utilises the most common messages in the population to
express different concepts.

Now we let the population respond by updating their codes such that, in this arms race,
they again maximise their mutual understanding. As a result, there is a code drift in the
population where the utilisation of the messages of the parasite is avoided. A consequence
of this is that the information that the parasite possesses but which the agents lack becomes
understandable and readily available.

1 Introduction

Codes shared among entities are ubiquitous in nature, not only present in biological systems,
but also, at the least, in technological ones (Doyle, 2010). We define a code as a probabilistic
mapping from an “input” random variable (e.g. environmental variable) to a set of outputs (e.g.
messages). A code, then, implies a representation of the input variable. When representations are
shared among entities, they become conventions which are used for communication (Burgos and
Polani, 2014, 2015). The correct use of these conventions for communicating can be interpreted
as “honest signalling”. For instance, the TCP/IP protocol allows the interaction of hardware and
software in a code-based, “plug-and-play” fashion, as long as they obey the protocol (Doyle, 2010).
In biology, the genetic code acts as an innovation-sharing protocol, one that allows the exchange
of innovations through horizontal gene transfer (HGT) (Woese, 2004).

However, communication protocols introduce vulnerabilities: parasitic agents can take advan-
tage of them (Ackley and Littman, 1994; Doyle, 2010). For instance, the chemical cues that ant
colonies use to recognise nest-mates can be mimicked by slave-making workers for social integra-
tion (D’Ettorre et al., 2002). On the Internet, one can take advantage of machine communication
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protocols (TCP/IP) to force target computers to perform computations on behalf of a remote
node, in what is called “parasitic computing” (Barabási et al., 2001).

Parasites benefit from their interaction with other agents, while reducing the fitness of the
attacked hosts. Nevertheless, parasites can be a positive force in evolution. For instance, they can
be generators of biodiversity, achieving more resistance to future attacks (Brockhurst et al., 2004).
In an artificial setting, the presence of parasites was shown to attain more efficient communication
between agents of a population, increasing their reproductive success (Robbins, 1994). Further-
more, some authors suggest that a healthy ecosystem is one rich in parasites (Hudson et al., 2006).
In this work, we study this apparent contradiction from an information-theoretic perspective.

We look at some aspects of the co-evolutionary arms race between host and parasite. Particu-
larly, we would like to characterise informationally the behaviour of parasites and the consequences
for the host. For this purpose, we assume a simple scenario where organisms seek to maximise
their long-term growth rate by following a bet-hedging strategy (Seger and Brockmann, 1987).
We know that maximising their information about the environment achieves this (Shannon, 1948;
Kelly, 1956). Then, individuals obtaining extra environmental information from other individuals
will have an advantage over those that do not, since they would be able to better predict the
future environmental conditions (Donaldson-Matasci et al., 2010). However, as we showed in a
previous work, for simple agents which do not have the ability to identify who they are listening
to, a shared code among the population is necessary to interpret the transmitted information and
therefore improve predictions (Burgos and Polani, 2014, 2015). Here, we keep this assumption
with respect to the agents, and we study the effects of introducing a parasite in a population that
previously evolved its codes as well as its structure.

2 Model

In our previous model of code evolution (Burgos and Polani, 2014, 2015), the outputs or messages of
an agent were produced according to a code, which was a conditional probability from sensor states
to messages. The probability of each sensor state of an agent conditioned on the environmental
variable µ was given. The information about the environment of each agent was obtained by
considering the mutual information between the environmental variable and its sensor variable,
together with the outputs of other agents. These outputs would be perceived or not, according to
the structure of the population. The codes, as well as the population structure, were optimised in
order to maximise what was called the similarity of the codes (we will introduce a more suitable
term below) among the interacting agents of the population.

Here, instead, we consider a simplified model where the sensor states of an agent are the agent’s
messages, which are represented by a random variable XΘ. That is, p (XΘ | µ,Θ = θ) gives the
probability distribution of the sensor states (and, simultaneously, the messages) of an agent θ
given the environmental conditions µ.

Agents perceive the sensor states (messages) of other agents according to the structure of
the population, which is given by p(Θ,Θ′). This joint probability induces a weighted graph,
where agents represent the nodes of the graph and there is an edge from agent θ to an agent
θ′ if p(θ, θ′) > 0 (which is the weight of the edge). We interpret p(θ, θ′) as the probability of
interaction between these two agents, and thus we require that p(θ, θ′) = p(θ′, θ) (interactions are
symmetrical) and p(θ, θ) = 0 for every agent θ (self-interaction is excluded).

We now consider a population of agents where interacting agents maximise their mutual under-
standing. This is formally defined by I (XΘ ; XΘ′), and, when this value achieves its maximum,
the mapping that results from the agents’ codes, p (XΘ | XΘ′), is deterministic. It is important
to note here that this model allows the agents to cluster into different sub-populations due to
differences in their codes. Therefore, each sub-population could have its own convention for rep-
resenting different aspects about the environment, and the conventions used can be as varied as
possible, as long as the mapping p (XΘ | XΘ′) is universal among all sub-populations.

For cases where the mutual understanding is locally optimal, the codes of the agents are related
to each other in one of two possible manners: (a) within each sub-population, all agents have the
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Figure 1: Bayesian network representing the relation of the variables in the simplified model of code
evolution. XΘ′ is an i.i.d copy of XΘ. Θ and Θ′ selects agents from the same set, but their probability
distributions are not necessary the same. These two variables depend on a common variable Ξ to model
more general interaction structures.

same code, and the mapping p (XΘ | XΘ′) is the identity matrix; or (b) within each sub-population,
there are two types of agents (where the type is given by the agent’s code), and the interaction is
only between agents of different type. In this case, the graph induced by the interaction probability
is bipartite between the types.

For cases where an agent interacts with more than one type of agent, then p (XΘ | XΘ′) will
necessarily be probabilistic, and thus the mutual understanding among the population will de-
crease. We can measure the total amount of information about the environment of an agent θ
by I (µ ; XΘ, XΘ′ | Θ = θ). And, since the interaction probability is symmetric, the proposed
measure for agent θ is equal to I (µ ; XΘ, XΘ′ | Θ′ = θ). Let us note that, whenever the mutual
understanding of a population is optimal, then the individuals that interact necessarily capture the
same aspects of the environment. Then, at the optimum of mutual understanding in a population,
agents do not increase their information by reading other agent’s messages, although this indeed
plays an important role in the evolution of codes. Nevertheless, the ties that an agent establishes
are relevant for other purposes, which we study in the following sections.

2.1 Informational parasitism

There are different ways to define an informational parasite. Here, we adopt the model that char-
acterises an informational parasite as an agent π that tries to minimise the mutual understanding
between the agents with whom it interacts. An informationally antagonistic parasite is not typical
for biology, as the parasite is concentrating at abusing the host system for its own interest, but
does not care about the host except for avoiding detection. However, in the context of social
networks or news sources, such a parasite can be considered a “troll” or a “disinformation” (FUD)
agent who has direct interest in damaging the mutual understanding of the other agents of the
population and/or their confidence in their knowledge of the true state of the environment.

In our case, the parasite will choose its code in such a way that the value I (XΘ ; XΘ′) is
minimised. This is an extreme case of parasitism, where the parasite may kill its host as a
result of maximising damage. Usually, the known parasites manipulate their hosts in order to
benefit from it, decreasing their fitness such that it would not kill them (Schmid-Hempel, 1998).
Although the defined type of parasite is not common in biology, it is still a possibility in the range
of behaviours that decrease fitness of the host while increasing the attacker’s fitness.

We now analyse the consequences of introducing a parasite in a population for a few very
simple, but illustrative, scenarios. First, let us define the following types of codes:

Let us analyse a few simple scenarios where a parasite attacks a population. Let us assume
that two (non-parasitic) agents share the same code, for instance, agents θ1 and θ2 are of type φ1,
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Figure 2: The left-most grid shows an illustration of the environment, although it does not denote its
real structure. Then, each type shows a partition of the environmental states induced by an agent’s code
(codes here are deterministic). The types φ1 and φ2 capture the first bit of µ. Types φ3 and φ4 capture
the second bit of µ.

and that these agents interact only with each other (their mutual understanding is 1 bit). Now, if
we minimise their mutual understanding by introducing a parasite π, the optimal configuration is
the following: the parasite interacts with one agent only and the parasite’s code is of type φ2 (the
“opposite” of type φ1). The mutual understanding between all three agents now is zero. Let us
note that, in this case, the environmental information of each agent, before and after introducing
the parasite, is 1 bit, which is the amount of information each of them acquire through their
corresponding sensors.

Let us consider now a more interesting case: two sub-populations of two agents each, where
agents only interact with agents within the sub-population and where the codes are the following:
in the first sub-population, we have agents θ1 and θ2 of code type φ1 (they capture the first
bit of µ); and in the second sub-population, we have agents θ3 and θ4 of code type φ3 (they
capture the second bit of µ). Now, when we introduce a parasite, two configurations achieve
zero mutual understanding: in both, the parasite interacts with every agent, but in the first one,
it adopts the “opposite” code of agents θ1 and θ2, which is code type φ2, while in the second
one, it adopts the “opposite” code of agents θ3 and θ4, which is code type φ4. Here, in the
first case, the environmental information of agents θ3 and θ4 increases, since the parasite conveys
information captured by agents θ1 and θ2 (captured by the parasite through its “opposite” code)
that the former two agents do not possess. In the same way, for the second configuration, agents
θ1 and θ2 are benefited by their interactions with the parasite, since here also, the parasite conveys
information they lack.

3 Methods

All optimisations were performed using a genetic algorithm (GA). We utilised the C++ library
GAlib v2.4.7 (Wall, 1996). The GA searches for a particular (possibly local) optimum, and this
optimum corresponds to an evolutionary process that has converged. In order to accelerate com-
putations, we assume the following: the probability distribution over µ is uniform, the codes of all
agents are deterministic, and the interaction probability between any two agents is given by one
over the amount of interactions. To visualise the evolution of the codes of the agents, we use the
method of multidimensional scaling provided by R version 2.14.1 (2011-12-22). This method takes
as input the distance matrix between codes, and plots them in a two-dimensional space preserving
the distances as well as possible.

4 Results

We study the introduction of a parasite in a population where the mutual understanding was
previously maximised. We consider a population of 256 agents, in an environment with 16 equally
likely states, where agents can encode the environment using 16 different symbols. In this way,
agents can potentially capture by themselves all the information about µ. As a result of the opti-
misation process, we obtained 5 sub-populations, where, in each of them, the induced interaction
graph is bipartite. Therefore, there are 10 different codes globally, two per sub-population. In Fig.
3 we show the distance between the resulting codes, with point’s size proportional to the number of
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agents that adopted each code. The distance used is the Jensen-Shannon divergence (see (Burgos
and Polani, 2014)). The average mutual understanding in the population is I (XΘ ; XΘ′) = 3.93
bits, which, coincidentally, is also the mutual understanding within each sub-population (this does
not need to hold necessarily).
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Figure 3: 2-dimensional plot of the distance between the codes: each point represents a particular code,
and its size is relative to the number of agents adopting that particular code. The colour of the points
denotes the sub-population to which the codes belong.

4.1 Blending in with the crowd

We introduce now a parasite π in the population, and we let it freely choose with whom it interacts,
as well as its code (the parasite is introduced before the optimisation process begins, at generation
0). However, the parasite is allowed to use 32 symbols to encode µ, instead of 16, as we did for
the rest of the agents. The reason for allowing a larger set of symbols to the parasite is that,
otherwise, we will be forcing the parasite to use the symbols used by the population. We allow
the double amount of symbols to enable the parasite to perfectly encode the environment while
avoiding all symbols already in use.

We found that after optimisation, the parasite interacts with every agent of the population,
and its code distance to every other agent is maximal (the distance is 4, the maximum achievable
with 16 states). The resulting average mutual understanding now is I (XΘ ; XΘ′) = 2.55 bits
(before the attack, it was 3.93 bits), and the code of the parasite is shown in Fig. 4.

To understand the choice of code by the parasite, we analyse the joint probability p(XΘ, XΘ′)
before introducing the parasite in the population. Our results show that the parasite encodes the
environment through the messages that are most commonly used among the population. In this
case, the parasite chose 4 messages (x3, x12, x13 and x16), all of them among the most popular in
the population (see Fig. 5).

As a consequence of this antagonistic behaviour, the parasite blends in the population. This
suggests that the parasite would try to avoid being identified by its messages. Our model allows us
to measure how “identifiable” agents are by comparing the average joint messages. For instance,
this can be measured by the mutual information between the agent selector and the joint messages,
I (Θ | XΘ, XΘ′). For a population with a universal code, this measure is zero, that is, we cannot
identify any agent. Here, we want to know particularly how much we can identify the parasite by
its messages. Then, we can consider the following measure:

DKL (p(XΘ, XΘ′ | Θ = π) || p(XΘ, XΘ′)) (1)
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Figure 4: (a) Illustration of the environment µ, although the grid does not denote its real structure. (b)
Partition of the environmental states induced by the code of the parasite π.

In Fig. 6, we show the values of Eq. 1 during the optimisation process, which shows that the
divergence diminishes as the parasite minimises the mutual understanding of the population.

4.2 Missing environmental aspects

However, it is not only a question of choosing common messages: they must not coincide with other
agent’s codes given the environmental conditions. In other words, these messages that are popular
among the population will be used by the parasite to express different aspects of µ. Otherwise,
if the parasite expresses overlapping aspects, then there might be coincidences with one or more
sub-population’s adopted conventions. Consequently, the parasite will capture missing aspects in
the population. This can be measured by how much information the code of the parasite adds
about µ if we look at the average messages. Formally,

I (µ ; XΘ′ | XΘ,Θ
′ = π) (2)

The value of Eq. 2 is plotted in Fig. 7 during the optimisation process. After convergence, we
have that I (µ ; XΘ′ | XΘ,Θ

′ = π) = 1.30 bits, while what the parasite acquires, through its sen-
sors only, is I (µ ; XΘ | Θ = π) = 1.32 bits. That is, almost all the information it captures is miss-
ing in the population. If we consider the perceived information from µ together with the environ-
mental information provided by the population, the parasite captures I (µ ; XΘ, XΘ′ | Θ = π) = 4
bits, which is the maximum possible, and this means that the parasite always correctly predicts
the environment.

4.3 Robustness against parasites

After the parasitic attack, each sub-population has diminished its mutual understanding by differ-
ent quantities. Although the (former) sub-populations now share a common agent (the parasite,
and thus are not strictly speaking different sub-populations), we maintain the colours used in Fig.
3 to identify them. In Table 8 we show a summary of the outcome of the parasitic attack.

As Table 8 shows, in general, larger sub-populations are less damaged by a parasitic intrusion.
This phenomenon is due to the large number of interactions among friendly agents, which dimin-
ishes the influence of any single agent by considering the average of the perceived messages. The
exception in the example is the second largest sub-population, which becomes more damaged than
the third largest sub-population. The reason why we see this is that the former sub-population
is highly unbalanced, having a small number of agents of one type. Then, agents of the most
numerous type interact only with a small number of agents, and therefore are more vulnerable to
malicious agents.

Another way in which a population can defend itself against parasitic attacks is through di-
versification of their codes. Particularly, agents can reduce damage by using synonyms to express
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Figure 5: Joint probability of messages p(XΘ, XΘ′) of the population before the parasitic attack. Values
are normalised to the maximum of all values, in this case p(x3, x

′
3) = 0.125. White squares have probability

zero.

the same conditions. The presence of synonyms presents an obstacle for the parasite: when trying
to confuse agents by expressing different conditions with a chosen symbol, the meaning of the
correspondent synonym is not obfuscated.

We study this by comparing populations with different amounts of code types, while main-
taining the same population structure. The setup is the following: the population is well-mixed
(every agent interacts with every other agent), and first we randomly sample a code for every one
of the 64 agents with symbols in the range [1, 16]. This population has one type of code only,
and the used sample has a mutual understanding of 3.5 bits. Then, we produce a new population
by modifying the code of half of the agents, such that p (x+ 16 | µ) := p (x | µ) and then we set
p (x | µ) := 0 (here, x + 16 is a synonym of x). In this way, the mutual understanding remains
the same for the modified population, which now has two types. Each new type is introduced in
a similar fashion, always mapping the original code to a set of (16) unused symbols.

We perform the minimisation of the mutual understanding on each population by introducing
a parasite until convergence. We show in Fig. 9 the values of I(XΘ ; XΘ′) during the optimisation
process for each population. Our results confirm our expectations: more diverse populations are
more resistant to parasitic attacks.

4.4 Code diversification

Now we let the population respond to the parasitic attack. If we let the rest of the agents respond
to the parasite by freely changing the structure of the population, then our simulations shows that
the parasite becomes isolated from the population, which is the expected outcome. However, we
consider here a scenario where the structure of the population is maintained, and agents can only
respond to the attack by updating their codes. In the same way as we did with the parasite, we
allow the agents to choose from a larger set of messages (we consider 32 symbols to give the option
to agents of changing completely their encoding of µ).

After convergence, the population’s mutual understanding recovered to a value of I (XΘ ; XΘ′) =
3.50 bits (see Table 8 for a summary). In response to the parasitic attack, the agents of the popula-
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Figure 7: Amount of information the parasite possesses that the population lacks. The parasite is
introduced at generation 0.

tion replaced, mostly, the symbols utilised by the parasite with unused ones. In Fig. 10, we can see
how the joint probability p(XΘ, XΘ′) changed after the population’s response. Here, the symbols
present in the parasite’s code (x3, x12, x13 and x16) are mostly removed from the population’s
codes.

Three important features follow from the population’s response: first, new code profiles are
created in the population. For instance, the orange, purple and green sub-populations shown in
Fig. 3 now consist of three types of codes (see Fig. 11. Nevertheless, the bipartite property is
kept, but, instead, synonyms were adopted by one type in these sub-populations. This is due to
the large amount of symbols available that, in the case they are not in use within the agent’s type,
are detached from any meaning and thus would not create confusion.

This can be appreciated in Fig. 12, where we represent the code of an agent before and after the
population’s response to the parasitic attack. This agent updated its code such that most symbols
used by the parasite are avoided (x3 and x12 are changed for x29 and x21, respectively). On the
other hand, x13 is kept. To check whether this is an optimal solution, we manually updated the
code of all agents of the same type, changing x13 with every other possible symbol. Indeed, using
this particular symbol occupied by the parasite maximises the population’s mutual understanding.
The reason for this is that, since all other symbols are occupied by more than one agent, x13 is
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Colour Size Sizes of types I1 I2 I3

47 41, 6 3.93 2.85 3.59

35 33, 2 3.93 2.15 3.05

16 11, 5 3.93 2.54 3.33

8 5, 3 3.93 2.16 2.98

7 5, 2 3.93 1.83 2.65

113 95, 18 3.93 2.55 3.50

Figure 8: Summary of the parasitic attack for each sub-population. The colours of each sub-population
are the same as the ones in Fig. 3. I1 is the mutual understanding before the parasitic attack, I2 is the
mutual understanding after the parasitic attack, and I3 is the mutual understanding after the population’s
response.
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Figure 9: Mutual understanding of populations with varying amounts of types of codes during optimi-
sation. Populations with more types of codes are more resistant to parasitic attacks. In all cases, the
parasite was introduced at generation 0.

the one that confuses the population the least.
Second, by drifting from the parasite’s symbols, agents may update their codes in such a way

that, after the update, they capture more environmental information. This is the case of the type
shown in Fig. 12: before the update, environmental states 9 and 16 (see Fig. 4a to locate these
states) were represented by x3, while after the update, these states are distinguished from one
another.

Third, and most important, the information that the parasite offers can now be understood
(although not entirely) by the population: the missing information is mostly expressed using
symbols that are not occupied any more by the agents of the population. This cannot be shown
in the example, since changes in the agent’s codes after the response to the attack may result
in an overlap with the information that the parasite captures. However, we can manipulate the
resulting configuration after the parasitic attack to show that agents now consider the information
offered by the parasite. For each agent that is not the parasite, we update its code such that
p (x+ 16 | µ) := p (x | µ) and then we set p (x | µ) := 0. In this way, we make sure that all agents
capture the same aspects of µ as before the update, without interference (all of the parasite’s
symbols are in the range [1, 16]).

Now, we measure the average environmental information before and after the change. Before,
the value was I (µ ; XΘ, XΘ′) = 3.70 bits, and after, I (µ ; XΘ, XΘ′) = 3.72 bits. The increase
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(a) after the parasitic attack. (b) after the population’s response.

Figure 10: Joint probability of messages p(XΘ, XΘ′) (a) after the parasitic attack and (b) after the
population’s response.

is small, but we are considering one parasite only. If we introduce 8 parasites in the population,
then the increase in the average environmental information is more significant: from 3.43 bits
to 3.73 bits after updating the codes. It is worth noting that, if the parasites interact between
themselves, then they would try to capture not only environmental information that is not present
in the population, but also that is not captured by the other parasites.

5 Discussion and conclusions

We have considered a scenario where a parasite is introduced in a previously evolved population,
and, after convergence, we looked at the response of the population, in one step of many in the
co-evolutionary arms race. We considered one step only since, in this setting where the agent’s
behaviours are not unified, the arms race will cycle continuously.

Our model shows interesting behaviour consistent with empirical observations. For instance,
parasites are known to mimic the chemical signatures utilised by the attacked host (D’Ettorre
et al., 2002; Lorenzi et al., 2014). In this way, identification of the parasite by the population
becomes harder. We measured this property during the parasite’s attack, showing that as it
increased damage in the mutual understanding of the population, it blended in. Additionally, we
showed that it becomes parasitically dependent on the population, as most of the environmental
information it uses to predict the environment comes from the population.

We have also showed which properties a population may have in order to be robust against
parasitic attacks. For instance, large populations are more resilient, since its numerous members
provide a solid standard from which perturbations become less significant. Another way in which
the population becomes resilient is for the population’s agents to utilise synonyms. If the par-
asite intends to create confusion among the population by using messages that have a different
meaning for the rest of the agents, then when synonyms are present, then they do not present any
ambiguities.

The presence of parasites in a population can be, in the long term, a positive force (Hudson
et al., 2006). For instance, they increase the diversity of the population, which in our scenario
was manifested in the creation of new types of codes by using synonyms. As we have seen, this
makes the population more robust to subsequent attacks in their co-evolution. Second, parasites
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Figure 11: 2-dimensional plot of the distance between the codes after the population’s response to the
parasite attack. Each point represents a particular code, and its size is relative to the number of agents
adopting that particular code. The colour of the points denotes the sub-population to which the codes
belong. The black diamond represents the parasite’s code.
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Figure 12: Partition of the environmental states induced by the code of an agent (a) before, and (b) after
the parasitic attack.

are able to capture information about the environment which is not captured by any other agent.
Most of this information is not understandable by the agents until they respond to the parasitic
attack by drifting their codes.

The code drift has two effects: first, it makes the parasite easier to identify, since it is the
only agent using a particular set of messages; and second, after the messages used by the parasite
are avoided, the parasite’s information becomes understandable for the whole population. There-
fore, after the population recovers from the attack, agents can improve their predictions of the
environment. The parasite, after the population’s response, can still perfectly predict the state
of the environment, but with one major drawback: it becomes easily identifiable, and thus the
population have the possibility to take action (for instance, by avoiding interaction) when a future
attack begins.
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