
Research Archive

Citation for published version:
David Bowes, Tracy Hall, and Jean Petric, ‘Software defect
prediction: do different classifiers find the same defects?’,
Software Quality Journal, February 2017.

DOI:
https://doi.org/10.7717/peerj-cs.73

Document Version:
This is the Published Version.

Copyright and Reuse:
© 2017 The Author(s).

This article is distributed under the terms of the Creative
Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution,
and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made.

Enquiries
If you believe this document infringes copyright, please contact Research &
Scholarly Communications at rsc@herts.ac.uk

Cite this:ACS Chem. Neurosci. 5, 10, 1032-1040

•

https://doi.org/10.7717/peerj-cs.73
http://creativecommons.org/licenses/by/4.0/
mailto:rsc@herts.ac.uk

Software Qual J
DOI 10.1007/s11219-016-9353-3

Software defect prediction: do different classifiers
find the same defects?

David Bowes1 ·Tracy Hall2 · Jean Petrić1,2

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract During the last 10 years, hundreds of different defect prediction models have
been published. The performance of the classifiers used in these models is reported to be
similar with models rarely performing above the predictive performance ceiling of about
80% recall. We investigate the individual defects that four classifiers predict and analyse
the level of prediction uncertainty produced by these classifiers. We perform a sensitivity
analysis to compare the performance of Random Forest, Naı̈ve Bayes, RPart and SVM clas-
sifiers when predicting defects in NASA, open source and commercial datasets. The defect
predictions that each classifier makes is captured in a confusion matrix and the prediction
uncertainty of each classifier is compared. Despite similar predictive performance values for
these four classifiers, each detects different sets of defects. Some classifiers are more con-
sistent in predicting defects than others. Our results confirm that a unique subset of defects
can be detected by specific classifiers. However, while some classifiers are consistent in the
predictions they make, other classifiers vary in their predictions. Given our results, we con-
clude that classifier ensembles with decision-making strategies not based on majority voting
are likely to perform best in defect prediction.

Keywords Software defect prediction · Prediction modelling · Machine learning

� Jean Petrić
j.petric@herts.ac.uk

David Bowes
d.h.bowes@herts.ac.uk

Tracy Hall
tracy.hall@brunel.ac.uk

1 Science and Technology Research Institute, University of Hertfordshire, Hatfield, Hertfordshire,
AL10 9AB, UK

2 Department of Computer Science, Brunel University London, Uxbridge, Middlesex, Uxbridge
UB8 3PH, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-016-9353-3&domain=pdf
http://orcid.org/0000-0003-1949-2706
mailto:j.petric@herts.ac.uk
mailto:d.h.bowes@herts.ac.uk
mailto:tracy.hall@brunel.ac.uk

Software Qual J

1 Introduction

Defect prediction models can be used to direct test effort to defect-prone code.1 Latent
defects can then be detected in code before the system is delivered to users. Once found,
these defects can be fixed pre-delivery, at a fraction of post-delivery fix costs. Each year,
defects in code cost industry billions of dollars to find and fix. Models which efficiently
predict where defects are in code have the potential to save companies large amounts of
money. Because the costs are so huge, even small improvements in our ability to find and
fix defects can make a significant difference to overall costs. This potential to reduce costs
has led to a proliferation of models which predict where defects are likely to be located in
code. Hall et al. (2012) provide an overview of several hundred defect prediction models
published in 208 studies.

Traditional defect prediction models comprise of four main elements. First, the model
uses independent variables (or predictors) such as static code features, change data or previ-
ous defect information on which to base its predictions about the potential defect proneness
of a unit of code. Second, the model is based on a specific modelling technique. Mod-
elling techniques are mainly either machine learning (classification) or regression methods2

(Wahono 2015). Third, dependent variables (or prediction outcomes) are produced by the
model which are usually either categorical predictions (i.e. a code unit is predicted as either
defect prone or not defect prone) or continuous predictions (i.e. the number of defects
are predicted in a code unit). Fourth, a scheme is designed to measure the predictive
performance of a model. Measures based on the confusion matrix are often used for cat-
egorical predictions and measures related to predictive error are often used for continuous
predictions.

The aim of this paper is to identify classification techniques which perform well in
software defect prediction. We focus on within-project prediction as this is a very com-
mon form of defect prediction. Many eminent researchers before us have also aimed to do
this (e.g. Briand et al. (2002) and Lessmann et al. (2008)). Those before us have differ-
entiated predictive performance using some form of measurement scheme. Such schemes
typically calculate performance values (e.g. precision and recall ; see Table 3) to calcu-
late an overall number representing how well models correctly predict truly defective and
truly non-defective codes taking into account the level of incorrect predictions made. We go
beyond this by looking underneath the numbers and at the individual defects that specific
classifiers detect and do not detect. We show that, despite the overall figures suggesting sim-
ilar predictive performances, there is a marked difference between four classifiers in terms
of the specific defects each detects and does not detect. We also investigate the effect of
prediction ‘flipping’ among these four classifiers. Although different classifiers can detect
different subsets of defects, we show that the consistency of predictions vary greatly among
the classifiers. In terms of prediction consistency, some classifiers tend to be more stable
when predicting a specific software unit as defective or non-defective, hence ‘flipping’ less
between experiment runs.

1Defects can occur in many software artefacts, but here, we focus only on defects found in code.
2In this paper, we concentrate on classification models only. Hall et al. (2012) show that about 50% of
prediction models are based on classification techniques. We do this because a totally different set of analysis
techniques is needed to investigate the outcomes of regression techniques. Such an analysis is beyond the
scope of this paper.

Software Qual J

Identifying the defects that different classifiers detect is important as it is well known
(Fenton and Neil 1999) that some defects matter more than others. Identifying defects with
critical effects on a system is more important than identifying trivial defects. Our results
offer future researchers an opportunity to identify classifiers with capabilities to identify
sets of defects that matter most. Panichella et al. (2014) previously investigated the useful-
ness of a combined approach to identifying different sets of individual defects that different
classifiers can detect. We build on (Panichella et al. 2014) by further investigating whether
different classifiers are equally consistent in their predictive performances. Our results con-
firm that the way forward in building high-performance prediction models in the future is
by using ensembles (Kim et al. 2011). Our results also show that researchers should repeat
their experiments a sufficient number of times to avoid the ‘flipping’ effect that may skew
prediction performance.

We compare the predictive performance of four classifiers: Naı̈ve Bayes, Random For-
est, RPart and Support Vector Machines (SVM). These classifiers were chosen as they are
widely used by the machine-learning community and have been commonly used in previous
studies. These classifiers offer an opportunity to compare the performance of our classifica-
tion models against those in previous studies. These classifiers also use distinct predictive
techniques, and so, it is reasonable to investigate whether different defects are detected by
each and whether the prediction consistency is distinct among the classifiers.

We apply these four classifiers to twelve NASA datasets,3 three open source datasets,4

and three commercial datasets from our industrial partner (see Table 1). NASA datasets pro-
vide a standard set of independent variables (static code metrics) and dependent variables
(defect data labels). NASA data modules are at a function level of granularity. Additionally,
we analyse the open source systems: Ant, Ivy, and Tomcat from the PROMISE repository
(Jureczko and Madeyski 2010). Each of these datasets is at the class level of granularity. We
also use three commercial telecommunication datasets which are at a method level. There-
fore, our analysis includes datasets with different metrics granularity and from different
software domains.

This paper extends our earlier work (Bowes et al. 2015). We build on our previous
findings by adding more datasets into our experimental set-up and validating the conclu-
sions previously made. To the NASA datasets used in Bowes et al. (2015), we add six new
datasets (three open source, and three industrial datasets). Introducing more datasets to our
analysis increases the diversity of code and defects in those systems. Confirming our previ-
ous findings with increased and diverse datasets provides evidence that our results may be
generalisable.

The following section is an overview of defect prediction. Section 3 details our method-
ology. Section 4 presents results which are discussed in Section 5. We identify threats to
validity in Section 6 and conclude in Section 7.

2 Background

Many studies of software defect prediction have been performed over the years. In 1999,
Fenton and Neil critically reviewed a cross section of such studies (Fenton and Neil 1999).
Catal and Diri (2009) mapping study identified 74 studies, and in our more recent study

3http://promisedata.googlecode.com/svn/trunk/defect/
4http://openscience.us/repo/defect/ck/

http://promisedata.googlecode.com/svn/trunk/defect/
http://openscience.us/repo/defect/ck/

Software Qual J

Table 1 Summary statistics for datasets before and after cleaning

Project Dataset Language Total
KLOC

No. of
modules
(pre-
cleaning)

No. of
modules
(post-
cleaning)

%loss due
to cleaning

%faulty
modules
(pre-
cleaning)

%faulty
modules
(post-
cleaning)

Spacecraft
instrumentation

CM1 C 20 505 505 0.0 9.5 9.5

Ground data KC1 C++ 43 2109 2096 0.6 15.4 15.5

Storage KC3 Java 18 458 458 0.0 9.4 9.4

Management KC4 Perl 25 125 125 0.0 48.8 48.8

Combustion MC1 C & C++ 63 9466 9277 2.0 0.7 0.7

Experiment MC2 C 6 161 161 1.2 32.3 32.3

Zero gravity
experiment

MW1 C 8 403 403 0.0 7.7 7.7

Flight software PC1 C 40 1107 1107 0.0 6.9 6.9

for Earth PC2 C 26 5589 5460 2.3 0.4 0.4

orbiting PC3 C 40 1563 1563 0.0 10.2 0.0

satellites PC4 C 36 1458 1399 4.0 12.2 12.7

PC5 C++ 164 17186 17001 1.1 3.0 3.0

Real-time
predictive
ground
system

JM1 C 315 10878 7722 29.0 19.0 21.0

Telecommunication PA Java 21 4996 4996 0.0 11.7 11.7

Software KN Java 18 4314 4314 0.0 7.5 7.5

HA Java 43 9062 9062 0.0 1.3 1.3

Java build tool Ant Java 209 745 742 0.0 22.3 22.4

Dependency
manager

Ivy Java 88 352 352 0.0 11.4 11.4

Web server Tomcat Java 301 858 852 0.0 9.0 9.0

(Hall et al. 2012), we systematically reviewed 208 primary studies and showed that pre-
dictive performance varied significantly between studies. The impact that many aspects of
defect models have on predictive performance have been extensively studied.

The impact that various independent variables have on predictive performance has been
the subject of a great deal of research effort. The independent variables used in previ-
ous studies mainly fall into the categories of product (e.g. static code data) metrics and
process (e.g. previous change and defect data) as well as metrics relating to developers.
Complexity metrics are commonly used (Zhou et al. 2010), but LOC is probably the most
commonly used static code metric. The effectiveness of LOC as a predictive independent
variable remains unclear. Zhang (2009) reports LOC to be a useful early general indica-
tor of defect proneness. Other studies report LOC data to have poor predictive power and
is out-performed by other metrics (e.g. Bell et al. (2006)). Malhotra (2015) suggests that
object-oriented metrics such as coupling between objects and response for a class are useful
for defect prediction.

Software Qual J

Several previous studies report that process data, in the form of previous history data,
performs well (e.g. D’Ambros et al. (2009), Shin et al. (2009), Nagappan et al. (2010), and
Madeyski and Jureczko (2015)). D’Ambros et al. (2009) specifically report that previous
bug reports are the best predictors. More sophisticated process measures have also been
reported to perform well (e.g. Nagappan et al. (2010)). In particular, Nagappan et al. (2010)
use ‘change burst’ metrics with which they demonstrate good predictive performance. The
few studies using developer information in models report conflicting results. Ostrand et al.
(2010) report that the addition of developer information does not improve predictive perfor-
mance much. Bird et al. (2009b) report better performances when developer information is
used as an element within a socio-technical network of variables. Madeyski and Jureczko
(2015) show that some process metrics are particularly useful for predictive modelling. For
example, the number of developers changing a file can significantly improve defect predic-
tion (Madeyski and Jureczko 2015). Many other independent variables have also been used
in studies, for example Mizuno et al. (2007) and Mizuno and Kikuno (2007) use the text of
the source code itself as the independent variable with promising results.

Lots of different datasets have been used in studies. However, our previous review of
208 studies (Hall et al. 2012) suggests that almost 70% of studies have used either the
Eclipse dataset.5,6 Wahono (2015) and Kamei and Shihab (2016) suggest that the NASA
datasets remain the most popular for defect prediction, and also report that the PROMISE
repository is used increasingly. Ease of availability mean that these datasets remain pop-
ular despite reported issues of data quality. Bird et al. (2009a) identifies many missing
defects in the Eclipse data. While Gray et al. (2012), Boetticher (2006), and Shepperd et al.
(2013), and Petrić et al. (2016b) raise concerns over the quality of NASA datasets in the
original PROMISE repository.7 Datasets can have a significant effect on predictive per-
formance. Some datasets seem to be much more difficult than others to learn from. The
PC2 NASA dataset seems to be particularly difficult to learn from. Kutlubay et al. (2007)
and Menzies et al. (2007) both note this difficulty and report poor predictive results using
these datasets. As a result, the PC2 dataset is more seldom used than other NASA datasets.
Another example of datasets that are difficult to predict from are those used by Arisholm
and Briand (2007) and Arisholm et al. (2010). Very low precision is reported in both of these
Arisholm et al. studies (as shown in Hall et al. (2012)). Arisholm and Briand (2007) and
Arisholm et al. (2010) report many good modelling practices and in some ways are exem-
plary studies. But these studies demonstrate how the data used can impact significantly on
the performance of a model.

It is important that defect prediction studies consider the quality of data on which mod-
els are built. Datasets are often noisy. They often contain outliers and missing values that
can skew results. Confidence in the predictions made by a model can be impacted by the
quality of the data used while building the model. For example, Gray et al. (2012) show that
defect predictions can be compromised where there is a lack of data cleaning with Jiang
et al. (2009) acknowledging the importance of data quality. Unfortunately, Liebchen and
Shepperd (2008) report that many studies do not seem to consider the quality of the data
they use, but that small problems with data quality can have a significant impact on results.

5http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
6https://code.google.com/p/promisedata/(Menzies et al. 2012)
7http://promisedata.org

http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://code.google.com/p/promisedata/
http://promisedata.org

Software Qual J

The features of the data also need to be considered when building a defect prediction
model. In particular, repeated attributes and related attributes have been shown to bias the
predictions of models. The use of feature selection on sets of independent variables seems
to improve the performance of models (e.g. Shivaji et al. (2009), Khoshgoftaar et al. (2010),
Bird et al. (2009b), and Menzies et al. (2007)).

Data balance is also an important factor in defect prediction and has been considered by
previous studies. This is important as substantially imbalanced datasets are commonly used
in defect prediction studies (i.e. there are usually many more non-defective units than defec-
tive units) (Bowes et al. 2013; Myrtveit et al. 2005). An extreme example of this is seen in
NASA dataset PC2, which has only 0.4% of datapoints belonging to the defective class (23
out of 5589 datapoints). Imbalanced data can strongly influence both the training of a model,
and the suitability of performance metrics. The influence data imbalance has on predictive
performance varies from one classifier to another. For example, C4.5 decision trees have
been reported to struggle with imbalanced data (Chawla et al. 2004; Arisholm and Briand
2007; Arisholm et al. 2010), whereas fuzzy-based classifiers have been reported to perform
robustly regardless of class distribution (Visa and Ralescu 2004). Data balancing has shown
positive effects when used with Random Forest (Chen et al. 2014); however, there is a risk
of over-fitting (Gray et al. 2012). On the other hand, data balancing has demonstrated no
significant effect on performance when used with some other techniques (e.g. Naı̈ve Bayes
(Rodriguez et al. 2014)). Studies specifically investigating the impact of defect data balance
and proposing techniques to deal with it include, for example, Khoshgoftaar et al. (2010),
Shivaji et al. (2009), and Seiffert et al. (2009). Gao et al. (2015) investigate the combination
of feature selection and data balancing techniques. Particularly, Gao et al. (2015) experi-
ment with changing the order of the two techniques, using feature selection followed by data
balancing (separately using sampled and unsampled data instances), and vice versa. They
show that sampling performed prior to feature selection by keeping the unsampled data can
boost prediction performance more than the other two approaches (Gao et al. 2015).

Classifiers are mathematical techniques for building models which can then predict
dependent variables (defects). Defect prediction has frequently used trainable classifiers
(Wahono 2015). Trainable classifiers build models using training data which has items
composed of both independent and dependant variables. There are many classification tech-
niques that have been used in previous defect prediction studies. Witten (2005) explain
classification techniques in detail and Lessmann et al. (2008) summarise the use of 22
such classifiers for defect prediction. Ensembles of classifiers are also used in prediction
(Minku and Yao 2012; Sun et al. 2012; Laradji et al. 2015; Petrić et al. 2016a). Ensembles
are collections of individual classifiers trained on the same data and combined to perform a
prediction task. An overall prediction decision is made by the ensemble based on the pre-
dictions of the individual models. Majority voting is a decision-making strategy commonly
used by ensembles. Although not yet widely used in defect prediction, ensembles have been
shown to significantly improve predictive performance. For example, Mısırlı et al. (2011)
combine the use of Artificial Neural Networks, Naı̈ve Bayes and Voting Feature Intervals
and report improved predictive performance over the individual models. Ensembles have
been more commonly used to predict software effort estimation (e.g. Minku and Yao (2013))
where their performance has been reported as sensitive to the characteristics of datasets
(Chen and Yao 2009; Shepperd and Kadoda 2001).

Many defect prediction studies individually report the comparative performance of the
classification techniques they have used. Mizuno and Kikuno (2007) report that, of the tech-
niques they studied, Orthogonal Sparse Bigrams Markov models (OSB) are best suited to
defect prediction. Bibi et al. (2006) report that Regression via Classification works well.

Software Qual J

Khoshgoftaar et al. (2002) report that modules whose defect proneness is predicted as
uncertain, can be effectively classified using the TreeDisc technique. Our own analysis
of the results from 19 studies (Hall et al. 2012) suggests that Naı̈ve Bayes and Logistic
regression techniques work best. However, overall, there is no clear consensus on which
techniques perform best. Several influential studies have performed large-scale experiments
using a wide range of classifiers to establish which classifiers dominate. In Arisholm et al.
(2010) systematic study of the impact that classifiers, metrics and performance measures
have on predictive performance, eight classifiers were evaluated. Arisholm et al. (2010)
report that the classifier technique had limited impact on predictive performance. Less-
mann et al. (2008) large-scale comparison of predictive performance across 22 classifiers
over 10 NASA datasets showed no significant performance differences among the top 17
classifiers.

In general, defect prediction studies do not consider individual defects that different
classifiers predict or do not predict. Panichella et al. (2014) is an exception to this report-
ing a comprehensive empirical investigation into whether different classifiers find different
defects. Although predictive performances among the classifiers in their study were simi-
lar, they showed that different classifiers detect different defects. Panichella et al. proposed
CODEP which uses an ensemble technique (i.e. stacking Wolpert (1992)) to combine multi-
ple learners in order to achieve better predictive performances. The CODEP model showed
superior results when compared to single models. However, Panichella et al. conducted
a cross-project defect prediction study which differs from our study. Cross-project defect
prediction has an experimental set-up based on training models on multiple projects and
then tested on one project (explanatory studies on cross-project defect prediction were done
by Turhan et al. (2009) and Zimmermann et al. (2009)). Consequently, in cross-project
defect prediction studies, the multiple execution of experiments is not required. Contrary,
in within-project defect prediction studies, experiments are frequently done using cross-
validation techniques. To get more stabilised and generalised results, experiments based on
cross validation are repeated multiple times. As a drawback of executing experiments mul-
tiple times, the prediction consistency may not be stable resulting in classifiers ‘flipping’
between experimental runs. Therefore, in a within-project analysis, prediction consistency
should also be taken into account.

Our paper further builds on Panichella et al. in a number of other ways. Panichella et
al. conducted an analysis only at a class level while our study is additionally extended
to a module level (i.e. the smallest unit of functionality, usually a function, procedure or
method). Panichella et al. also consider regression analysis where probabilities of a module
being defective are calculated. Our study deals with classification where a module is labelled
either as defective or non-defective. Therefore, the learning algorithms used in each study
differ. We also show full performance figures by presenting the numbers of true positives,
false positives, true negative and false negatives for each classifier.

Predictive performance in all previous studies is presented in terms of a range of per-
formance measures (see the following sub-sections for more details of such measures). The
vast majority of predictive performances were reported to be within the current performance
ceiling of 80% recall identified by Menzies et al. (2008). However, focusing only on perfor-
mance figures, without examining the individual defects that individual classifiers detect, is
limiting. Such an approach makes it difficult to establish whether specific defects are con-
sistently missed by all classifiers, or whether different classifiers detect different subsets
of defects. Establishing the set of defects each classifier detects, rather than just looking at
the overall performance figure, allows the identification classifier ensembles most likely to
detect the largest range of defects.

Software Qual J

Table 2 Confusion matrix
Predicted defective Predicted defect free

Observed
defective

True positive
(TP)

False negative
(FN)

Observed
defect free

False positive
(FP)

True negative
(TN)

The confusion matrix is in many
ways analogous to residuals for
regression models. It forms the
fundamental basis from which
almost all other performance
statistics are derived.

Studies present the predictive performance of their models using some form of measure-
ment scheme. Measuring model performance is complex and there are many ways in which
the performance of a prediction model can be measured. For example, Menzies et al. (2007)
use pd and pf to highlight standard predictive performance, while Mende and Koschke
(2010) use Popt to assess effort-awareness. The measurement of predictive performance
is often based on a confusion matrix (shown in Table 2). This matrix reports how a model
classified the different defect categories compared to their actual classification (predicted
versus observed). Composite performance measures can be calculated by combining values
from the confusion matrix (see Table 3).

There is no one best way to measure the performance of a model. This depends on the
distribution of the training data, how the model has been built and how the model will be
used. For example, the importance of measuring misclassification will vary depending on
the application. Zhou et al. (2010) report that the use of some measures, in the context of a
particular model, can present a misleading picture of predictive performance and undermine
the reliability of predictions. Arisholm et al. (2010) also discuss how model performance
varies depending on how it is measured. The different performance measurement schemes
used mean that directly comparing the performance reported by individual studies is dif-
ficult and potentially misleading. Comparisons cannot compare like with like as there is
no adequate point of comparison. To allow such comparisons, we previously developed a
tool to transform a variety of reported predictive performance measures back to a confusion
matrix (Bowes et al. 2013).

Table 3 Composite performance measures

Construct Defined as Description

Recall pd (probability of
detection) sensitivity true
positive rate

T P/(T P + FN) Proportion of defective units cor-
rectly classified

Precision T P/(T P + FP) Proportion of units correctly pre-
dicted as defective

F-measure 2·Recall·Precision
Recall+Precision

Most commonly defined as the har-
monic mean of precision and recall

Matthews correlation
coefficient

T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

Combines all quadrants of the binary
confusion matrix to produce a value
in the range -1 to +1 with 0 indicat-
ing random correlation between the
prediction and the recorded results.
MCC can be tested for statistical sig-
nificance, with χ2 = N · MCC2

where N is the total number of
instances.

Software Qual J

3 Methodology

3.1 Classifiers

We have chosen four different classifiers for this study: Naı̈ve Bayes, RPart, SVM and
Random Forest. These four classifiers were chosen because they build models based on
different mathematical properties. Naı̈ve Bayes produces models based on the combined
probabilities of a dependent variable being associated with the different categories of
the dependent variables. Naı̈ve Bayes requires that both the dependent and independent
variables are categorical. RPart is an implementation of a technique for building Classifi-
cation and Regression Trees (CaRT). RPart builds a decision tree based on the information
entropy (uniformity) of the subsets of training data which can be achieved by splitting the
data using different independent variables. SVMs build models by producing a hyper-plane
which can separate the training data into two classes. The items (vectors) which are closest
to the hyper-plane are used to modify the model with the aim of producing a hyper-plane
which has the greatest average distance from the supporting vectors. Random Forest is an
ensemble technique. It is built by producing many CaRTs, each with samples of the training
data having a subset of features. Bagging is also used to improve the stability of the indi-
vidual trees by creating training sets produced by sampling the original training data with
replacement. The final decision of the ensemble is determined by combining the decisions
of each tree and computing the modal value.

The different methods of building a model by each classifier may lead to differences in
the items predicted as defective. Naı̈ve Bayes is purely probabilistic and each independent
variable contributes to a decision. RPart may use only a subset of independent variables to
produce the final tree. The decisions at each node of the tree are linear in nature and collec-
tively put boundaries around different groups of items in the original training data. RPart is
different to Naı̈ve Bayes in that the thresholds used to separate the groups are different at
each node compared to Naı̈ve Bayes which decides the threshold to split continuous vari-
ables before the probabilities are determined. SVMs use mathematical formulae to build
nonlinear models to separate the different classes. The model is therefore not derived from
decisions based on individual independent variables, but on the ability to find a formula
which separates the data with the least amount of false negatives and false positives.

Classifier tuning is an important part of building good models. As described above, Naı̈ve
Bayes requires all variables to be categorical. Choosing arbitrary threshold values to split
a continuous variable into different groups may not produce good models. Choosing good
thresholds may require many models to be built on the training data using different threshold
values and determining which produces the best results. Similarly for RPart, the number of
items in the leaf nodes of a tree should not be so small that a branch is built for every item.
Finding the minimum number of items required before branching is an important process in
building good models which do not overfit on the training data and then do not perform as
well on the test data. Random Forest can be tuned to determine the most appropriate number
of trees to use in the forest. Finally SVMs are known to perform poorly if they are not tuned
(Soares et al. 2004). SVMs can use different kernel functions to produce the complex hyper-
planes needed to separate the data. The radial-based kernel function has two parameters: C

and γ , which need to be tuned in order to produce good models.
In practice, not all classifiers perform significantly better when tuned. Both Naı̈ve Bayes

and RPart can be tuned, but the default parameters and splitting algorithms are known to
work well. Random Forest and particularly SVMs do require tuning. For Random Forest
we tuned the number of trees from 50 to 200 in steps of 50. For SVM using a radial base

Software Qual J

function, we tuned γ from 0.25 to 4 and C from 2 to 32. In our experiment, tuning was
carried out by splitting the training data into 10 folds, 9 folds were combined together to
build models with the parameters and the 10th fold was used to measure the performance
of the model. This was repeated with each fold being held out in turn. The parameters
which produced the best average performance we used to build the final model on the entire
training data.

3.2 Datasets

We used the NASA datasets first published on the now defunct MDP website.8 This repos-
itory consists of 13 datasets from a range of NASA projects. In this study, we use 12 of the
13 NASA datasets. JM1 was not used because during cleaning, 29% of data was removed
suggesting that the quality of the data may have been poor. We extended our previous analy-
sis (Bowes et al. 2015) by using 6 additional datasets, 3 open source and 3 commercial. All
3 open source datasets are at class level, and originate from the PROMISE repository. The
commercial datasets are all in the telecommunication domain and are at method level. A
summary of each dataset can be found in Table 1. Our choice of datasets is based on several
factors. First, the NASA and PROMISE datasets are frequently used in defect prediction.
Second, three open source datasets in our analysis (Ant, Ivy, and Tomcat) are very different
in nature, and they could have a variety of different defects. Commercial datasets also add
to the variety of very different datasets. We use these factors to enhance the possibility of
generalising our results, which is one of the major contributions of this paper.

The data quality of the original NASA MDP datasets can be improved (Boetticher 2006;
Gray et al. 2012; Shepperd et al. 2013). Gray et al. (2012), Gray (2013), and Shepperd et al.
(2013) describe techniques for cleaning the data. Shepperd has provided a ‘cleaned’ version
of the MDP datasets,9 However, full traceability back to the original items is not provided.
Consequently we did not use Shepperd’s cleaned NASA datasets. Instead we cleaned the
NASA datasets ourselves. We carried out the following data cleaning stages described by
Gray et al. (2012): Each independent variable was tested to see if all values were the same;
if they were, this variable was removed because they contained no information which allows
us to discriminate defective items from non-defective items. The correlation for all combi-
nations of two independent variables was found; if the correlation was 1, the second variable
was removed. Where the dataset contained the variable ‘DECISION DENSITY’, any item
with a value of ‘na’ was converted to 0. The ‘DECISION DENSITY’ was also set to 0 if
‘CONDITION COUNT’=0 and ‘DECISION COUNT’=0. Items were removed if:

1. HALSTEAD LENGTH!= NUM OPERANDS+NUM OPERATORS
2. CYCLOMATIC COMPLEXITY> 1+NUM OPERATORS
3. CALL PAIRS> NUM OPERATORS

Our method for cleaning the NASA data also differs from Shepperd et al. (2013) because
we do not remove items where the executable lines of code is zero. We did not do this
because we have not been able to determine how the NASA metrics were computed and it
is possible to have zero executable lines in Java interfaces. We performed the same cleaning
to our commercial datasets. We performed cleaning of the open source datasets for which

8http://mdp.ivv.nasa.gov – unfortunately now not accessible
9http://nasa-softwaredefectdatasets.wikispaces.com

http://mdp.ivv.nasa.gov
http://nasa-softwaredefectdatasets.wikispaces.com

Software Qual J

we defined a similar set of rules as described above, for data at a class level. Particularly,
we removed items if:

1. AVERAGE CYCLOMATIC COMPLEXITY>

MAXIMAL CYCLOMATIC COMPLEXITY
2. NUMBER OF COMMENTS> LINES OF CODE
3. PUBLIC METODS COUNT> CLASS METHODS COUNT

Since all the NASA and open source datasets are publicly available, the aforementioned
cleaning steps can be applied to them. We do not provide pre-cleaned data as we believe it
is vital that researchers do their own cleaning. Problems with poor-quality data being used
have prolificated because researchers have taken pre-cleaned data without questioning their
quality (for example NASA datasets (Gray et al. 2011; Shepperd et al. 2013)). Cleaning
the data we use is straightforward to future researchers as the cleaning steps are easy to
understand and implement.

3.3 Experimental Set-Up

The following experiment was repeated 100 times. Experiments are more commonly
repeated 10 times. We chose 100 repeats because Mende (2011) reports that using 10
experiment repeats results in an unreliable final performance figure. Each dataset was split
into 10 stratified folds. Each fold was held out in turn to form a test set and the other folds
were combined and randomised (to reduce ordering effects) to produce the training set. Such
stratified cross validation ensures that there are instances of the defective class in each test
set, so reduces the likelihood of classification uncertainty. Re-balancing of the training set
is sometimes carried out to provide the classifier with a more representative sample of the
infrequent defective instances. Data balancing may have very different effects on an experi-
ment depending on the classifier used (as explained in Section 2). To reduce the confounding
factors of data balance, we do not apply this technique in our experiment. Specifically, it
would be difficult to control the impact of data balance on performance across the range
of classifiers we used. Also, our experiment is focused on the dispersion of individual pre-
dictions based on real data across classifiers, rather than investigating whether and how
re-balancing affects defect prediction results. Furthermore, data balancing is infrequently
used in defect prediction studies. For each training/testing pair, four different classifiers
were trained using the same training set. Where appropriate, a grid search was performed to
identify optimal meta-parameters for each classifier on the training set. The model built by
each classifier was used to classify the test set.

To collect the data showing individual predictions made by individual classifiers, the
RowID, DataSet, runid, foldid and classified label (defective or not defective) was recorded
for each item in the test set for each classifier and for each cross-validation run.

We calculate predictive performance values using two different measures: f-measure and
MCC (see Table 3). F-measure was selected because it is very commonly used by published
studies and allows us to easily compare the predictive performance of our models against
previous models. Additionally, f-measure gives the harmonic mean of both measures,
precision and recall. It has a range of 0 to 1. MCC was selected because it is relatively easy
to understand with a range from -1 to +1. MCC has the added benefit that it encompasses all
four components of the confusion matrix whereas f-measure ignores the proportion of true
negatives. Furthermore, Matthews’ Correlation Coefficient (MCC) has been demonstrated
to be a reliable measure of predictive model performance (Shepperd et al. 2014). The results
for each combination of classifier and dataset were further analysed by calculating for each

Software Qual J

SVM

RPart

NB

RF

Average Published Results

Bounded by Min and Max

P
C

2

M
C

2

C
M

1

M
W

1

K
C

1

K
C

3

P
C

1

P
C

3

K
C

4

P
C

4

P
C

5

−1

0

1

DataSet

M
C

C

Fig. 1 Our results compared to results published by other studies

item the frequency of being classified as defective. The results were then categorised by the
original label for each item so that we can see the difference between how the models had
classified the defective and non-defective items.

4 Results

We aim to investigate variation in the individual defects and prediction consistency produced
by the four classifiers. To ensure the defects that we analyse are reliable, we first checked
that our models were performing satisfactorily. To do this, we built prediction models using
the NASA datasets. Figure 1 compares the MCC performance of our models against 600
defect prediction performances reported in published studies using these NASA datasets
Hall et al. (2012).10 We re-engineered MCC from the performance figures reported in these
previous studies using DConfusion. This is a tool we developed for transforming a vari-
ety of reported predictive performance measures back to a confusion matrix. DConfusion
is described in (Bowes et al. 2013). Figure 1 shows that the performances of our four clas-
sifiers are generally in keeping with those reported by others. Figure 1 confirms that some
datasets are notoriously difficult to predict. For example, few performances for PC2 are
better than random. Whereas, very good predictive performances are generally reported for
PC5 and KC4. The RPart and Naı̈ve Bayes classifiers did not perform as well on the NASA
datasets as on our commercial datasets (as shown in Table 4). However, all our commercial
datasets are highly imbalanced, where learning from a small set of defective items becomes
more difficult, so this imbalance may explain the difference in the way these two classifiers
perform. Similarly the SVM classifier performs better on the open source datasets than it
does on the NASA datasets. The SVM classifier seems to perform particularly poorly when

10Dataset MC1 is not included in the figure because none of the studies we had identified previously used
this dataset.

Software Qual J

Table 4 MCC performance for all datasets by classifier

NASA datasets OSS datasets Commercial datasets All datasets

Classifier Average StDev Average StDev Average StDev Average StDev

SVM 0.291 0.188 0.129 0.134 0.314 0.140 0.245 0.154

RPart 0.331 0.162 0.323 0.077 0.166 0.148 0.273 0.129

NB 0.269 0.083 0.322 0.089 0.101 0.040 0.231 0.071

RF 0.356 0.184 0.365 0.095 0.366 0.142 0.362 0.140

used on extremely imbalanced datasets (especially the case when datasets have less than
10% faulty items).

We investigated classifier performance variation across all the datasets. Table 4 shows
little overall difference in average MCC performance across the four classifiers, except
Random Forest, which usually performs best (Lessmann et al. 2008). By using Friedman’s
non-parametric test at the significance level 0.05, we formally confirmed no statistically sig-
nificant difference in the MCC performance values across all datasets when applied amongst
SVM, Naı̈ve Bayes, and RPart classifiers (p-value: 0.939). Similarly, by using the same pro-
cedure, we established that there is a statistically significant difference in terms of MCC
performance when Random Forest is added to the statistical test (p value: 0.021). However,
these overall performance figures mask a range of different performances by classifiers
when used on individual datasets. For example, Table 5 shows Naı̈ve Bayes performing rela-
tively well when used on the Ivy and KC4 datasets, however, much worse on the KN dataset.
On the other hand, SVM achieves the highest MCC performance across all classifiers on
the KN dataset, but poor performance values on the Ivy dataset.11 By repeating Friedman’s
non-parametric statistical test on the three datasets reported in Table 5, across all runs, we
confirmed a statistically significant difference amongst the four classifiers, with the p value
less than 0.0001 in the cases where Random Forest was included or excluded from the test.

Having established that our models were performing acceptably (comparable to the 600
models reported in Hall et al. (2012) and depicted in Fig. 1), we next wanted to identify
the particular defects that each of our four classifiers predicts so that we could identify
variations in the defects predicted by each. We needed to be able to label each module as
either containing a predicted defect (or not) by each classifier. As we used 100 repeated 10-
fold cross-validation experiments, we needed to decide on a prediction threshold at which
we would label a module as either predicted defective (or not) by each classifier, i.e. how
many of these 100 runs must have predicted that a module was defective before we labelled
it as such. We analysed the labels that each classifier assigned to each module for each of
the 100 runs. There was a surprising amount of prediction ‘flipping’ between runs. On some
runs, a module was labelled as defective and other runs not. There was variation in the level
of prediction flipping amongst the classifiers. Table 7 shows the overall label ‘flipping’
between the classifiers.

Table 6 divides predictions between the actual defective and non-defective labels (i.e. the
known labels for each module) for each of our dataset category, namely NASA, commercial
(Comm), and open source dataset (OSS), respectively. For each of these two categories,
Table 6 shows three levels of label flipping: never, 5% and 10%. For example, a value of

11Performance tables for all datasets are available from https://sag.cs.herts.ac.uk/?page id=235

https://sag.cs.herts.ac.uk/?page_id=235

Software Qual J

Table 5 Performance measures
for KC4, KN and Ivy KC4 KN Ivy

Classifier MCC F-measure MCC F-measure MCC F-measure

SVM 0.567 0.795 0.400 0.404 0.141 0.167

RPart 0.650 0.825 0.276 0.218 0.244 0.324

NB 0.272 0.419 0.098 0.170 0.295 0.375

RF 0.607 0.809 0.397 0.378 0.310 0.316

defective items flipping Never = 0.717 would indicate that 71.7% of defective items never
flipped, a value of defective items flipping < 5% = 0.746 would indicate that 74.6% of
defective items flipped less than 5% of the time. Table 7 suggests that non-defective items
had a more stable prediction than defective items across all datasets. Although Table 7 shows
the average numbers of prediction flipping across all datasets, this statement is valid for all
of our dataset categories as shown in Table 6. This is probably because of the imbalance
of data. Since there is more non-defective items to learn from, predictors could be better
trained to predict them and hence flip less. Although the average numbers do not indicate
much flipping between modules being predicted as defective or non-defective, these tables
show datasets together, and so, the low flipping in large datasets masks the flipping that
occurs in individual datasets.

Table 8 shows the label flipping variations during the 100 runs between datasets.12 For
some datasets, using particular classifiers results in a high level of flipping (prediction
uncertainty). For example, Table 8 shows that using Naı̈ve Bayes on KN results in predic-
tion uncertainty, with 73% of the predictions for known defective modules flipping at least
once between being predicted defective to predicted non-defective between runs. Table 8
also shows the prediction uncertainty of using SVM on the KC4 dataset with only 26% of
known defective modules being consistently predicted as defective or not defective across
all cross-validation runs. Figure 2 presents violin plots showing the flipping for the four dif-
ferent classifiers on KC4 in more detail.13 The violin plots show the flipping that occurs for
each quadrant of the confusion matrix. The y-axis represents the probability of a module
to flip, where the central part of a ‘violin’ represents the 50% chance of flipping, reducing
towards no flipping at the ends of the ‘violin’. The x-axis demonstrates the proportion of
modules that flip, where a wide ‘violin’ indicates a high proportion of modules, and a nar-
row ‘violin’ represents a small number of modules. For example, Fig. 2 shows that SVM is
particularly unstable when predicting both, defective and non-defective modules for KC4,
compared to the other classifiers. The reason for that is the wider ‘violin’ body around
the 50% probability of flipping. On the other hand, Naı̈ve Bayes shows the greatest stabil-
ity when predicting non-defective instances since the majority of modules are concentrated
closer to the ends of the ‘violin’. RPart provides relatively stable predictions for defective
instances when used on the KC4 dataset. As a result of analysing these labelling variations
between runs, we decided to label a module as having been predicted as either defective or
not defective if it had been predicted as such on more than 50 runs. Using a threshold of 50
is the equivalent of choosing the label based on the balance of probability.

12Label flipping tables for all datasets are available from https://sag.cs.herts.ac.uk/?page id=235.
13Violin plots for all datasets are available from https://sag.cs.herts.ac.uk/?page id=235

https://sag.cs.herts.ac.uk/?page_id=235
https://sag.cs.herts.ac.uk/?page_id=235

Software Qual J

Table 6 Frequency of all items
flipping across different dataset
categories

Non-defective items Defective items

Classifier Never <5 % <10 % Never <5 % <10 %

NASA SVM 0.983 0.985 0.991 0.717 0.746 0.839

RPart 0.972 0.972 0.983 0.626 0.626 0.736

NB 0.974 0.974 0.987 0.943 0.943 0.971

RF 0.988 0.991 0.993 0.748 0.807 0.859

Comm SVM 0.959 0.967 0.974 0.797 0.797 0.797

RPart 0.992 0.992 0.995 0.901 0.901 0.901

NB 0.805 0.805 0.879 0.823 0.823 0.823

RF 0.989 0.992 0.995 0.897 0.897 0.897

OSS SVM 0.904 0.925 0.942 0.799 0.799 0.799

RPart 0.850 0.850 0.899 0.570 0.570 0.570

NB 0.953 0.953 0.971 0.924 0.924 0.924

RF 0.958 0.970 0.975 0.809 0.809 0.809

Having labelled each module as being predicted or not as defective by each of the four
classifiers, we constructed set diagrams to show which defects were identified by which
classifiers. Figures 3–5 show set diagrams for all dataset categories, divided in groups for
NASA datasets, open source datasets, and commercial datasets, respectively. Figure 3 shows
a set diagram for the 12 frequently used NASA datasets together. Each figure is divided into
the four quadrants of a confusion matrix. The performance of each individual classifier is
shown in terms of the numbers of predictions falling into each quadrant. Figures 3–5 show
similarity and variation in the actual modules predicted as either defective or not defec-
tive by each classifier. Figure 3 shows that 96 out of 1568 defective modules are correctly
predicted as defective by all four classifiers (only 6.1%). Very many more modules are
correctly identified as defective by individual classifiers. For example, Naı̈ve Bayes is the
only classifier to correctly find 280 (17.9%) defective modules and SVM is the only classi-
fier to correctly locate 125 (8.0%) defective modules (though such predictive performance
must always be weighed against false positive predictions). Our results suggest that using
only a Random Forest classifier would fail to predict many (526 (34%)) defective modules.
Observing Figs. 4 and 5 we came to similar conclusions. In the case of the open source
datasets, 55 out of 283 (19.4%) unique defects were identified by either Naı̈ve Bayes or
SVM. Many more unique defects were found by individual classifiers in the commercial
datasets, precisely 357 out of 1027 (34.8%).

Table 7 Frequency of all item
flipping in all datasets Non-defective items Defective items

Classifier Never <5% <10% Never <5% <10%

SVM 0.949 0.959 0.969 0.771 0.781 0.812

RPart 0.938 0.938 0.959 0.699 0.699 0.736

NB 0.911 0.911 0.945 0.897 0.897 0.906

RF 0.978 0.984 0.988 0.818 0.838 0.855

Software Qual J

Table 8 Frequency of flipping
for three different datasets Non-defective items Defective items

Classifier Never <5 % <10 % Never <5 % <10 %

KC4 SVM 0.719 0.734 0.828 0.262 0.311 0.443

RPart 0.984 0.984 1.000 0.902 0.902 0.984

NB 0.938 0.938 0.984 0.885 0.885 0.934

RF 0.906 0.938 0.953 0.803 0.820 0.918

KN SVM 0.955 0.964 0.971 0.786 0.817 0.854

RPart 0.993 0.993 0.997 0.888 0.888 0.929

NB 0.491 0.491 0.675 0.571 0.571 0.730

RF 0.988 0.991 0.994 0.919 0.922 0.957

Ivy SVM 0.913 0.949 0.962 0.850 0.850 0.875

RPart 0.837 0.837 0.881 0.625 0.625 0.700

NB 0.933 0.933 0.952 0.950 0.950 1.000

RF 0.955 0.974 0.981 0.900 0.925 0.950

There is much more agreement between classifiers about non-defective modules. In the
true negative quadrant, Fig. 3 shows that all four classifiers agree on 35364 (93.1%) out
of 37987 true negative NASA modules. Though again, individual non-defective modules
are located by specific classifiers. For example, Fig. 3 shows that SVM correctly predicts
100 non-defective NASA modules that no other classifier predicts. The pattern of module
predictions across the classifiers varies slightly between the datasets. Figures 6, 7 and 8
show set diagrams for individual datasets, KC4, KN and Ivy. Particularly, Fig. 6 shows a
set diagram for the KC4 dataset.14 KC4 is an interesting dataset. It is unusually balanced
between defective and non-defective modules (64 v 61). It is also a small dataset (only 125
modules). Figure 6 shows that for KC4 Naı̈ve Bayes behaves differently compared to how
it behaves for the other datasets. In particular for KC4 Naı̈ve Bayes is much less optimistic
(i.e. it predicts only 17 out of 125 modules as being defective) in its predictions than it is
for the other datasets. RPart was more conservative when predicting defective items than
non-defective ones. For example, in the KN dataset, RPart is the only classifier to find 17
(5.3%) unique non-defective items as shown on Fig. 8.

5 Discussion

Our results suggest that there is uncertainty in the predictions made by classifiers. We have
demonstrated that there is a surprising level of prediction flipping between cross-validation
runs by classifiers. This level of uncertainty is not usually observable as studies normally
only publish average final prediction figures. Few studies concern themselves with the
results of individual cross-validation runs. Elish and Elish (2008) is a notable exception to
this, where the mean and the standard deviation of the performance values across all runs are
reported. Few studies run experiments 100 times. More commonly, experiments are run only
10 times (e.g. Lessmann et al. (2008); Menzies et al. (2007)). This means that the level of

14Set diagrams for all datasets can be found at https://sag.cs.herts.ac.uk/?page id=235

https://sag.cs.herts.ac.uk/?page_id=235

Software Qual J

1
.0

1
.4

1
.8 FN TP

FPTN

1

 Non Defective

2

 Defective

SVM

1
.0

1
.4

1
.8 FN TP

FPTN

1

 Non Defective

2

 Defective

RPart

1
.0

1
.4

1
.8 FN TP

FPTN

1

 Non Defective

2

 Defective

NaiveBayes

1
.0

1
.4

1
.8 FN TP

FPTN

1

 Non Defective

2

 Defective

RandomForest

Fig. 2 Violin plot of frequency of flipping for KC4 dataset

78

22

11

14

22

489

119

39

166

64
264 35

75

37

30

SVM RPart

NB RF

False Negativies=1465

280

39

37

39

43

96

157

13

125

84
69 8

49

11

14

SVM RPart

NB RF

True Positives=1064

8.0%

0.7%
17.9%

2.4%

14

20

12

11

71

35364

168

70

100

89
1915 38

29

12

40

SVM RPart

NB RF

True Negativies=37953

1906

48

41

69

14

30

90

7

169

29
15 8

66

45

16

SVM RPart

NB RF

False Positives=2553

Fig. 3 Sensitivity analysis for all NASA datasets using different classifiers. n = 37987 ; p = 1568

Software Qual J

4

4

2

6

1

114

18

2

54

11
32 1

1

5

7

SVM RPart

NB RF

False Negativies=262

36

10

1

2

6

20

51

6

19

1
4 1

7

0

3

SVM RPart

NB RF

True Positives=167

6.7%

12.7%
0%

0%

0

3

0

2

21

1411

37

11

22

15
110 4

1

3

6

SVM RPart

NB RF

True Negativies=1646

113

9

3

11

5

15

19

2

39

1
0 0

9

11

0

SVM RPart

NB RF

False Positives=237

Fig. 4 Sensitivity analysis for all open source datasets using different classifiers. n = 1663; p = 283

prediction flipping between runs is likely to be artificially reduced. We suspect that predic-
tion flipping by a classifier for a dataset is caused by the random generation of the folds. The
items making up the individual folds determine the composition of the training data and the
model that is built. The larger the dataset, the less prediction flipping occurs. This is likely
to be because larger datasets may have training data that is more consistent with the entire
dataset. Some classifiers are more sensitive to the composition of the training set than other
classifiers. SVM is particularly sensitive for KC4 where 26% of non-defective items flip at
least once and 44% of defective items flip. Although SVM performs well (MCC = 0.567),
the items it predicts as being defective are not consistent across different cross-validation
runs. A similar situation is observed with Ant, where the level of flipping for Rpart is 63%
while maintaining a reasonable performance (MCC = 0.398). However, the reasons for such
prediction uncertainty remain unknown and investigating the cause of this uncertainty is
beyond the scope of this paper. Future research is also needed to use our results on flipping
to identify the threshold at which overall defective or not defective predictions should be
determined.

The level of uncertainty among classifiers may be valuable for practitioners in different
domains of defect predictions. For instance, where stability of prediction plays a signif-
icant role, our results suggest that on average, Naı̈ve Bayes would be the most suitable
selection. On the other hand, learners such as RPart may be avoided in applications where
higher prediction consistency is needed. The reasons for this prediction inconsistency are

Software Qual J

16

0

0

0

0

392

41

16

9

0
293 30

128

39

37

SVM RPart

NB RF

False Negatives=1001

286

42

30

16

39

26

4

0

41

136
8 0

0

0

0

SVM RPart

NB RF

True Positives=628

4.0%

27.8%
2.9%

0%

0

0

0

0

4

13744

87

43

7

9
3370 18

19

18

18

SVM RPart

NB RF

True Negatives=17337

3236

20

18

42

19

5

5

0

84

19
0 0

6

2

0

SVM RPart

NB RF

False Positivies=3456

Fig. 5 Sensitivity analysis for all commercial datasets using different classifiers. n = 17344; p = 1027

yet to be established. More classifiers with different properties should also be investigated
to establish the extent of uncertainty in predictions.

Other large-scale studies comparing the performance of defect prediction models show
that there is no significant difference between classifiers (Arisholm et al. 2010; Lessmann
et al. 2008). Our overall MCC values for the four classifiers we investigate also suggest
performance similarity. Our results show that specific classifiers are sensitive to dataset
and that classifier performance varies according to dataset. For example, our SVM model
performs poorly on Ivy but performs much better on KC4. Other studies have also reported
sensitivity to dataset (e.g. Lessmann et al. (2008)).

Similarly to Panichella et al. (2014), our results also suggest that overall performance
figures hide a variety of differences in the defects that each classifier predicts. While over-
all performance figures between classifiers are similar, very different subsets of defects are
actually predicted by different classifiers. So, it would be wrong to conclude that, given
overall performance values for classifiers are similar, it does not matter which classifier
is used. Very different defects are predicted by different classifiers. This is probably not
surprising given that the four classifiers we investigate approach the prediction task using
very different techniques. From each category of system in our analysis, we observe a con-
siderable number of defects predicted by a single classifier. Overall, the NASA category
contains 43%, Comm 57% and OSS 34% of unique defects predicted by only one classifier.
Future work is needed to investigate whether there is any similarity in the characteristics of

Software Qual J

29

4

0

4

2

5

0

0

2

1
0 2

2

0

0

SVM RPart

NB RF

False Negativies=51

0

0

2

0

0

10

2

4

0

2
29 0

1

2

4

SVM RPart

NB RF

True Positives=56

10

0

0

0

0

40

7

1

0

0
0 1

2

0

0

SVM RPart

NB RF

True Negativies=61

0

0

1

1

0

3

0

0

7

2
10 0

0

0

0

SVM RPart

NB RF

False Positivies=24

Fig. 6 Sensitivity analysis for KC4 using different classifiers. n = 64; p = 61

the set of defects that each classifier predicts. Currently, it is not known whether particular
classifiers specialise in predicting particular types of defect.

Our results strongly suggest the use of classifier ensembles. It is likely that a collec-
tion of heterogeneous classifiers offer the best opportunity to predict defects. Future work
is needed to extend our investigation and identify which set of classifiers perform best in
terms of prediction performance and consistency. This future work also needs to identify
whether a global ensemble could be identified or whether effective ensembles remain local
to the dataset. Our results also suggest that ensembles should not use the popular major-
ity voting approach to deciding on predictions. Using this decision-making approach will
miss the unique subsets of defects that individual classifiers predict. Such understanding has
previously not been obvious since only average overall performance figures for different
classifiers have been reported. Our results now support Kim et al. (2011)’s recommendations
on the use of classifier ensembles, and we, in addition, provide better understanding about
ensemble design. One way forward in building future prediction models could be stacking
ensembles. The stacking approach does not base its predictions on voting, but rather uses
an additional classifier to make the final prediction. Our recent study has shown that stack-
ing ensembles provide significantly better prediction performance compared to many other
classifiers (Petrić et al. 2016a). However, a substantial amount of future work is needed to
establish a decision- making approach for ensembles that will fully exploit our findings. Our
results further indicate the possible reasons for high false alarms previously attributed to

Software Qual J

0

1

0

0

0

20

3

0

7

0
8 0

0

0

1

SVM RPart

NB RF

False Negativies=40

8

2

0

0

0

0

6

0

3

0
0 0

0

0

0

SVM RPart

NB RF

True Positivies=19

0

1

0

0

1

267

6

0

5

6
24 0

0

0

2

SVM RPart

NB RF

True Negativies=312

25

2

0

0

0

0

5

0

7

0
0 0

3

1

0

SVM RPart

NB RF

False Positivies=43

Fig. 7 Ivy sensitivity analysis using different classifiers. n = 312; p = 40

ensembles. As many true defects are individually predicted by single classifiers, ensembles
based on majority voting approach would certainly misclassify such defects.

6 Threats to validity

Although we implemented what could be regarded as current best practice in classifier-
based model building, there are many different ways in which a classifier may be built.
There are also many different ways in which the data used can be pre-processed. All of
these factors are likely to impact on predictive performance. As Lessmann et al. (2008)
say classification is only a single step within a multistage data mining process (Fayyad
et al. 1996). Especially, data preprocessing or engineering activities such as the removal
of non-informative features or the discretisation of continuous attributes may improve the
performance of some classifiers (see, e.g., Dougherty et al. (1995) and Hall and Holmes
(2003)). Such techniques have an undisputed value. Despite the likely advantages of imple-
menting these many additional techniques, as Lessmann et al. we implemented only a basic
set of these techniques. Our reason for this decision was the same as Lessmann et al. ...com-
putationally infeasible when considering a large number of classifiers at the same time.
The experiments we report here each took several days of processing time. We did imple-
ment a set of techniques that are commonly used in defect prediction of which there is
evidence they improve predictive performance. We went further in some of the techniques

Software Qual J

10

0

0

0

0

47

0

13

0

0
183 0

8

30

5

SVM RPart

NB RF

False Negativies=296

177

5

0

13

30

26

0

0

0

12
6 0

0

0

0

SVM RPart

NB RF

True Positives=269

0

0

0

0

0

1601

3

32

1

4
2318 0

1

17

8

SVM RPart

NB RF

True Negativies=3985

2202

10

0

31

18

5

0

0

3

1
0 0

4

0

0

SVM RPart

NB RF

False Positivies=2274

Fig. 8 KN sensitivity analysis using different classifiers. n = 3992; p = 322

we implemented, e.g. running our experiments 100 times rather than the 10 times that stud-
ies normally do. However, we did not implement a technique to address data imbalance
(e.g. SMOTE). This was because data imbalance does not affect all classifiers equally. We
implemented only partial feature reduction. The impact of the model building and data
pre-processing approaches we used are not likely to significantly affect the results we report.
This could be due to the ceiling effect reported in 2008, which states that prediction mod-
elling solely based on model building and data pre-processing cannot break through the
performance ceiling (Menzies et al. 2008). In addition, the range of steps we applied in our
experiments while building prediction models are comparable to current defect prediction
studies (e.g. repeated experiments, the use of cross validation, etc.).

Our studies are also limited in that we only investigated four classifiers. It may be that
there is less variation in the defect subsets detected by classifiers that we did not investigate.
We believe this to be unlikely, as the four classifiers we chose are representative of discrete
groupings of classifiers in terms of the prediction approaches used. However, future work
will have to determine whether additional classifiers behave as we report these four classi-
fiers to. We also used a limited number of datasets in our study. Again, it is possible that
other datasets behave differently. We believe this will not be the case, as the 18 datasets
we investigated were wide ranging in their features and produced a variety of results in our
investigation.

Our analysis is also limited by only measuring predictive performance using f-measure
and MCC metrics. Such metrics are implicitly based on the cut-off points used by the

Software Qual J

classifiers themselves to decide whether a software component is defective or not. All soft-
ware components having a defective probability above a certain cut-off point (in general,
it is equal to 0.5) are labelled as ‘defective’, or as ‘non-defective’ otherwise. For exam-
ple, Random Forest not only provides a binary classification of datapoints but also provides
the probabilities for each component belonging to ‘defective’ or ‘non-defective’ categories.
D’Ambros et al. (2012) investigated the effect of different cut-off points on the perfor-
mances of classification algorithms in the context of defect prediction and proposed other
performance metrics that are independent from the specific (and also implicit) cut-off points
used by different classifiers. Future work includes consideration of the different cut-off
points to the individual performances of the four classifiers used in this paper.

7 Conclusion

We report a surprising amount of prediction variation within experimental runs. We repeated
our cross-validation runs 100 times. Between these runs, we found a great deal of inconsis-
tency in whether a module was predicted as defective or not by the same model. This finding
has important implications for defect prediction as many studies only repeat experiments
10 times. This means that the reliability of some previous results may be compromised. In
addition, the prediction flipping that we report has implications for practitioners. Although
practitioners may be happy with the overall predictive performance of a given model,
they may not be so happy that the model predicts different modules as defective depend-
ing on the training of the model. Our analysis shows that the classifier’s inconsistency
occurs in a variety of different software domains, including open source and commercial
projects.

Performance measures can make it seem that defect prediction models are performing
similarly. However, even where similar performance figures are produced, different defects
are identified by different classifiers. This has important implications for defect prediction.
First, assessing predictive performance using conventional measures such as f-measure, pre-
cision or recall gives only a basic picture of the performance of models. Second, models
built using only one classifier are not likely to comprehensively detect defects. Ensembles of
classifiers need to be used. Third, current approaches to ensembles need to be re-considered.
In particular, the popular ‘majority’ voting decision approach used by ensembles will miss
the sizeable subsets of defects that single classifiers correctly predict. Ensemble decision-
making strategies need to be enhanced to account for the success of individual classifiers in
finding specific sets of defects. Our results support the use of classifier ensembles not based
on majority voting.

The feature selection techniques for each classifier could also be explored in the future.
Since different classifiers find different subsets of defects, it is reasonable to explore
whether some particular features better suit specific classifiers. Perhaps some classifiers
work better when combined with specific subsets of features.

We suggest new ways of building enhanced defect prediction models and opportunities
for effectively evaluating the performance of those models in within-project studies. These
opportunities could provide future researchers with the tools with which to break through
the performance ceiling currently being experienced in defect prediction.

Acknowledgments This work was partly funded by a grant from the UK’s Engineering and Physical
Sciences Research Council under grant number: EP/L011751/1.

Software Qual J

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Arisholm, E., & Briand, L.C. (2007). Fuglerud M Data mining techniques for building fault-proneness mod-
els in telecom java software. In Software Reliability, 2007. ISSRE ’07. The 18th IEEE International
Symposium on, pp 215–224.

Arisholm, E., Briand, L.C., & Johannessen, E.B. (2010). A systematic and comprehensive investigation
of methods to build and evaluate fault prediction models. Journal of Systems and Software, 83(1), 2–
17.

Bell, R., Ostrand, T., & Weyuker, E. (2006). Looking for bugs in all the right places. In Proceedings of the
2006 international symposium on Software testing and analysis, ACM, pp 61–72.

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahvas, I. (2006). Software defect prediction using regression via
classification. In IEEE international conference on computer systems and applications.

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P. (2009a). Fair and
balanced?: bias in bug-fix datasets.In Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering,
ACM, New York, NY, USA, ESEC/FSE ’09, pp 121–130.

Bird, C., Nagappan, N., Gall, H., Murphy, B., & Devanbu, P. (2009b). Putting it all together: Using
socio-technical networks to predict failures. In 20th International Symposium on Software Reliability
Engineering, IEEE, pp 109–119.

Boetticher, G. (2006). Advanced machine learner applications in software engineering, Idea Group Publish-
ing, Hershey, PA, USA, chap Improving credibility of machine learner models in software engineering.

Bowes, D., Hall, T., & Gray, D. (2013). DConfusion: a technique to allow cross study performance evaluation
of fault prediction studies. Automated Software Engineering, 1–27. doi:10.1007/s10515-013-0129-8.

Bowes, D., Hall, T., & Petrić, J. (2015). Different classifiers find different defects although with different
level of consistency. In Proceedings of the 11th International Conference on Predictive Models and Data
Analytics in Software Engineering, PROMISE ’15, pp 3:1–3:10. doi:10.1145/2810146.2810149.

Briand, L., Melo, W., & Wust, J. (2002). Assessing the applicability of fault-proneness models across object-
oriented software projects. IEEE Transactions on Software Engineering, 28(7), 706–720.

Catal, C., & Diri, B. (2009). A systematic review of software fault prediction studies. Expert Systems with
Applications, 36(4), 7346–7354.

Chawla, N.V., Japkowicz, N., & Kotcz, A. (2004). Editorial: special issue on learning from imbalanced data
sets. SIGKDD Explorations, 6(1), 1–6.

Chen, H., & Yao, X. (2009). Regularized negative correlation learning for neural network ensembles. IEEE
Transactions on Neural Networks, 20(12), 1962–1979.

Chen, W., Wang, Y., Cao, G., Chen, G., & Gu, Q. (2014). A random forest model based classification scheme
for neonatal amplitude-integrated eeg. Biomedical engineering online, 13(2), 1.

D’Ambros, M., Lanza, M., & Robbes, R. (2009). On the relationship between change coupling and software
defects. In 16th working conference on reverse engineering, 2009. WCRE ’09., pp 135 –144.

D’Ambros, M., Lanza, M., & Robbes, R. (2012). Evaluating defect prediction approaches: a benchmark and
an extensive comparison. Empirical Software Engineering, 17(4), 531–577. doi:10.1007/s10664-011-
9173-9.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous
features. In ICML, pp 194–202.

Elish, K., & Elish, M. (2008). Predicting defect-prone software modules using support vector machines.
Journal of Systems and Software, 81(5), 649–660.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in
databases. AI magazine, 17(3), 37.

Fenton, N., & Neil, M. (1999). A critique of software defect prediction models. IEEE Transactions on
Software Engineering, 25(5), 675–689.

Gao, K., Khoshgoftaar, T.M., & Napolitano, A. (2015). Combining feature subset selection and data sam-
pling for coping with highly imbalanced software data. In Proc. of 27th International Conf. on Software
Engineering and Knowledge Engineering, Pittsburgh.

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s10515-013-0129-8
http://dx.doi.org/10.1145/2810146.2810149
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s10664-011-9173-9

Software Qual J

Gray, D. (2013). Software defect prediction using static code metrics : Formulating a methodology.
University of Hertfordshire: PhD thesis, Computer Science.

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2011). The misuse of the NASA metrics data
program data sets for automated software defect prediction. In EASE 2011, IET, Durham, UK.

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012). Reflections on the NASA MDP data
sets. IET Software, 6(6), 549–558.

Hall, M.A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining.
IEEE Transactions on Knowledge and Data Engineering, 15(6), 1437–1447.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A systematic literature review on fault
prediction performance in software engineering. IEEE Transactions on Software Engineering, 38(6),
1276–1304.

Jiang, Y., Lin, J., Cukic, B., & Menzies, T. (2009). Variance analysis in software fault prediction models. In
SSRE 2009, 20th International Symposium on Software Reliability Engineering, IEEE Computer Society,
Mysuru, Karnataka, India, 16-19 November 2009, pp 99–108.

Jureczko, M., & Madeyski, L. (2010). Towards identifying software project clusters with regard to defect
prediction. In Proceedings of the 6th International Conference on Predictive Models in Software
Engineering, ACM, New York, NY, USA, PROMISE ’10, pp 9:1–9:10. doi:10.1145/1868328.1868342.

Kamei, Y., & Shihab, E. (2016). Defect prediction: Accomplishments and future challenges. In 2016 IEEE
23rd international conference on software analysis, evolution, and reengineering (SANER), vol 5, pp
33–45. doi:10.1109/SANER.2016.56.

Khoshgoftaar, T., Yuan, X., Allen, E., Jones, W., & Hudepohl, J. (2002). Uncertain classification of fault-
prone software modules. Empirical Software Engineering, 7(4), 297–318.

Khoshgoftaar, T.M., Gao, K., & Seliya, N. (2010). Attribute selection and imbalanced data: Problems in soft-
ware defect prediction. In 2010 22nd IEEE international conference on tools with artificial intelligence
(ICTAI), vol 1, pp 137–144.

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011). Dealing with noise in defect prediction. In Proceedings of
the 33rd International Conference on Software Engineering, ACM, New York, NY, USA, ICSE ’11, pp
481–490.

Kutlubay, O., Turhan, B., & Bener, A. (2007). A two-step model for defect density estimation. In
33rd EUROMICRO Conference on Software Engineering and Advanced Applications, 2007., pp 322–
332.

Laradji, I.H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using ensemble learning on
selected features. Information and Software Technology, 58, 388–402. doi:10.1016/j.infsof.2014.07.005.
http://www.sciencedirect.com/science/article/pii/S0950584914001591.

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification models for soft-
ware defect prediction: A proposed framework and novel findings. IEEE Transactions on Software
Engineering, 34(4), 485–496.

Liebchen, G., & Shepperd, M. (2008). Data sets and data quality in software engineering. In Proceed-
ings of the 4th international workshop on Predictor models in software engineering, ACM, pp 39–
44.

Madeyski, L., & Jureczko, M. (2015). Which process metrics can significantly improve defect prediction
models? An empirical study. Software Quality Journal, 23(3), 393–422. doi:10.1007/s11219-014-9241-7.

Malhotra, R. (2015). A systematic review of machine learning techniques for software fault prediction. Appl
Soft Comput, 27(C), 504–518. doi:10.1016/j.asoc.2014.11.023.

Mende, T. (2011). On the evaluation of defect prediction models. In The 15th CREST Open Workshop.
Mende, T., & Koschke, R. (2010). Effort-aware defect prediction models. In Software Maintenance and

Reengineering (CSMR), 2010 14th European Conference on, pp 107–116.
Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn defect predictors.

IEEE Transactions on Software Engineering, 33(1), 2–13.
Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., & Jiang, Y. (2008). Implications of ceiling effects

in defect predictors. In Proceedings of the 4th international workshop on Predictor models in software
engineering, pp 47–54.

Menzies, T., Caglayan, B., He, Z., Kocaguneli, E., Krall, J., Peters, F., & Turhan, B. (2012). The promise
repository of empirical software engineering data. http://promisedata.googlecode.com.

Minku, L.L., & Yao, X. (2012). Ensembles and locality: Insight on improving software effort estimation.
Information and Software Technology.

Minku, L.L., & Yao, X. (2013). Software effort estimation as a multi-objective learning problem. ACM
Transactions on Software Engineering and Methodology. to appear.

Mısırlı, A.T., Bener, A.B., & Turhan, B. (2011). An industrial case study of classifier ensembles for locating
software defects. Software Quality Journal, 19(3), 515–536.

http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1109/SANER.2016.56
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://www.sciencedirect.com/science/article/pii/S0950584914001591
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://promisedata.googlecode.com

Software Qual J

Mizuno, O., & Kikuno, T. (2007). Training on errors experiment to detect fault-prone software modules by
spam filter. In Proceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, ACM, New York, NY,
USA, ESEC-FSE ’07, pp 405–414.

Mizuno, O., Ikami, S., Nakaichi, S., & Kikuno, T. (2007). Spam filter based approach for finding fault-
prone software modules. In Mining Software Repositories, 2007. ICSE Workshops MSR ’07. Fourth
International Workshop on, p 4.

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and validity in comparative studies of software
prediction models. IEEE Transactions on Software Engineering, 380–391.

Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., & Murphy, B. (2010). Change bursts as defect pre-
dictors. In Software Reliability Engineering, 2010 IEEE 21st International Symposium on, pp 309–318.

Ostrand, T., Weyuker, E., & Bell, R. (2010). Programmer-based fault prediction. In Proceedings of the 6th
International Conference on Predictive Models in Software Engineering, ACM, pp 1–10.

Panichella, A., Oliveto, R., & De Lucia, A. (2014). Cross-project defect prediction models: L’union fait la
force. In 2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), pp 164–173. doi:10.1109/CSMR-WCRE.2014.6747166.

Petrić, J., Bowes, D., Hall, T., Christianson, B., & Baddoo, N. (2016). Building an ensemble for soft-
ware defect prediction based on diversity selection. In The 10th International Symposium on Empirical
Software Engineering and Measurement, ESEM’16, p 10.

Petrić, J., Bowes, D., Hall, T., Christianson, B., & Baddoo, N. (2016). The jinx on the NASA software defect
data sets. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software
Engineering, ACM, New York, NY, USA, EASE ’16, pp 13:1–13:5. doi:10.1145/2915970.2916007.

Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J., & Riquelme, J.C. (2014). Preliminary comparison of
techniques for dealing with imbalance in software defect prediction. In Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering, ACM, New York, NY, USA,
EASE ’14, pp 43:1–43:10. doi:10.1145/2601248.2601294.

Seiffert, C., Khoshgoftaar, T.M., & Hulse, J.V. (2009). Improving software-quality predictions with data
sampling and boosting. IEEE Transactions on Systems, Man, and Cybernetics Part A, 39(6), 1283–1294.

Shepperd, M., & Kadoda, G. (2001). Comparing software prediction techniques using simulation. IEEE
Transactions on Software Engineering, 27(11), 1014–1022.

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data quality: some comments on the NASA software
defect datasets. IEEE Transactions on Software Engineering, 39(9), 1208–1215. doi:10.1109/TSE.2013.
11.

Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher bias: The use of machine learning in software defect
prediction. IEEE Transactions on Software Engineering, 40(6), 603–616. doi:10.1109/TSE.2014.232
358.

Shin, Y., Bell, R.M., Ostrand, T.J., & Weyuker, E.J. (2009). Does calling structure information improve
the accuracy of fault prediction? In Godfrey, M.W., & Whitehead, J. (Eds.) Proceedings of the 6th
International Working Conference on Mining Software Repositories, IEEE, pp 61–70.

Shivaji, S., Whitehead, E.J., Akella, R., & Sunghun, K. (2009). Reducing features to improve bug prediction.
In Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM International Conference on, pp
600–604.

Soares, C., Brazdil, P.B., & Kuba, P. (2004). A meta-learning method to select the kernel width in support
vector regression. Machine learning, 54(3), 195–209.

Sun, Z., Song, Q., & Zhu, X. (2012). Using coding-based ensemble learning to improve software defect
prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
42(6), 1806–1817. doi:10.1109/TSMCC.2012.2226152.

Turhan, B., Menzies, T., Bener, A.B., & Di Stefano, J. (2009). On the relative value of cross-
company and within-company data for defect prediction. Empirical Softw Engg, 14(5), 540–578.
doi:10.1007/s10664-008-9103-7.

Visa, S., & Ralescu, A. (2004). Fuzzy classifiers for imbalanced, complex classes of varying size. In
Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp 393–400.

Wahono, R. (2015). A systematic literature review of software defect prediction: research trends, datasets,
methods and frameworks. Journal of Software Engineering, 1(1). http://journal.ilmukomputer.org/index.
php/jse/article/view/47.

Witten, I. (2005). Frank E. Data mining: practical machine learning tools and techniques: Morgan Kaufmann.
Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. doi:10.1016/S0893-6080

(05)80023-1.
Zhang, H. (2009). An investigation of the relationships between lines of code and defects. In Software

Maintenance, 2009. ICSM 2009. IEEE International Conference on, pp 274–283.

http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747166
http://dx.doi.org/10.1145/2915970.2916007
http://dx.doi.org/10.1145/2601248.2601294
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1109/TSE.2014.2322358
http://dx.doi.org/10.1109/TSE.2014.2322358
http://dx.doi.org/10.1109/TSMCC.2012.2226152
http://dx.doi.org/10.1007/s10664-008-9103-7
http://journal.ilmukomputer.org/index.php/jse/article/view/47
http://journal.ilmukomputer.org/index.php/jse/article/view/47
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/S0893-6080(05)80023-1

Software Qual J

Zhou, Y., Xu, B., & Leung, H. (2010). On the ability of complexity metrics to predict fault-prone classes in
object-oriented systems. Journal of Systems and Software, 83(4), 660–674.

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., & Murphy, B. (2009). Cross-project defect prediction:
a large scale experiment on data vs. domain vs. process. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ACM, New York, NY, USA, ESEC/FSE ’09, pp 91–100.

David Bowes received the PhD degree in defect prediction and is currently a Senior Lecturer in software
engineering at the University of Hertfordshire. He has published mainly in the area of static code metrics and
defect prediction. His research interests include the reliability of empirical studies.

Tracy Hall received the PhD degree in the implementation of software metrics from City University, Lon-
don. She is currently a Professor in software engineering at Brunel University London. Her expertise is in
empirical software engineering and her current research activities are focused on software fault prediction.
She has published more than 100 international peer-reviewed papers.

Software Qual J

Jean Petrić received the MSc degree in Computer Science from the University of Rijeka, Croatia. He has
been working towards his PhD at the University of Hertfordshire, and is currently a research fellow at Brunel
University London. His research interest is in software defect prediction.

	UHRA full text deposit cover sheet pub version TEMPLATE.pdf
	10.1007%2Fs11219-016-9353-3.pdf
	Software defect prediction: do different classifiers find the same defects?
	Abstract
	Introduction
	Background
	Methodology
	Classifiers
	Datasets
	Experimental Set-Up

	Results
	Discussion
	Threats to validity
	Conclusion
	Acknowledgments
	Open Access
	References

