
UNIVERSITY OF HERTFORDSHIRE

Analysis and Coordination of
Mixed-criticality Cyber-physical

Systems

by

Simon Maurer

A thesis submitted to the University of Hertfordshire
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

March 2018

http://www.herts.ac.uk/
simon.maurer@protonmail.ch

UNIVERSITY OF HERTFORDSHIRE

Abstract
Centre for Computer Science and Informatics Research (CCSIR)

School of Computer Science

Doctor of Philosophy

by Simon Maurer

A Cyber-physical System (CPS) can be described as a network of interlinked, concurrent
computational components that interact with the physical world. Such a system is usu-
ally of reactive nature and must satisfy strict timing requirements to guarantee a correct
behaviour. The components can be of mixed-criticality which implies different progress
models and communication models, depending whether the focus of a component lies
on predictability or resource efficiency.

In this dissertation I present a novel approach that bridges the gap between stream
processing models and Labelled Transition Systems (LTSs). The former offer powerful
tools to describe concurrent systems of, usually simple, components while the latter
allow to describe complex, reactive, components and their mutual interaction. In order
to achieve the bridge between the two domains I introduce the novel LTS Synchronous
Interface Automaton (SIA) that allows to model the interaction protocol of a process via
its interface and to incrementally compose simple processes into more complex ones while
preserving the system properties. Exploiting these properties I introduce an analysis
to identify permanent blocking situations in a network of composed processes. SIAs
are wrapped by the novel component-based coordination model Process Network with
Synchronous Communication (PNSC) that allows to describe a network of concurrent
processes where multiple communication models and the co-existence and interaction of
heterogeneous processes is supported due to well defined interfaces.

The work presented in this dissertation follows a holistic approach which spans from the
theory of the underlying model to an instantiation of the model as a novel coordination
language, called Streamix. The language uses network operators to compose networks
of concurrent processes in a structured and hierarchical way. The work is validated by
a prototype implementation of a compiler and a Run-time System (RTS) that allows
to compile a Streamix program and execute it on a platform with support for ISO C,
POSIX threads, and a Linux operating system.

http://www.herts.ac.uk/
http://www.herts.ac.uk/research/centres-and-groups/ccsir
http://www.herts.ac.uk/apply/schools-of-study/computer-science
simon.maurer@protonmail.ch

Acknowledgements

First, my gratitude goes to the University of Hertfordshire for providing the funding
and infrastructure for my PhD and for giving me the opportunity to start a career in
academia.

I would like to thank my primary supervisor and research mentor Dr Raimund Kirner
for the support of my PhD and related research. I am grateful for his commitment to
provide me with guidance even late at night or on weekends. His broad knowledge and
his patience were a huge help throughout the whole of the PhD.

Further, I would like to express my gratitude to Dr Olga Tveretina, my secondary super-
visor, for her valuable inputs and her mental support. My thanks also go to Dr Prof Alex
Shafarenko, leader of the research group Compiler Technology and Computer Architec-
ture (CTCA), for his invaluable feedback.

I thank Giovina for her patience and her interest in abstract topics that are not hers. Her
cheerful and supportive attitude were a big help throughout this project and I am ever
grateful to her for leading me onto this path. Her hilarious personifications of certain
aspects of my work, complete with pictures and all, is only one of many examples of her
brilliant way of supporting me.

Although I do not know these people personally I want to give a shout out to Randall
Munroe for his book "Thing Exaplainer - Complicated Stuff in Simple Words", showing
that complicated things can be explained with only a 1000 words and Linda Liukas, for
her book "Hello Ruby", advocating the fact that computer science is not as difficult as
common belief suggests and that it can be taught to anyone.

Last but not least, I want to thank my family and friends from abroad for their contin-
uous support and their willingness to pay us visit on a regular basis.

ii

http://ctca.eu/
http://ctca.eu/

Contents

Preface i
Abstract . i
Acknowledgements . ii
Contents . iii
List of Figures . vii
List of Definitions . x
Acronyms . xi

1 Introduction 1
1.1 Thesis and Research Questions . 5
1.2 Contributions . 7

1.2.1 Publications . 10
1.3 Structure of this Dissertation . 11

2 Background 13
2.1 A Side-note on Terminology . 13
2.2 Component-based Design . 15
2.3 Permanent Blocking and Deadlocks . 16
2.4 Cyber-physical Systems . 19
2.5 Communication in Cyber-physical Systems 20

2.5.1 Communication Coupling in Time 21
2.5.2 Communication Coupling in Space 22
2.5.3 Communication Coupling in Synchronisation 22

2.6 Coordination Languages . 23

3 PNSC with SIA - An Analysable Event-based Component Model 25
3.1 Process Networks with Synchronous Communication (PNSC) 25
3.2 Synchronous Interface Automata (SIA) . 28

3.2.1 Definition of SIAs . 28
3.2.2 Composition of SIAs . 30
3.2.3 Relation of a SIA to its Process . 31
3.2.4 Interaction of SIAs . 33

3.3 Modelling a Crossroad with SIAs . 37
3.3.1 Streaming Network with Buffered Communication 41

3.4 Chapter Summary . 43

iii

Contents iv

4 Mixed-criticality PNSCs and Time-based Processes 44
4.1 Communication Decoupling of PNSCs . 45

4.1.1 Decoupling PNSCs in Time . 46
4.1.2 Decoupling PNSCs in Synchronisation 46
4.1.3 Decoupling PNSCs in Time and Synchronisation 49

4.2 Time-based Component Model of PNSCs 51
4.2.1 Time-triggered Processes in a PNSC 52
4.2.2 Rate-bounded Communication . 55

4.2.2.1 Rate-control with the MIRT protocol 57
4.2.2.2 Rate-control with the buffered MIRT protocol 58
4.2.2.3 Rate-control with the PBRT protocol 59
4.2.2.4 Rate-control with the buffered PBRT protocol 59

4.3 Message Semantics . 60
4.4 Cross-criticality Interfaces . 63

4.4.1 Mixed-criticality Network with CCIs 64
4.5 Discussion . 66
4.6 Chapter Summary . 67

5 Permanent Blocking Analysis of PNSCs with SIAs 69
5.1 Permanent Blocking of SIAs . 70

5.1.1 Permanent Blocking Analysis . 71
5.1.1.1 Permanent Blocking Analysis with Acyclic SIAs 71
5.1.1.2 Permanent Blocking Analysis with Cyclic SIAs 73
5.1.1.3 Permanent Blocking Analysis on an Assembly of Processes 74

5.1.2 Deadlock Analysis . 75
5.1.2.1 Deadlock Analysis on an Assembly of Processes 78

5.2 Implementation of the Permanent Blocking Analysis 78
5.2.1 Algorithm to Compute Sys(s) . 79
5.2.2 Algorithm to Compute dl

(
(N1, . . . , Nn), s

)
. 82

5.3 Chapter Summary . 83

6 Streamix - An Instantiation of PNSCs as a Coordination Language 85
6.1 Coordination Model . 86

6.1.1 Computational Components . 87
6.1.2 Routing Network . 87
6.1.3 Extra-functional Requirements Layer 88

6.2 Box Abstraction . 88
6.2.1 User-defined Boxes . 88
6.2.2 Implicit Boxes . 89

6.2.2.1 FIFO Buffers . 90
6.2.2.2 Routing Node . 91
6.2.2.3 Temporal Firewall . 93
6.2.2.4 Rate-control Guard . 93

6.2.3 Interaction Protocol of a User-defined Box 93
6.2.4 Box Annotations and Grammar . 95

6.3 Nets: Instantiations of Boxes . 96
6.3.1 Flow Direction Ambiguities . 97

Contents v

6.3.2 Self-loop Connection . 99
6.3.3 Side-port Connection . 99
6.3.4 Net Interface . 101
6.3.5 Net Declaration and Prototyping 101

6.4 Network Composition . 102
6.4.1 Net Assignments . 103
6.4.2 Serial Composition . 104
6.4.3 Parallel Composition . 107
6.4.4 Operator Precedence . 110
6.4.5 Time-controlled Nets . 111
6.4.6 Wrapper . 112

6.5 Describing a Cyber-physical System with Streamix 115
6.6 Discussion . 118
6.7 Chapter Summary . 119

7 Toolchain for Streamix 120
7.1 The Streamix RTS Library . 123

7.1.1 Implementation of Computational Components 124
7.1.2 Implementation of Channels . 126

7.1.2.1 Implementation of Time-triggered Communication 129
7.1.2.2 Implementation of Rate-bounded Communication 131
7.1.2.3 Implementation of Routing Nodes 132

7.2 smxc - The Streamix Compiler . 134
7.2.1 The Streamix Context Checker . 135
7.2.2 Generation of Dependency Graph 136
7.2.3 Generation of Interaction Protocol Descriptions 140

7.3 smxrtsp - The Streamix RTS Preprocessor 141
7.4 smxsia - The Permanent Blocking Analysis 143
7.5 Discussion . 144

7.5.1 Scheduler of the Streamix RTS . 145
7.5.2 Order of SIA Composition . 145
7.5.3 Static and Pure Nets . 145

7.6 Chapter Summary . 146

8 Related Work 147
8.1 Interface Theory . 147
8.2 Mixed-criticality Models . 148
8.3 Coordination Models and Languages . 149

8.3.1 S-Net . 150
8.3.2 BIP . 151
8.3.3 Giotto . 151
8.3.4 Ptolemy and Ptides . 152

8.4 Deadlocks and Permanent Blocking . 153

9 Conclusion and Outlook 156
9.1 Summary of the Dissertation . 156
9.2 Discussion of the Results . 157

Contents vi

9.3 Outlook . 159

Bibliography 170

List of Figures

1.1 A simple schematic representation of properties of CPSs and how the
novel PNSC model bridges the gap between stream processing and LTS
for complex componets. 9

2.1 An example of gridlock on a crossing (no turning) 17
2.2 A lonely blocking situation where progress is only possible from the East

to the West and vice versa. 18

3.1 The PNSC network modelling the crossroad example depicted in Figure 2.1. 27
3.2 An example of a process N1 where SIA Ñ1 describes the interaction pro-

tocol of N1. 32
3.3 A simple example of two processes M1 and N2 with their corresponding

SIAs M̃1 and Ñ2 connected by the channels a and b. However, only action
a is shared. 33

3.4 An example of a PNSC where the SIA Ñ3 of process N3 has the open
actions d and e. 34

3.5 An example of a PNSC where the SIA Ñ4 of process N4 has the internal
actions τ1 and τ2. 35

3.6 An example of a PNSC with SIAs containing open actions, shared actions,
ignored actions and internal actions. 36

3.7 The composed process M2N4 with its composed SIA M̃2N4 as a result of
the composition of the system depicted in Figure 3.6. 36

3.8 A PNSC model of Figure 3.1 extended by the corresponding SIAs of each
process. Due to the symmetry of the model, the system can potentially
reach a permanent blocking state — a deadlock, involving all four processes. 37

3.9 The graph representing the SIA P̃res. It consists of 80 states and 248
transitions. The black square node represents a state where no further
transitions are possible and the grey triangle node represents the initial
state. 38

3.10 An example of an environment P̃env for the PNSC of Figure 3.8. 39
3.11 The resulting SIA P̃res ⊗ P̃env when applying the environment P̃env of

Figure 3.10 on the PNSC P̃res of Figure 3.8. 39
3.12 An adapted version of the crossroad model of Figure 3.8 that breaks the

symmetry and resolves the problem of permanent blocking. 40
3.13 The graph representing the SIA P̃ ′res. It consists of 81 states and 252

transitions. The grey triangle node represents the initial state of the
system. 41

vii

List of Figures viii

3.14 An example of a process NF IF O and its corresponding SIA ÑF IF O, mod-
elling a First-in, First-out (FIFO) buffer of length two with input ain and
output aout. 41

3.15 A PNSC with four composed processes, each modelling an intersection
as depicted in Figure 3.12, interconnected by FIFO buffers (double-line
arrows) forming a streaming network. 42

3.16 A gridlock with four intersections. This system is modelled by a PNSC
in Figure 3.15. 43

4.1 An example of a process N ′1 where SIA Ñ ′1 describes the interaction pro-
tocol of N ′1 with port b1 decoupled in synchronisation. 47

4.2 An example of a decoupling process ND and its SIA ÑD with input ain

and output aout. 48
4.3 The resulting abstract process ND1 of the composition N1 ⊗ ND where

SIA ÑD1 = Ñ1 ⊗ ÑD. SIA ÑD1 is syntactically equivalent to SIA Ñ ′1,
depicted in Figure 4.1. 48

4.4 An example of a SIA, modelling a FIFO buffer of length 2 with a decoupled
input ain and an output aout. 50

4.5 An example of a SIA, modelling a FIFO buffer of length 2 with input ain

and a decoupled output aout. 51
4.6 An example of a SIA, modelling a FIFO buffer of length 2 with a decoupled

input ain and a decoupled output aout. 51
4.7 An example of the behaviour of a temporal firewall where the upper time-

line represents the arrival instances of message tokens and the lower time-
line represents the release instances of message tokens. 53

4.8 A temporal firewall with a decoupled port pair 〈ain, aout〉 and a port pclk

which is connected to a clock signal. 53
4.9 An example of a time-triggered PNSC where the PNSC is decoupled

through temporal firewalls while processes inside the time-triggered PNSC
trigger sporadically (e.g. process P2). 54

4.10 An example of a time-triggered PNSC where each process in the PNSC
is decoupled through temporal firewalls. 55

4.11 An example of a time-triggered PNSC where each process in the PNSC
is decoupled through a temporal firewall with a different clock rate each. . 55

4.12 Examples of rate-control protocols. In each figure the upper time-line
represents the arrival instances of message tokens while the lower time-
line represents the release instances of message tokens. 60

4.13 An example of a mixed-criticality video processing application where
ports are decoupled in synchronisation to prevent interference from the
low critical process Pfd towards the high criticality process Pfilter. 66

5.1 A PNSC formed of four processes, each described by a SIA with a cycle. . 72
5.2 An example of a PNSC where the process M2 is alive and process N2 is

lonely blocking in state s3 ∈ SÑ2
. 76

6.1 An example of a diverging node with an input port a and two output
ports b and c. 91

6.2 An example of a summing node with input ports a and b and an output
port c. 92

List of Figures ix

6.3 An example of a routing node as combination of summing and diverging
nodes with input ports a and b and output ports c and d. 92

6.4 An example of a simple network where three components are intercon-
nected with no obvious data flow direction. 97

6.5 An example of an ambiguous flow direction. The net B can be connected
in four different ways. 97

6.6 Schematic representation of a net with the three optional port groupings
left (L), right (R), and side (S). 98

6.7 The representation of the network of Figure 6.4 with the use of left and
right collections. 99

6.8 Locality enforcing serial composition of two nets N1 and N2, written as
N = N1 . N2. 106

6.9 A serial composition of two nets N1 and N2, written as N = N1 : N2
where bypassing is allowed. 107

6.10 Parallel composition of two nets N1 and N2 written as N1 | N2. 109
6.11 Two examples of connection graphs where the operator precedence is il-

lustrated. 110
6.12 A time-triggered instance of the box N1 and N2 where all channels are

temporal firewalls with period clk = 1s. 111
6.13 A time-triggered instance of the box N1 and N2 where the channel y

is modelled by two temporal firewalls, with the periods clk1 = 1s and
clk2 = 2s, respectively. 112

6.14 A schematic representation of the scoping mechanism where ports from
any collection of the net N can be connected to ports from any collection
of the wrapper W . 113

6.15 Structured representation of the car platooning example. 116
6.16 The Streamix program describing the car platooning application depicted

in Figure 6.15. 117

7.1 A schematic overview of the toolchain for Streamix. 121

List of Definitions

2.1 Definition (Four Deadlock Conditions) . 17

3.1 Definition (PNSC Process) . 26
3.2 Definition (Composed PNSC Process) . 27
3.3 Definition (SIA) . 28
3.4 Definition (SIA composition operator ⊗) 30

4.1 Property (Time-triggered Input) . 54
4.2 Property (Time-triggered Output) . 54
4.1 Definition (Semi-state Message) . 61
4.2 Definition (State Message) . 61
4.3 Definition (Event Message) . 61
4.4 Definition (Message Semantics of Communication Channel) 62

5.1 Definition (Context of a process) . 70
5.2 Definition (Context of a SIA) . 70
5.3 Definition (Liveness of a SIA state) . 70
5.4 Definition (Liveness of a SIA) . 70
5.5 Definition (Liveness of a PNSC process) 70
5.6 Definition (Liveness of a PNSC) . 70

6.1 Definition (Self-loop Connection) . 99
6.2 Definition (Side-port Connection) . 100
6.3 Definition (Net Interface) . 101
6.4 Definition (Connection of Serial Composition) 104
6.5 Definition (Net Interface of Locality Enforcing Serial Composition) 105
6.6 Definition (Net Interface of Bypassing Serial Composition) 106
6.7 Definition (Net Interface of Deterministic Parallel Composition) 108
6.8 Definition (Net Interface of Non-deterministic Parallel Composition) . . . 109

x

Acronyms

AST Abstract Syntax Tree. 135

BIP Behaviour, Interaction, Priorities. 151, 154, 160

CCI Cross-criticality Interface. 7, 8, 20, 45, 63, 68, 89, 119, 149, 157, 159

CFS Completely Fair Scheduler. 145

CPS Cyber-physical System. i, vii, 1–9, 11, 13, 15, 19, 20, 23, 24, 44, 46, 85, 87, 90,
97, 108, 115, 118, 119, 145, 149, 150, 154, 156, 158, 159

CSP Communicating Sequential Processes. 4, 155

DAG Directed Acyclic Graph. 71, 81

DFS Depth-first Search. 81

EDF Earliest Deadline First. 145

FIFO First-in, First-out. viii, 41, 42, 46, 49–51, 53, 57, 63, 90, 91, 93, 112, 120, 122,
124, 126, 127, 142, 143, 150, 151, 155

GML Graph Modelling Language. 139, 141

IA Interface Automaton. 3, 16, 147, 148, 153, 157, 159

IIOA Interface Input/Output Automaton. 148

IOA Input/Output Automaton. 147, 148

IOT Internet of Things. 13, 15

KPN Kahn Process Network. 3, 21, 67, 150, 152

LET Logical Execution Time. 24, 152

LTS Labelled Transition System. i, vii, 3, 6, 8, 9, 38, 83

MIMO Multiple Input, Multiple Output. 26, 88

MIOA Modal Input/Output Automaton. 148, 153

xi

Acronyms xii

MIRT Minimal Inter-release Time. 56–60, 132

MoC Model of Computation. 152

MPI Message Passing interface. 4

NoC Network on Chip. 67

PBRT Period-bounded Release Time. 56, 59, 60

PNSC Process Network with Synchronous Communication. i, vii, viii, 3, 5, 8–11, 13,
25–28, 33–37, 39, 41–47, 52–55, 60, 65–67, 70–77, 80, 83, 85, 88–90, 119, 120, 129,
131, 142, 143, 145, 148, 149, 151, 152, 154, 156–161

RTS Run-time System. i, 10, 11, 67, 93, 95, 120, 121, 123–125, 127–129, 131, 132,
141–146, 157, 158, 161

SDF Synchronous Data Flow. 21, 152

SIA Synchronous Interface Automaton. i, vii, viii, 2, 3, 6–11, 25, 28–43, 47, 48, 50, 51,
53, 67, 69–80, 82–84, 88–92, 94, 95, 120, 121, 123, 134, 135, 140–145, 148, 151,
156–161

SISO Single Input, Single Output. 150

TTA Time-triggered Architecture. 21, 52, 69, 149

WCET Worst-case Execution Time. 20, 52, 54, 67, 145, 160

XML Extensible Markup Language. 139

Chapter 1

Introduction

Nowadays, with microcontrollers getting smaller and more efficient, computing is be-
coming more and more pervasive in our everyday life. This is achieved by embedding
computer devices in physical objects such that the computing devices interact with the
physical world. Such systems are called Cyber-physical Systems (CPSs). A CPS is a
reactive system that senses its environment (the physical world), performs a computa-
tion on a computational entity (this can be anything from a simple embedded device
to a large scale distributed system), and then actuates on the environment according to
the computations. The actuation on the environment causes the environment to change
which, in turn, is detected by the sensors and the computation is performed with the
new dataset. Typically, this reactive loop is time-critical and is executed as long as the
system is running. In contrast to a traditional embedded system, i.e. a time-critical
system, dedicated to a single hardware platform, a CPS tends to be an assembly of net-
worked subsystems where some subsystems interact with the physical world and some
may be purely computational.

Examples of CPSs can be found in the domain of automotive vehicles (e.g. anti-lock
braking system, adaptive cruise control, electronic stability control, platooning), avionic
vehicles (e.g. flight control systems, black box, pressure control), or smart spaces (e.g.
intelligent highway control, building control), to name only a few.

Because of the direct interaction of CPSs with the physical world, it is often crucial
to respect timing requirements imposed by the physical world to guarantee a correct
behaviour of the system. In case of critical applications such as nuclear power plants,
avionic systems, or cars, huge efforts are made to verify the correct behaviour of the ap-
plication. The main difference between critical systems and best-effort systems is that
critical systems are designed for the worst case whereas best-effort systems are designed
for the average case. Henzinger and Sifakis argue that over time, this difference led to a

1

Chapter 1 Introduction 2

gap between the models employed in the two domains and that the gap is continuing to
widen [1]. Due to the difference of the employed models, critical and non-critical applica-
tions tend to be physically separated and run on dedicated hardware platforms. This is a
problem because with the evolution of hardware towards multi/many-core architectures,
there is the interest to integrate components with different criticality requirements on
the same platform. Such systems are typically called mixed-criticality systems [2]. What
adds further to the challenge of integrating CPSs on a multi/many-core architecture is
that CPSs are often heterogeneous in the sense that several applications from different
domains with different characteristics must coexist or interact with each other [3]. Eker
et al. address this challenge by assembling multiple models, each suitable for its specific
application domain, in one framework [3]. Others argue that one meta model, allowing
to describe and compose heterogeneous systems, is more beneficial because it provides
a better ground for a meaningful analysis of the system [1, 4, 5].

Another challenge is the inherent concurrency of CPSs [6]. Streaming networks are
well-recognised for coping with concurrent systems [7]. They consist of processing nodes
(often called filters) connected via communication channels where a channel is connected
to a single producer node and a single consumer node. This property of streaming net-
works, combined with the implicit synchronisation of producers and consumers due to
a blocking channel access, allows to tame the complexity of concurrent systems which
makes them also an interesting paradigm to apply to CPSs. However, current streaming
models (e.g. [8–10]) tend to rely on the possibility that a system can be decomposed into
transformational components such that the behaviour of a component can be described
as a pure function. Such a decomposition makes it easier to understand component de-
pendencies and allows to analyse the system, e.g. for schedulability [11] or deadlocks [12].
However, given that CPSs are often systems of reactive nature, such a decomposition is
difficult [13].

An interesting approach where no decomposition in transformational components is re-
quired are interface theories [14] which allow to describe components with arbitrary
behaviour by their interfaces and build complex components out of simple ones by com-
position. Several interface models have been proposed to describe communication com-
patibility between components [15–17] as well as additional properties such as modali-
ties [18], resource usage [19, 20], or timing constraints [21, 22]. However, these models
do not target streaming networks and lack the capability of describing the blocking
semantics of message passing in streaming networks.

In this dissertation I introduce a novel automata-based interface description model,
called Synchronous Interface Automaton (SIA), that allows to describe the interaction

Chapter 1 Introduction 3

protocol of processes with their environment. SIAs are suitable to describe the block-
ing semantics of Kahn Process Network (KPN)-based [23] streaming networks and thus
serve as a powerful tool to bridge the gap between Labelled Transition System (LTS)
and stream processing. An incremental composition operation allows to build complex
processes out of simple ones. A novelty of the SIA model is that it allows to iden-
tify permanent blocking situations (e.g. deadlocks) in a composed network due to the
blocking semantics of the model. The inspiration for the SIA model stems from Inter-
face Automata (IAs) [15]. The blocking semantics of the here presented SIAs differs
fundamentally from the blocking semantics of IAs. This enables SIAs to describe pro-
cess networks where processes interact with synchronous communication, e.g. stream
processing applications.

I further introduce a novel component-based model, called Process Network with Syn-
chronous Communication (PNSC) that serves as a wrapper for SIAs and allows to model
an assembly of reactive processes, i.e. processes capable of consuming and producing
streams of infinite length. I extend the model to support the coexistence and inter-
action of processes with an event-triggered and a time-triggered execution scheme. In
the former case, sporadically occurring events are causing a subsystem to perform its
computation while in the latter case a fixed schedule imposes time instances when a
subsystem is performing its computation. There are application domains where both
models are required (e.g. automotive domain) but the two models are often used in lim-
ited ways to just co-exist but do not directly interact with each other (e.g. [24–26]). The
problem is that interaction may cause interference from a subsystem of low criticality to-
wards a subsystem of high criticality which must be avoided. A novelty of the extended
PNSC model is that it allows not only the co-existence of the two triggering seman-
tics in the same system but also allows interaction between time-triggered subsystems
and event-triggered subsystems. The key point is to guarantee that the event-triggered
subsystem, having a lower criticality level, is not interfering with the time-triggered
subsystem of higher criticality. Further, the model allows to use the same mechanism
to avoid interference from a lower critical event-triggered subsystem to a higher critical
event-triggered subsystem. Two time-triggered subsystems do not interfere with each
other out of construction [27], independent of their criticality level.

To provide control on communication bandwidth usage, the model allows to limit the
communication rate of a process to an upper bound. This is achieved with a novel
approach of controlling message passing between processes with different consequences
depending on the message semantics.

A challenge related to the inherent concurrency of CPSs is the efficient execution of
concurrent systems on multi-core hardware platforms. With the ever growing capabilities

Chapter 1 Introduction 4

of integrated circuits due to the persistence of Moore’s law, software engineers face the
challenge to design, develop, and maintain complex software systems that exploit the
available computation power. As a consequence of reaching the power wall through
frequency scaling [28], parallel hardware architectures have been designed. Even in
the domain of embarrassingly parallelisable applications where it is easy to split the
computation load in a large number of independent computational chunks due to lack of
data or code dependencies, parallelization remains not a simple task because of the tight
coupling between hardware and software (e.g. efficient use of memory hierarchy) and the
inherent difficulty of debugging parallel code. Nowadays, there are tools, libraries, and
languages available that help to cope with some of the problems. In the domain of Big
Data on large scale distributed systems examples are Hadoop1, HPCC2, and Hydra3.
For shared memory multi-core architectures some examples are Cuda4, OpenMP5, and
TBB6.

However, multi- and many-core processor architectures have emerged to a broad variety
of application fields, including CPSs, where it is hard to identify potential blocks that can
exhibit parallelism due to dependencies between tasks and, especially, due to the reactive
nature of CPSs. In their survey on programming solutions for multicore architectures
in the domain of CPSs, Castrillon et al. note that even though achievements were made
in academia, in industry, CPS software development for parallel architectures remains
mostly manual [5]. A reason for this is that industry often relies on legacy code that
may include system libraries or multiple layers of mixed languages which is often ignored
by academic solutions (e.g. introducing a new language requires industry to rewrite lots
of legacy source code in the new language which they may be hesitant to do).

To cope with concurrency in applications, programming languages either incorporate
models (e.g. Actor model [29] in Scala, Communicating Sequential Processes (CSP) [30]
in Ada) or libraries are provided (Open Message Passing interface (MPI) [31]) to simplify
design, development, and maintainability of the application. While such models certainly
help to structure the code and enforce good practices in parallel programming, it is still
up to the programmer to separate between coordinational and computational aspects
of the program. While an expert in a certain application domain - a domain expert -
is very adept in solving problems and working with models related to this domain, it
is rarely his or her expertise to cope with the inherent problems of concurrency and
parallelization.

1http://hadoop.apache.org/
2https://hpccsystems.com/
3https://github.com/addthis/hydra
4http://www.nvidia.com/object/cuda_home_new.html
5http://www.openmp.org/
6https://www.threadingbuildingblocks.org/

http://hadoop.apache.org/
https://hpccsystems.com/
https://github.com/addthis/hydra
http://www.nvidia.com/object/cuda_home_new.html
http://www.openmp.org/
https://www.threadingbuildingblocks.org/

Chapter 1 Introduction 5

An interesting approach to solve this problem is to separate the different concerns of an
application, as proposed by Gelernter and Carriero in [32]. The main idea is to separate
the concerns of computation and coordination by using a coordination language in ad-
dition to a programming language. This allows the domain expert to choose a language
that suits his needs to program computational blocks which are then linked together,
potentially by another person, using a coordination language based on a model that is
suitable to cope with concurrency. This clear separation of concerns is an intriguing
concept, especially for interdisciplinary application fields where experts from different
domains work together. As CPSs tend to describe applications in interdisciplinary fields,
a clear separation of concerns is desirable.

In this dissertation I introduce a new coordination language, called Streamix, that is
based on the PNSC model, also introduced in this thesis. While Streamix is an instanti-
ation of the PNSC model, the language provides more than just concrete syntax for the
model: Streamix allows to describe a network of processes in a structured and hierarchi-
cal manner due to its usage of network composition operators. This is inspired by the
coordination language S-Net [10] which allows to describe networks of pure components.
The novelty of Streamix is that while it is based on the stream processing paradigm it
retains the capability of describing CPSs where components are hard to decompose due
to the reactive nature of CPS. Streamix is an exogenous coordination language where
the coordinated components are unaware of the coordination exert on them [33].

This dissertation describes a holistic approach, reaching from the underlying theory of
the coordination model to an instantiation of the model in the form of a language and a
prototype toolchain that allows to compile Streamix code into an executable C program,
check the program for permanent blocking, and link it with C implementations of PNSC
processes. The resulting application can be executed on a platform with support for
ISO C, POSIX threads, and a Linux operating system.

1.1 Thesis and Research Questions

In this section I present the thesis this dissertation aims to maintain and several research
questions that guided me through my research. As described in the beginning of this
chapter, my work aims at using models from different fields, namely stream processing
and interface theory, and adapt the models in such a way that they are applicable for
CPSs. Consequently, I formulate my thesis as follows:

Chapter 1 Introduction 6

It is possible to bridge the gap between stream processing and Labelled
Transition Systems (LTSs) for complex components.

In the following I will describe several research questions that focus on sub-aspects of
the thesis and help to dissect each aspect independently. I first ask a general question
about coordination models to then refine it with three more precise questions:

How to coordinate mixed-criticality CPSs?

To answer this question, as a first step, it is crucial to identify properties of CPSs
and understand how they relate to coordination aspects. A mixed-criticality CPS is
an assembly of networked subsystems with strong and weak coupling between them.
Some of the subsystems are critical systems, i.e. of high criticality, some are best-effort
systems, i.e. of low criticality. The coupling between the different subsystems is of various
degrees. Critical subsystems tend to have a weak coupling with other subsystems to
prevent mutual interference while best-effort systems tend to be strongly coupled. A
coordination model for a mixed-criticality CPS must be able to model these various
degrees of coupling between subsystems while providing guarantees of correctness of the
overall behaviour of the system.

To refine the research question I ask two follow-up questions centring around the coupling
of subsystems. A third follow-up question focuses on coordination languages and the
implication of reactive components on a language.

What are suitable interfaces for reactive components with strong coupling
to ensure correct behaviour of a system of such components assembled in a
network?

A main property of a component that supports reactive behaviour is that it must be
able to cope with infinite streams, i.e. potentially run infinitely. Due to this property,
a component must support to read an input as a reaction to writing an output. This
is because of a potential coupling between the output and the input through the en-
vironment. This must be reflected in the interface describing the component. In this
dissertation I introduce the automata-based model SIA that allows to describe the in-
teraction of a component with its environment. SIAs are based on a strict blocking
semantics, modelling synchronous communication, which allows to describe streaming
applications and their inherent strong coupling between components. The SIA model
allows the composition of simple components into more complex ones while preserving

Chapter 1 Introduction 7

the blocking semantics. I further introduce an analytic method, based on the SIA model,
to detect situations where components are blocking indefinitely, e.g. deadlock situations.

What are suitable interfaces for CPSs to integrate subsystems with different
criticality levels?

In contrast to a strong coupling, addressed in the previous question, a weak coupling
allows to ensure the system correctness based on the component correctness. The focus
of this question lies on the interaction of subsystems with different degrees of coupling.
A main challenge of a mixed-criticality system is to allow multiple subsystems with
different criticality levels to co-exist on the same platform or even to interact with each
other. The challenge of such a configuration is to assure that the subsystems with
lower criticality levels do not interfere with subsystems of higher criticality levels. In
this dissertation I introduce Cross-criticality Interfaces (CCIs) that allow to selectively
implement a weak coupling between two components and prevent such an interference.

What are the implications of reactive components on an exogenous coordi-
nation language?

The interaction of subsystems in a CPS is often based on reactive data processing where
the environment imposes a link between the inputs and outputs of the component. A
reactive component is hard to decompose because reactive components tend to rely on
persistent state and internal synchronisation points. Due to this, simple and intuitive
language primitives are required to describe reactive communication patterns in a struc-
tured way, such as chained components with mutual bi-directional interaction, without
loosing in terms of locality. I adopt the notion of network operators to describe a net-
work of reactive components. Different types of operators allow to describe a network
in a structured and hierarchical manner by keeping information local.

1.2 Contributions

To illustrate the contribution of this dissertation, Figure 1.1 provides a simplistic overview
of related work and the gap between research fields that this dissertation aims to bridge.
In the figure, three circles represent three aspects that tend to be part of a CPS. Each
circle is associated with a model that allows to describe particular properties of each
aspect and tackle the challenge they pose for modelling CPSs.

• CPSs tend to be concurrent due to the fact that they interact with the physical
world which is inherently concurrent [6]. In this work, concurrency aspects are

Chapter 1 Introduction 8

tackled with a stream processing model which provides inherent synchronisation
between interacting components.

• CPSs tend to be heterogeneous with respect to multiple aspects such as mixed-
criticality [2], different timing semantics [34], or different underlying theoretical
models [3]. In this dissertation I focus on mixed-criticality aspects and different
timing semantics and use well defined communication interfaces, called CCIs, to
control the interaction between components.

• CPSs tend to be reactive systems with complex interacting components which are
hard to decompose [13]. In order to support complex components in a stream
processing model I introduce the novel SIA model, an analysable component ab-
straction.

Further, the figure shows a few examples of related work, prominent representatives of
their domain, that are placed in the circles or the intersection of two circles to illus-
trate which aspects of CPSs are covered by their respective model. The symbolic dial,
surrounding the three circles, represents the time-criticality aspect of CPSs. Of the rep-
resented models only the names that are not greyed-out support some sort of control
over timing behaviour. The figure illustrates a clear gap between reactive systems with
support for complex components and stream processing models. This gap is filled by
the work presented in this dissertation, namely the PNSC model and the extension of
the model.

The work described in this dissertation provides the following novelties and contribu-
tions:

• introduction of a novel exogenous, component-based coordination model, called
PNSC, that allows to describe networks of processes, communicating through spo-
radic message passing. The novelty of the model is an LTS, called SIA, first
introduced in this dissertation, that allows to capture the blocking semantics of
interacting processes. The model allows to describe processes with persistent state
and internal synchronisation points. These are properties that fit well with the
requirements of CPSs which tend to be networks of reactive components. A com-
position operator allows to compose processes while preserving the properties of
blocking communication.

• extension of the novel PNSC model. The extensions have no influence on the be-
havioural aspect of a process which preserves the exogenous coordination property
of the PNSC model. The extensions provide support for

Chapter 1 Introduction 9

PNSC + SIA

extended
PNSC + SIA

stream processing

co
m

po
ne

nt
 a

bs
tr

ac
tio

n

com
m

unication interfaces

Ptolemy II

BIP

S-Net
StreamIt

In
te

rf
ac

e
A
ut

om
at

a

concurrent

re
a
ct

iv
e

h
e
te

ro
g
e
n
e
o
u
s

Figure 1.1: A simple schematic representation of properties of CPSs and how the
novel PNSC model bridges the gap between stream processing and LTS for complex

componets.

– mixed-criticality systems through selective communication decoupling to pre-
vent unwanted interference between processes. The extension integrates seam-
lessly with SIAs which are used to describe the communication decoupling
mechanism.

– multiple process execution schemes in a process network. This is achieved
by using the communication decoupling mechanism in conjunction with clock
signals to enforce a time-triggered process execution on a subset of processes.
The model allows to enforce time-triggered communication on individual pro-
cesses or on a network of processes.

– rate-controlled event-triggered communication. This is also achieved through
selective communication decoupling. Two types of protocols are proposed,
each applicable in a buffered and non-buffered situation, to enforce a limit on
the communication rate.

• proposition of the novel message type semi-state which complements the well
known message semantics of state messages and event messages in the context
of stream processing.

Chapter 1 Introduction 10

• development of a novel static analysis, based on the interface theory with SIA,
that allows to detect permanent blocking situations in the network. The analysis
distinguishes between deadlock and lonely blocking situations.

• introduction of the novel exogenous coordination language Streamix. Streamix is
an instantiation of the PNSC model. It allows to describe a network of complex
reactive processes in a structured and hierarchical manner.

• development of a toolchain including a Run-time System (RTS), compiler, and
permanent blocking checker that allows to produce executable applications by de-
scribing a system network by a Streamix program and linking it to individual C
implementations and SIA descriptions of PNSC processes. The resulting applica-
tion can be executed on a platform with support for ISO C, POSIX threads, and
a Linux operating system.

1.2.1 Publications

The following conference and workshop publications resulted from my research and have
been published:

• Simon Maurer and Raimund Kirner. Coordination with Structured Composi-
tion for Cyber-physical Systems. In Parallel Computing: On the Road to Ex-
ascale, volume 27 of Advances in Parallel Computing, pages 615 – 624, Edin-
burgh, UK, September 2015. IOS Press. ISBN 978-1-61499-620-0. doi: 10.3233/
978-1-61499-621-7-615

• Simon Maurer and Raimund Kirner. Cross-criticality Interfaces for Cyber-physical
Systems. In Proc. 1st IEEE Int’l Conference on Event-Based Control, Communi-
cation, and Signal Processing, pages 1–8, Krakow, Poland, June 2015. IEEE. doi:
10.1109/EBCCSP.2015.7300670

• Raimund Kirner and Simon Maurer. On the Specification of Real-time Properties
of Streaming Networks. In 18. Kolloquium Programmiersprachen und Grundlagen
der Programmierung, Kärnten, Austria, October 2015

The following journal publication is ready for submission:

• Simon Maurer, Raimund Kirner, and Olga Tveretina. Static Deadlock Analysis of
Process Networks with Synchronous Interface Automata. Ready for Submission,
2017

Chapter 1 Introduction 11

1.3 Structure of this Dissertation

The remainder of this dissertation is structured as follows:

Chapter 2 provides background information on concepts I use throughout the disser-
tation and discusses terminology. The related topics are component-based design
and more specifically interface theory, CPSs and their challenges, different com-
munication models in CPSs, and coordination languages.

Chapter 3 introduces the PNSC model that allows to describe networks of processes.
The interaction of a process with its environment follows a clearly defined blocking
semantics. In this chapter I further introduce the automata-based SIA model that
allows to describe the interaction protocol of a process as its interface with its
environment and I define a composition operator that allows to compose PNSC
processes in arbitrary order.

Chapter 4 describes an extension to the PNSC model that allows to punctually loosen
the communication coupling between interacting processes. This can be used to
model mixed-criticality systems, based on a sporadic communication scheme to
prevent undesired interference. The chapter further describes that, in conjunction
with clock signals, the decoupling elements allow to construct temporal firewalls
which can be used to change the sporadic communication model of a subset of
processes to a time-triggered communication model. In this chapter I further
introduce rate-control mechanisms to bound communication rates of processes to
a maximum limit.

Chapter 5 introduces a permanent blocking analysis that allows to identify permanent
blocking situations in a PNSC. Further, the chapter introduces the distinction
between deadlock situations and lonely blocking situations.

Chapter 6 describes the coordination language Streamix which represents an instance
of the extended PNSC model. Streamix is an exogenous coordination language that
allows to compose reactive components in a structured and hierarchical manner to
form a network of processes.

Chapter 7 describes a prototype of a toolchain for the coordination language Streamix.
It includes the compiler for the Streamix language, the RTS preprocessor, the RTS,
and the SIA model checker. Together, the tools allow to build an application that
can be executed on a platform with support for ISO C, POSIX threads, and a
Linux operating system.

Chapter 1 Introduction 12

Chapter 8 compares the different aspects of my work with the state of the art. This in-
cludes interface theory, mixed-criticality models, coordination languages and mod-
els, and methods to detect or prevent permanent blocking situations.

Chapter 9 finally concludes the dissertation and discusses the results and contributions
of the thesis. It also includes directions for future research on this topic.

Chapter 2

Background

In this chapter I will discuss terminology and give some background on topics relevant
for this dissertation.

The chapter is structured as follows: Section 2.1 discusses the term real-time and its
ambiguous meaning in different research areas and relates embedded systems to Cyber-
physical Systems (CPSs) and Internet of Things (IOT). Section 2.2 describes the basic
idea of component-based design, the approach used as a corner stone for the Process
Network with Synchronous Communication (PNSC) model proposed in this dissertation.
I then describe properties of CPSs and discuss their relevance with respect to the design
approach of CPSs in Section 2.4. Section 2.5 focuses on communication aspects such
as the triggering semantics, i.e. time-triggered or event-triggered communication and
communication coupling. Section 2.6 provides a short history on coordination languages
and discusses classification aspects of coordination languages.

2.1 A Side-note on Terminology

Traditionally, a hard real-time system describes a system where the consequence of
missing a deadline may result in a catastrophic event. Hence, the correctness criteria of
a piece of software not only rely on the correctness of the result but also on the time of
availability of the result. If the software provides a correct result but misses the deadline
by doing so, the correctness criteria are not met. One tends to distinguish between hard
real-time systems and soft real-time systems where the latter also imposes a deadline but
the consequences of missing a soft deadline are less severe. By missing a soft deadline,
the quality of the result only decreases but does not become useless.

13

Chapter 2 Background 14

There are two general points I want to make concerning the concepts of real-time systems.
Firstly, I find that the distinction between best effort systems and soft real-time systems
is only marginal and that a soft real-time system has much more in common with a
best-effort application than with a hard real-time system. Ultimately, every system has
a soft deadline because if a computation is never producing a result, the computation
is hardly useful. Hence, technically, every system is a real-time system. However, there
is a difference in terms of the usefulness of a result depending on when it is available.
In the case of a best effort application, the expectation is that eventually a result will
be available (before a non-specified deadline < ∞) and the sooner it is available the
better. With soft real-time systems, the expectation is put into numbers, meaning that
the application is expected to deliver a result within a specified deadline and there is no
immediate benefit if the result is available earlier. In contrast to a hard real-time system
where the focus lies on giving guarantees to meet deadlines, in soft real-time systems
no guarantees are given that a deadline is met. Rather, methods are used to decrease
the possibility for deadlines to be missed. For example, in the case of a video stream
application, buffers are used to store frames that resulted before the deadline in order
to compensate during times when the deadline is missed.

The second point concerns the use of the term real-time which has an ambiguous meaning
depending on the research community. Most commonly, in research, the term real-time
describes the fact that an application has to respect a deadline, i.e. a result must be made
available before a specified time limit has passed. However, I found that a lot of people,
not necessarily researchers, associate the term real-time with simultaneously performing
a computation as a direct reaction on events happening in the world, e.g. a football live
stream, the logging of events while they are happening, the capturing and visualising of
human motions while the human is performing the motions, etc. All these problems are
probably designed and programmed, using in one way or another the notion of a deadline
but the term real-time does not reflect that. Rather it reflects liveness of an application
which creates, in my opinion, unnecessary confusion when explaining such problems to
non-experts. Following the argument I made above that soft real-time and best-effort
applications are more closely related than hard real-time problems are related to soft
real-time problems, I advocate to use the term time-critical when talking about hard
real-time problems. It immediately carries the message that time plays a critical part in
such an application and avoids the confusion with live systems. Hence, throughout this
dissertation I will use the term time-critical system when talking about a hard real-time
system.

Time-critical systems are tightly coupled to the hardware they are running on. This is
because the execution time of an application is dependent on the hardware architecture

Chapter 2 Background 15

and to give guarantees that an application will meet the specified deadlines, it is impor-
tant to fully understand the associated hardware architecture. Due to this, in the past,
target hardware platforms for time-critical systems were often specialised boards fulfill-
ing the exact requirements to provide the resource demands of the software application
executed on the platform. As components on such boards were directly soldered on, such
hardware boards were called embedded systems and the term became synonymous for
hard real-time systems (or time-critical systems as I call them), including software and
hardware components. With the evolution of hardware architectures, computational
units were and still are becoming increasingly efficient and performant. Combined with
the increasing demand for smarter, time-critical applications it often became necessary
to build networked systems where not one single platform was used. Also, a lot of de-
vices of today are embedded on a single board without necessarily hosting a time-critical
system. Literally, the term embedded system only describes the technique of how a hard-
ware board is assembled which is no longer an indication that the executed application
is actually a time-critical system. Despite the potential confusion, the term embedded
system is still used to describe a single platform, time-critical system. However, more
complex systems, including multiple networked time-critical platforms, i.e. embedded
systems, are referred to as Cyber-physical Systems (CPSs). The focus of the term CPS
is put on the interaction between the physical and the cyber world through sensors and
actuators.

Another term that relates to similar concepts is Internet of Things (IOT). An IOT is
an instance of the more general term CPS. It describes largely distributed applications
where each "thing" represents a node in a network of interacting nodes.

Note that neither embedded systems, nor CPSs, nor the IOT must necessarily describe
time-critical applications but as they interact with the physical world they generally do
have timing constraints.

2.2 Component-based Design

Component-based design aims at separating concerns by dividing large systems into
loosely coupled independent, concurrent components [39, 40]. This concept is a corner
stone of a multitude of models, for example, in the area of stream processing [7] or
coordination languages [41]. Typically, these models describe a composition of com-
putational components that form a network. Linking structures, such as channels or
shared memory locations, establishes connections between components. Such networks
are usually explicitly constructed with the help of either a language (e.g. StreamIt [8]
or S-Net [10] where networks are constructed by applying binary wiring operators on

Chapter 2 Background 16

components) or a library (e.g. Open MPI [31] which provides an API to spawn channels
linking components together). The question of compatibility between components is
either inherently solved by construction of the language (S-Net only allows functional
components and uses component signatures to check for compatibility) or is delegated
to the programmer (Open MPI).

In component-based design, implementation details of components are often ignored and
a component is represented by an abstraction. The key is to choose an abstraction that
allows to describe the component accurately enough to expose certain properties while
keeping the abstraction as simple as possible [39]. By composing simple components to
build complexer ones, the properties exposed by the abstraction are used to check for
compatibility of the components. Ideally, such a model supports heterogeneous systems
and unifies the compatibility problem within one model [40]. In order for the program-
mer to be able to cope with concurrent systems, models have been proposed to check
interoperability of components either by using an automata-based interface description
of components such as Interface Automata (IAs) [15], causality interfaces [12], or transfer
functions [20], to name only a few.

A specific aspect of compatibility of components is the liveness property of a system
composed of components. A system is not guaranteed to be alive if a subset of the
complete system or a subset of involved components can permanently block. A widely
known case of permanent blocking is a deadlock situation [42].

In this dissertation I am interested in an automata-based approach to describe interfaces
of components and use it to check for freedom of permanent blocking in the system. My
approach is inspired by IAs but uses a different blocking semantics to make it suitable
in the context of stream processing.

2.3 Permanent Blocking and Deadlocks

In this dissertation I use the term liveness to describe whether a system is void of any
blocking subsystems. I use the term permanent blocking as the opposite of liveness, i.e.
to describe a system that has at least one blocking subsystem:

permanent_blocking = ¬(liveness) (2.1)

Permanent blocking must not necessarily be a deadlock. Coffman et al. identified four
conditions that must hold simultaneously for a deadlock to occur [42]. These conditions
are listed in Definition 2.1.

Chapter 2 Background 17

Definition 2.1 (Four Deadlock Conditions). A system is in a deadlock situation if the
following four conditions hold simultaneously:

1. Mutual exclusion: a task has exclusive control over a resource.

2. No pre-emption: a resource can only be released voluntarily by the task holding it.

3. Hold and wait: a task is holding at least one resource and is requesting at least
another.

4. Circular wait: a task T1 is holding a resource x and requests a resource y while
a task T2 is holding resource y and requests resource x. A circular wait is not
necessarily limited to only two participants and can span over multiple parties.

A practical example of a deadlock, or more specifically a gridlock, is illustrated in Figure
2.1. It depicts an intersection of two roads where cars are assumed to only drive straight
ahead without turning. For a car, e.g. arriving from the West, to be able to cross
the intersection, two spaces, e.g. NW and NE, have to be allocated. If traffic control
allows to allocate spaces separately for cars arriving from each direction, the situation
in Figure 2.1b can occur, where all spaces are occupied by an individual car such that
no progression is possible for any car.

NW NE

SW SE

(a) A car has to allocate two spaces in order
to advance.

(b) A deadlock situation where no car is
able to advance.

Figure 2.1: An example of gridlock on a crossing (no turning)

It is possible that in a system of multiple interacting processes only one process is
permanently blocked while the rest of the system is processing without permanently
blocking. If a process is blocking alone and no circular wait, as defined in Definition 2.1.4,
is involved I call this process a lonely blocker. Hence, I distinguish between deadlock
where multiple components block each other due to a circular wait and lonely blocking
where one component is blocked by other components but is itself not causing other
processes to block.

Chapter 2 Background 18

Therefore I conclude that

permanent_blocking 6= deadlock

and consequently with Equation 2.1 I conclude

deadlock 6= ¬(liveness)

However, deadlock implies permanent blocking, hence

deadlock → permanent_blocking

but permanent blocking does not necessarily imply deadlock:

¬(permanent_blocking → deadlock)

Note that a permanent blocking process is either a lonely blocker or involved in a dead-
lock but not both.

Using again the example of a road intersection I illustrate a permanently blocking system
that is not in a deadlock situation but rather a lonely blocking situation in Figure 2.2.
While cars from the East are able to progress to the West and vice versa, cars in the

Figure 2.2: A lonely blocking situation where progress is only possible from the East
to the West and vice versa.

North and in the South are blocked and cannot progress. Assuming an infinite stream
of cars and no priority rules, the cars from the North and the South will be blocked
infinitely. Note that this blocking is not due to a circular wait condition, as defined
in Definition 2.1.4, because the cars moving from East to West and vice versa are not
blocked. Consequently, given that the system is in a permanent blocking situation
without any deadlocks, the system is lonely blocking.

Chapter 2 Background 19

2.4 Cyber-physical Systems

CPSs are systems that interact with the physical world through sensors and actuators.
Because the actuation is usually a reaction to the sensing of the environment, CPSs are
generally reactive and must often satisfy timing requirements.

Harel and Pnueli introduced the terms transformational and reactive to distinguish
systems that are "relatively easy to develop from those that are not" [13]. In contrast
to a transformational system that takes inputs, performs computation, and produces
outputs, CPSs are often reactive systems where inputs are coupled to outputs via the
environment. The output out of a transformational system, described by the function
f , is dependent on the state state of the system and the input in to the system:

out = f(state, in)

Reactive systems, on the other hand, additionally, have a relation where the input in of
the system is not a variable but defined by a function fenv which is dependent on the
output of the system and an unknown variable env, imposed by the environment:

out = f(state, in) ∧ in = fenv(env, out)

Furthermore, a reactive system constantly reacts on changes in the environment while a
transformational system is active on its own behalf. These properties make it harder to
decompose a reactive system in subcomponents which is less the case for transformational
systems [13]. Kopetz distinguishes between simple tasks (S-tasks) and complex tasks (C-
tasks) [43]. A C-task contains blocking synchronisation points (e.g. the task is blocking
because it has to wait for the environment to provide it with an event) while an S-
task does not. A reactive system component tends to fit better with the C-task model
and it can be hard to avoid this. Consequently, reactive system components are often
required to maintain a persistent state and to support bidirectional communication
between components to allow an intuitive description of the reactive system. While
allowing persistent state in a system component makes it harder to exploit concurrency
on parallel architectures, it has the benefit of making a model more accessible for legacy
code.

The design and development of a CPS often involves a team of interdisciplinary experts
to assemble the required knowledge to correctly model the interaction of the physical
world with the cyber world. As a consequence, different models from different applica-
tion domains need to be brought together. To cope with this Eker et al. [3] proposed a

Chapter 2 Background 20

unifying framework that allows to choose suitable models for each subsystem and assem-
ble them through the framework. More recent work proposes to focus on single meta-
models with support for heterogeneity to increase the analysability of the model [1, 4, 5].
The approach discussed in this dissertation aims towards this goal and is based on a
component-based design approach (see Section 2.2).

To satisfy timing requirements of a CPS, the software components must be executed
on a hardware platform that is able to provide the required resources. For time-critical
systems, guarantees must be provided that timing requirements are met, i.e. such sys-
tems are designed for the worst case. Guarantees are given by computing the Worst-case
Execution Time (WCET) of the software components, executed on a target platform.
Generally there are three different approaches to compute the WCET: By the conjunc-
tion of code analysis and a precise hardware model, by simulation, or by measurement
through extensive testing. The most commonly used technique in industry is the ap-
proach where extensive testing is performed in order to verify that requirements are
satisfied [6]. The WCET problem is nothing I will address in this dissertation but the
interested reader might want to refer to the survey of Wilhelm et al. [44] for an overview
of methods and available tools.

Another aspect of CPSs is mixed-criticality. With the increasing capability of hardware
architectures, the need arises to execute multiple applications on the same hardware
platform. Often, there is a difference in terms of criticality of the applications intended
for the same platform (e.g. in a car, the multimedia system is of lower criticality than the
parking assistance system). In order to prevent interference from the low critical system
to the high critical system, Vestal proposed a mixed-criticality scheduler [45]. Burns
and Davis provide an extensive review paper which they constantly update with new
findings on the topic [2]. The focus of the research is almost exclusively on providing
a scheduler, capable of scheduling a mixed-criticality application on single or multi-
core architectures. I am, however, interested in Cross-criticality Interface (CCI), i.e. an
abstract model that allows components of different criticality levels to interact without
interfering.

2.5 Communication in Cyber-physical Systems

Human interaction with the physical world tends to be event-driven [46]: We react to
sporadic changes in our environment and perform actions to adapt to the changes (turn
the head upon registering a movement, keeping the balance on a ship). The correspond-
ing communication model for CPSs is the sporadic or event-triggered communication
model. In such a communication model, the transmission of information is triggered by

Chapter 2 Background 21

the occurrence of events. In a producer component, i.e. a sensor, an event trigger occurs
when a significant change of the state occurs which is then communicated to a consumer
component. The occurrence of events is sporadic, hence the time instant of the next
event occurrence is unknown. Due to this, it is hard to predict the required communica-
tion bandwidth and maximum load assumptions are needed in order to fulfil temporal
constraints. Local changes, like adding new components or changing the behaviour of
an existing component, can invalidate the temporal behaviour of the system. An event
based communication scheme is useful for open systems and for systems with sporadic
data. Typical examples of deterministic models that are based on event-triggered com-
munication are Kahn Process Networks (KPNs) [23] or the more restrictive Synchronous
Data Flow (SDF) model [11].

However, for critical applications where predictability and fault-tolerance are key, Kopetz
et al. proposed the Time-triggered Architecture (TTA) [47]. In a time-triggered commu-
nication scheme the participants use a common time basis and communicate at defined
time instants. The communication instants are often periodic due to simplicity but this
is not a necessity. Within a time-triggered communication system, local changes cannot
invalidate the temporal behaviour of the system and the system load is independent of
the number of message transmissions. This is achieved through communication decou-
pling with temporal firewalls [27]. Due to the stability and predictability with respect
to load and time behaviour, a time-triggered communication scheme is useful for fault
tolerant systems.

Loosely coupled communication has also been studied in the domain of large distributed
systems and three dimensions of coupling have been identified: time, space, and synchro-
nisation ([48, 49]). The three dimensions are orthogonal to each other. In the following,
a short description of each dimension is provided.

2.5.1 Communication Coupling in Time

An interaction is time decoupled if the participating components are not required to
operate at the same time in order to transmit messages. In contrast, a time coupled
interaction requires participants to operate at the same time for being able to com-
municate. To achieve decoupling in time, a storage is necessary where messages can be
placed by the sender until they are retrieved by the receiver. Time decoupling allows the
receiver to be disconnected at the time of the transmission by the sender and it allows
the sender to be disconnected at the time of reception by the receiver. The notion of
time decoupling is binary. Communication is either coupled or decoupled in time, there
is no middle ground.

Chapter 2 Background 22

2.5.2 Communication Coupling in Space

Communication is space decoupled if the involved parties do not know each other’s
address. Contrary, in a space coupled interaction the sender uses a direct address of
the receiver to transmit a message. Space decoupling can be achieved by introducing
an intermediate medium of communication. This may be a shared storage, a channel
for point-to-point communication, or a complex broker infrastructure taking care of the
communication process. Decoupling communication in space allows replacement and
maintenance of components at runtime and is a prerequisite for open systems.

Decoupling in space is based on the notion of binding an address to a component. If
said address is known by the other communicating party the communication is coupled
in space, otherwise, it is decoupled in space. However, let’s consider the example of a
network component, addressed by its IP-address. If this component is replaced with a
new component using the exact same configuration, including the IP-address, the com-
munication would work without any need for updating addresses in the participating
communication parties. Although, the recipient address must be known by the sender,
this communication is space decoupled. That is because the IP address is not an identi-
fication of the router (a MAC address would be tighter coupled but is still configurable)
but a binding of an alias to a service. It is not the component that the other communica-
tion parties are interested in, it is the service provided by that component (or any other
component able to provide it). Space decoupling is about the stability of an alias that is
always providing an identical service, where the notion of identity means identical state
and behaviour.

2.5.3 Communication Coupling in Synchronisation

Decoupling in synchronisation depends upon the read and write operation of the sender
and receiver respectively. Blocking operations imply a synchronous communication while
non-blocking operations allow asynchronous transmission of messages. To have a fully
asynchronous interaction, both, writing and reading must be non-blocking. Because
coupling in synchronisation is an independent attribute of read and write operations,
communication can be fully decoupled, partly decoupled or coupled in synchronisation.

In this dissertation the synchronisation decoupling is linked to forward and backward
progress control. Forward progress control describes the triggering semantics of the
receiving component by a blocking read and backward progress control describes the
back-pressure exert on the sending component by a blocking write.

Chapter 2 Background 23

2.6 Coordination Languages

The increasing system complexity of CPSs drives a high pressure on software engineering
methodologies to assure an effective and predictable control of resources. Coordination
languages have been proposed as a solution to tackle this problem by decomposing
application software into coordination and algorithmic programming [6]. The first co-
ordination language, called Linda, was introduced in 1992 by Gelrenter et al. [32]. The
concept of Linda is based on a shared memory space, called tuple space, where sets of
data elements, called tuples, are placed and retrieved by processes with the help of spe-
cific primitives. Over the years, several coordination languages, based on the tuple space
paradigm, have been proposed [50, 51]. In their survey on coordination languages [41],
Papadopoulos and Arbab distinguish between data-driven and control-driven coordi-
nation languages where Linda and its derivates fall in the former class. Data-driven
coordination languages tend to provide some primitives that are used in the purely
computational part to coordinate the exchange of information between processes. This
concept allows to build hierarchies and to broadcast information, two properties that
are well suited for structured programming. There is, however, not a strict separation
between coordination and computation imposed by the model but the task of separating
these concerns is left to the programmer.

Control-driven coordination languages, on the other hand, tend to enforce a clear sep-
aration of concerns because coordination elements are not part of the computational
components. This is usually achieved by linking computational components by channels
or more complex coordination constructs [52, 53]. While data-driven models tend to
coordinate data, control-driven models coordinate entities. This model-based approach
fits well with the world of CPSs where reactive components are common [1, 4, 5]. A
draw-back of the control-driven approach is that models often rely on point-to-point
connections to describe the communication channels connecting computational compo-
nents which lacks a clear structure. However, Grelck et al. show with the coordination
language S-Net that by using network operators, structured programming can also be
achieved with a control-driven coordination model [10].

Later, Arbab extended the classification of coordination languages and he introduced
the terms endogenous and exogenous coordination, describing whether coordination is
done from within a behavioural component or from the outside, respectively [33]. An
exogenous coordination model assures a clear separation between coordination and be-
haviour by leaving the behavioural components oblivious of the coordination constructs
that exert coordination upon them. An endogenous coordination model, on the other
hand, has no such separation and the coordination is done from within a behavioural
component which makes the component aware of the coordination exert on it. A clear

Chapter 2 Background 24

separation of concerns is important to simplify development, integration, and verifica-
tion of applications. In the domain of CPSs where systems are often safety critical, this
is a property we need to enforce.

Lee suggested that the use of coordination models not only allows to separate behaviour
and coordination but also provides an abstraction of the real-time behaviour from the
underlying hardware platform [6]. An example of such an approach is the Ptides [54]
model (which is part of the Ptolemy project [55]) that allows to model timing behaviour
of an event-triggered communication model. Another example is Giotto which is a
coordination language based on the time-triggered communication model [56]. With the
concept of Logical Execution Time (LET), Giotto provides a well defined input/output
timing behaviour of interacting components that allow to loosen the coupling between
the modelled timing specification and the timing behaviour of the application executed
on a specific hardware platform.

Chapter 3

PNSC with SIA - An Analysable
Event-based Component Model

In this chapter I present a model that allows to describe the interaction of concurrent
components. Each component is modelled as a, possibly stateful, process that is interact-
ing with its environment by reacting to input messages and producing output messages.
A process follows the sporadic communication semantics, as described in Subsection 2.5.

The chapter is structured as follows: Section 3.1 defines the model, called Process Net-
work with Synchronous Communication (PNSC), where concurrent processes build a
network by interacting over synchronous communication channels. The synchronous
communication model imposes strict blocking rules on the communication which allows
to gain a deeper understanding of the interaction. In Section 3.2 I introduce Synchronous
Interface Automata (SIAs), a model to describe the interaction protocol of processes. It
serves to describe how a process interacts with its environment and whether potential
problems, such as permanent blocking situations, can occur. In Section 3.3 I describe
how the PNSC model can be used to model an example of a traffic situation on an
intersection. Further, I extend the example by modelling an assembly of intersections
as streaming network with buffered communication. Finally, in Section 3.4 I summarise
the chapter.

3.1 Process Networks with Synchronous Communication
(PNSC)

The communication model of process networks described in this chapter is based on
synchronous communication. For further reference I use the name Process Network with

25

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 26

Synchronous Communication (PNSC). A PNSC consists of a set of processes PN . A
process in a PNSC interacts with other processes via input and output ports.

Definition 3.1 (PNSC Process). Formally, a process N is defined as a tuple

N = 〈PI
N ,PO

N 〉

where

• PI
N is the finite set of input ports of process N .

• PO
N is the finite set of output ports of process N .

• PN is the signature of process N and is defined as: PN = PI
N ∪ PO

N . The ports of
these two port sets have to be mutually distinctive: PI

N ∩ PO
N = ∅.

A process is of type Multiple Input, Multiple Output (MIMO), hence it holds that

|PI
N | ≥ 0 ∧ |PO

N | ≥ 0

Note, that a process can have a persistent state and thus, is not necessarily functional.

Two processesM and N are connected through synchronous channels if they have shared
ports. One end of the channel connects to an input port of one process and the other
end connects to an output port with the same name of the other process. The shared
ports of processes M and N are defined in Equation 3.1.

sharedP(M,N) =
(
PI

M ∩ PO
N

)
∪
(
PO

M ∩ PI
N

)
(3.1)

All ports in a set of n processes PN = {N0, . . . , Nn} describing a PNSC must be non-
conflicting:

n⋂
i=0
PI

Ni
= ∅ (3.2)

n⋂
i=0
PO

Ni
= ∅ (3.3)

I distinguish between two types of processes, an atomic process and a composed process.
An atomic process is a black box where the implementation of the process is unknown
to the model. A composed process is an abstraction of a PNSC in the sense that the
processes of the PNSC are composed into a single process. The signature of a composed
process is formed out of non-connected ports of each process in the set of the PNSC

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 27

abstracted by the composed process as defined by Definition 3.2. This composition
can be applied incrementally on a set of processes in any order if Equation 3.2 and
Equation 3.3 are satisfied.

Definition 3.2 (Composed PNSC Process). LetM,N be the set of processes of a PNSC.
Formally, the signature PMN of the composed process MN is defined as follows:

PI
MN = (PI

M ∪ PI
N) \ sharedP(M,N)

PO
MN = (PO

M ∪ PO
N) \ sharedP(M,N)

Figure 3.1 depicts the process model of the crossroad example introduced in Section 2.2.
The four processes PNW , PNE , PSE , and PSW in Figure 3.1a represent the guards for
the mutually exclusive allocation of the four critical sections NW , NE , SE , and SW .
Processing the messages mwi, mni, mei, and msi represent the advancing of a car from
the corresponding direction onto the respective spaces NW , NE , SE , and SW . Similarly,
processing the messages mw, mn, me, and ms represent the advancing of a respective
car by one space: NW → NE , NE → SW , SE → SW , and SW → NW . Producing the
messages mwo, mno, meo, and mso represents freeing the respective spaces (NW ,NE),
(NE ,SE), (SE ,SW), and (SW ,NW).

PNW PNE

PSW PSE

mwi mw mwo

meimemeo

mni

mn

mnomsi

ms

mso

(a) The PNSC network of atomic processes.

C

mwi mwo

meimeo

mni

mnomsi

mso

(b) The PNSC network as com-
posed process where pairs of
atomic processes are composed

incrementally.

Figure 3.1: The PNSC network modelling the crossroad example depicted in Fig-
ure 2.1.

Due to the synchronous communication semantics of PNSCs, in order to communicate
a message from one process to another, both, the sender and receiver process must be

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 28

ready at the same time for the transaction. As processes in PNSCs can be stateful, in
order for a process to be able to send a message, the receiver process must be in a state
where it is ready to receive the message. Otherwise, the sending process is temporarily
blocking in its current send state. Similarly, for a process to be able to receive a message,
the sending process must be in a state where it is able to send the message. Otherwise,
the receiving process is temporarily blocking in its current receive state.

If a process resides in a blocking state indefinitely, the PNSC (or a subset of the processes
in the PNSC) is in a permanent blocking state. The question that arises is how to detect
such permanent blocking states and how to decide if a PNSC is free of any possibility
to enter a permanent blocking state. To answer this question I first need to describe
the abstract behaviour of processes in order to understand how they interact with each
other. To do this I introduce Synchronous Interface Automata (SIAs) in the next section.

3.2 Synchronous Interface Automata (SIA)

A Synchronous Interface Automaton (SIA) Ñ is a finite state automaton that describes
the interaction protocol of a process N with its environment.

3.2.1 Definition of SIAs

The alphabet of a SIA is a set of actions where each action describes the label of a
transition from one protocol state to another. The states of a SIA Ñ do not necessarily
represent the internal states of a process N but only the states of the interaction protocol
of process N .

Definition 3.3 (SIA). Formally, a Synchronous Interface Automaton (SIA) Ñ of a
process N (defined in Definition 3.1) is defined as a tuple

Ñ = 〈S
Ñ
, s

Ñ
,AI

Ñ
,AO

Ñ
,AH

Ñ
, δ

Ñ
〉

where

• S
Ñ

is the finite set of interface states of SIA Ñ .

• s
Ñ
∈ S

Ñ
is the unique initial interface state of SIA Ñ .

• AI
Ñ
⊆ PI

N is the finite set of input actions of SIA Ñ .

• AO
Ñ
⊆ PO

N is the finite set of output actions of SIA Ñ .

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 29

• AH
Ñ

is the finite set of internal (i.e., hidden) actions of SIA Ñ .

• A
Ñ

is the total finite set of actions. A
Ñ

is defined as: A
Ñ

= AI
Ñ
∪AO

Ñ
∪AH

Ñ
. The

actions of these three action sets have to be mutually distinctive: AI
Ñ
∩ AO

Ñ
∩ AH

Ñ
= ∅.

• δ
Ñ

is the finite set of interface state transitions of SIA Ñ : δ
Ñ
⊆ S

Ñ
×A

Ñ
× S

Ñ
.

Note that an action a ∈ A
Ñ

is not limited to a single state transition but can be
part of multiple state transitions in SIA Ñ .

The actions in AI and AO are blocking and non-autonomous, while actions in AH are
non-blocking and autonomous. The progress of non-autonomous actions depends on the
environment, while the progress of autonomous actions is independent of the environ-
ment. Hence, autonomous actions are controlled by the process while non-autonomous
actions are controlled by the environment. Blocking actions will wait until the environ-
ment provides the corresponding action, while non-blocking actions can be processed
immediately.

Note that SIAs are input and output deterministic (hidden actions do not require de-
terminism), which is formally defined as:

∀〈si, a, sj〉 ∈ δ . 〈si, a, sk〉 ∈ δ . a ∈ (AI ∪ AO) =⇒ sj = sk

Above condition means that from one interface state any action a ∈ (AI ∪ AO) can be
part of at most one outgoing transition. An action a ∈ A is called enabled in a state
s ∈ S if and only if the condition defined in Equation 3.4 is satisfied.

∃s′ ∈ S . 〈s, a, s′〉 ∈ δ (3.4)

It might be desirable for a protocol to reach a certain state in which it will reside
indefinitely. Hence, I define a set of end states Send of a SIA in Equation 3.5.

Send =
{
s ∈ S | ∀s′ ∈ S, ∀a ∈ A . 〈s, a, s′〉 /∈ δ

}
(3.5)

Informally, an end state is a state where no further transition, triggered by any action, is
possible. Note that this holds for any action, i.e. no distinction is made between different
action types.

As two processes can share ports, their corresponding SIAs can share actions. In fact, for
two processesM and N to interact, their corresponding SIAs M̃ and Ñ must have shared
actions. Shared actions are defined in Equation 3.6 which is similar to the definition of

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 30

shared ports of Equation 3.1.

sharedA(M̃, Ñ) =
(
AI

M̃
∩ AO

Ñ

)
∪
(
AO

M̃
∩ AI

Ñ

)
(3.6)

From Equation 3.1, Equation 3.11, and Equation 3.12 it follows that sharedA(M̃, Ñ) ⊆
sharedP(M,N), which means that not all ports of the process interface have to be used
by its SIA. The set of actions that is excluded from the set of shared actions is called
ignored actions and is defined in Equation 3.7.

ignoredA(M̃, Ñ) = sharedP(M,N) \ sharedA(M̃, Ñ) (3.7)

All input and output actions of the SIAs M̃ and Ñ that do not correspond to the set
of shared ports of the processes M and N are called open actions. Open actions are
defined in Equation 3.8.

openA(M̃, Ñ) =
(
AI

M̃
∪ AI

Ñ
∪ AO

M̃
∪ AO

Ñ

)
\ sharedP(M,N) (3.8)

3.2.2 Composition of SIAs

Two SIAs M̃ and Ñ can be composed into a combined SIA M̃N if their actions are
non-conflicting as defined in Equation 3.9.

AI
M̃
∩ AI

Ñ
= ∅

AO
M̃
∩ AO

Ñ
= ∅

A
M̃
∩ AH

Ñ
= ∅

AH
M̃
∩ A

Ñ
= ∅ (3.9)

Note that actions can be renamed to solve such conflicts.

Definition 3.4 (SIA composition operator ⊗). Formally, the composition of two SIA
M̃ and Ñ into a SIA M̃N = M̃ ⊗ Ñ is defined as a tuple

M̃N = M̃ ⊗ Ñ = 〈SM̃N , sM̃N ,A
I

M̃N
,AO

M̃N
,AH

M̃N
, δM̃N 〉

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 31

where

SM̃N = S
M̃
× S

Ñ

sM̃N = 〈s0
M̃
, s0

Ñ
〉

AI

M̃N
= (AI

M̃
∪ AI

Ñ
) \
(
sharedA(M̃, Ñ) ∪ ignoredA(M̃, Ñ)

)
AO

M̃N
= (AO

M̃
∪ AO

Ñ
) \
(
sharedA(M̃, Ñ) ∪ ignoredA(M̃, Ñ)

)
AH

M̃N
= AH

M̃
∪ AH

Ñ
∪ sharedA(M̃, Ñ)

with sharedA(M̃, Ñ) and ignoredA(M̃, Ñ) defined in Equation 3.6 and Equation 3.7,
respectively.

The set of transitions δM̃N of the composed SIA M̃ ⊗ Ñ is defined in Equation 3.10.

〈
〈sm, sn〉, a, 〈s′m, s′n〉

〉
∈ δM̃N iff

∨
(
a ∈ sharedA(M̃, Ñ) ∧ 〈sm, a, s

′
m〉 ∈ δM̃

∧ 〈sn, a, s
′
n〉 ∈ δÑ

)
∨
(
a /∈ sharedA(M̃, Ñ) ∧ 〈sm, a, s

′
m〉 ∈ δM̃

∧ sn = s′n
)

∨
(
a /∈ sharedA(M̃, Ñ) ∧ sm = s′m ∧ 〈sn, a, s

′
n〉 ∈ δÑ

)
(3.10)

By composing two SIAs M̃ and Ñ into a resulting SIA M̃N , shared actions of the SIAs
M̃ and Ñ become internal actions in the resulting SIA M̃N . Together with the internal
actions of each SIA they form the set of internal actions of the resulting SIA M̃N :

AH

M̃N
= AH

M̃
∪ AH

Ñ
∪ sharedA(M̃, Ñ)

Note that ignored actions of the SIAs M̃ and Ñ are not propagated to the resulting SIA
M̃N .

The composition of two SIAs as defined by Definition 3.4 crates a composed process
from the corresponding processes as defined by Definition 3.2.

3.2.3 Relation of a SIA to its Process

A SIA describes the protocol behaviour of a process, hence there is a direct relation
between the set of ports PN of a process N and the set of actions A

Ñ
of its SIA Ñ .

An output action ai ∈ AO
Ñ

and an input action aj ∈ AI
Ñ
, each labelling a transition of

SIA Ñ , represent the ability of the protocol of a process N to write a message to the
environment via an output port ai ∈ PO

N or read a message from the environment via
an input port aj ∈ PI

N , respectively. Note that input and output actions only represent

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 32

the ability of the protocol to perform the action, whether it is possible to do so depends
on the environment. This is due to the semantics of synchronous communication where
both communication partners need to be ready for a transmission in order to transmit
a message. Every input action ai ∈ AI

Ñ
(output action aj ∈ AO

Ñ
) of the set of actions

A
Ñ

of SIA Ñ has a corresponding input port ai ∈ PI
N (output port aj ∈ PO

N) in the
signature PN of process N . However, not every port is necessarily used by a specific
protocol description. Hence,

AI
Ñ
⊆ PI

N (3.11)

AO
Ñ
⊆ PO

N (3.12)

Internal actions are not related to the ports of a process as they happen independently
of the environment the process is placed in. From Equation 3.1, Equation 3.11, and
Equation 3.12 it follows that

sharedA(M̃, Ñ) ⊆ sharedP(M,N)

This means that even though two processes M and N might share ports, their corre-
sponding SIAs M̃ and Ñ need not necessarily describe this interaction, i.e. the process
implementation does not rely on ignored ports.

Figure 3.2 depicts a process N1 where the interaction protocol is described by a SIA Ñ1.
States are represented as nodes, transitions as directed edges where the label of an edge
is the name of an action. Input actions are marked with a question mark ’?’, output
actions are marked with an exclamation mark ’!’, and internal actions are marked with a
semicolon ’;’. Note that in the example of Figure 3.2 port a2 ∈ PN1 has no corresponding
action in SIA Ñ1.

s0 s1

s2

s3

s4

a1?

τ1;

τ2;

b1!

b2!b3!

N1

b1

b2

b3

a1

a2

Figure 3.2: An example of a process N1 where SIA Ñ1 describes the interaction
protocol of N1.

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 33

Now, with a model to describe the interaction protocol of a process in a PNSC I need
to take a closer lock on how SIAs interact with each other.

3.2.4 Interaction of SIAs

I use SIAs to describe the interaction protocol of processes in order to understand how
processes interact with each other. The idea is to perform a binary composition of two
SIAs, each describing the protocol of a process. The formal method of the composition
is described later in Section 3.2.2. In this section I describe how two SIAs M̃ and Ñ

interact with each other and in particular how the actions of each particular SIA are
controlled.

Input and output ports of a process define the interface of the process to its environment.
Input and output actions of a SIA, describing the protocol of this process, define how
the process behaviour is interacting with the environment. Shared actions represent
the actual transmissions of messages from one process to another while shared ports
represent the synchronous channels, spawned between processes. Open actions repre-
sent the ability of a process to communicate with its environment via ports where the
corresponding communication partner is not (yet) known.

In order to understand how a SIA reaches a state that is permanently blocking we have
to understand how actions are controlled in more detail. To do this I will first discuss
the control of shared input and output actions. For this purpose let’s consider the
example in Figure 3.3. The two processes M1 and N2 share the ports a and b and their
corresponding SIAs M̃1 and Ñ2 share the action a. The output action b of SIA Ñ2 is
ignored.

s0 s1
a!

M1

s3

s4

s5

a?

b!

N2

a

b

Figure 3.3: A simple example of two processes M1 and N2 with their corresponding
SIAs M̃1 and Ñ2 connected by the channels a and b. However, only action a is shared.

Initially, both SIAs M̃1 and Ñ2 are in their initial state s0 and s3, respectively. From
both of these states action a is enabled. Additionally, action b is enabled in state
s3 ∈ SÑ2

. Hence, in state s3 two transitions are possible. However, as the output action

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 34

b will never be able to be served by N2’s environment (SIA M̃1 in this case) because no
matching input action is available, the transition 〈s3, b, s5〉 will never be possible with
the given environment M̃1. Therefore, from their respective initial state s0 and s3, SIAs
M̃1 and Ñ2 transition to state s1 and s4, synchronized by the label a. The decision in
state s3 ∈ SÑ2

is imposed by the environment M̃1.

Let’s now study the control of open actions. Open actions are either of direction input
or output, hence, blocking and non-autonomous. However, in contrast to shared actions,
with open actions the environment is not (yet) known. Hence, an assumption has to be
made whether the environment will eventually provide the corresponding counter parts
of the open actions. The goal of describing the protocol behaviour of processes with the
help of SIA is to check all possible interaction behaviour in order to guarantee liveness.
Hence, I will assume a helpful environment that is always providing open actions. This
guarantees that potential permanent blocking states, that are only reachable through
open actions, will still be considered. During the incremental composition of SIAs, open
actions will eventually become shared actions and will then be considered where the
environment is known. Therefore, potential permanent blocking states caused by such
actions will be detected at this later stage.

Note that open actions are, like shared actions, blocking and non-autonomous but be-
cause a helpful environment is assumed they will never block and will always be served.
Hence, open actions will always trigger the corresponding transitions in a SIA. Such an
example is illustrated in Figure 3.4 where two processes M1 and N3 are connected by
the shared ports a and b. The interaction protocol of process M1 is described by SIA
M̃1. Process N3 has additional ports d and e which are not connected and its interaction
protocol is described by SIA Ñ3. SIAs M̃1 and Ñ3 share the action a.

s0 s1
a!

M1

s3

s4

s5

s6

s7

e!

d?

a?

b!

N3

a

b

d

e

Figure 3.4: An example of a PNSC where the SIA Ñ3 of process N3 has the open
actions d and e.

While SIA M̃1 resides in its initial state s0, SIA Ñ3 starts in state s3 and can transition
to either state s4 or s5 triggered by the open action e or d, respectively. As open actions
are assumed to always be served by the environment, Ñ3 can reach either of the states

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 35

s4 and s5 while SIA M̃1 is blocked in state s0. With SIA Ñ3 in state s4, M̃1 and Ñ3

synchronise on the shared action a and transition to their respective state s1 and s6.
Because the action b ∈ A

Ñ3
is ignored, Ñ3 cannot perform any further transition from

state s5 to state s7. Note that the decision at state s3 ∈ SÑ3
depends on a currently

unknown environment. At a later stage, a new process, interaction with its environment
via ports d and e, might be added to the PNSC. By this, the system will gain knowledge
of the environment, with respect to ports d and e and consequently, the corresponding
actions of the respective SIA will be turned into shared actions.

As established in the previous section, internal actions are controlled only by the process
itself and not by the environment. Hence, internal actions are independent of interactions
and do trigger transitions autonomously. The PNSC illustrated in Figure 3.5 shows the
two interacting processes M1 and N4. The interaction protocol of process N4 includes
transitions that are triggered by the internal actions τ1 and τ2.

s0 s1
a!

M1

s3

s4

s5

s6

s7

τ1;

τ2;

a?

b!

N4

a

b

Figure 3.5: An example of a PNSC where the SIA Ñ4 of process N4 has the internal
actions τ1 and τ2.

While SIA M̃1 temporarily blocks in its initial state s0, SIA Ñ4 starts in state s3 and can
transition to either state s4 or s5. The transitions are triggered by the internal actions
τ1 and τ2, respectively. In contrast to the example of Figure 3.4 where open actions are
triggering the transitions, here the transitions are independent of the environment. The
choice at state s3 ∈ SÑ4

is unknown to the system because internal actions are hidden.

In Figure 3.5, the states s5 ∈ SÑ4
and s0 ∈ SM̃1

are permanent blocking states: With
both SIAs M̃1 and Ñ4 starting in their respective initial state s0 and s3, an autonomous
choice of process N4 may lead to an internal transition of Ñ4 to state s5. Because action
b ∈ AO

Ñ4
is ignored, a further transition from state s5 will never be possible. Hence, SIA

Ñ4 is blocking indefinitely in state s5. At the same time SIA M̃1 is still blocking in state
s0 and waits for SIA Ñ4 to reach state s4 in order to synchronize on shared action a. In
the current situation, this can never happen because SIA Ñ4 is indefinitely blocking in
state s5 and therefore SIA M̃1 is indefinitely blocking in state s0.

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 36

In contrast to the example with internal action (as depicted in Figure 3.5), the example
with open actions (as depicted in Figure 3.4) has permanent blocking states, only if the
environment provides an action d. This is because in Figure 3.4 the environment with
respect to actions d and e might become known at a later stage and action d might
be ignored, the transition 〈s3, d, s5〉 would not be possible and hence the permanent
blocking state s5 would never be reachable. Consequently, SIA M̃1 might never be
permanently blocked in state s0.

Up to this point, this chapter gave an informal understanding what permanent blocking
means. Chapter 5 will provide a formal definition of permanent blocking states by
analysing a composed system, as defined in Section 3.2.2.

As an example of a composition, let’s consider the PNSC depicted in Figure 3.6 where
two processes M2 and N4 share the ports a and b and process M2 has an unconnected
port c. By folding their corresponding SIAs M̃2 and Ñ4 into the resulting SIA M̃2N4, a

s0

s1

s2

a!

c?

M2

s3

s4

s5

s6

s7

τ1;

τ2;

a?

b!

N4

c

a

b

Figure 3.6: An example of a PNSC with SIAs containing open actions, shared actions,
ignored actions and internal actions.

new composed process, I call it M2N4 in this example, is created. The composed process
M2N4 with its corresponding SIA M̃2N4 is depicted in Figure 3.7. All unreachable states
of SIA M̃2N4 have been removed for the sake of readability.

s03 s04

s05

s23 s24

s25s16

τ1;

τ2;

τ1;

τ2;

c? c?

c?

a;

M2N4

c

Figure 3.7: The composed process M2N4 with its composed SIA M̃2N4 as a result of
the composition of the system depicted in Figure 3.6.

The only remaining port of M2N4 is the unconnected port c which relates to the open
action c ∈ AI

M̃2N4
, triggering the transitions 〈s03, c, s23〉, 〈s04, c, s24〉, and 〈s05, c, s25〉.

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 37

Note that all transitions triggered by action c ∈ AI

M̃2N4
change only the part of the state

corresponding to the SIA M̃2. The reason for this is that it is not possible to reach s06

because M̃2 must transition to state s1 in order to synchronize on action a. State s07

cannot be reached because action b ∈ AO
Ñ4

is ignored. With similar reasoning, I identify
the internal actions τ1 and τ2 that originate from SIA Ñ4. The shared actions a of the
SIAs M̃2 and Ñ4 are turned into the internal action a ∈ AH

M̃2N4
, triggering the transition

〈s04, a, s16〉.

3.3 Modelling a Crossroad with SIAs

In this section I will apply the SIA model on the crossroad example described in Fig-
ure 3.1. The interaction behaviour of the processes PNW , PNE , PSE , and PSW are
modelled with the SIAs P̃NW , P̃NE , P̃SE , and P̃SW , respectively, as depicted in Fig-
ure 3.8. I will only explain the rationale behind the system behaviour with respect to

s0

s1

s2

mwi?

mw!
ms?

mso!

PNW

s3

s4

s5

mni?

mn!
mw?

mwo!

PNE

s9

s10

s11

msi?

ms!
me?

meo!

PSW

s6

s7

s8

mei?

me!
mn?

mno!

PSE

mwi mw mwo

meimemeo

mni

mn

mnomsi

ms

mso

Figure 3.8: A PNSC model of Figure 3.1 extended by the corresponding SIAs of
each process. Due to the symmetry of the model, the system can potentially reach a

permanent blocking state — a deadlock, involving all four processes.

the lane arriving from the West and going to the East (mwi, mw, mwo) but as each SIA
in this example is modelled in a similar fashion the explanation is applicable for all of the

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 38

lanes. At its initial state s0 SIA P̃NW is either triggered by the input action mwi or ms.
Those actions correspond to allocating a space on the intersection for a car as explained
in Section 3.1. By triggering transition 〈s0,mwi, s1〉 the space NW is allocated for the
car arriving from the West. The request for space NE corresponds to the transition
〈s1,mw, s0〉. The action mw is shared with SIA P̃NE , hence, the transition 〈s1,mw, s0〉
can only be triggered if P̃NE is in its initial state s3. Triggered by the input action
mw, SIA P̃NE performs the transition 〈s3,mw, s5〉 to allocate the space NE to the car
arriving from the West. By performing transition 〈s5,mwo, s0〉, triggered by the output
action mwo, the car crosses the intersection and the spaces NW and NE are released.

The folding operation, described in Section 3.2.2, is applied incrementally on the model
such that the resulting SIA P̃res = P̃NW ⊗ P̃NE ⊗ P̃SE ⊗ P̃SW is produced. By doing
this we observe that the model is not free of permanent blocking. The SIA P̃res is
depicted in Figure 3.91 where a node, depicted as a black square, represents a state
where no further progress is possible. The resulting SIA P̃res of this system is already

Figure 3.9: The graph representing the SIA P̃res. It consists of 80 states and 248
transitions. The black square node represents a state where no further transitions are

possible and the grey triangle node represents the initial state.

quite complex. On the one hand this is due to the exponential growth of the state space.
There exist solutions to prevent state space explosion in Labelled Transition Systems
(LTSs) (e.g. [57]) but I will not discuss this further in this dissertation and postpone
the analysis of how such a method can be applied to the here presented model to future
work. On the other hand, the crossroad example has several open ports which causes
the SIA P̃res to describe every possible combination of cars, arriving and departing in
a different order. Connecting producer processes to the open ports can serve to impose
an order on how cars arrive and depart from the intersection and reduce the system
complexity.

As mentioned in Section 2.2, this crossroad situation can lead to a deadlock. This is
indicated by the state represented as a black square in Figure 3.9 where no further
transitions are possible. While an imposed order of departing cars can always cause

1Produced with https://github.com/moiri/streamix-ifa

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 39

potential permanent blocking by placing the system in a hostile environment (e.g. a
congestion on a lane after the intersection which prevents cars from freeing space on
the intersection), the problem with this system is that the system can be stuck in
a permanent blocking state even under the assumption that the open output actions
mwo, mno, meo, and mso can always be served. A simple example where a deadlock
situation occurs is when allocating one space for each car on their respective lane. This
is illustrated by Figure 2.1b. The system is in a deadlock state because each SIA P̃NW ,
P̃NE , P̃SE , and P̃SW synchronized on its respective input action mwi, mni, mei, and msi

and is permanently blocked in its respective state s1, s4, s7, and s10.

The fact that the model is not free of permanent blocking only means that there is
the possibility of permanent blocking. For example, let’s assume that on each lane a
car arrives and departs before another car arrives on any other lane. This is modelled

s0

s1 s2 s3

s4

s5s6s7

mwi!

mwo? mni!

mno?

mei!

meo?msi!

mso?

Figure 3.10: An example of an environment P̃env for the PNSC of Figure 3.8.

by a SIA (representing the environment) P̃env as depicted in Figure 3.10. Applying
this environment to the system a trivial SIA P̃res ⊗ P̃env results, where in each state a
transition is possible. It is a single circle as depicted in Figure 3.11.

s0

s1 s2 s3 s4 s5

s6

s7s8s9s10s11

mwi;

mw; mwo; mni; mn;

mno;

mei;

me;meo;msi;ms;

mso;

Figure 3.11: The resulting SIA P̃res ⊗ P̃env when applying the environment P̃env of
Figure 3.10 on the PNSC P̃res of Figure 3.8.

In order to avoid the possibility of permanent blocking in the system of Figure 3.8,
I have to change the topology of the PNSC and, as a consequence, adapt the SIAs
according to the changes. The problem of the intersection is equivalent to the dining
philosophers problem with four philosophers and four forks. Instead of sharing forks,
as the philosophers are forced to do, the streams of cars have to share spaces. The
deadlock of the dining philosophers problem can be solved by imposing the rule that
one philosopher starts by picking up the right fork while all others start by picking up
the left fork. Similarly, I break the circular wait in the crossroad example by letting
process P ′NW control the input flow from the West and the South and letting process P ′SW

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 40

control the output flow of the East and the South. Consequently, the directions of the
ports ms are changed such that process P ′NW produces ms and P ′SW consumes it (while
before process PSW was producing ms and PNW consuming it). The corresponding
system is depicted in Figure 3.12. Note that only the processes P ′NW and P ′SW and
their corresponding SIAs P̃ ′NW and P̃ ′SW are changed. Processes PNE and PSE and their
corresponding SIAs P̃NE and P̃SE stay the same as in Figure 3.8.

s0

s1

s2

mwi?

mw!
msi?

ms!

P ′
NW

s3

s4

s5

mni?

mn!
mw?

mwo!

PNE

s9

s10

s11

ms?

mso!
me?

meo!

P ′
SW

s6

s7

s8

mei?

me!
mn?

mno!

PSE

mwi
mw mwo

mei
me

meo

mni

mn

mno

ms

msi

mso

Figure 3.12: An adapted version of the crossroad model of Figure 3.8 that breaks the
symmetry and resolves the problem of permanent blocking.

With this model the situation of Figure 2.1b cannot occur because the actions msi and
mwi are both enabled in the same state s0 of SIA P̃ ′NW and only one of them can
trigger a transition at a time. By applying the folding operation ⊗ incrementally on the
subsystems the resulting SIA P̃ ′res = P̃ ′NW⊗P̃NE⊗P̃SE⊗P̃ ′SW , as depicted in Figure 3.13,
is computed. Here, from all states progress is possible. As with the previous example
(Figure 3.8), because the system is open it can be placed in a hostile environment where
back pressure generated by a congestion would prevent cars from freeing occupied places
and hence lead to a permanent blocking. However, in contrast to the previous example,
the redesigned system can cope with any input and will never block permanently.

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 41

Figure 3.13: The graph representing the SIA P̃ ′
res. It consists of 81 states and 252

transitions. The grey triangle node represents the initial state of the system.

3.3.1 Streaming Network with Buffered Communication

Up to this point I used a communication model based on synchronous communication. In
this section I describe how to model a streaming network with buffered communication
which is asynchronous.

In general, a streaming network is a composition of computational components and
directed channels. Components consume and produce message tokens via input ports
and output ports, respectively, at their interface. The streaming network is spawned
by a composition of components that are interlinked by channels. A channel connects
an input port with an output port and transmits message tokens via a First-in, First-
out (FIFO) buffer. Message tokens are produced sporadically by components while
components are executed. The execution of a component is triggered by message tokens
arriving at the input ports of the component. Every input port is an independent
trigger of a component. However, triggers become only active once the component is in
the correct state to consume the message tokens at the corresponding input port.

If I map computational components and FIFO buffers to processes of a PNSC, a stream-
ing network can be described by the interaction model presented in this chapter. The
same as the interaction protocol of a process is described by a SIA, the order in which
message tokens are consumed and produced by a computational component is described
by a SIA.

s0 s1 s2

ain?

aout!

ain?

aout!

NFIFO

aoutain

Figure 3.14: An example of a process NF IF O and its corresponding SIA ÑF IF O,
modelling a FIFO buffer of length two with input ain and output aout.

A FIFO buffer is modelled as a process with one input port and one output port. The
interaction protocol of a FIFO buffer is described by a SIA with an input and an output

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 42

action that trigger one or more transitions. Figure 3.14 depicts a process PF IF O and its
corresponding SIA P̃F IF O, describing a FIFO buffer with two memory spaces. In order
to model a FIFO buffer with more memory spaces, the chain of states and transitions
in the SIA is increased accordingly.

CNW CNE

CSW CSE

mwin mwonmwn

meinmeon men

mwis mwosmws

meismeos mes

mnie

mnoe

mne

mniw

mnow

mnw

msie

msoe

mse

msiw

msow

msw

Figure 3.15: A PNSC with four composed processes, each modelling an intersection
as depicted in Figure 3.12, interconnected by FIFO buffers (double-line arrows) forming

a streaming network.

Applied on the crossroad example, multiple crossings can be connected as depicted in
Figure 3.15. The four PNSCs CNW , CNE , CSE , and CSW each represent the assembly
of processes modelling the deadlock-free crossroad behaviour (depicted in Figure 3.12).
The composed SIA of Figure 3.13 describes the interaction protocol of each of the com-
putational components CNW , CNE , CSE , and CSW . The double-line arrows represent
FIFO channels that are connected to the corresponding input and output ports of the
computational components. The FIFO channels are modelled with processes that are
similar to the process depicted in Figure 3.14, but not necessarily of the same length.

Even though the system is composed of subsystems that are guaranteed to be free of
permanent blocking, its is not guaranteed that the composed system is free of permanent
blocking. This is because of the back-pressure imposed on cars attempting to leave an
intersection, caused by cars that are blocked in an intersection ahead. The situation
depicted in Figure 3.16 is one example of a potential permanent blocking situation that
can occur.

Chapter 3 PNSC with SIA - An Analysable Event-based Component Model 43

Figure 3.16: A gridlock with four intersections. This system is modelled by a PNSC
in Figure 3.15.

3.4 Chapter Summary

In this chapter I introduced the PNSC model. It allows to describe networks of processes
that are connected through synchronous channels. In order to describe the interaction
of a process with its environment I introduced SIAs. A SIA is an automata-based model
that describes the interaction protocol of a process where actions trigger transitions from
one protocol state to another. The model allows to compose processes and their corre-
sponding SIAs in order to provide an abstract representation of the network. This allows
to build hierarchical networks and to reuse sub-networks as composed processes. Due
to the synchronous communication semantics of the channels, SIAs provide a rigorous
language to describe the blocking behaviour of processes.

I used an example of a crossroad to illustrate the power of the model to analyse the inter-
action of processes. I used the same example in a bigger context where each crossroad,
as a composed process, is part of bigger system, modelled as a streaming application.

Chapter 4

Mixed-criticality PNSCs and
Time-based Processes

A property of systems in the world of Cyber-physical Systems (CPSs) is the diver-
sity of components with respect to their criticality and their underlying communication
paradigms. Such systems are called mixed-criticality CPSs. They are composed out
of components where the consequence of a failure depends on the criticality level of
the component. For example, in a car, a failure of the anti-lock braking system is more
critical than the failure of the navigation system. One challenge of the design and imple-
mentation of a mixed-criticality CPS lies in preventing interference between components
of different criticality levels. This is especially challenging if components with different
criticality levels need to interact with each other.

Another challenge in the design of CPSs is the time-criticality of an application. Tradi-
tional software development is based on the best-effort principle where the aspect of time
is removed from the control of the programmer. This lies in contrast to the requirements
of a time-critical application where guarantees must be given that a certain piece of code
must execute and terminate before a given deadline. Such deadlines are imposed by the
physical world due to physical properties tied to the problem the application aims to
solve.

In this chapter I am going to describe how the Process Network with Synchronous Com-
munication (PNSC) model (Chapter 3) is extended to support mixed-criticality aspects
in the event-triggered domain by communication decoupling. I further introduce timing
aspects to the model in order to control communication and triggering rates of pro-
cesses. This serves to enable the modelling of safety-critical systems as such systems
profit form predictability and stability of communication rates. The reminder of the
chapter is structured as follows: In Section 4.1 I discuss the different coupling aspects

44

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 45

of communication and describe how communication decoupling in PNSCs is achieved
in different dimensions. I use the decoupling mechanisms in conjunction with timers to
control communication and execution rates of processes. This is described in Section 4.2
where two aspects of rate-control are discussed: First, control on the execution-rate
of processes is achieved by removing the event-triggering semantics of a process with
the help of communication decoupling and replacing it with a time-triggering semantics
where a clock triggers the process execution periodically (Subsection 4.2.1). Second, the
communication rate on individual input ports of processes can be bound to a upper limit
to gain control over the used communication bandwidth. I describe several strategies of
how this is achieved in Subsection 4.2.2. In Section 4.3 I define three different message
types and describe their properties, application fields, and how this relates to commu-
nication coupling. In Section 4.4 I describe Cross-criticality Interfaces (CCIs) which
summarise the different interaction patterns between processes, based on the triggering
semantics of the processes and the types of message tokens. I also provide an example
of a mixed-criticality system from the video-processing domain and use the extended
PNSC model to describe the system. Finally, in Section 4.5 I provide a summary of the
chapter, discuss the limitations of the PNSC model with respect to time-critical systems,
and propose future work related to the topics discussed in this chapter.

4.1 Communication Decoupling of PNSCs

One research goal is to provide a platform, suitable for safety-critical services, that
is able to perform controlled changes at runtime which is in contrast to the current
practice of allowing no changes in safety-critical systems. Such a platform needs to
support the coexistence and segregation of closed subsystems and open subsystems with
CCIs between them. I consider a subsystem as closed if it doesn’t have information
flow to or from another subsystem that is essential for the correct functioning of the
closed subsystem. These CCIs will ensure controlled information flow between closed
subsystems and open subsystems such that the closed subsystem cannot be compromised
in its correctness in case of misbehaviour by an open subsystem. CCIs avert unwanted
coupling of behaviour through the interfaces.

In Section 2.5 I described communication decoupling in three different dimensions: time,
space, and synchronization. For mixed-criticality systems it is crucial to achieve com-
munication decoupling in order to prevent interference of the lower critical component
to the higher critical component. A PNSC, as described in this chapter, relies heavily on
synchronous communication. Synchronous communication is coupled in time because

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 46

both communication partners need to operate at the same time in order to communi-
cate. Further, it is also coupled in synchronization because both, the read and the write
operation, is blocking. However, the PNSC model achieves decoupling in space due to
the presence of channels: processes read from ports (write to ports) without knowing
who the producer (the consumer) is. Communication dependencies are automatically
defined through channels that connect to ports with each end.

To make the PNSC model suitable for mixed-criticality CPSs the model needs to be
enriched with the possibility to decouple communication in time and synchronisation.

4.1.1 Decoupling PNSCs in Time

To decouple communication in time, a process N1 needs to be able to send a message
token to another process N2 without having to wait for N2 to be ready to receive the
message token and vice versa. This can be achieved by introducing a buffer that is
independent of the communication partners: a producer can write to the buffer inde-
pendent of the consumer and the consumer can read from the buffer independent of
the producer. Instead of using a synchronous channel to connect two ports of two pro-
cesses, a buffering element can be used. As shown in Section 3.3.1, a streaming network
with buffered communication can easily be built with the PNSC model if each First-in,
First-out (FIFO) buffer (with predefined buffer size) is simply modelled by a process.

Consequently, communication decoupling in time is achieved by introducing an abstrac-
tion layer where atomic processes are no longer connected by synchronous channels but
by FIFO channels (each modelled as an atomic PNSC process). An example of such
an abstraction is illustrated in Figure 3.15 where each double arrow represents an ab-
straction for a FIFO buffer. An example of a FIFO buffer with two memory spaces is

depicted in Figure 3.14. I use the notation a[l] to describe a FIFO buffer a of
length l. If the length l is omitted, a default of l = 1 is assumed.

4.1.2 Decoupling PNSCs in Synchronisation

In an event-triggered communication model, such as the PNSC model, the process trigger
semantics controls the forward progress of the computation. Since a read operation on a
port is blocking, the process will be triggered by the arrival of a message token, i.e. the
arrival of a message token initiates the progress in the flow direction of the data. Due
to the blocking write of a PNSC process the progression of computation is controlled
against the flow direction of the data. I call this back-pressure.

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 47

The blocking communication semantics in a PNSC is crucial to ensure event safety in the
communication: It is not possible to unintentionally duplicate or lose message tokens as
processes are blocked as long as the communication partner is not available to exchange
information. The cost, however, is that blocking creates mutual interference between
components. In case of a mixed-criticality system, it must be possible to punctually
remove the blocking semantics of read and/or write operations of a process (decoupling
in synchronisation) to prevent interference.

Note that decoupling communication in time does not automatically achieve decoupling
in synchronisation. This is because blocking is possible if no space is available in the
buffer for a producer to write to or the buffer is empty and can offer nothing to a
consumer.

The blocking semantics of an action a ∈ AI
Ñ
∪AO

Ñ
in a Synchronous Interface Automaton

(SIA) Ñ can be removed by adding a self-loop transition, triggered by action a, to each
state of the SIA where action a is not enabled. This means that the implementation
of process N needs to be able to serve the action a in each state of its corresponding
SIA Ñ . This delegates the problem of decoupling to the implementation of the process
which is undesirable because it violates the concept of exogenous coordination.

s0 s1

s2

s3

s4

a1?

τ1;

τ2;

b1!

b2!b3!

b1!

b1!

b1!

b1!

N ′
1

b1

b2

b3

a1

a2

Figure 4.1: An example of a process N ′
1 where SIA Ñ ′

1 describes the interaction
protocol of N ′

1 with port b1 decoupled in synchronisation.

As an example let’s consider the process N1 and its corresponding SIA Ñ1 as depicted
in Figure 3.2 where no port is decoupled in synchronisation. Figure 4.1 depicts the
same situation expect that here, port b1 is decoupled in synchronisation. Due to this
decoupling, the SIA Ñ ′1 has a self-loop transition, triggered by action b1 ∈ AO

Ñ ′1
, on each

state except state s2 where action b1 is enabled.

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 48

This modification of a process and its SIA is not very convenient because it requires
the necessity of different process implementations depending on the context a process is
used in. To avoid this, I introduce a decoupling process ND with SIA ÑD as depicted
in Figure 4.2. The SIA ÑD of the decoupling process has only one state s5 where it

s5ain? aout!

ND

aoutain

Figure 4.2: An example of a decoupling process ND and its SIA ÑD with input ain

and output aout.

accepts an action ain ∈ AI
ÑD

and an action aout ∈ AÑD
. The decoupling process can

never block because each transition in its SIA is immediately returning to the initial
state which allows the process to always consume an input when one is provided and
always produce an output when one is required. In order for a decoupling process to
provide an output before it received an input, an initial value must be defined.

s05 s15

s25

s35

s45

a1?

τ1;

τ2;

b1;

b2!b3!

b′1!

b′1!

b′1!

b′1!

b′1!

ND1

b′1

b2

b3

a1

a2

Figure 4.3: The resulting abstract process ND1 of the composition N1 ⊗ ND where
SIA ÑD1 = Ñ1 ⊗ ÑD. SIA ÑD1 is syntactically equivalent to SIA Ñ ′

1, depicted in
Figure 4.1.

Note that a decoupling process is symmetric. This means that if a decoupling process
ND(b1) is used to decouple the output port b1 of process N1, not only does it make the
write access of process N1 to port b1 non-blocking but also any read access from the
environment to the decoupling process ND(b1) becomes non-blocking. This is illustrated
by Figure 4.3 where a decoupling process on channel b1 is composed with process N1 (in
order to avoid naming conflicts, the output port of the decoupling process is renamed
to b′1). The resulting process is named ND1 and its corresponding SIA is defined as

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 49

Ñ1 ⊗ ÑD(b1). We observe, that the transition 〈s25, b1, s05〉 is now triggered by the
internal action b1. Further, we observe that on each state a transition, triggered by the
output action b′1, is available which means that the process ND1 is able to serve action
b′1 in any state to the environment i.e. any write access to the environment and any
read access from the environment is decoupled. Note that Figure 4.1 and Figure 4.3 are
syntactically equivalent.

I conclude that by using a decoupling process on a synchronous channel, the blocking
semantics of the channel is removed for the read and the write operation. Consequently,
on a synchronous channel it is only possible to decouple read and write operations
simultaneously. If read and write access must be decoupled individually, the decoupling
in synchronisation must be combined with decoupling in time. I discuss this in detail
in Subsection 4.1.3 of this section. I use the notation to describe a channel
where the write access is non-blocking, to describe a channel where the read
access is non-blocking, and to describe a channel where the write and the
read access is non-blocking. As discussed above, a decoupling process, as depicted in
Figure 4.2, enforces decoupling in synchronisation for read and write access and is, hence,
represented as . Note that is only a theoretical construct and in
practice decoupling a synchronous channel in synchronisation is equivalent to removing
the channel. This is because the producer and the consumer would need to access
the channel at the exact same time and use the physical wire as a buffer to transmit
a message token. In combination with decoupling in time, however, the decoupling
process becomes a powerful tool to punctually prevent interference between interacting
processes.

4.1.3 Decoupling PNSCs in Time and Synchronisation

Achieving decoupling in synchronisation of a process requires either a modification of the
process implementation or an additional decoupling process (as depicted in Figure 4.2).
However, by combining decoupling in synchronisation with decoupling in time the mod-
ification can be applied to the buffer instead of the process. This allows to connect a
process to different types of buffers in order to achieve either input or output decoupling
(or both) in synchronization and leave the process implementation unchanged. In this
section, ports are always decoupled in time and space. When, additionally, a port is
decoupled in synchronisation I will simply describe it as decoupled.

To achieve this I use the same abstraction as with decoupling in time: synchronous
channels are replaced by buffers. The buffers are not simple FIFO buffers but have

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 50

internal logic. The type of buffer depends on the decoupling semantics of the process
ports. In the following I will describe the different buffer types.

Decoupling an output of a process means that no back-pressure is exert on this output
and the process cannot be blocked due to a congestion on the connecting channel. This is
achieved by allowing the process to write to the connecting FIFO channel, independent
of whether there is available space or not. If the FIFO buffer is full, the message token
in the last buffer space is overwritten by the new message token. This leads to the
potential loss of message tokens. The loss of message tokens can be tolerable in certain
circumstances. This will be discussed in more detail in Section 4.3. Figure 4.4 depicts

s0 s1 s2

ain?

aout!

ain?

aout!

ain?

NDIN

aoutain

Figure 4.4: An example of a SIA, modelling a FIFO buffer of length 2 with a decoupled
input ain and an output aout.

a FIFO buffer NDIN of length two that is attached to a decoupled output port ain of a
process and to a blocking input port aout of another process. In state s0 the buffer waits
for an input action ain to trigger the transition 〈s0, ain, s1〉. Once the input is served,
in state s1, two transitions are possible. Either the transition 〈s1, aout, s0〉 if a consumer
is reading from the buffer or the transition 〈s1, ain, s2〉 if another message is written to
the buffer. In state s2 the buffer is ready to receive any number of message tokens due
to the transition 〈s2, ain, s2〉 which models the non-blocking behaviour of the buffer. I

use the notation a[l] to describe a decoupled FIFO buffer a of length l where the
arch symbol at the source of the arrow indicates the fact that the input of the FIFO
is decoupled in synchronisation and, consequently, message tokens can potentially be
overwritten and discarded due to the decoupling.

By decoupling an input of a process, this input is excluded from the triggering semantics
of the process: a read operation on this port will never block and always return the last
message token stored in the connected buffer. Due to this, decoupling of an input port is
only possible for processes with multiple input ports where at least one other input port
is triggering the component. This prevents a component from constantly consuming
the same message token without ever being blocked. Reading from a decoupled input
can lead to the duplication of message tokens. The same as the loss of message tokens,
the duplication of message tokens can be tolerated in particular circumstance. Refer to
Section 4.3 for more information on the subject. An example of a decoupled FIFO buffer
NDOUT of length two is depicted in Figure 4.5. When connected between a producer
and a consumer process, such a FIFO buffer models a decoupled read access of the
consumer process to port aout of the FIFO buffer while the write access of the producer

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 51

s0 s1 s2

ain?

aout!

ain?

aout!

aout!

NDOUT

aoutain

Figure 4.5: An example of a SIA, modelling a FIFO buffer of length 2 with input ain

and a decoupled output aout.

process to the FIFO buffer (via port ain) is blocking. The initial state s0 allows two
transitions: Either the transition 〈s0, ain, s1〉 if a message token is written to the buffer
or the transition 〈s0, aout, s0〉 if a consumer is reading from the buffer. If the latter is
the case, the last message token that was written to the buffer is duplicated and the
duplicate message token is read by the consumer. Duplication of the message token
ensures that any modification done to the message token by the consumer process does
not change the original message token residing in the buffer.

Note that if a message token has never been written to the buffer an empty message

token is returned. I use the notation a[l] to describe a decoupled FIFO buffer
a of length l where the double arrow indicates the fact that the output of the FIFO is
decoupled and, consequently, message tokens can potentially be duplicated.

s0 s1 s2

ain?

aout!

ain?

aout!

aout! ain?

NDBI

aoutain

Figure 4.6: An example of a SIA, modelling a FIFO buffer of length 2 with a decoupled
input ain and a decoupled output aout.

Figure 4.6 shows an example of a decoupled FIFO buffer NDBI of length two that is a
combination of the buffers depicted in Figure 4.4 and Figure 4.5. Such a buffer is used
when a decoupled output port of one process is connected to a decoupled input port of

another process. I use the notation a[l] to describe a FIFO buffer a of length l
where the input and the output is decoupled.

4.2 Time-based Component Model of PNSCs

In order to give guarantees that a piece of code produces a result before a deadline
has passed, one has to know the exact execution time of this piece of code, running
on a specific piece of hardware. However, the execution time of an application, run-
ning on a particular hardware platform is not constant because of memory hierarchies,
branch predictions, and multi-core designs that are commonly found in modern hard-
ware architectures. In order to circumvent these problems, huge efforts have been made

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 52

to compute the Worst-case Execution Time (WCET) of an application, running on a
specific hardware platform [44].

In order to determine the WCET of a process, without analysing the behaviour of the
environment this process is placed in, a clear separation between communication and
computation is necessary [58]. This lies in stark contrast to an event-triggered com-
ponent model, as the one described in Chapter 3, where the activation of a process is
influenced by the interaction with other processes due to the blocking nature of the com-
munication. As an alternative, Kopetz proposed the Time-triggered Architecture (TTA)
where a system is decomposed into an assembly of components where each component
is triggered according to a fixed schedule. In Section 2.5 I gave a short introduction to
time-triggered communication which describes one aspect of a TTA. In his book [34],
Kopetz discusses time-critical systems and provides an extensive description of TTAs.

In the following I will discuss two methods to control the execution rate of processes
in a PNSC by using communication decoupling mechanisms, introduced in Section 4.1,
and clock signals. One method is a PNSC version of a time-triggered architecture where
the rate of production and consumption of message tokens in a PNSC is controlled by
an element which I call temporal firewall. The other method consists of limiting the
production rate of message tokens to bound the communication rate to an upper limit.
The former method is described in Subsection 4.2.1 and the latter in Subsection 4.2.2.

4.2.1 Time-triggered Processes in a PNSC

In order to change the triggering semantics of a PNSC, I introduce the concept of a
temporal firewall that allows to enforce a time-triggered semantics on a process or a
PNSC instead of the sporadic triggering behaviour inherent to PNSCs. A temporal
firewall NFW is a PNSC process that is connected to a clock signal through port pclk ∈
PNFW . The clock signal is oscillating at a constant rate and is causing the temporal
firewall to trigger at the rate of the clock signal. A temporal firewall has another input
and a matching output port which are both decoupled in synchronization. This means
that the arrival of a message token at the input port is not triggering the execution
of the process, a read access on the input port is non-blocking, and a write access on
the output port is non-blocking (see Section 4.1.2). Upon the trigger event, caused
by the connected clock signal, a temporal firewall consumes a message token from its
input port and produces a message token at its output port. As the input and the
output is decoupled, the production and consumption of message tokens is independent
of the environment of the temporal firewall and it can never be blocked. An example
of a behaviour of a temporal firewall is illustrated in Figure 4.7. The upper time line

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 53

Figure 4.7: An example of the behaviour of a temporal firewall where the upper time-
line represents the arrival instances of message tokens and the lower timeline represents

the release instances of message tokens.

represents the arrival instances of message tokens at the input of a temporal firewall and
the lower timeline represents the release instances of message tokens from the output
of the temporal firewall. The vertical dotted lines indicate the rate of the clock that
triggers the temporal firewall. A crossed-out arrow represents a message token that is
overwritten by a newer message token (e.g. the third message token is overwritten by
the fourth and the sixth message token is overwritten by the seventh).

Multiple temporal firewalls can be synchronized by synchronizing the clock signals trig-
gering the temporal firewall. This is only possible if the clock rate of the synchronized
temporal firewalls is equal.

s0

s1

s2

pclk?

ain?

aout!

NFW

aoutain

pclk

Figure 4.8: A temporal firewall with a decoupled port pair 〈ain, aout〉 and a port pclk

which is connected to a clock signal.

A temporal firewall NFW with its corresponding SIA ÑFW is depicted in Figure 4.8. The
ports ain and aout are decoupled in synchronisation. A clock signal is connected to the

port pclk. For simplicity I will use the notation a(pclk) to describe a temporal firewall
on channel a, triggered by the clock signal pclk, as depicted in Figure 4.8. Note that
decoupled FIFO channels of length one instead of synchronous channels are connected to
the input and output port of a temporal firewall. This is because of the following: While
the input and output of a temporal firewall is decoupled in synchronisation by default,
the output of the producing process and the input of the consuming process, connected
to the temporal firewall, must not necessarily be decoupled in synchronisation. In order
to achieve this separate control of decoupling in synchronisation, decoupling in time is
required, hence, buffered channels are used by default.

By connecting all input and output ports of a PNSC (or a single process) to synchronized
temporal firewalls, a time-triggered behaviour is imposed onto the PNSC. I call such a

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 54

PNSC a time-triggered PNSC. The time-triggered behaviour is enforced because message
tokens can only reach the time-triggered PNSC through temporal firewalls and the
temporal firewalls produce message tokens at the specified rate which causes the time-
triggered PNSC to trigger at the specified rate. Temporal firewalls can be connected to a
single process or a PNSC. When connected to a single process, no sporadic triggering is
possible because the time-triggered process is completely decoupled from the rest of the
network through temporal firewalls. The WCET of the process must be guaranteed to
be smaller than the triggering rate imposed by the temporal firewalls. When connected
to a PNSC, only processes that communicate with the environment of the time-triggered
PNSC are decoupled by temporal firewalls. Other processes inside the time-triggered
PNSC may still be triggered through sporadic message token transmissions.

P1 P2 P3

a1(pclk)

a2(pclk) a6(pclk)

a5(pclk)

a4a3

Figure 4.9: An example of a time-triggered PNSC where the PNSC is decoupled
through temporal firewalls while processes inside the time-triggered PNSC trigger spo-

radically (e.g. process P2).

As an example let’s consider the time-triggered PNSC depicted in Figure 4.9. The
process P1 interacts through the temporal firewalls a1(pclk) and a2(pclk) with its en-
vironment to the left and process P3 interacts through a5(pclk) and a6(pclk) with its
environment to the right. Consequently, the time-triggered PNSC, framed by the four
temporal firewalls a1, a2, a5, and a6, is decoupled from its environment through the
temporal firewalls. Process P2, however, which is placed inside the time-triggered PNSC
is not connected to any temporal firewall and is triggering sporadically depending on
the arrival of message tokens from process P1. Process P3 is triggered through message
tokens arriving at the input a6, produced at a rate pclk from a temporal firewall, and
through message tokens arriving through input port a4, sporadically produced by pro-
cess P2. A time-triggered PNSC PN , framed by synchronized temporal firewalls, must
satisfy Property 4.1 and Property 4.2.

Property 4.1 (Time-triggered Input). At the start of each round r, a process P ∈ PN
connected to a temporal firewall via an input port consumes at least one message token.

Property 4.2 (Time-triggered Output). Before the start of the next round r + 1, a
process P ∈ PN connected to a temporal firewall via an output port produces at least one
message token.

Note that if more than one message token is consumed or produced by a process P ∈
PN , connected to a temporal firewall, the corresponding port of the process must be

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 55

decoupled in order to not block the process, given that a temporal firewall produces and
consumes exactly one message token.

To tighten the control on the rate of message tokens passing in the time-triggered PNSC
PN , each process P ∈ PN must be framed by synchronized temporal firewalls. This is
illustrated in Figure 4.10 which depicts the same example as Figure 4.9 but without any
sporadic triggering of processes. Here, in each clock cycle message tokens are passed from

P1 P2 P3

a1(pclk)

a2(pclk) a6(pclk)

a5(pclk)
a4(pclk)a3(pclk)

Figure 4.10: An example of a time-triggered PNSC where each process in the PNSC
is decoupled through temporal firewalls.

one process to the next via temporal firewalls and no sporadic triggering is occurring
in the time-triggered PNSC. However, this is only the case if temporal firewalls are
synchronized which allows a concatenation of two temporal firewalls, triggered by the
same clock rate, to be merged into one (as depicted in Figure 4.10).

If the temporal firewalls, framing the processes are not synchronized, i.e. their clock rate
differs, temporal firewalls cannot be merged and the time instant of when one temporal
firewall produces a message token is not necessarily synchronized with the time instant
the neighbouring temporal firewall is consuming a message token. Consequently, the
time instance of passing a message from one process to another is not coordinated. An
example of such a case is depicted in Figure 4.11 where the processes P1 and P2 are
framed by temporal firewalls, each triggered by a different clock rate clk1 and clk2,
respectively.

P1 P2

a1(clk1) a2(clk1) a2(clk2) a3(clk2)

Figure 4.11: An example of a time-triggered PNSC where each process in the PNSC
is decoupled through a temporal firewall with a different clock rate each.

4.2.2 Rate-bounded Communication

To control the bandwidth usage of a communication channel I introduce the concept of
rate-bounded communication. The idea is to introduce a timed guard on a communica-
tion channel in order to limit the production rate of message tokens in the channel to
a specified upper bound. This bound is specified by the consumer process. This allows
a better prediction of the maximum communication bandwidth demand. A time inter-
val, called inter-arrival time, is used to measure and control the communication rate.

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 56

The inter-arrival time describes the elapsed time between the arrival of two consecutive
message tokens. If the inter-arrival time of a message token is lower than a specified
bound, an action is performed to either delay the message token or to discard it. Rate-
bounded communication is orthogonal to communication coupling and can be applied
on all types of coupling configurations of two interacting processes. However, depending
on whether the output of a producer process is decoupled in synchronisation or not, a
different method is used to achieve rate-bounded communication.

If the output of the producer process is coupled in synchronisation, i.e. the write access
to the channel is blocking, back-pressure is used to achieve rate-bounded communication:
The write access not only blocks on write operations if the communication partner is
not ready but also if the inter-arrival time of message tokens is lower than a specified
bound. Due to the blocking semantics of this rate-control the producing process is not
only influenced by the rate of the consuming process but also by the imposed rate-
bound on the communication channel. Let tmia(pi) describe the minimal inter-arrival
time specified on an input port pi ∈ PI(N) of a process N then the maximum rate
rmax(pi) of arriving message tokens on port pi is defined in Equation 4.1.

rmax(pi) = 1
tmia(pi)

(4.1)

I use the notation pi(tmia) to describe a channel pi bound by the rate rmax(pi) as
defined in Equation 4.1.

If, on the other hand, the output port of the producer is decoupled in synchronisation,
i.e. the write access to the channel is non-blocking, discarding of message tokens is used
to limit the communication rate. Hence, in addition to discarding message tokens if the
communication partner is not ready, the corresponding channel also discards message
tokens if the communication rate is exceeded. Due to the discarding of message tokens
the rate-bound on the communication channel does not impose back-pressure onto the
producer process.

In the following I will propose two types of protocols that enforce rate-control without
interfering with the producer by discarding message tokens:

1. The Minimal Inter-release Time (MIRT) protocol guarantees that the communi-
cation rate at a port pi never exceeds the maximum rate rmax(pi) as defined in
Equation 4.1. This is ensured by enforcing a minimal time of tmia between the
release of two consecutive message tokens.

2. The Period-bounded Release Time (PBRT) protocol allows to release at maximum
one message token per period tmax(pi) at a port pi but does not enforce a minimal

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 57

time between two consecutive message tokens. This allows small peak loads where
the time between two consecutive message tokens releases is smaller than tmia but
ensures that on average the rate of 1

tmia(pi) is not exceeded.

Both types of protocols can either employ a buffer, i.e. decouple the communication in
time, in order to delay messages and reduce the number of discarded message tokens or
use a more aggressive strategy and discard message tokens straight away if they do not
respect the imposed timed guard. A buffered guard must be an active process because
it must be able to release a message token at a later time without blocking the producer
process. Also, a buffered guard increases the latency of a single message token due to
the imposed delay. An unbuffered guard is much simpler because message tokens must
not be delayed but only discarded if the minimal inter-arrival time is not respected. This
leads to more losses of message tokens but the latency of a single message token is not
changed.

In the following subsection I will describe each protocol in more detail and give examples.
I use the following notations to identify time values associated to guards:

ta(m) denotes the arrival time of a message token m at the guard.

tr(m) denotes the time of the release of a message token m from the guard to its con-
nected FIFO buffer.
If a message token m is discarded tr(m) =∞.
For the initial message token m0 I define tr(m0) = ta(m0).

tnr(m) denotes the minimum time to the next release after the arrival of a message
token m at the guard.
For the initial message token m0 I define tnr(m0) = tr(m0) + tmia.

tmia denotes the minimum inter-arrival time of two consecutive message tokens.

4.2.2.1 Rate-control with the MIRT protocol

The MIRT protocol accepts message tokens only if the minimal inter-arrival time is
respected. Once a message token arrives at the guard, all consecutive message tokens
arriving within the minimal inter-arrival time interval are discarded. If the minimal
inter-arrival time is respected, message tokens are released immediately. Let (mi−1,mi)
be a sequence of message tokens arriving at the guard, then the release time tr(mi) of

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 58

message token mi is defined in Equation 4.2

tr(mi) =

ta(mi) if ta(mi) ≥ tnr(mi−1)

∞ otherwise
(4.2)

and the minimum time of the next release tnr(mi) after the arrival of message token mi

is defined in Equation 6.1

tnr(mi) =

tr(mi) + tmia if tr(mi) <∞

tr(mi−1) otherwise
(4.3)

This is illustrated in the example depicted in Figure 4.12a. The arrows on the upper
time-line depict the arrival times of the message tokens. Crossed-out arrows represent
message tokens that are discarded. The minimal inter-arrival time interval is represented
as the lightly coloured area, framed by two dotted lines. The arrows on the lower time-
line represent the release times of message tokens. The timer is activated upon releasing
a message token as depicted by the dotted lines in Figure 4.12a.

4.2.2.2 Rate-control with the buffered MIRT protocol

The buffered MIRT protocol buffers an arriving message token to delay its progress.
Once the specified minimal inter-arrival time is respected, the delayed message token
is released. Message tokens are discarded if multiple message tokens arrive within one
minimal inter-arrival time interval. Let (mi−1,mi,mi+1) be a sequence of message tokens
arriving at the guard, then the release time tr(mi) of message token mi is defined in
Equation 4.4

tr(mi) =

ta(mi) if ta(mi) ≥ tnr(mi−1)

tnr(mi−1) if ta(mi+1) ≥ tnr(mi−1)

∞ otherwise

(4.4)

The minimum time of the next release tnr(mi) after the arrival of message token mi is
equivalent to the unbuffered MIRT protocol as defined in Equation 6.1.

Figure 4.12b represents an example where the same message token arrival times are used
as in the previous example but here, a buffered version of the MIRT protocol is used
to release the message tokens. As a consequence, fewer message tokens are discarded
at the cost of increasing the latency of individual message tokens. If multiple message
tokens arrive within a minimal inter-arrival time interval, the newest message token is
kept and the older ones are discarded (e.g. in Figure 4.12b the fourth message token

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 59

replaces the third one and the seventh message token replaces the sixth one). This
lies in contrast to the unbuffered MIRT protocol where the newer message tokens are
discarded (see Figure 4.12a). This difference is solely due to the presence of the buffer
which allows to store the newer message which is not possible in the unbuffered case.
As with the unbuffered MIRT protocol, also here a timer is activated upon release of a
message token.

4.2.2.3 Rate-control with the PBRT protocol

The PBRT protocol is based on a periodic timer with period tmia. The policy is to allow
the release of at maximum one message token per period. This ensures that an average
rate of 1

tmia
is not exceeded. However, it does not specify a maximal rate and allows

bursts during a short period, i.e. the time between two consecutive message tokens can
be smaller that the specified period but the average rate can never be exceeded. Let
(mi−1,mi) be a sequence of message tokens arriving at the guard, then the release time
tr(mi) of message token mi is equivalent to the unbuffered MIRT protocol as defined in
Equation 4.2. The minimum time of the next release tnr(mi) after the arrival of message
token mi is defined in Equation 4.5

tnr(mi) = (k + 1)tmia with k ∈ Z . ktmia ≤ tr(mi) < (k + 1)tmia (4.5)

Figure 4.12c depicts an example of a sequence of message tokens, released according to
the PBRT protocol. Again, the same arrival times of message tokens as in the previous
examples are used. In contrast to the MIRT protocol, the timer is activated periodically,
as depicted by the dotted lines. During a short time the minimal inter-arrival time is
violated to compensate for a short burst of message tokens. This allows to reduce the
number of discarded message tokens. The violation of the minimal inter-arrival time is
highlighted in Figure 4.12c.

4.2.2.4 Rate-control with the buffered PBRT protocol

The buffered PBRT protocol reduces the number of discarded message tokens by using
a buffer to delay message tokens in order to satisfy the rate requirements. As with
the unbuffered PBRT protocol, the timer is periodic with period tmia. An arriving
message token can still be discarded if the buffer is already used to delay a message
token that arrived before. In this case the new message token overwrites the old one in
the buffer. Let (mi−1,mi,mi+1) be a sequence of message tokens arriving at the guard,
then the release time tr(mi) of message token mi is equivalent to the buffered MIRT

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 60

protocol defined in Equation 4.4. The minimum time of the next release tnr(mi) after
the arrival of message token mi is equivalent to the unbuffered PBRT protocol as defined
in Equation 4.5.

An example of the buffered PBRT protocol, applied on a sequence of message tokens
is depicted in Figure 4.12d. Also here, the arrival times of the message tokens are
the same as in the previous examples to allow a comparison between the different ap-
proaches. With this protocol only one message token is discarded. Again, in contrast
to the unbuffered version, the newer message token overwrites the older one and, conse-
quently, the older one is discarded. This comes at the cost of increasing the latency of
individual message tokens and allowing a violation of the minimal inter-arrival time. In
Figure 4.12d, the interval where a burst of message tokens is accepted is highlighted.

(a) An example of rate-control with the unbuffered MIRT protocol.

(b) An example of rate-control with the buffered MIRT protocol.

(c) An example of rate-control with the unbuffered PBRT protocol.

(d) An example of rate-control with the buffered PBRT protocol.

Figure 4.12: Examples of rate-control protocols. In each figure the upper time-line
represents the arrival instances of message tokens while the lower time-line represents

the release instances of message tokens.

4.3 Message Semantics

In PNSCs, communication decoupling in synchronization, as described in Section 4.1.2,
can lead to loss or duplication of message tokens. Depending on the content the mes-
sage token carries, this can be more or less problematic. The level of criticality of the
transmitted information is an aspect that dictates whether loss or duplication of the

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 61

information is problematic. For example, message tokens that carry information to per-
form a monetary transaction have a high criticality and must not be lost. The loss of
a signal of a TV remote control, on the other hand, is inconvenient at most as it can
simply be repeated until the transmission is successful.

Apart from the criticality, also the type of the transmitted information plays a crucial
role and can alleviate the criticality due to an inherent resilience. Traditionally, one
distinguishes between message types where the content can have information of how to
update a subsystem (aka event message) or information about the state of a subsystem
(aka state message). As Kopetz [59] points out, state messages are well suited for time-
triggered systems and event messages for sporadic (event-triggered) systems. However,
as Powell [60] points out, it is not necessary that a time-triggered system operates solely
with state messages nor is it necessary for a sporadic system to operate with event
messages. In the following I will define each message type with respect to message loss
and duplication and provide typical application examples for different message types. I
further propose a novel message type, called semi-state message, that has some properties
from state messages and some from event messages. I define a semi-state message in
Definition 4.1, a state message in Definition 4.2, and an event message in Definition 4.3.

Definition 4.1 (Semi-state Message). A message in a system is called a semi-state
message if it enables a correct system state after a previous message of the same type
has been lost and the repeated processing of a single message is tolerated by the system.

Definition 4.2 (State Message). A message in a system is called a state message if it
is a semi-state message and its arrival makes the processing of non-processed previous
messages of the same type obsolete.

Definition 4.3 (Event Message). Every message in a system that is not a semi-state
message (and consequently also not a state message) is an event message. In case it is
not known whether a message is an event or (semi-) state message, it is safe to assume
it to be an event message.

The loss or duplication of a message token is tolerated by a system if the message token
is either of type state message or semi-state message. In a state message based commu-
nication scheme, the producer observes the value of the state variable at a particular
time instant and transmits a state message. An observation is expressed by the triple
< nameobseravtion, value, tobservation >. The transmitted information is useful on its own
and no knowledge of a previous transmission is required by the consumer. A consumer
of state messages is only interested in the newest state information of the sender. Hence,
a state message already residing in the communication buffer can be overwritten by a
new message without losing any information. Also, messages can be duplicated with-
out problem as a consumer can perform a non-destructive read to keep the information

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 62

available for possible further reading operations before a new state message arrives (read
access is decoupled in space, time, and synchronisation). These properties make state
messages useful for fault tolerant systems and hence for safety-critical systems.

In the case of a semi-state message, while the loss or duplication of a message token is
tolerated, it is not desirable because the quality of the service might degrade. Hence, a
semi-state message has similar properties as a state message but a system benefits from
keeping a history of non-consumed message tokens, i.e. a message token is not made
obsolete with the arrival of a newer message token.

There are cases when (semi-)state messages can not be used or only at high costs. If,
for example, the state variable of the producer is not easily observable or needs to be
accessed concurrently (e.g. concurrent bank transactions), an infrastructure must be put
in place that allows concurrent access. A message is classified as event message, if the
properties of a (semi-)state message, as defined above, are not sufficient to ensure a
correct behaviour. In an event message based communication scheme, an event causes
the state variable to change its value. The producer then transmits the change from
the old to the new state variable that was caused by the event. An event can be
expressed by the triple < nameevent,∆value, tevent >. Generally, it is important that
no event message is lost or duplicated and that the order of the messages is preserved.
Event message semantics preserves event safety, i.e. prevents losses and duplication of
message tokens, and is the default assumption of a communication channel, as defined
in Definition 4.4.

Definition 4.4 (Message Semantics of Communication Channel). A communication
channel that carries only state messages has a state-message semantics. A communi-
cation channel that carries only state messages and semi-state messages has a semi-
state-message semantics. A communication channel that carries event messages has an
event-message semantics.

It is a design decision of whether the message semantics of a communication channel can
be explicitly declared to be of (semi-) state message semantics. Having a state message
or a semi-state message semantics typically depends on the application context. For
example, the stream of video frames of a surveillance camera does have state semantics
if only life view is required: Only the most recent picture is relevant but it is important
that the most recent picture reflects the current situation of the real world. But the
same video stream would have semi-state semantics if it is provided as an online stream
that can be consumed over great distances and lossy channels, i.e. a good trade-off
between a minimum acceptable loss of frames and a minimum acceptable transmission
delay is required. However, if the video is recorded and a later frame-by-frame analysis
is required then the video stream would have event semantics.

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 63

4.4 Cross-criticality Interfaces

When interconnecting processes with different criticality levels it is important to provide
suitable interfaces that allow communication without interference from processes with
a lower criticality level towards processes with a higher criticality level. Further, such
interfaces must allow the coexistence of processes with different timing behaviours and
message semantics. I call such interfaces CCI because they allow interaction between
processes of different criticality levels.

Throughout this chapter I introduced communication mechanisms that allow to decouple
interactions of processes in space, time, and synchronisation and proposed communica-
tion channels that allow to control the communication and execution rate of processes.
In the following list I provide an overview of the different communication channels in-
troduced throughout this chapter and propose new composed channels where multiple
properties are combined. Only combinations are listed that have sensible semantics and
a potential use in real applications:

a depicts a synchronous channel a. Decoupling of such a channel is not
practical (see Section 4.1.2).

a[l] depicts a FIFO channel a of length l. Such a channel can be decoupled in

synchronisation on its input a[l] , its output a[l] , or both a[l] .

a(t) depicts a synchronous channel a that is bound by a rate defined by t.
Decoupling of such a channel is not practical (see Section 4.1.2).

a(t)[l] depicts a FIFO channel a of length l that is bound by a rate defined by

t. Such a channel can be decoupled in synchronisation on its input a(t)[l] , its

output a(t)[l] , or both a(t)[l] .

a(clk) depicts a channel a with an incorporated temporal firewall that is triggered
at a rate clk. Such a channel can be decoupled in synchronisation on its input

a(clk) , its output a(clk) , or both a(clk) .

Table 4.1 lists the same communication channels and provides an overview of properties
of each channel. The following properties are described:

write indicates whether the write access to the channel is blocking (block) or non-
blocking (¬block), i.e. whether the write access is coupled or decoupled in syn-
chronisation.

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 64

read indicates whether the read access to the channel is blocking (block) or non-blocking
(¬block), i.e. whether the read access is coupled or decoupled in synchronisation.

lossy indicates whether message tokens can potentially be lost (yes) or not (no).

copy indicates whether message tokens can potentially be duplicated (yes) or not (no).

rate describes the communication rate of transmitted message tokens.

buffer indicates whether the channel is buffered (yes) or unbuffered (no), i.e. whether
the channel is decoupled or coupled in time.

event indicates if the channel supports event messages (yes) or if (semi-)state messages
are better suited (no).

The table shows that imposing a fixed communication rate with a temporal firewall,
as described in Section 4.2.1, is only suitable for (semi-)state messages because loss or
duplication of message tokens can happen independently of communication coupling.
The decision of whether a read or write access on a temporal firewall should be blocking
or non-blocking depends solely on the intended progression control of the process: It
might be desirable to block a producer process, connected to a temporal firewall, until
the produced message token is consumed by the temporal firewall in order to avoid
unnecessary computation efforts of the producer process. On the other hand it might
be desirable to allow the producer process to refine its result and overwrite the previous
output. The latter requires decoupling in synchronisation to make the write access to
the channel non-blocking.

The attributes of sporadic communication channels are equivalent to the attributes of
channels with a bounded communication rate when considering the same coupling con-
figuration (with the exception of the rate attribute). This means that bounding the
communication rate, as described in Section 4.2.2, only influences the communication
rate but does not change the communication coupling behaviour of a channel.

4.4.1 Mixed-criticality Network with CCIs

In this section I describe a mixed-criticality video processing application that relies on
different communication channels, introduced in this chapter. The basic principle of the
application is to record video images with a camera, perform two independent video
processing tasks on the video frames, and display the result on a screen. One of the two
video processing tasks is of high criticality and must be guaranteed to perform correctly
while the other step is of low criticality as it only improves the result but is not absolutely

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 65

Table 4.1: A list of the properties of communication channels, formed from different
combinations of communication patterns.

write read lossy copy rate buffer event

block block no no sporadic no yes
block block no no sporadic yes yes
block ¬block no yes sporadic yes no
¬block block yes no sporadic yes no
¬block ¬block yes yes sporadic yes no
block block no no bounded no yes
block block no no bounded yes yes
block ¬block no yes bounded yes no
¬block block yes no bounded yes no
¬block ¬block yes yes bounded yes no
block block yes yes fixed yes no
block ¬block yes yes fixed yes no
¬block block yes yes fixed yes no
¬block ¬block yes yes fixed yes no

necessary. The challenge of this application is that the lower critical processing task is
more complicated and requires more resources than the high criticality task and it must
be ensured that the low criticality task does not interfere with the high criticality task.

The example depicted in Figure 4.13 shows a PNSC that models such an image pro-
cessing application. The process Pcam produces message tokens containing video frames
and communicates them to the process Pcopy. The process Pcopy copies the arriving mes-
sage tokens to each of two connected channels at its output ports. The upper channel
connects to the process Pfilter where the video frames, consumed via its input port, are
processed and then sent to the output port. The lower channel connects to the process
Pfd where a complex feature detection algorithm is executed on the video frames. The
process Pmerge consumes message tokens from the processes Pfilter and Pfd and merges
the two video frames into one. Message tokens with the merged video frames are then
transmitted to the process Pscreen where the video is displayed.

All communication channels are buffered to allow a variation in the production rate
of the processes. The channel cam, connecting process Pcam with process Pcopy, is
bounded to a maximum rate of 1

24 which is sufficient for this particular video processing
application. The process Pfilter is of high criticality (the box with the thick border in
Figure 4.13) and process Pfd is of low criticality, hence, it must be ensured that Pfd

is not interfering with Pfilter. To achieve this, first, the output f2 of process Pcopy is

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 66

cam!

Pcam
cam?

f1!

f2!

Pcopy

f1?

vf !

Pfilter

f2?

fd!

Pfd

vf?

fd?

res!

Pmerge

res?

Pscreencam(1
24)

f1 vf

f2(
1
5) fd

res

Figure 4.13: An example of a mixed-criticality video processing application where
ports are decoupled in synchronisation to prevent interference from the low critical

process Pfd towards the high criticality process Pfilter.

decoupled in synchronisation to prevent back-pressure from the low-criticality process
Pfd. Consequently, process Pcopy cannot be blocked by process Pfd which prevents
indirect interference from process Pfd towards process Pfilter. Second, the input fd of
process Pmerge is decoupled in synchronisation to prevent a blocking read access from
process Pmerge to this channel which prevents any indirect interference from process Pfd

towards process Pfilter via process Pmerge.

Additionally, the channel f2 is bounded to a maximum rate of 1
5 to prevent the execution

of process Pfd at a faster rate than is useful for this particular application.

4.5 Discussion

A main contribution of this chapter is the modular approach to punctually remove com-
munication coupling to prevent interference. It is especially useful that this is achieved
without changing the specification of a process but solely by changing the communi-
cation channels the process interacts with. This modularity allows to reuse a process
in different contexts without any need for the process to be aware of the context it is
placed in.

For future work, it might be interesting to investigate if in a network of processes, channel
types can be chosen automatically to prevent interference where necessary, depending
on the criticality level of individual processes.

With respect to time-triggered PNSCs, as temporal firewalls can be connected indepen-
dently to processes, it is possible to enforce a time-triggered semantics on individual
processes in a PNSC or on a PNSC as a whole. In the former case each message token
in the PNSC is transmitted according to the time-triggered communication semantics.
In the latter case, processes inside the time-triggered PNSC communicate sporadically
whereas a process interacting with the environment of the PNSC follows a time-triggered

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 67

communication scheme. Such time-triggered PNSCs can be useful when designing an ap-
plication for a many-core architecture, e.g. 256 cores, where several clusters of cores, e.g.
16 clusters, communicate via shared memory (use a sporadic communication scheme)
while the clusters are interlinked by a Network on Chip (NoC) (use the time-triggered
communication scheme)1. De Dinechin et al. propose a Run-time System (RTS) for such
an architecture that supports i.a. a time-triggered and a Kahn Process Network (KPN)
execution model [61].

In Section 4.2.1 I mentioned that a time-triggered PNSC must satisfy Property 4.1 and
Property 4.2 in order to be valid. It is rather complex to provide sufficient requirements
to guarantee these properties and an extensive investigation of this topic is required.
The bulk of this work is postponed to future work. I will, however, give an overview
of the work that needs to be done to achieve this goal: Both properties rely on the
requirement that within one round each process of the time-triggered PNSC has com-
pleted its execution. This can only be guaranteed if the WCET of the PNSC is known
and is guaranteed to be smaller than the specified time to complete one round. The
WCET of the PNSC depends on the network topology of the PNSC and the WCET of
each process in the PNSC. Further, the WCET of a process depends on the decisions
made within the process and how it interacts with its environment. The SIA of a PNSC
process describes the interaction protocol with its environment. By extending a SIA
with WCET annotations on each action and using the network description provided by
the PNSC model, it should be possible to check whether a time-triggered PNSC satisfies
Property 4.1 and Property 4.2.

4.6 Chapter Summary

In this chapter I extended the PNSC model with communication channels that allow
to change the communication coupling and triggering semantics of connected processes.
This enables the PNSC model to describe mixed-criticality systems where processes
with different criticality levels can interact without interference. While the example in
Figure 4.13 describes a system with two criticality levels, the model is not limited to
two criticality levels. The decoupling element is used to prevent interference between
any two criticality levels and, thus, can be applied on multiple levels.

I further extended the PNSC model with two rate-controlled channels that allow to
model time-critical systems: First, a fixed-rate communication channel, called a tem-
poral firewall, can be used to enforce time-triggered semantics of a process. Second, a

1The Kalray MPPAR©-256 (Andey) is an example of such a processor.

Chapter 4 Mixed-criticality PNSCs and Time-based Processes 68

rate-bound communication channel serves to limit the communication rate to an up-
per bound. This increases the predictability of the required bandwidth and allows to
distribute the available bandwidth where it is needed.

Finally, I proposed CCIs where combinations of these concepts are put together and
I discussed the properties of the CCIs, in particular with respect to different message
semantics. In this context I introduced a novel message type, namely semi-state mes-
sages which which has some properties of state messages and some properties of event
messages.

Chapter 5

Permanent Blocking Analysis of
PNSCs with SIAs

The interaction of concurrent systems in general is fragile in the sense that unwanted
blocking can occur. Especially in the domain of critical systems it is important to ensure
that a system is free of permanent blocking. In Chapter 4 I introduced a mechanism that
allows to punctually remove communication coupling in synchronisation. In a system
where all coupling in synchronisation is removed, no possibility of permanent blocking
can occur. An example of this is a system which follows the Time-triggered Architecture
(TTA) [47] design principles. However, as outlined in the previous chapters, in order
to allow event-triggered systems (i.e. systems with communication coupling) and time-
triggered systems to coexist or interact with each other, it must be possible to check
that the processes, relying on an event-triggered communication scheme, are free of
permanent blocking situations.

In this chapter, I present an analysis to detect permanent blocking in systems of con-
current processes where the interaction is based on synchronous communication, i.e.
communication with synchronisation coupling. Based on the semantics of Synchronous
Interface Automata (SIAs) I define the meaning of permanent blocking between two or
more concurrent processes. I categorise two possible types of permanent blocking as
either lonely blocking or deadlocks and present an analysis that is able to identify both
types of permanent blocking between two or more concurrent processes.

The chapter is structured as follows: In Section 5.1 I identify permanent blocking sit-
uations in SIAs and propose an analysis to detect permanent blocking states in Sec-
tion 5.1.1. In Section 5.1.2 I discuss how a subtype of permanent blocking, namely
deadlocks, can be identified and propose an analysis to achieve this. For reasons of
simplicity and readability I first focus on permanent blocking and deadlock situations

69

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 70

in systems of two concurrent processes. Later, the findings are extended to hold for
the general case. In Section 5.2 I propose an algorithm that allows to compute perma-
nent blocking states and an algorithm to distinguish between permanent blocking and
deadlock situations. Section 5.3 summarises the chapter.

5.1 Permanent Blocking of SIAs

In this section I will discuss how a process M can become permanently blocked in a
Process Network with Synchronous Communication (PNSC) MN by analysing the SIA
M̃ of process M in the context of SIA M̃N of PNSC MN . I call a PNSC MN the
context of a process M if Definition 5.1 holds and a SIA M̃N the context of a SIA Ñ if
Definition 5.2 holds.

Definition 5.1 (Context of a process). Let SMN be the set of all processes in a PNSC
MN . Then MN is the context of a process M iff M ∈ SMN .

Definition 5.2 (Context of a SIA). SIA M̃N is the context of SIA M̃ iff the PNSC
MN is the context of process M where M̃N is the SIA of MN and M̃ is the SIA of M .

In order to talk about permanent blocking of a PNSC we need to establish an under-
standing of what permanent blocking means. As defined in Equation 2.1, we use the
term permanent blocking as the opposite of liveness. Liveness of a PNSC is defined by
Definition 5.3, 5.4, 5.5, and 5.6.

Definition 5.3 (Liveness of a SIA state). A SIA M̃ with context M̃N is alive in a state
s ∈ SM̃N with s = 〈sm, sn〉 and sm ∈ SM̃

, if either

a) sm is an end state of M̃ as defined in Equation 3.5, or

b) progress is possible from s into a state s′ = 〈s′m, s′n〉 with s′m ∈ SM̃
and sm 6= s′m.

Definition 5.4 (Liveness of a SIA). A SIA M̃ is alive in context M̃N , iff it is alive in
all reachable states s ∈ SM̃N .

Definition 5.5 (Liveness of a PNSC process). A process N is alive in the context MN ,
iff M̃ is alive in context M̃N where M̃ is the SIA of M and M̃N is the SIA of MN .

Definition 5.6 (Liveness of a PNSC). A PNSC is alive iff all of its processes are alive.

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 71

5.1.1 Permanent Blocking Analysis

To perform a permanent blocking analysis I use the composition operation ⊗, as de-
fined in Section 3.2.2, and provide a formal definition of permanent blocking states in
a composed system. In this dissertation I distinguish between cyclic and acyclic SIAs.
An acyclic SIA can be represented by a Directed Acyclic Graph (DAG) whereas a cyclic
SIA cannot. I first start with a simple analysis where I only consider acyclic SIAs. In a
second step I extend the analysis by also taking cyclic SIAs into account.

5.1.1.1 Permanent Blocking Analysis with Acyclic SIAs

In order to verify the liveness conditions of a SIA M̃ in its context M̃N , as defined
in Definition 5.3, I can exploit a property of acyclic SIAs: In an acyclic subsystem
M̃ each state with no enabled action is an end state by definition. As a consequence,
when composing two such subsystems with the composition operator ⊗, as defined in
Definition 3.4, all states of the composed SIA where no actions are enabled must be
end states in each subsystem. It follows that in order to check for possible progress
(Definition 5.3.b)) of a subsystem M̃ in a state s ∈ SM̃N of its context, it is sufficient
to check whether state s has enabled actions. This holds under the assumption that
all subsystems in context M̃N are acyclic. Finally, I conclude that a state s ∈ SM̃N
is permanent blocking if no actions are enabled in state s and at least one of the two
subsystems is not in an end state.

The above conclusion only holds if all involved SIAs have an end state, which is not
necessarily the case for SIAs with cycles. Hence, I give a formal definition in Equation 5.1
of the set of permanent blocking states Sblock−ac

M̃N
of a PNSC with two processes M and

N , assuming both SIAs M̃ and Ñ are described by acyclic graphs (this is denoted by
the -ac postfix). The set of end states of a SIA is defined in Equation 3.5.

Sblock−ac

M̃N
=
{
〈sm, sn〉 ∈ SM̃N |

(
sm /∈ Send

M̃
∨ sn /∈ Send

Ñ

)
∧ 〈sm, sn〉 ∈ Send

M̃N

}
(5.1)

The SIA M̃N 1, as depicted in Figure 3.7, is an example of the result of the composition
of two acyclic subsystems M̃2 and Ñ4 (see Figure 3.6). The composed SIA M̃N 1 has
three states with no enabled actions, namely the states s16, s24, and s25. The question
is whether these states are permanent blocking states or not. Given that all three states
have no enabled actions, it holds that no progress for either subsystem is possible in
these states, i.e. the liveness condition Definition 5.3.b) is not satisfied. Further, I have
to check whether the states of both subsystems are end states (Definition 5.3.a)). In
state s16 ∈ SM̃N1

both states in the subsystems, s1 ∈ SM̃2
and s6 ∈ SÑ4

, are end states

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 72

as defined in Equation 3.5, hence, s16 is not a permanent blocking state. States s24 and
s25, however, are permanent blocking states because, while state s2 ∈ S

M̃2
is an end

state, Equation 3.5 does not hold for states s4 ∈ S
Ñ4

and s5 ∈ S
Ñ4

. The two states
s24 and s25 represent the situation of the PNSC of Figure 3.6 where process M2 has
concluded its processing (in state s2 ∈ SM̃2

) while process N4 is blocked (either in state
s4 ∈ SÑ4

because the shared action a is never served or in state s5 ∈ SÑ4
because action

b is ignored).

The rationale behind end states is that a process is either in a state where its job is
accepted as accomplished or it still has to perform actions in order to accomplish its
job and reach an end state. A process that performs periodic work, which would be
represented by a cyclic SIA, will never reach an end state. If processes with cyclic SIAs
are composed, it can happen that only one process is performing actions indefinitely (in
a cycle) while the other processes are blocked. There are two different cases where a per-
manent blocking analysis based on the definition of Equation 5.1 falls short for systems
with cyclic SIAs. I illustrate this with the help of the PNSC depicted in Figure 5.1.

s0 s1

a!

b?

O1

s2 τ1;

O2

s3 s4

c!

d!

O3

s5 s6

d?

c?

O4

a

b

c

d

Figure 5.1: A PNSC formed of four processes, each described by a SIA with a cycle.

The first case is the problem of detecting a lonely blocker when cycles are involved. This
becomes apparent when observing the composed SIA Õ12 = Õ1 ⊗ Õ2: With the actions
{a, b} ∈ A

Õ1
ignored, the composed SIA Õ12 is formed out of the singe initial state s02

with a self looping edge, triggered by the internal action τ1 ∈ AH
Õ2

. In this case the set of
permanent blocking states defined in Equation 5.1 is empty because the composed SIA
Õ12 has no end state. But clearly, SIA O1 is permanently blocking in state s0 because
the actions {a, b} ∈ A

Õ1
are ignored.

The second case is the problem of missing local permanent blocking situations by incre-
mentally folding subsystems of a PNSC, depending on the order in which processes are
composed. In the example of Figure 5.1, the SIAs Õ3 and Õ4 are both in a permanent
blocking state s3 ∈ SÕ3

and s5 ∈ SÕ5
, respectively. This is detectable when perform-

ing the composition operation Õ34 = Õ3 ⊗ Õ4 and computing the set of permanently
blocking states as defined in Equation 5.1. The composition yields the single initial

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 73

state s35 with no transitions. Hence, the set of permanent blocking states is defined as
Sblock−ac

Õ34
= {s35}, because neither s3 ∈ SÕ3

nor s5 ∈ SÕ4
is an end state. However, when

folding the system incrementally, e.g. Õ1234 = ((Õ1⊗ Õ2)⊗ Õ3)⊗ Õ4, the composed SIA
Õ1234 has no longer an end state and hence, Sblock−ac

Õ1234
= ∅.

5.1.1.2 Permanent Blocking Analysis with Cyclic SIAs

In the following I extend the previous analysis to work also for cyclic SIAs. As defined
in Definition 5.3, in order to decide whether a SIA M̃ with context M̃N is alive in state
〈sm, sn〉 ∈ SM̃N , I need to detect whether 5.3.a) sm ∈ SM̃

is an end state of M̃ or 5.3.b)
progress from state 〈sm, sn〉 to a state 〈s′m, s′n〉 is possible such that sm 6= s′m. I introduce
the predicate progress(sys, s), returning true if the latter is true for a subsystem sys. I
use this predicate to define the set SysM̃N (s) ⊆ {M,N} in Equation 5.2 which contains
all the subsystems where progress is possible in state s of SIA M̃N .

SysM̃N
(
〈sm, sn〉

)
=
{
sys ∈ {M,N} | progress

(
sys, 〈sm, sn〉

)}
(5.2)

With the set SysM̃N (s) as defined in Equation 5.2 and the set of end states as defined in
Equation 3.5, in Equation 5.3 I define Sysblock

M̃N

(
〈sm, sn〉

)
, the set of subsystem identifiers

that are permanently blocking in state 〈sm, sn〉 of the composed SIA M̃N .

Sysblock

M̃N

(
〈sm, sn〉

)
=
{
M | sm /∈ Send

M̃
∧M /∈ SysM̃N

(
〈sm, sn〉

)}
∪
{
N | sn /∈ Send

Ñ
∧N /∈ SysM̃N

(
〈sm, sn〉

)}
(5.3)

Using the set Sysblock

M̃N

(
〈sm, sn〉

)
, defined in Equation 5.3, I define the set of permanent

blocking states Sblock

M̃N
of the composed SIA M̃N in Equation 5.4.

Sblock

M̃N
=
{
〈sm, sn〉 ∈ SM̃N | ∃sys ∈ {M,N} . sys ∈ Sysblock

M̃N

(
〈sm, sn〉

)}
(5.4)

Informally, this means that a state 〈sn, sm〉 ∈ SM̃N is permanently blocking if at least
one subsystem is not in an end state and can perform no more actions.

Following Definition 5.4, Definition 5.5, and Definition 5.6 I can conclude that a PNSC
composed of the processes M and N is alive if and only if Sblock

M̃N
= ∅ with the set Sblock

M̃N
defined in Equation 5.4.

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 74

5.1.1.3 Permanent Blocking Analysis on an Assembly of Processes

In this section I extend the permanent blocking analysis from two subsystems to an
arbitrary number of subsystems. By incrementally applying the folding operation ⊗,
the initial PNSC dependency graph is lost because shared actions are turned to internal
actions in the SIA of the composed process (see Definition 3.2 and 3.4). From a software
engineering point of view this might be desirable because it allows to structure big
systems hierarchically and allows to reuse code as black boxes where only the interface
(specified by a SIA) is known. Once a system is composed and guaranteed to be free
of permanent blocking, the internal actions can be removed if they do not influence the
blocking behaviour of a system. This can serve to drastically reduce the number of
states of the composed system and reduce the behavioural description to the interaction
protocol of the composed process. A technique to achieve this is proposed by Pace et
al. in [62] but will not be further discussed in this dissertation.

In order to apply the permanent blocking analysis, described by Equation 5.4, to an
assembly of incrementally composed processes, two pieces of information must be prop-
agated throughout the process of incrementally folding subsystems with the operator ⊗:
First, the dependency graph of the PNSC is required in order to retain the dependencies
of the subsystems despite the composition. This preserves the information of which
ports are shared by which processes. Second, a state s, of a SIA composed out of n sub-
systems, has to be described by the tuple 〈s1, . . . , sn〉 to analyse the permanent blocking
state of the initial subsystem and not the incrementally built composition. These state
tuples are extended at each step of the incremental composition by a corresponding state
of the subsystem that is composed with the system.

With the propagation of this information, the permanent blocking analysis can be ex-
panded to n subsystems. Hence, there is no necessity to perform the analysis at each step
of the incremental folding operation and can now be applied on the resulting composed
system, described by the SIA J̃ = Ñ1 ⊗ Ñ2 ⊗ · · · ⊗ Ñn. Specifically, the set of system
identifiers describing subsystems where progress is possible, defined in Equation 5.2, is
extended to n subsystems in Equation 5.5.

SysJ̃
(
〈s1, . . . , sn〉

)
=
{
sys ∈ {N1, . . . , Nn} | progress

(
sys, 〈s1, . . . , sn〉

)}
(5.5)

Similarly, the set of system identifiers describing subsystems that are permanently block-
ing at a particular state of the composed system, defined in Equation 5.3, is expanded

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 75

to n subsystems in Equation 5.6.

Sysblock

J̃

(
〈s1, . . . , sn〉

)
=
{
Ni | 1 ≤ i ≤ n

∧ si /∈ Send
Ñi
∧ Ni /∈ SysJ̃

(
〈s1, . . . , sn〉

)}
(5.6)

Finally, the set of permanent blocking states defined in Equation 5.4 is expanded to n
subsystems in Equation 5.7.

Sblock

J̃ =
{
〈s1, . . . , sn〉 ∈ SJ̃ | ∃i ∈ {1, . . . , n} . Ni ∈ Sysblock

J̃

(
〈s1, . . . , sn〉

)}
(5.7)

The price to pay for propagating state information of subsystems is threefold: First,
the propagation of state information requires an increased memory space as the list of
involved subsystems in the state tuple 〈s1, . . . , sn〉 constantly grows. Second, because
permanent blocking situations are not detected when they occur, permanent blocking
states are propagated and consequently multiplied. This leads to an ever growing list of
detected permanent blocking situations that may only point to a single cause. Third,
because state information of the subsystems needs to be preserved, it is not directly
possible to reduce the state space by reducing internal actions. However, it is only
necessary to preserve the set of subsystem identifiers Sys(e), attributed to each edge
representing an internal action, because internal actions cannot cause deadlocks (they
are the result of a non-permanent blocking communication). For example, it should be
possible to adopt the reduction technique by Pace et al. [62] to reduce the data structure
used for the analysis.

5.1.2 Deadlock Analysis

In the previous section I established a method to analyse the blocking behaviour of
synchronous communication. In this section I discuss how to distinguish between a
deadlock of multiple subsystems and lonely blocking of a single subsystem.

The crossroad example discussed in Section 3.3 is a typical example of a deadlock sit-
uation. To give an example of a lonely blocker, let’s consider the PNSC as depicted in
Figure 5.2. The two processes M2 and N2 share the ports a and b, and process M2 has
a port c that is not (yet) connected to any other process. Their corresponding SIAs M̃2

and Ñ2 share the action a, action b ∈ AO
Ñ2

is ignored, and action c ∈ AI
M̃2

is open.

Initially, the two SIAs start in their respective initial state s0 and s3. Transitions,
labelled by open actions, are assumed to always be triggered by the (unknown) envi-
ronment. Hence, SIA M̃2 performs the transition 〈s0, c, s2〉. State s2 is, according to

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 76

s0

s1

s2

a!

c?

M2

s3

s4

s5

a?

b!

N2

a

b

c

Figure 5.2: An example of a PNSC where the process M2 is alive and process N2 is
lonely blocking in state s3 ∈ SÑ2

.

Equation 3.5, an end state where SIA M̃2 can reside indefinitely. However, due to the
fact that SIA M̃2 has reached an end state and finished its processing, SIA Ñ2 will block
and wait to synchronize on action a in state s3 indefinitely. State s3 is not an end state
and therefore a permanent blocking state which makes process N2 potentially permanent
blocking while process M2 is alive (no permanent blocking states in its corresponding
SIA M̃2). Process N2 is a lonely blocker.

In Definition 2.1 I defined the four conditions that must hold simultaneously for a dead-
lock to occur. Condition 1 (mutual exclusion) is implicitly satisfied by the produce and
consume semantics of the process model. Condition 2 (no pre-emption) must be satisfied
by the implementation of the model. For condition 3 and 4 I have to consider the seman-
tics of synchronous communication as it is defined by the model. Due to the symmetric
semantics of synchronous communication, two processes have to be ready simultaneously
in order to communicate a message from one to another. This can be understood as
follows: The receiving process makes a typed buffer available for the sending process to
write to. The sender can only write to the buffer if the type of the message matches.
The resources in such a system are the buffers and the message tokens. If a particular
buffer is not available, it is held by the receiver. If a message token is not currently
available for transmission, it is held by the sender.

Applied on the PNSC model I observe that the held resources are defined by the signature
of a processes, i.e. the set of ports. More precisely, the set of output ports PO

N correspond
to the typed message tokens held by process N and the set of input ports PI

N correspond
to the typed buffers held by process N . The type of a buffer or a message token is defined
by the name of the corresponding port. The SIA of a process in a PNSC, on the other
hand, defines the required resources by a process. The resource a process is waiting on
depends on the state, the SIA of the process is currently in. An input action corresponds
to a request for a typed message token and an output action corresponds to a request
for a typed buffer.

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 77

Formally, I define the predicate H(N) in Equation 5.8. It is the set of resources held by
process N (and its corresponding SIA Ñ).

H(N) = PO
N ∪ PI

N (5.8)

Note that with synchronous communication the set of resources that are held by a process
is static and is not depending on the state of the process as it would be the case with
asynchronous communication. Further, I define the predicate W(Ñ , s) in Equation 5.9.
It is the set of resources SIA Ñ (of process N) is waiting for in state s.

W(Ñ , s) = {abuffer | ∀d ∈ δÑ
. d = 〈s, a,_〉 ∧ a ∈ AO

Ñ
}

∪ {atoken | ∀d ∈ δÑ
. d = 〈s, a,_〉 ∧ a ∈ AI

Ñ
}〉 (5.9)

For deadlock condition 3 (hold and wait) to hold in a particular state s ∈ S
Ñ

of SIA Ñ

an input or output action must be enabled (an action is enabled if condition defined in
Equation 3.4 holds). Hence, the following condition must be satisfied:

∀s′ ∈ S
Ñ
, ∃a ∈ AO

Ñ
∪ AI

Ñ
. 〈s, a, s′〉 ∈ δ

Ñ
(5.10)

In order to check whether deadlock condition 4 (circular wait) is holding, I need to
check the wait dependencies of subsystems in permanent blocking states of the com-
posed SIA. As the folding operation ⊗ is applied incrementally, in an arbitrary order,
on each SIA representing a process in a PNSC, I always consider two processes at a
time: The composed process that was constructed out of a subset of the processes of
the initial PNSC by the incremental folding operation and another process that is not
yet incorporated in the composed process but is part of the PNSC. To detect a circular
wait of two processes M and N with corresponding SIAs M̃ and Ñ I consider all the
permanent blocking states of the composed SIA M̃N and check whether both subsystems
are blocked in their corresponding state. A permanent blocking state 〈sm, sn〉 ∈ SM̃N
of SIA M̃N is a deadlock state if the predicate dl2(M,N, 〈sm, sn〉), as defined in Equa-
tion 5.11, returns true. The hold H and wait W predicates are defined in Equation 5.8
and Equation 5.9, respectively.

dl2(M,N, 〈sm, sn〉) =
(
H(M) ∩W(Ñ , sn)

)
6= ∅ ∧

(
H(N) ∩W(M̃, sm)

)
6= ∅ (5.11)

A circular wait is not necessarily limited to two participants. More than two processes
could be involved in a deadlock. However, the information of other involved processes

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 78

that are incorporated in the composed process, is lost due to the incremental folding
operation. In the next section I address this issue.

5.1.2.1 Deadlock Analysis on an Assembly of Processes

As mentioned before, the deadlock condition 4 (circular wait) may involve more than
two subsystems. The crossroad example described by Figure 3.8 is such a case. By
incrementally folding the processes together, the presented analysis will detect a deadlock
at the last step, when folding the system P̃NW ⊗ P̃NE ⊗ P̃SE with the system P̃SW . In
reality however, the deadlock is caused by the four individual systems being in a circular
wait.

With Equation 5.11 I defined the deadlock condition 4 (circular wait) for two subsystems
M and N in state 〈sm, sn〉. With the predicate dl, as defined in Equation 5.12, this
is expanded to n subsystems. The ordered set (N1, . . . , Nn) describes a dependency
from subsystem Ni to Ni+1 and from Nn to N1 to complete the circle. The state of the
composed system is described by the tuple 〈s1, . . . , sn〉, with si being a state from the
SIA Ñi of subsystem Ni.

dl
(
(N1, . . . , Nn), 〈s1, . . . , sn〉

)
=
(
H(Nn) ∩W(Ñ1, s1)

)
6= ∅

∧
(
∀Ni|i ∈ {1, . . . , n−1} .

(
H(Ni) ∩W(Ñi+1, si+1)

)
6= ∅

)
(5.12)

By applying the permanent blocking and deadlock analysis, described in Section 5.1.1.3
and this section, respectively, on the example of Figure 5.1 in Section 5.1 I am now able
to identify all cases of permanent blocking and can distinguish between lonely blocking
and deadlocks: Using Equation 5.5, Equation 5.6, and Equation 5.7, I compute the
set of permanent blocking states Sblock

Õ1234
= {s0235} and the set of subsystem identifiers

Sysblock
Õ1234

(s0235) = {O1, O3, O4}, indicating the permanent blocking subsystems at state
s0235. Using the initial dependency graph, Sysblock

Õ1234
(s0235), and Equation 5.12 I can

identify process O1 as lonely blocker, permanently blocking in state s0 ∈ SÕ1
on action

a ∈ A
Õ1

. Further, I find that processes O3 and O4 are in a deadlocking situation,
permanently blocking in state s3 ∈ SÕ3

on action c ∈ A
Õ3

and state s5 ∈ SÕ4
on action

d ∈ A
Õ4

, respectively.

5.2 Implementation of the Permanent Blocking Analysis

In this section I describe in detail how two aspects of the permanent blocking analysis can
be implemented: First, the computation of the set SysM̃N (s) as defined in Equation 5.5

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 79

will be discussed in Section 5.2.1. Second, the algorithm to distinguish between lonely
blockers and deadlock situation is addressed in Section 5.2.2.

5.2.1 Algorithm to Compute Sys(s)

While it is fairly simple to compute the set of permanent blocking states of a composed
system (as defined in Equation 5.4) it is not so trivial to compute the set of subsystems
from which progress is possible in a particular state of the composed system (as defined
in Equation 5.2). This is because it is not enough to observe the transitions from one
state in order to decide if a subsystem is progressing or not. A path of successor states
and transitions needs to be considered in order to take into account that a subsystem
can be temporarily blocked in one state but will still be able to progress in a reachable
successor state. In the following I am going to describe an algorithm that allows to
compute the set Sys(s), as defined in Equation 5.2, at each state s of a composed SIA
in linear time complexity.

A straightforward approach to compute Sys(s) is to follow all paths in the composed
SIA and count the involved subsystems along the paths. However, in order to follow all
distinct paths in a graph one has to identify all simple cycles in the graph, a problem
that is currently known to be solvable in bounded time by O

(
(V +E)(C+1)

)
[63] where

V is the number of vertices, E the number of edges, and C the number of cycles in the
graph.

Fortunately, I am not explicitly interested in the enumeration of all the paths themselves,
but only whether for a state s there exists a path starting with s that includes actions
of all subsystems. This test can be simplified by exploiting the properties of strongly
connected graphs, i.e. graphs where every vertex is reachable from every other vertex in
the graph.

For example, if I have a graph component X (i.e. a subgraph) in a SIA that is a strongly
connected graph, that means that every state s ∈ X can reach every state s′ ∈ X.
Further, this means that every state s ∈ X has an outgoing path that includes transitions
that are triggered by actions of all the subsystems involved in X.

From these observations I devise Algorithm 5.1 to compute the set Sys(s) of subsystems
where progress is possible in a particular state s of a composed system. In the following,
the functions, called in each line of Algorithm 5.1, are explained in detail.

Line 1: Transform a SIA into a Graph

〈gsia, vinit〉 ← initSiaGraph(Ñ , s0)

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 80

Algorithm 5.1 Permanent Blocking Analysis
Require:

Ñ , the SIA of a PNSC N
s0, the initial state of SIA Ñ

1: 〈gsia, vinit〉 ← initSiaGraph(Ñ , s0)
2: Cluster ← getConnectedComponents(gsia)
3: gcond ← getClusterGraph(gsia, Cluster)
4: propagateSubSys(gcond, vinit)
5: condensed2Sia(gcond, gsia, Cluster, Ñ)

The function initSiaGraph takes a SIA Ñ and its initial state s0 as input
arguments and produces the tuple 〈gsia, vinit〉 as an output. A vertex v of the graph
gsia corresponds to a state s ∈ S

Ñ
. I write v ≡ s to indicate the correspondence.

A directed edge e is defined by a sequence of two vertices, written as (v1, v2),
where vertex v2 is a direct successor of vertex v1. An edge e = (v1, v2) of the
graph gsia corresponds to a transition 〈s1,−, s2〉 ∈ δÑ

where v1 ≡ s1 ∈ SÑ
and

v2 ≡ s2 ∈ S
Ñ
. The vertex vinit of graph gsia corresponds to the initial state of

SIA Ñ : vinit ≡ s0 ∈ S
Ñ
. To each edge e a set of subsystem identifiers Sys(e)

is attached. For a subsystem identifier M with SIA M̃ to be in the set Sys(e),
attached to the edge e = (v1, v2), the following must hold:

M ∈ Sys(e) iff ∃〈s1, a, s2〉 ∈ δÑ
. a ∈ A

M̃

with v1 ≡ s1 ∈ SÑ
and v2 ≡ s2 ∈ SÑ

.

Line 2: Compute Connected Components

Cluster ← getConnectedComponents(gsia)

The function getConnectedComponents takes a graph gsia as an input argu-
ment and produces a set Cluster as an output. The set Cluster contains sets
of vertices where each set holds all vertices that belong to a strongly connected
component in the graph gsia. This computation is feasible in linear time O(V +E)
by the algorithm proposed by Tarjan [64] where V is the number of vertices and
E the number of edges in the graph.

Line 3: Condense Graph

gcond ← getClusterGraph(gsia, Cluster)

The function getClusterGraph takes the graph gsia and the set Cluster as input
parameters and produces the graph gcond as an output. In the resulting graph gcond,

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 81

called condensed graph, each strongly connected component is contracted into a
single vertex. This reduces the state space of the graph and removes all cycles
except for self-loops on the contracted vertices. Further, edges with the same
source and target vertex are merged (i.e. each vertex has at maximum one self-
loop). When merging two edges e1 and e2 into an edge e, the set Sys(e) attached
to a merged edge e is defined as follows:

Sys(e) = Sys(e1) ∪ Sys(e2)

Finally, all self-loops are removed to transform the graph into a DAG. The edge
attributes Sys(e) of the self-loops are assigned to the corresponding vertex as
attribute Sys(v). For vertices where no self-loop was present the set Sys(v) is
empty.

Line 4: Propagate Subsystem Indentifiers

propagateSubSys(gcond, vinit)

The function porpagateSubSys takes the condensed graph gcond and the vertex
vinit as input parameters and updates the set Sys(v) of each vertex with subsystem
identifiers, which can perform an action from the current vertex and each successor
vertex. This is accomplished by traversing the graph and propagating the edge
attributes Sys(e). The graph traversal is done by a Depth-first Search (DFS) in
linear time (O(V +E) where V is the number of vertices and E the number of edges
in the graph). This is described in detail by Algorithm 5.2 where the following
functions are used:

target(e) returns the target vertex of edge e.

setVisited(v) marks a vertex v as visited.

isVisited(v) checks whether a vertex v was already visited by the algorithm.

incident(g, v) returns the incident edges of a vertex v in a graph g.

I have to check for visited vertices because the condensed graph can include alter-
nate paths. The function propagateSubSys is called recursively on all direct
successors of the current vertex (line 8) and assigns to each vertex a set of subsys-
tem identifiers (line 9). By updating the set of subsystem identifiers Sys(v) of the
vertex v in line 9, I return the future of the path from a state corresponding to
v: If sys ∈ Sys(v), then an action a ∈ As̃ys can trigger a transition along a path
starting from a state corresponding to v.

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 82

Algorithm 5.2 Propagate Subsystem Identifiers
Require: Function arguments

gcond, the condensed graph (line 3 of Algorithm 5.1)
v, vertex to traverse the graph from

1: function propagateSubSys(gcond, v)
2: if isVisited(v) then
3: return Sys(v)
4: end if
5: setVisited(v)
6: E ← incident(gcond, v)
7: for all e ∈ E do
8: res ← propagateSubSys(gcond,target(e))
9: Sys(v) ← Sys(e) ∪ res

10: end for
11: return Sys(v)
12: end function

Line 5: Assign Vertex Attributes to States in SIA

condensed2Sia(gcond, gsia, Cluster, Ñ)

The function condensed2Sia takes the annotated, condensed graph gcond, the
graph gsia, the set of clusters Cluster, and the SIA Ñ as input parameters and
computes the set Sys(s) for each state s ∈ S

Ñ
. This is achieved by first as-

signing the vertex attributes Sys(v) of gcond, generated in the previous step, to
each corresponding vertex in gsia. The set Cluster, returned by the function
getConnectedComponents in line 2 of Algorithm 5.1, is used to establish the
correspondence between the vertices in the two graphs. Finally, the set Sys(s) is
computed for each state s ∈ S

Ñ
by a one-to-one assignment of each corresponding

set Sys(v) in graph gsia.

The algorithm to identify permanent blocking states as described by Algorithm 5.1 is
of linear time complexity (O(S + T) with S denoting the number of states and T the
number of transitions of a SIA) because the graph cycles were eliminated in the process
of line 2 and 3.

5.2.2 Algorithm to Compute dl
(
(N1, . . . , Nn), s

)
In order to distinguish between subsystems that are lonely blocking and subsystems
that are involved in a deadlock situation a graph representing the blocking dependencies
must be used. This is achieved as follows:

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 83

The permanent blocking analysis returns the set of permanent blocking states (see Equa-
tion 5.7) and the set of blocking subsystems (see Equation 5.6) for each permanent block-
ing state. Using this information I identify the respective actions in each subsystem that
are prevented from triggering the transitions. With the help of the dependency graph
of the PNSC and the list of blocking actions in each permanent blocking state the wait
dependencies of each subsystem in the permanent blocking situation can be represented
as a graph. This corresponds to the ordered set of subsystems (N1, . . . , Nn), used in the
predicate dl, as defined in Equation 5.11. Using the same clustering approach as with
the permanent blocking analysis (line 2 and 3 of Algorithm 5.1) I distinguish between
vertices that are involved in a cycle and vertices that stand alone and, consequently,
distinguish between a deadlock situation and lonely blockers.

5.3 Chapter Summary

In this chapter I introduced a static analysis for a system of interconnected processes,
each process described by a SIA, that allows to detect permanent blocking states. The
permanent blocking analysis is performed in linear time complexity O(S + T) where S
denotes the number of states and T the number of transitions in a composed system.
However, T and S grow exponentially due to the state explosion problem of Labelled
Transition System (LTS) composition. In order to control the state explosion, transi-
tions, labelled by internal actions, need to be removed. Research has been done in this
area and there exist promising approaches (e.g. [62]) that could be applied to the work
presented in this dissertation. The applicability is not addressed in this dissertation and
is postponed for future work.

A further analysis (linear time complexity) allows to distinguish between two types of
permanent blocking: Deadlocks, where a circular wait is the cause for blocking, and
lonely blocking where a process is blocking without causing other processes to block.

Regarding scalability, the composition operation of SIAs causes an exponential growth of
the state space of the composed system. Given that the composition operation is applied
incrementally on each process of a PNSC, the state space grows very fast. This is not
a problem for small systems that are closed because an imposed order on input actions
causes a lot of states to be unreachable which keeps the state space small. For bigger,
open systems, however, the state space has to be reduced by removing internal actions
and merging states solely involving transitions triggered by internal actions. This allows
to compose processes of a PNSC into a process that can be used as a component in a
hierarchical system.

Chapter 5 Permanent Blocking Analysis of PNSCs with SIAs 84

A future work will be to remove internal actions in order to reduce the state space of
folded SIAs.

Chapter 6

Streamix - An Instantiation of
PNSCs as a Coordination
Language

In this chapter I introduce the coordination language Streamix. Streamix is based on the
Process Network with Synchronous Communication (PNSC) model which I introduced
in Chapter 3 and extended in Chapter 4. Therefore, Streamix represents one possible
instance of the PNSC model and serves as proof of concept.

The inspiration for Streamix stems from the coordination language S-Net [10]. One of
the achievements of S-Net is the capability of modelling networks in a structured manner
by employing binary operators. Streamix adopts the concept of structured programming
and uses similar operators to model networks. The concept of the underlying model of
Streamix, however, differs largely from S-Net due to the differences of their respec-
tive targeted application fields. While Streamix is suitable for Cyber-physical Systems
(CPSs), where complex, reactive interaction patterns pose a challenge for structured
system composition, S-Net is mostly intended for best-effort applications with transfor-
mational data-processing aspects (e.g. systems where computational chunks can easily
be pipelined).

Structured programming has become a very successful programming paradigm as it
provides locality of a program’s control flow. Similar concepts of locality are desired for
the specification and development of concurrent and parallel systems. In the domain of
CPSs or embedded computing it is challenging to identify such structured compositions
since control flow tends to be driven by concurrently acting reactive components with
often circular dataflow relations.

85

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 86

A structured network provides a sense of locality and allows to observe and understand
a part of the network without having to consult other, potentially distant, parts of the
network. This is achieved by keeping port-to-port connections local. In contrast to this,
a non-structured network would rather be created with global port-to-port connection
tables which are hard to read and understand. For a modular development it is important
to understand the behaviour of an isolated sub-entity, independent of where it is going
to be integrated, which is why a structured approach is key.

Streamix aims to enforce structure, support reactive data processing, and allow persis-
tent state and synchronisation points within behavioural components. Streamix allows
to model streaming networks where the topology of the network imposes dependencies
between components and where message streams are coordinated within the network.
Streamix is a representative of the exogenous coordination model [33] in order to assure
clear separation of concerns.

The chapter is structured as follows: Section 6.1 gives an overview of the coordination
model of the language which consists of three layers, namely the computational com-
ponents, the routing network, and the extra-functional requirements layer. Section 6.2
describes the box abstraction, an abstraction used to represent computational compo-
nents. Section 6.3 describes how such boxes are instantiated as nets and how their
interface is defined. Section 6.4 describes how to compose multiple nets with differ-
ent network operators. Finally, in Section 6.6 I discuss limitations of the coordination
language and in Section 6.7 I summarise the chapter.

6.1 Coordination Model

An application can benefit from a parallel hardware architecture if it is decomposable
into multiple chunks, called computational components throughout the chapter, where
some or all of those can be run, possibly at the same time, on different parts of the par-
allel architecture. The computational components may be required to interact with each
other which must be handled by some sort of communication structure, called routing
network throughout the chapter. A routing network can be a simple connection between
two computational components or it can include complex synchronisation and routing
operations to coordinate multiple computational components. If the decomposition is
performed to such a granularity that the only concern of one computational component
is to execute a specific functionality and all communication and synchronisation of data
happens through routing networks placed outside the computational component, perfect
separation of concerns with respect to behaviour and coordination is achieved. Streamix

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 87

does not require such a decomposition as it targets CPSs where computational compo-
nents are often of reactive nature which are hard to decompose [13]. The separation is
further underlined by using a conventional programming language to describe the be-
haviour of the content of a computational component and a coordination language to
describe the routing networks.

To summarize, the general coordination model described above consists of computa-
tional components, routing networks, and an extra-functional requirements layer. In the
following each layer is described in more detail.

6.1.1 Computational Components

The computational components are oblivious of any other computational component
and also to the fact that they are coordinated by routing networks. This corresponds,
according to the classification of Arbab [65], to an exogenous coordination model. Com-
putational components follow a triggering semantics that is imposed by the coordination
model but they are not altered by the coordination language in any way. A computa-
tional component is considered to be a black box by the coordination language and can
have persistent state or be stateless (pure).

6.1.2 Routing Network

The concerns of the coordination language are the synchronisation and routing of in-
formation that is passed between computational components through routing networks.
In this chapter, any information or data that is transmitted over a routing network
will be referred to as message token, independent of the complexity or the type of the
information. Routing networks can be composed out of multiple primitives to form a
complex coordination construct. Such primitives are referred to as coordination com-
ponents throughout this chapter. Coordination components can be either implicitly
generated or explicitly described by the coordination language. In the latter case, the
coordination language defines primitives to perform explicit coordination actions within
the coordination model. Common examples are coordination components that perform
synchronization, copy, or merge operations. The most basic coordination component is
a channel, where message tokens are transmitted from one end to the other with an im-
plicit synchronisation between the two ends. Channels are buffered and follow the First
In, First Out (FIFO) principle. The routing networks serve as coordination instances
between computational components that glue the computational components together
and are hence the glue-code between the computational components.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 88

6.1.3 Extra-functional Requirements Layer

Another aspect of coordination is the question when the computational components are
executed. This depends on the data dependencies between the computational compo-
nents but also on the time-criticality of the system. Data dependencies are given out of
construction by the network topology. For computational components without partic-
ular timing constraints, the scheduler of the runtime system of the coordination model
decides when computational components are executed. This is also true in the case of
time-critical systems, however, when deadlines must be respected the scheduler is not
only influenced by the data dependencies but also by imposed timing requirements on
the computational components. Such timing requirements are provided by the third
layer of the language architecture, the extra-functional requirements layer. In general,
the extra-functional requirements layer allows to annotate computational components or
routing networks in order to ensure requirements that are linked to the extra-functional
behaviour of the coordination of the application.

6.2 Box Abstraction

In order do describe how a computational component interacts with coordination com-
ponents, it is associated to a construct I call box throughout this chapter. A box has
input and output ports, corresponding to the input and output parameters of a com-
putational component. A box is of type Multiple Input, Multiple Output (MIMO). I
use the term mode of a port to talk about its direction, i.e. whether it is an input or
an output port. Further, a Synchronous Interface Automaton (SIA) is associated with
a box. While the computational component describes the behaviour of the box, a SIA
describes the interaction of the box with its environment.

Boxes need to be instantiated. An instance of a box is called a net in Streamix. Similar
to a class in an object-oriented programming language serving to create objects, a box
in Streamix serves as a code template to create nets. A net corresponds to a process of
a PNSC as defined by Definition 3.1. Nets are hierarchical and can include other nets
and networks of nets. This is further discussed in Section 6.3.

6.2.1 User-defined Boxes

Boxes are either user-defined or fulfil a predefined function. User-defined boxes serve as
an abstraction for computational components that describe a custom functionality of an

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 89

application. Such computational components are usually provided by a domain expert
and implemented in a programming language suitable for the specific problem.

A user-defined box is declared and assigned to a symbol which can later be used to
spawn a net instance of the declaration. A box declaration links the source code of a
computational component to the box and assigns the input and output parameters of
the computational component with the input and output ports of the box. For example,
the following box declaration links the input parameter x and the output parameter y
of the computational component fa to the input port x and output port y of the box
A.

A = box fa(in x, out y)

The names of the computational component parameters must not necessarily be the
same as the names of the corresponding box ports. If so, this must be specified in the
box declaration. In the following example, the parameters x and y of computational
component fa are linked to the ports x_box and y_box of box B.

B = box fa(in x_box(x), out y_box(y))

This allows to reuse the same computational component in a different environment by
declaring a new box and assigning it to a different symbol.

6.2.2 Implicit Boxes

In Chapter 3 I introduced an interface model, called SIA, that allows to describe the
interaction of processes with their environment. In Chapter 5 I then introduced an
analysis based on SIAs that allows to check for freedom of permanent blocking within
the process network. SIAs are part of the PNSC model where two basic primitives are
used to model an application: processes and synchronous channels. The model offers
a separation of computational and coordination concerns by describing an application
as a network of processes where processes represent computational components and
channels, connecting processes, represent coordination components. In Chapter 4 I
extended the model with Cross-criticality Interfaces (CCIs) that allow coordination of
processes with respect to communication coupling or rate-control. Streamix implements
CCIs as coordination components and provides more implicitly generated coordination
components. In this section I will describe these coordination components that serve
to route and synchronize message tokens in the network. Each coordination component
represents a process in the PNSC model and is therefore an implicitly instantiated net,
based on a Streamix box. Consequently, a SIA and a computational component is

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 90

associated with it. The details of the implementation of each coordination component
is discussed in Chapter 7.

6.2.2.1 FIFO Buffers

Streamix follows a stream processing concept in the sense that message tokens are com-
municated over First-in, First-out (FIFO) channels. A channel ci is spawned between
two ports with matching names (see Section 6.3 for more detail on the connection seman-
tics of ports) and has a length len(ci). By default, no length of the channels is specified.
However, as Streamix targets CPSs where controllability of the system is an important
aspect it is reasonable to keep the length of each channel fix. Therefore, each port pi

in a user-defined box declaration can be annotated with a fixed buffer length len(pi) by
appending the desired length in square brackets to the port declaration. A FIFO has to
have a minimal length of one. The box Kb for example, uses a buffer length of two for
the channel linked to port a, an unspecified buffer length for the channel linked to port
b, and a buffer length of three for the channel linked to port c.

Kb = box fk(in a[2], out b, decoupled in c[3])

By writing to a channel, a message token is put into the channel and by reading from a
channel a message token is removed from the channel. If a channel is empty, the read
access is blocking until a message token is written into the channel. If a channel is full,
the write access is blocking until a message token is read from the channel.

As described in Section 4.1, due to mixed-criticality requirements it is sometimes nec-
essary to remove the blocking semantics of the PNSC model. This can be achieved by
annotating a port in a user-defined box declaration with the keyword decoupled. In
the following example, the box Kd has a decoupled output port b and a decoupled input
port c.

Kd = box fk(in a, decoupled out b, decoupled in c)

As described in Section 4.1.2, decoupling an input port in synchronisation prevents this
port from triggering a box and can lead to duplication of message tokens. Decoupling
an output port in synchronisation removes the back-pressure imposed by consumers and
can lead to losses of message tokens. Note that a box must have at least one input
port that is triggering or at least one output port where back-pressure can be exert. In
Section 4.1.3 I defined the SIAs for all combinations of FIFO buffers with and without
decoupled inputs and outputs: Please refer to Figure 3.14 for an example of a SIA for a
blocking FIFO buffer, to Figure 4.4 for a FIFO with decoupled input (the output port
of the connecting producing net is decoupled), to Figure 4.5 for a FIFO with decoupled

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 91

output (the input port of the connecting consuming net is decoupled), and to Figure 4.6
for a FIFO where input and output is decoupled (and consequently the output and input
port of the connected producing and consuming net).

Note that the length of the buffer is related to the coupling of a port. The length of a
channel ci, where each end is connected to a port (p1 and p2, respectively), is defined as
follows:

len(ci) =

1 if p1 and p2 are decoupled

max
(
len(p1), 1

)
if p2 is decoupled

max
(
len(p2), 1

)
if p1 is decoupled

max
(
len(p1) + len(p2), 1

)
otherwise

(6.1)

6.2.2.2 Routing Node

Routing nodes are spawned implicitly whenever more than two ports are connected.
Multiple connections to an input port of a net spawn a summing node and multiple
connections to an output port of a net spawn a diverging node. Hence, a routing node
can either be a diverging node, a summing node or a combination of any number of
both. In general, a routing node can have any number of input and output ports.

A diverging node is a special case of a routing node which has one input port and two or
more output ports. A message token arriving at the input port is copied to each output
port. As long as the writing process to an output is blocked, the diverging node is not
accepting any more message tokens at its input port. This means before the diverging
node is able to process any further message token it has to complete the copy process
to each output.

An example of a diverging node with its corresponding SIA is depicted in Figure 6.1.

s0

s2

s1
a?

b!c!

Ndiv

b

c

a

Figure 6.1: An example of a diverging node with an input port a and two output
ports b and c.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 92

Another special case of a routing node is a summing node. It has one output port and
two or more input ports. Message tokens are read at the input ports according to the
first-come first-serve policy and are made available at the output port in the same order
as they were read. If message tokens are available on multiple input ports, they are read
in arbitrary order and are processed non-deterministically. The first-come first-serve
policy requires a summing node to peak at an input port whether a message token is
available before accessing it in order to prevent a potential blocking on one input port
where no message token is available while on another port message tokens would be
available. This leads to non-deterministic behaviour [23]. If the output is blocking, no
further message tokens are accepted at the input until the currently blocked message
token is written.

An example of a summing node with its corresponding SIA is depicted in Figure 6.2.

s0 s1s2

a?

c!

b?

c!

Nsum

c

a

b

Figure 6.2: An example of a summing node with input ports a and b and an output
port c.

By combining summing and diverging nodes, a routing node allows a one-to-many, many-
to-one, and many-to-many mapping of ports. For a one-to-one mapping of two ports,
no routing node is necessary.

An example of a combination of the two node types with its corresponding SIA is shown
in Figure 6.3.

s0

s2

s1

s4

s3
a?

c!d!

b?

c! d!

Nfull

a

b

c

d

Figure 6.3: An example of a routing node as combination of summing and diverging
nodes with input ports a and b and output ports c and d.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 93

6.2.2.3 Temporal Firewall

A temporal firewall is a special type of communication channel (see Section 4.2.1 for
details on the model). It imposes a fixed rate on the transmission of message tokens, i.e.
at a specified rate, a single message token is copied from the input port to the output
port. The input port and the output port of a temporal firewall is decoupled to guarantee
that no blocking is possible for any connected net. This may lead to duplication or loss
of message tokens: Let rclk be the rate of the temporal firewall, rp the rate of a producing
net which is connected to an input port of the temporal firewall, and rc the rate of a
consumer net which is connected to an output port of the temporal firewall. A message
token duplication occurs if rp < rclk, i.e. the rate of the producer is lower than the rate
of the temporal firewall or if rclk < rc, i.e. the rate of the temporal firewall is lower than
the rate of the consumer. A message token loss occurs if rp > rclk, i.e. the rate of the
producer is higher than the rate of the temporal firewall or if rclk > rc, i.e. the rate of
the temporal firewall is higher than the rate of the consumer. A temporal firewall is
implicitly spawned when declaring a net as a time-triggered instance (see Section 6.4.5
for more details).

6.2.2.4 Rate-control Guard

Another special type of communication channel is the rate bounded channel (see Sec-
tion 4.2.2 for the model description). It is a FIFO channel, as specified by the port
declaration of the connecting ports, extended with a rate-control guard (the length and
the coupling attributes of the channel do not change). Simply put, a rate bounded
channel only accepts a new message token if a certain time interval has passed between
the arrival instances of the two consecutive message tokens. Such channels are implicitly
spawned when declaring a net as rate bounded. I will describe the Streamix syntax to
declare a rate bounded net in Section 6.4.5.

6.2.3 Interaction Protocol of a User-defined Box

In a box declaration, the order of the port list is important for two reasons: First,
depending on the implementation of the Run-time System (RTS), the parameters of a
computational component might be matched according to the index corresponding to
the position of a port in the port list of the box declaration. This is not necessarily
true, as a mapping could also be achieved through name matching (as it is done with
the runtime system described in Chapter 7 where C macros are used to access channels
by name) but it is good to have a possible identification rule that does not rely on

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 94

names. The second reason relates to the SIA description of a box. In addition to a
computational component, each box has a SIA that is associated to the box declaration.

The order of the ports is used to automatically generate a SIA description of a box if
none is provided by the user. The algorithm to automatically generate a SIA is based
on the assumption that the parameters of the computational component, corresponding
to the ports of a box, are accessed in the same order as the ports are declared in the box
declaration. An automatically generated SIA K̃, corresponding to the box declaration

K = box fk(in a, out b, out c)

is a circle graph with three states S
K̃

= {0, 1, 2} and three transitions 〈0, a, 1〉, 〈1, b, 2〉,
and 〈2, c, 0〉. Each action in the set of actions A

K̃
= {a, b, c} corresponds to the port

of the box declaration with the same name. State 0 is the initial state. The protocol,
described by such a SIA is deterministic.

If the default SIA is not representing correctly how a computational component interacts
with its environment, the user must provide a custom SIA that is associated with the
box. To do so, a language defined by the following grammar can be used:

〈sia_decl〉 ⇒ sia 〈sia_name〉 { 〈state_decl〉 [〈state_decl〉]* }

〈state_decl〉 ⇒ 〈state_name〉 : 〈transition〉 [| 〈transition〉]*

〈transition〉 ⇒ 〈action_name〉 〈action_mode〉 . 〈state_name〉

〈action_mode〉 ⇒ ?

| !

| ;

〈sia_name〉 ⇒ identifier

〈state_name〉 ⇒ identifier

〈action_name〉 ⇒ identifier

The name of the user-defined SIA must be the same as the name of the computational
component and each state declaration symbol can only occur once. A state declaration
can, however, have multiple transitions. The first state declaration corresponds to the
initial state of the SIA. For example, the default SIA K̃ as described above would be
described with the language as follows:

sia fk {

0: a?.1

1: b!.2

2: c!.0

}

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 95

However, if the protocol of computational component fk does not specify in which order
the ports b and c are accessed, the SIA is defined as follows:

sia fk {

0: a?.1

1: b!.2 | c!.3

2: c!.0

3: b!.0

}

Here, from state 1 two paths are possible to reach the initial state 0: either by the
transitions 〈1, b, 2〉 and 〈2, c, 0〉 or by the transitions 〈1, c, 3〉 and 〈3, b, 0〉. If there is
an internal decision, based on an internal state, deciding whether port b or port c is
accessed, internal actions need to be used to describe this behaviour:

sia fk {

0: a?.1

1: int1;.2 | int2;.3

2: b!.0

3: c!.0

}

In state 1 the protocol is non-deterministic because the choice whether transition 〈1, int1, 2〉
or 〈1, int2, 3〉 is taken depends on an internal state of the computational component that
is not accessible by the language.

6.2.4 Box Annotations and Grammar

Streamix provides two keywords to annotate elements with information dedicated for the
RTS. A box can be annotated with the keyword pure if the computational component
is purely functional. This information can be useful in the runtime system: e.g. it is easy
to relocate a pure computational component as no state information has to be relocated
with it whereas a relocation of a computational component with persistent state is much
harder because state information has to be moved as well.

Further, a box can be annotated with the keyword static in order to indicate that
no dynamic operations should be performed with instances of this box. Again, this
is an annotation that is useful for the runtime system if automatic proliferation of
computational components is performed in order to exploit parallel architectures.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 96

Putting everything together, the following grammar defines a box declaration in Streamix.
Note that ports in a box declaration can be assigned to port collections. Why this is
useful and sometimes necessary will be explained in Section 6.3.

〈box_assign〉 ⇒ 〈box_name〉 = 〈box_decl〉

〈box_decl〉 ⇒ [static] [pure] box 〈impl_name〉 (〈box_port_list〉)

〈box_port_list〉 ⇒ 〈box_port_decl〉 [, 〈box_port_decl〉]*

〈box_port_decl〉 ⇒ [decoupled] [〈port_collection〉] 〈port_mode〉
〈port_name〉 [(〈port_name_alt〉)] [[〈buffer_len〉]]

〈port_mode〉 ⇒ in

| out

〈buffer_len〉 ⇒ Z+

〈impl_name〉 ⇒ identifier

〈port_name〉 ⇒ identifier

〈port_name_alt〉 ⇒ identifier

6.3 Nets: Instantiations of Boxes

A net N can be the instantiation of a single box in the simplest case or a combination of
networks via network combinators. The communication interface of each net N consists
of a set of ports: P(N). Each port pi ∈ P(N) is either an input or output port, specified
by a mode attribute: mode(pi) ∈ {input, output}.

Based on that I define predicates for input and output ports as follows:

PI(N) = { pi | pi ∈ P(N) ∧
(
mode(pi) = input

)
} (6.2)

PO(N) = { pi | pi ∈ P(N) ∧
(
mode(pi) = output

)
} (6.3)

A port pi is locally identified by its name.

A network is created by instantiating boxes as nets and by connecting the ports of the
nets together with directed channels. Channels have two ends where each end connects
to a single port of a net. The two ends must be connected to ports of opposite mode
which gives the channel a flow-direction. In order to create a connection between two
ports with a channel, the port names must match. The connection semantics of nets is
later explained in detail in Section 6.4 where network operators are described.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 97

The tuple < port_name, port_mode > must be unique in the port set of a net. This
means, however, that a net can have two ports with the same name.

A network topology as depicted in Figure 6.4 is rather common in the world of CPSs
due to their reactive nature. Streamix poses no constraints on the flow direction of
connections, hence, a connection between two nets can be composed out of multiple
channels with different directions. This results in a network where the flow-direction is

A B C
a

b

a

b
Figure 6.4: An example of a simple network where three components are intercon-

nected with no obvious data flow direction.

not clearly defined and channel directions may become ambiguous.

6.3.1 Flow Direction Ambiguities

As described in the beginning of this section, channels are directed. As nets can have
multiple input and output ports, a connection between two components can be composed
out of multiple channels with different directions. This results in a network where the
flow-direction is not clearly defined and channel directions may become ambiguous.

As an example, let’s consider a net B with two input ports a and b and two output
ports a and b as depicted in Figure 6.4. The interface of such a net is not clearly defined
as there are four possible ways to place the channels at the interface of the net (see
Figure 6.5). Hence a connection to another, similar net would be ambiguous.

B
a

b

a

b B
a

b

a

b

B
a

b

a

bB
a

b

a

b
Figure 6.5: An example of an ambiguous flow direction. The net B can be connected

in four different ways.

Note that the connection of B is only ambiguous when inspected locally. By unfolding
the complete network and assuming that all ports are connected (this is a requirement
for a network to be valid), the direction of each channel is clearly defined (as in the
example of Figure 6.4). However, this is not sufficient because in a structured program
all parts of the program need to be unambiguous, independent of their surrounding
elements.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 98

In order to achieve an unambiguous flow direction or to help the programmer to structure
the code, ports can be grouped into two separate collections: A left (L) or a right (R)
collection. Note that the names left and right refer to the left and right side of a network
operator (see Section 6.4) and do not necessarily relate to a schematic representation of
a net. This grouping is optional and can be omitted if the flow direction is unambiguous.
The grouping of the ports into the two collections depends on the context of the program
and each collection can hold any number of input or output ports or can be empty. The
grouping provides a logical flow-direction due to the constraint that ports in a left
collection of one net can only connect to ports in a right collection of another net and
vice versa. The logical flow-direction is unrelated to the real flow-direction of messages
as channels can be of arbitrary direction. An analogy from the real world would be the
transmission of electrical signals on a ribbon cable with a female and a male connector on
each end. While the cable is directed, each wire in the cable can communicate electrical
signals in an individual direction.

A third collection, called side (S), allows its ports to broadcast message tokens to other
ports in a side collection. Side-ports are explained in more detail in Section 6.3.3.

The collection of a port is described as col(pi) ∈ {L,R,S}. I use the following predicates
for port collections:

PL(N) = { pi | pi ∈ P(N) ∧
(
col(pi) = L

)
} (6.4)

PR(N) = { pi | pi ∈ P(N) ∧
(
col(pi) = R

)
} (6.5)

PS(N) = { pi | pi ∈ P(N) ∧
(
col(pi) = S

)
} (6.6)

The set of ports not grouped into a collection is described by the predicate:

P0(N) =
{
pi | pi ∈ P(N) ∧

(
col(pi) 6= L

)
∧
(
col(pi) 6= R

)
∧
(
col(pi) 6= S

)}
(6.7)

Figure 6.6 depicts a schematic representation of a net where ports are grouped into the
three different collections.

RL

S

N

Figure 6.6: Schematic representation of a net with the three optional port groupings
left (L), right (R), and side (S).

An abstract representation of the network depicted in Figure 6.4 is shown in Figure 6.7
where ports are grouped in a left and a right collection. The connections are represented

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 99

as undirected lines as the real flow direction can only be known by inspecting the port
definitions in the declarations of two connecting nets.

A' B' C'
Figure 6.7: The representation of the network of Figure 6.4 with the use of left and

right collections.

In the following I will use a notation that combines the sets defined above: Combining
the subscript symbol, indicating the port collection (as it is used in Equation 6.4, Equa-
tion 6.5, and Equation 6.6), with the superscript symbol, indicating the port mode (as
it is used in Equation 6.2 and Equation 6.3), correspond to the intersection operation of
both sets, e.g. PO

L = PL ∩ PO.

6.3.2 Self-loop Connection

The exact semantics of port connections if nets are combined with network operators
is described in Section 6.4. It is, however, possible for a net to form a connection with
itself. Let P̂I

0 be the set of all input ports of N that are not assigned to a collection
and let P̂O

0 be the set of all output ports of N that are not assigned to a collection. A
self-loop connection is defined by Definition 6.1.

Definition 6.1 (Self-loop Connection). The self-loop connections of a net N are defined
by the set

PH
F = P̂I

0 ∩ P̂O
0

As an example, let’s consider the following box declaration.

C = box fc(in x, out x)

Once this box is instantiated as net, a self-loop is formed from the output to the input
port, named x in this example. If one wants to declare a box that can be instantiated
multiple times and connected in a chain, port collections have to be used:

C = box fc(left in x, right out x)

This prevents self-loops from being established as no matching ports are found in the
set of all non-grouped ports P̂0(C).

6.3.3 Side-port Connection

In Streamix side-ports, i.e. ports in the set PS , serve the purpose of stream broadcasts.
This means that side-ports of a net N1 and a net N2 are implicitly connected by all serial

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 100

and parallel composition operators which are defined in Section 6.4.2 and Section 6.4.3.
Side-port connections are defined by Definition 6.2.

Definition 6.2 (Side-port Connection). The set of side-ports PS(N) of a resulting net
N of any parallel or serial composition of two nets N1 and N2 is defined by the tuple

PS = 〈PI
S ,PO

S ,P
{IO}
S 〉

where each element is defined as follows:

• P{IO}S =
(
PI

S(N1) ∩ PO
S (N2)

)
∪
(
PO

S (N1) ∩ PI
S(N2)

)
: the set of bi-directional side

ports of N is the intersection of all side ports of opposite mode of N1 and N2.

• PI
S =

(
PI

S(N1) ∪ PI
S(N2)

)
\
((
PI

S(N1) ∩ PI
S(N2)

)
∪ P{IO}S

)
: the set of input side

ports of N is the union with no duplicates of all input side ports of N1 and N2,
excluding any port of the set P{IO}S .

• PO
S =

(
PO

S (N1)∪PO
S (N2)

)
\
((
PO

S (N1)∩PO
S (N2)

)
∪P{IO}S

)
: the set of output side

ports of N is the union with no duplicates of all output side ports of N1 and N2,
excluding any port of the set P{IO}S .

In contrast to all other port connections (described in Section 6.3.2 and Section 6.4),
connected side-ports are not hidden from the interface of the resulting net. Consequently,
they are propagated with each composition and connect to any side-port with the same
name in the network. Because of this, multiple ports are connected together and routing
nodes are spawned. This results in a potential situation where either input or output
side-ports can connect to the port of a resulting net. This is indicated by the superscript
‘{IO}’ of the set P{IO}S .

Let p1 ∈ PI
S(N1) be a side-port of mode input in net N1 and p1 ∈ PI

S(N2) be a side-port
of mode input in net N2. When combining the two networks N1 and N2 with any serial
or parallel combination operator, a diverging node is spawned and the port p1 ∈ PI

S(N)
of the resulting net N is of mode input. Similarly, two side ports p2 ∈ PO

S (N1) and
p2 ∈ PO

S (N2) spawn a summing node and result in a port p2 ∈ PO
S (N). However, two

side ports p3 ∈ PI
S(N1) and p3 ∈ PO

S (N2) or p4 ∈ PO
S (N1) and p4 ∈ PI

S(N2) spawn a
general routing node and result in a port p3 ∈ P{IO}S (N) or p4 ∈ P{IO}S (N), respectively,
where the mode is input or output.

Because of their property to broadcast across the whole network, side-ports may cause
a producer net to block for a long time, e.g. if a lot of nets consume from this particular
side-port and are waiting to be executed but only few resources are available to execute
them. To prevent this situation, all side-ports are decoupled at the output. Hence a
component can never be blocked due to back-pressure through a side-port.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 101

6.3.4 Net Interface

All ports at a net interface are open, i.e. available to form a connection with ports of
other nets. The set of connected ports PH is hidden from the interface of a net. The
interface of a net N is defined by Definition 6.3.

Definition 6.3 (Net Interface). A net N is defined by the tuple

P(N) = 〈PI
0 ,PO

0 ,PI
L,PO

L ,PI
R,PO

R ,PS〉

where each element is defined as follows (where PH is the set of connected ports, hidden
from the interface):

• PI
0 = P̂I

0 \ PH : the set of non-grouped input ports of N

• PO
0 = P̂O

0 \ PH : the set of non-grouped output ports of N

• PI
L: the set of left-grouped input ports of N

• PO
L : the set of left-grouped output ports of N

• PI
R: the set of right-grouped input ports of N

• PO
R : the set of right-grouped output ports of N

• PS: the set of side-grouped ports of N . For further information refer to Defini-
tion 6.2 in Section 6.3.3

6.3.5 Net Declaration and Prototyping

Every net must be declared before it is used. A net declaration is either a box declaration
that is assigned to a symbol (see Section 6.2), a wrapper declaration (see Section 6.4.6),
a net assignment (see Section 6.4.1), or a net prototype. A net prototype allows to define
the interface of a net. This can be used as a check, in order to see whether a network
declaration returns the expected net. In order to prototype a net, the keyword net is
used, followed by the name of the net and the net port declaration. The following net
prototype describes the interface of a net N.

N = net(left in x, right out x)

For net prototypes it is mandatory to always provide a port collection for each port. For
a net prototype to be valid, the port list of the net prototype must match to the port

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 102

list of the corresponding net: Let PNp be the set of ports of a net prototype N and PNn

be the set of ports of a net N then it must hold that

∀pi ∈ PNp,∃pj ∈ PNn .
(
mode(pi) = mode(pj)

)
∧
(
col(pi) = col(pj)

)
∧
(
pi = pj

)
∧ ∀pi ∈ PNn, ∃pj ∈ PNp .

(
mode(pi) = mode(pj)

)
∧
(
col(pi) = col(pj)

)
∧
(
pi = pj

)
(6.8)

The complete grammar for net declarations and net assignments is provided in the fol-
lowing. Note that every Streamix scope must have one and only one connect statement
followed by a net.

〈program〉 ⇒ 〈net_decls〉 connect 〈net〉

〈net_decls〉 ⇒ [〈net_decl〉]*

〈net_decl〉 ⇒ 〈box_assign〉
| 〈net_assign〉
| 〈net_proto〉
| 〈wrap_decl〉

〈net_proto〉 ⇒ net 〈net_name〉 (〈net_port_list〉)

〈net_port_list〉 ⇒ 〈net_port_decl〉 [, 〈net_port_decl〉]*

〈net_port_decl〉 ⇒ 〈port_collection〉 〈port_mode〉 〈port_name〉

〈port_collection〉 ⇒ left

| right

| side

〈port_mode〉 ⇒ in

| out

〈net_name〉 ⇒ identifier

〈port_name〉 ⇒ identifier

6.4 Network Composition

This section describes the operators that allow to interconnect nets in a structured
manner. I propose two basic grouping operators that allow to combine two nets by either
forcing a connection or preventing a connection. The connective grouping is called serial
composition and the non-connective grouping is called parallel composition. For both
operators, there exist two variants each with a slightly different connection semantics.
A third type of network operator, called wrapper, allows scoping and reorganisation of

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 103

port assignments. A forth type allows to control the execution rate of nets and the
communication rate of message tokens.

The focus of the network operators is twofold:

1. The operators aim at structuring the network by providing a sense of locality,
meaning that information necessary to understand a local part of the network is
kept local.

2. Connections between nets are to be kept explicit and not hidden by an implicit
connection semantics of the operators.

6.4.1 Net Assignments

In Streamix, a net is either a composed net or an abstract net. When composing nets
with network operators, a composed net is created. An abstract net is either the instance
of a box, a wrapper, or a net assignment. Consequently, when assigning a composed
net to a net symbol, this net symbol represents an abstract net that can be further
instantiated in network compositions. A net is assigned to a net symbol by the assign
operator ‘=’. The Streamix grammar provides an overview on all network operators.

〈net_assign〉 ⇒ 〈net_name〉 = 〈net〉

〈net〉 ⇒ 〈abstract_net〉
| 〈composed_net〉

〈abstract_net〉 ⇒ 〈box_name〉
| 〈net_name〉
| 〈wrap_name〉

〈composed_net〉 ⇒ 〈net〉 . 〈net〉
| 〈net〉 : 〈net〉
| 〈net〉 | 〈net〉
| 〈net〉 ! 〈net〉
| (〈net〉)
| tt [〈time_decl〉] (〈net〉)
| tb [〈time_decl〉] (〈net〉)

〈time_decl〉 ⇒ [〈time〉 s] [〈time〉 ms] [〈time〉 us] [〈time〉 ns]

〈box_name〉 ⇒ identifier

〈net_name〉 ⇒ identifier

〈wrap_name〉 ⇒ identifier

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 104

〈time〉 ⇒ Z+

The differentiation between abstract and composed nets is an important aspect that
allows to change the semantics of the composition operators, depending on whether
an operator is applied on abstract or composed nets. This occurs when building a
composed net with both, parallel and serial composition operators and when applying
rate-control operators on nets. I discuss the former case in Section 6.4.4 where the
operator precedence is described and the latter case in Section 6.4.5 where rate-control
operators are described.

6.4.2 Serial Composition

The serial composition is a grouping operation enforcing connections between two operands.
Two types of serial compositions are possible: one that is enforcing local connections
and one that is less strict and allows bypassing. The former uses the operator ‘.’ whereas
the latter uses the operator ‘:’.

The port connection semantics is equivalent for both serial combination operators. It is
defined by Definition 6.4.

Definition 6.4 (Connection of Serial Composition). The port connections of a serial
combination where N1 is the left operand and N2 is the right operand is defined by the
set

PH = PH
0 ∪ PH

∗

where PH
0 and PH

∗ are defined as follows, with PH
F defined in Definition 6.1

• PH
0 =

(
PI

0 (N1) ∩ PO
0 (N2)) ∪ (PO

0 (N1) ∩ PI
0 (N2)

)
∪ PH

F : the set of non-grouped
hidden ports of N is the intersection of all ports of opposite mode that are not
grouped in any collection of N1 and N2, excluding self-loops.

• PH
∗ =

(
PI

R(N1) ∩ PO
L (N2)) ∪ (PO

R (N1) ∩ PI
L(N2)

)
: the set of grouped hidden ports

of N is the intersection of all ports of opposite mode that are grouped in the right
collection of N1 and in the left collection of N2.

No implicit routing nodes are spawned by a serial combination (side-ports aside), hence,
the following must hold:

• P I
0 (N1) ∩ P I

0 (N2) = ∅

• PO
0 (N1) ∩ PO

0 (N2) = ∅

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 105

• P I
L(N1) ∩ P I

L(N2) = ∅

• PO
L (N1) ∩ PO

L (N2) = ∅

• P I
R(N1) ∩ P I

R(N2) = ∅

• PO
R (N1) ∩ PO

R (N2) = ∅

The difference between the locality enforcing serial connection and the one allowing
bypasses is that all ports of the resulting net of the former Nlocal = N1 . N2 (as defined
in Definition 6.5) are assigned to a port collection, i.e. P0(Nlocal) = ∅, while the resulting
net of the latter Nbypasss = N1 : N2 (as defined in Definition 6.6) can have unassigned
ports.

Definition 6.5 (Net Interface of Locality Enforcing Serial Composition). The resulting
net of a locality enforcing serial composition of two boxes N1 and N2, written as N1 . N2,
is defined by the tuple

P(N1 . N2) = 〈PI
0 ,PO

0 ,PI
L,PO

L ,PI
R,PO

R ,PS〉

where each element is defined as follows, with PH
0 and PH

∗ defined in Definition 6.4:

• PI
0 = ∅: the set of non-grouped input ports of N is empty.

• PO
0 = ∅: the set of non-grouped output ports of N is empty.

• PI
L = PI

L(N1)∪
(
PI

0 (N1)\PH
0
)
: the set of left-grouped input ports of N is the union

of left-grouped input ports of N1 with non-grouped input ports of N1, excluding
non-grouped hidden ports of N .

• PO
L = PO

L (N1) ∪
(
PO

0 (N1) \ PH
0
)
: the set of left-grouped output ports of N is

the union of left-grouped output ports of N1 with non-grouped output ports of N1,
excluding non-grouped hidden ports of N .

• PI
R = PI

R(N2)∪
(
PI

0 (N2)\PH
0
)
: the set of right-grouped input ports of N is the union

of right-grouped input ports of N2 with non-grouped input ports of N2, excluding
non-grouped hidden ports of N .

• PO
R = PO

R (N2) ∪
(
PO

0 (N2) \ PH
0
)
: the set of right-grouped output ports of N is the

union of right-grouped output ports of N2 with non-grouped output ports of N2,
excluding non-grouped hidden ports of N .

• PS: for further information refer to Definition 6.2 in Section 6.3.3

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 106

The operator ‘.’ is non-associative and non-commutative. A locally enforcing serial
composition is valid iff the following conditions are satisfied:

• PR(N1) \ PH
∗ = ∅

• PL(N2) \ PH
∗ = ∅

The schematic representation of a locality enforcing serial composition is shown in Fig-
ure 6.8. The Figure illustrates that all ports of the composition are assigned to its
immediate neighbour, i.e. no net can be bypassed. Note, however, that no direction is
indicated which means that message tokens can flow from the right operand to the left
operand and vice versa.

N1 N2

N

Figure 6.8: Locality enforcing serial composition of two nets N1 and N2, written as
N = N1 . N2.

Definition 6.6 (Net Interface of Bypassing Serial Composition). The resulting net of
a serial composition with bypassing of two boxes N1 and N2, written as N1 : N2, is
defined by the tuple

P(N1 : N2) = 〈PI
0 ,PO

0 ,PI
L,PO

L ,PI
R,PO

R ,PS〉

where each element is defined as follows, with PH
0 and PH

∗ defined in Definition 6.4:

• PI
0 =

(
PI

0 (N1) \ PH
0
)
∪
(
PI

0 (N2) \ PH
0
)
: the set of non-grouped input ports of N is

the union of non-grouped input ports of N1 and N2, excluding hidden ports of N .

• PO
0 =

(
PO

0 (N1) \ PH
0
)
∪
(
PO

0 (N2) \ PH
0
)
: the set of non-grouped output ports of N

is the union of non-grouped output ports of N1 and N2, excluding hidden ports of
N .

• PI
L = PI

L(N1)∪
(
PI

L(N2)\PH
∗
)
: the set of left-grouped input ports of N is the union

of left-grouped input ports of N1 with left-grouped input ports of N2, excluding
grouped hidden ports of N .

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 107

• PO
L = PO

L (N1) ∪
(
PO

L (N2) \ PH
∗
)
: the set of left-grouped output ports of N is

the union of left-grouped output ports of N1 with left-grouped output ports of N2,
excluding grouped hidden ports of N .

• PI
R =

(
PI

R(N1) \ PH
∗
)
∪ PI

R(N2): the set of right-grouped input ports of N is the
union of right-grouped input ports of N1 with right-grouped input ports of N2,
excluding grouped hidden ports of N .

• PO
R =

(
PO

R (N1) \ PH
∗
)
∪ PO

R (N2): the set of right-grouped output ports of N is the
union of right-grouped output ports of N1 with right-grouped output ports of N2,
excluding grouped hidden ports of N .

• PS: for further information refer to Definition 6.2 in Section 6.3.3

The operator ‘:’ is associative and non-commutative.

The schematic representation of a serial composition that allows bypassing is shown
in Figure 6.9. Note that in contrast to Figure 6.8, where a locality enforcing serial
composition is illustrated, here, bypassing is possible.

N1 N2

N

Figure 6.9: A serial composition of two nets N1 and N2, written as N = N1 : N2
where bypassing is allowed.

6.4.3 Parallel Composition

The parallel composition is a grouping operation of two operands which prevents any im-
plicit connection between the two operands, independent of the names or the groupings
of their ports. Two types of parallel composition are possible, a deterministic version
which uses the operator ‘|’ and a non-deterministic version which uses the operator ‘!’.

No implicit port connection is allowed with the parallel composition of two nets N1 and
N2 (with the exception of side-ports). Hence, the conditions defined in Equation 6.9

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 108

must be satisfied.

PO
0 (N1) ∩ PI

0 (N2) = ∅

PO
L (N1) ∩ PI

L(N2) = ∅

PO
R (N1) ∩ PI

R(N2) = ∅ (6.9)

Further, as Streamix targets CPSs where predictability is important, the parallel compo-
sition operator ‘|’ does not allow to implicitly instantiate a summing node as described in
Section 6.2.2.2. This is because such a summing node has a non-deterministic behaviour.
Hence, for a deterministic parallel composition of two nets N1 and N2 the condition as
defined in Equation 6.10 must hold.

PO
0 (N1) ∩ PO

0 (N2) = ∅

PO
L (N1) ∩ PO

L (N2) = ∅

PO
R (N1) ∩ PO

R (N2) = ∅ (6.10)

Diverging nodes as described in Section 6.2.2.2, however, have a deterministic behaviour
and can be spawned implicitly in a parallel composition. The resulting net of a deter-
ministic parallel composition is defined in Definition 6.7.

Definition 6.7 (Net Interface of Deterministic Parallel Composition). The resulting net
of a deterministic parallel composition of two nets N1 and N2, written as N = N1 | N2,
is defined by the tuple

P(N1 | N2) = 〈PI
0 ,PO

0 ,PI
L,PO

L ,PI
R,PO

R ,PS〉

where each element is defined as follows:

• PI
0 = PI

0 (N1) ∪ PI
0 (N2): the set of non-grouped input ports of N is the union of

non-grouped input ports of N1 and N2.

• PO
0 = PO

0 (N1)∪PO
0 (N2): the set of non-grouped output ports of N is the union of

non-grouped output ports of N1 and N2.

• PI
L = PI

L(N1) ∪ PI
L(N2): the set of left-grouped input ports of N is the union of

left-grouped input ports of N1 and N2.

• PO
L = PO

L (N1) ∪ PO
L (N2): the set of left-grouped output ports of N is the union of

left-grouped output ports of N1 and N2.

• PI
R = PI

R(N1) ∪ PI
R(N2): the set of right-grouped input ports of N is the union of

right-grouped input ports of N1 and N2.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 109

• PO
R = PO

R (N1) ∪ PO
R (N2): the set of right-grouped output ports of N is the union

of right-grouped output ports of N1 and N2.

• PS: for further information refer to Definition 6.2 in Section 6.3.3

Non-determinism can not always be avoided. For this reason, Streamix offers a non-
deterministic parallel composition operator ‘!’ where the condition defined in Equa-
tion 6.10 is no requirement. The resulting net of a non-deterministic parallel compo-
sition is equivalent to the deterministic one as defined in Definition 6.8. Further, as
with the deterministic parallel composition, implicit connections are prevented, hence
the condition defined in Equation 6.9 must be satisfied.

Definition 6.8 (Net Interface of Non-deterministic Parallel Composition). The resulting
net of a non-deterministic parallel composition of two nets N1 and N2, written as N =
N1 ! N2, is defined by the tuple

P(N1 ! N2) = 〈PI
0 ,PO

0 ,PI
L,PO

L ,PI
R,PO

R ,PS〉

where each element is defined by Definition 6.7

Note that the name of the parallel network combinator can be misleading as it suggests
that two nets are configured in parallel and can be executed in parallel. This is not
necessarily the case because the channels connecting nets can be of arbitrary direction
and may create arbitrary dependencies.

The parallel composition is schematically represented in Figure 6.10. It is important to
note, that in a parallel composition no connection is established between any input and
output ports, excluding ports in side-port collections.

N1

N2

N

Figure 6.10: Parallel composition of two nets N1 and N2 written as N1 | N2.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 110

6.4.4 Operator Precedence

The order of precedence of the operators is defined as follows: The serial composition
precedes the parallel composition. Further, the strict versions of the composition oper-
ators precede the less strict versions. Together, this defines the operator precedence:

. > : > | > !

An example where the precedence is applied is shown in Figure 6.11. On the left side
two sequences A1 . B1 . C1 and A2 . B2 . C2 are created which are then joined by the
parallel composition. On the right side the parallel compositions are enforced by the
parentheses, resulting in a serial composition with full connectivity.

N1=A1.B1.C1|A2.B2.C2

A2

A1 B1

B2

C1

C2

N2=(A1|A2).(B1|B2).(C1|C2)

A2

A1 B1

B2

C1

C2

Figure 6.11: Two examples of connection graphs where the operator precedence is
illustrated.

As described in Section 6.4.1, I distinguish between abstract nets and composed nets.
Further, I distinguish between operators that enforce port connections, i.e. the serial
composition operators ‘.’ and ‘:’, and operators that prevent port connections, i.e. the
parallel composition operators ‘|’ and ‘!’. The enforced connectivity property of serial
composition operators is distributive over parallel composition operators in composed
nets. This means that given a composed net as depicted on the right side of Figure 6.11,
the full connectivity is mandatory for the composed net to be valid, e.g. there must be
at least one valid port connection between net A1 and net B1 as well as between A1 and
B2. In other words, if an operator implies a connection between two nets at least one
pair of ports must form a connection between the two nets. Otherwise, the two nets are
incompatible and cannot be connected with the operator in question.

To check this property of serial composition operators I define the predicate abst(P)
which returns a set of mutual distinctive abstract nets, where the ports in port set
P belong to. Formally, the condition defined in Equation 6.11 must hold for a serial
composition operation N1 . N2 or N1 : N2 to be valid.

∀neti ∈ abst
(
P(N1)

)
, ∀netj ∈ abst

(
P(N2)

)
. PH(neti) ∩ PH(netj) 6= ∅ (6.11)

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 111

6.4.5 Time-controlled Nets

Streamix allows to control the execution of nets with time annotations. Based on the
model described in Chapter 4 the triggering semantics of a net can be changed from
event-triggered, where message tokens trigger nets upon arrival on an input port, to
time-triggered, where a periodic clock signal is triggering the net. This is achieved with
the following Streamix syntax. Let N be a defined Streamix net, then the expression

tt[1s](N)

changes the triggering semantics of N from event-triggered to time-triggered where a
clock signal causes the net N to trigger every second. This is achieved by replacing all
channels, connected to N, by synchronised temporal firewalls (see Section 6.2.2.3). The
period of each temporal firewall is specified by the time argument of the time-triggered
operator (one second in the example above). Note that the tt operator has no effect on
a net with no interaction with its environment, i.e. if P(N) = ∅.

Two time-triggered nets N1 and N2 can be composed into a new net N with the oper-
ators ‘.’, ‘:’, ‘|’, and ‘!’ as defined in Definition 6.5, Definition 6.6, Definition 6.7, and
Definition 6.8, respectively. When two time-triggered nets N1 and N2, each framed by
temporal firewalls, are composed with a serial composition operator (see Section 6.4.2)
connecting temporal firewalls are merged if their respective period is equivalent.

As an example let’s consider the two boxes

N1 = box fn1(in x, out y)

N2 = box fn2(in y, out z)

and instantiate them in a network as follows

tt[1s](N1).tt[1s](N2)

The resulting network is illustrated in Figure 6.12 where the channel y between N1 and
N2 is a single temporal firewall.

A detailed illustration of the resulting network is depicted in Figure 6.12. Note that the
connections from the time-triggered net to the temporal firewalls are internally changed
in order to avoid naming conflicts.

N1 N2

x(clk) y(clk) z(clk)

Figure 6.12: A time-triggered instance of the box N1 and N2 where all channels are
temporal firewalls with period clk = 1s.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 112

However, when instantiating the boxes N1 and N2 in a network where the triggering
rates are different, temporal firewalls cannot be merged and are cascaded.

tt[1s](N1).tt[2s](N2)

This situation is illustrated in Figure 6.13.

N1 N2

x(clk1) y(clk1) y(clk2) z(clk2)

Figure 6.13: A time-triggered instance of the box N1 and N2 where the channel
y is modelled by two temporal firewalls, with the periods clk1 = 1s and clk2 = 2s,

respectively.

Another way of controlling the triggering semantics by a time annotation is the keyword
tb. It allows to impose a rate bound on each input channel of a net. This causes to
spawn a rate bounded FIFO (see Section 6.2.2.4) instead of a normal FIFO. For example,
the following syntax imposes a rate bound on each input channel of net N.

tb[200ms](N)

Here the minimal time interval between two consecutive message tokens is set to 200
milliseconds.

Both operators tt and tb are distributed on all abstract nets when applied on a com-
posed net. Consequently, the network defined by the following expression

tt[1s](N1.N2)

is equivalent to the network

tt[1s](N1).tt[1s](N2)

of which the resulting network is illustrated in Figure 6.12.

6.4.6 Wrapper

A wrapper W has an interface and a body. The interface consists of a set of ports P(W).
The body can contain all types of net declarations as listed in Section 6.3.5 and must
define one network NW where the network interface consists of a set of ports P(NW).
This one network is declared with the keyword connect.

A wrapper acts as a static scope for all names defined inside the wrapper body. These
names are only visible in the scope of the wrapper and any wrapper that is declared

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 113

in this scope. As only ports that are explicitly defined in the interface of the wrapper
are visible outside of the scope of the wrapper, also side ports have to be propagated
manually to be accessible outside. Hence, the wrapper allows to create and control
subnet broadcasts of side-ports. The instance of a wrapper declaration is a net and can
be used in any network operator.

As an example, let’s declare the following wrapper W.

wrapper W(in x, out y) {

A = box fa(in x, out z)

B = box fb(in z, out y)

connect A.B

} net(left in x, right out y)

Here, the boxes A and B are not accessible outside of the body of the wrapper W. Note
that the interface of the net prototype corresponds to the interface of the net defined
after the connect statement. If this does not match, the wrapper is invalid. However,
the interface of the wrapper is not required to match with the interface of the net, as it
is the case in the example above.

The purpose of a wrapper is to allow the construction of arbitrary networks and to
provide a scoping facility. In order to create arbitrary networks, the wrapper allows to

1. create a connection between a port pi ∈ P(NW) and a port pj ∈ P(W)

2. create a connection between a port pi ∈ P(W) and a port pj ∈ P(W)

A schematic representation of the wrapper connections is depicted in Figure 6.14. The
grey circle around the net N represents the possibility of rearranging its port collections
on the wrapper interface W .

W

N

Figure 6.14: A schematic representation of the scoping mechanism where ports from
any collection of the net N can be connected to ports from any collection of the wrapper

W .

The different port connections inside a wrapper are implicitly established by name and
mode matching. In order to achieve arbitrary connections, a wrapper allows to rename

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 114

ports by appending a list of names to a port declaration. As an example, let’s declare
the following wrapper Wp.

wrapper Wp(in a(x), out b(y)) {

A = box fa(in x, out z)

B = box fb(in z, out y)

connect A.B

} net(left in x, right out y)

Here, the ports a and b in P(Wp) are renamed to x and y, respectively, in order to
connect to the corresponding ports in P(NW p).

If multiple ports are connected, routing nodes are spawned accordingly. For example,
in the following wrapper declaration a diverging node and a summing node is spawned:

wrapper Wf(in a(w, y), out b(x, z)) {

A = box fa(in w, out x)

B = box fb(in y, out z)

connect A|B

} net(left in w, left in y, right out x, right out z)

The port a ∈ P(Wf) connects to a diverging node with two output ports, connecting
to w ∈ P(A) and y ∈ P(B), respectively. On the right side, the ports x ∈ P(A) and
z ∈ P(B) connect to a summing node and the output port of the summing node connects
to b ∈ P(Wf).

Let Pint(p) describe the set of port names that are associated to the wrapper port p
(p /∈ P(W) → Pint(p) = ∅). Then the predicate wrap_name_match(p, p′), as defined
in Equation 6.12 returns true if two ports p and p′ have matching names.

wrap_name_match(p, p′) := (p = p′) ∨ p ∈ Pint(p′) ∨ p′ ∈ Pint(p) (6.12)

Using the predicate wrap_name_match(p, p′) defined in Equation 6.12 I further de-
fine the two following predicates: The predicate wrap_connect_by(p, p′), as defined in
Equation 6.13, returns true if two ports p and p′ in a wrapper interface can connect.

wrap_connect_by(p, p′) := wrap_name_match(p, p′)

∧
(
p ∈ P(W) ∧ p′ ∈ P(W) ∧ mode(p) 6= mode(p′)

)
(6.13)

The predicate wrap_connect_net(p, p′), as defined in Equation 6.14, returns true if two
ports p and p′ can connect where one is part of the wrapper interface and one is part of

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 115

the internal net of the wrapper.

wrap_connect_net(p, p′) := wrap_name_match(p, p′)

∧
(
p ∈ P(NW) ∧ p′ ∈ P(W) ∧ mode(p) = mode(p′)

)
(6.14)

Note that port connections in a wrapper are independent of their port collection. This
means that a wrapper can regroup ports into arbitrary port collections. The complete
grammar of the wrapper is defined as follows.

〈wrap_decl〉 ⇒ wrapper 〈wrap_name〉 (〈wrap_port_list〉) { 〈program〉 }
net (〈net_port_list〉)

〈wrap_port_list〉 ⇒ 〈wrap_port_decl〉 [, 〈wrap_port_decl〉]*

〈wrap_port_decl〉 ⇒ [〈port_collection〉] 〈port_mode〉 〈port_name〉
[(〈alt_port_list〉)]

〈alt_port_list〉 ⇒ 〈port_name〉 [, 〈port_name〉]*

〈program〉 ⇒ 〈net_decls〉 connect 〈net〉

〈port_collection〉 ⇒ left

| right

| side

〈port_mode〉 ⇒ in

| out

〈port_name〉 ⇒ identifier

〈wrap_name〉 ⇒ identifier

6.5 Describing a Cyber-physical System with Streamix

In this section I demonstrate vehicle platooning as an example of a CPS with differ-
ent interactions of components. The basic idea of vehicle platooning is to coordinate
the cruising speed of, in series driving, vehicles to achieve a more resourceful driving.
Bergenhem et al. describe different types of platooning systems [66]. In Figure 6.15
I show a possible interaction scenario of different car components, relevant to vehicle
platooning, with a particular focus on the braking mechanism only.

The bottom elements represent more elementary braking components, having higher
criticality than those more on the top level. The anti-lock braking system (ABS) receives
a control signal for a desired braking action but the ABS then decides on its own when
to assert and release braking pressure (Break) based on feedback over the revolution

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 116

Car
Platooning

Radar
Adaptive
Cruise
Control

ABS

Revolution
Seonsor

Break
Manual
Break

Rear
Com
Device

Front
Com
Device

Logger

200ms

100ms

Logger

Figure 6.15: Structured representation of the car platooning example.

sensors of the wheels. Besides the manual braking control we assume an adaptive cruise
control system which uses a radar to measure the distance to its front vehicle and starts
automatic braking requests to keep a certain minimal distance. While the adaptive
cruise control system is a safety feature, the car platooning system on top of it acts to
optimise driving economy. The car platooning system may communicate with the car
platooning system of other cars through the communication devices to achieve better
efficiency.

What we see from this example is that communication between components is bi-
directional and individual components act as reactive systems on their own. Such com-
munication patterns cannot be mapped to acyclic directed computation graphs. How-
ever, the Streamix network operators achieve a structuring of the network by implicitly
grouping components together and keeping port connections local.

Figure 6.16 describes the Streamix program of the car platooning application. Lines
1-6 describe the breaking control of the application where boxes are declared and in-
stantiated: In line 6 a net assignment to the symbol N_ABS is performed and the boxes
RevolutionSensor, Break, ManualBreak, and ABS are instantiated as nets and
composed with the help of serial and parallel composition operators. The operator tt

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 117

1 RevolutionSensor = box f_rs(out speed, side out log)
2 Break = box fb(in break_abs, side out log)
3 ManualBreak = box f_mb(out break_cmd, side out log)
4 ABS = box f_abs(in speed, in break_cmd, in dc_abs,

out break_abs, out abs, side out log)
5
6 N_ABS = tt[200ms]((RevolutionSensor | Break

| ManualBreak).ABS)
7
8 Radar = box f_ds(out dist, side out log)
9 AdaptiveCriuseControl = box f_dc(in abs, in dist_dc,

out dc_cpa, out dc_abs, side out log)
10 wrapper W_Radar(out dist_dc(dist),

out dist_cpa(dist), side out log) {
11 connect Radar
12 } net(right out dist, side out log)
13
14 N_ACC = tt[100ms](W_Radar:AdapdiveCruiseControl)
15
16 Logger = box f_log(side in log)
17 CarPlatooning = box f_cpa(decoupled in dist_cpa,

decoupled in dc_cpa, in com_front_rcv,
out com_front_send, in com_rear_rcv,
out com_rear_send, side out log)

18
19 wrapper Control(out com_front_send, in com_front_rcv,

out com_rear_send, in com_rear_rcv) {
20 connect N_ABS.N_ACC.CarPlatooning|Logger
21 } net(right out com_front_send, right in com_front_rcv,

right out com_rear_send, right in com_rear_rcv)
22
23 ComFront = box f_com(out com_front_rcv(com_rcv),

in com_front_send(com_send), side out log)
24 ComRear = box f_com(out com_rear_rcv(com_rcv),

in com_rear_send(com_send), side out log)
25
26 connect ComRear.Control.ComFront|Logger

Figure 6.16: The Streamix program describing the car platooning application de-
picted in Figure 6.15.

imposes a time-triggered semantics on each net of this composition where the triggering
rate is set to 5Hz.

Lines 8-14 describe the adaptive cruise control application and the connected radar
controller. A wrapper W_Radar (lines 10-12) is used to spawn a routing node that allows
to copy the signal dist of the radar and serve it to the adaptive cruise control net and
the car platooning net. In line 14 an instance of the box AdaptiveCruiseControl

and the wrapper W_Radar is composed to a new net and assigned to the symbol N_ACC.

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 118

The two nets are instantiated as time-triggered nets with a trigger rate of 10Hz. Note
that a bypassing serial composition operator is used. This allows to propagate the
distance signal to the car platooning net (line 20).

Lines 16-21 describe the composition of the control system. A wrapper Control is
used to restrict the broadcast of the side-port signal log which allows to connect a
separate instance of the box Logger to the communication devices (line 26). Line 20
instantiates the net symbols N_ABS and N_ACC and the boxes CarPlatooning and
Logger as nets. Note that the net instance Logger has no other connection than a
side-port connection and is therefore composed to the network by a parallel composition
operator. The box CarPlatooning is instantiated as an event-triggered net. However,
as all the signals from the adaptive cruise control net are decoupled (line 17), the car
platooning net is only triggered by message tokens arriving form the communication
devices ComFront and ComRear.

Lines 23-26 describe the composition of the complete car platooning application, includ-
ing the communication devices. Note that in line 26 the box Logger is again com-
posed to the network to provide a separate logging instance only for the communication
devices. Further note that the communication devices use the same implementation
function f_com but port renaming is used to create two boxes with different signatures.

6.6 Discussion

The focus of the coordination language Streamix lies in providing a concise syntax to
model reactive networks of computational components. Streamix offers the following
contributions.

Exogeneous coordination model with explicit timing semantics
Streamix combines the exogenous coordination model, where the behavioural aspects
are separated from aspects of coordination, with explicit timing semantics. This allows
to apply the concept of separation of concerns ([65]) in the domain of CPSs. An exoge-
nous coordination model is achieved with a black-box approach where boxes, possibly
implemented by a third party and written with a separate programming language, are
coordinated by network elements which connect boxes and impose implicit and explicit
synchronisation on the boxes.

Structured network composition for a reactive data processing model
Streamix provides an inherent structured composition of the network with the use of

Chapter 6 Streamix - An Instantiation of PNSCs as a Coordination Language 119

network operators and makes this feature available in the world of CPSs. In Streamix,
the concept of grouping ports in two separate collections, called left and right, enables
a concise description of network topologies based on reactive data processing.

Explicit decoupling of box triggers and back-pressure to implement mixed-
criticality systems
The computing model of Streamix allows the modelling of mixed-criticality systems with
the help of CCIs. CCIs allow interaction between systems of different criticality but
prevent the interference of a lower critical component with a higher critical component.
This is achieved by introducing a decoupling mechanism and an automatic derivation
of channel implementations based on the chosen decoupling. The decoupling of ports is
described in the coordination language and a computational component is oblivious of
whether it is accessing a decoupled or a blocking channel.

6.7 Chapter Summary

In this chapter I introduced the exogenous coordination language Streamix. Streamix
is an instantiation of the model PNSC, introduced in Chapter 3 and of its extension,
introduced in Chapter 4. The language allows to instantiate CCIs and control triggering
semantics of components, as described in Chapter 4, through dedicated operators and
keywords. Different network composition operators allow to compose components in a
hierarchical and structured manner. I demonstrated the expressiveness of Streamix by
modelling a car platooning application with special focus on the braking mechanism.

Chapter 7

Toolchain for Streamix

In this chapter I will give some technical details about the implementation of the com-
piler of the coordination language Streamix, the permanent blocking analysis, a runtime
system for Streamix programs, and a preprocessor for the runtime system. In order
to build an application, with computational components being written in C/C++ and
the coordination aspects being described by Streamix, the Streamix toolchain is used as
described in the following list.

1. The Streamix compiler smxc takes a Streamix file as input and produces a net-
work dependency graph, annotated with network information such as whether
inputs and outputs are decoupled, clock rates, and whether boxes are pure and/or
static. Further, for each user-defined computational component a graph file is
produced, describing the Synchronous Interface Automaton (SIA) of the compu-
tational component. Optionally, the compiler takes user-defined SIA descriptions
of computational components as an input if the interaction protocol of the com-
putational component does not follow a default behaviour.

2. The Run-time System (RTS) preprocessor smxrtsp takes the network dependency
graph, generated by the Streamix compiler, as an input and generates compilable
C code, using function calls and macros defined in the Streamix runtime system
library. Additionally, the RTS preprocessor generates the dependency graph of
the Process Network with Synchronous Communication (PNSC) where only syn-
chronous channels are used and First-in, First-out (FIFO) channels are represented
as processes. It further produces SIA description files for implicitly generated
PNSC processes such as channels and routing nodes.

3. The permanent blocking analysis smxsia takes the PNSC dependency graph and
the interface descriptions of all processes as input (this includes automatically

120

Chapter 7 Toolchain for Streamix 121

generated SIA files by the compiler and the runtime system preprocessor as well
as the user-defined SIAs passed to the Streamix compiler) and checks the network
for potential permanent blocking situations.

4. Finally, the executable application code is created by compiling the computational
component implementations, the generated files by the runtime system prepro-
cessor, and by linking the runtime system library and the libraries used by the
RTS.

Figure 7.1 provides a schematic overview of the build process described above. The white
boxes represent the executables described above and the unframed elements represent
inputs and outputs. The inputs in the grey area represent the inputs provided by the
user.

Streamix
input program

SIAs of
boxes*

Box
implementations

1. Streamix
compiler
smxc

2. Streamix RTS
preprocessor
smxrtsp

Streamix
RTS library

4. C compiler
3. SIA checker

smxsia

Executable
program

Yes / No

Figure 7.1: A schematic overview of the toolchain for Streamix.

I provide a root project with a link to all tools and some examples as a git repository
on GitHub. The source code for each tool is provided as a separate git repository where
the code is commented respecting the Doxygen1 syntax. For each repository the API
documentation can be generated with the command make doc. Here are the links to
the different repositories:

Root Project: https://github.com/moiri/streamix
1The homepage of the Doxygen project: http://www.stack.nl/~dimitri/doxygen/

https://github.com/moiri/streamix
http://www.stack.nl/~dimitri/doxygen/

Chapter 7 Toolchain for Streamix 122

The RTS Library: https://github.com/moiri/streamix-rts

smxc - The Compiler: https://github.com/moiri/streamix-c

smxrtsp - The RTS Preprocessor:
https://github.com/moiri/streamix-graph2c

smxsia - The Permanent Blocking Analysis:
https://github.com/moiri/streamix-sia

The following list provides a brief overview of the examples that are available on GitHub.
I kept the examples simple to perform isolated tests with the network operators provided
by Streamix. All examples can easily be adapted, e.g. decoupling of ports, adding rate
bounds or temporal firewalls, due to the exogenous nature of Streamix. Each example
can be compiled with the command make. The command make run executes the
compiled example and the command make valgrind uses Valgrind2 to execute and
analyse the compiled example.

class.smx performs a serial composition of four nets where two nets refer to the
same box declaration. This example serves to show the capability of Streamix to
instantiate the same box declaration multiple times and allowing to concatenate
the nets due to port collections.

copy.smx demonstrates the implicit creation of a diverging routing node due to a
parallel composition of two nets with the same input name.

dboth.smx serves to demonstrate the communication over a FIFO channel that is
decoupled on its input and output.

din.smx serves to demonstrate the communication over a FIFO channel that is decou-
pled on its input.

dout.smx serves to demonstrate the communication over a FIFO channel that is de-
coupled on its output.

merge.smx demonstrates the implicit creation of a summing routing node due to a
parallel composition of two nets with the same output name. Note that the non-
deterministic parallel composition operator must be used here.

simple.smx performs a serial composition between two nets and demonstrates port
renaming capabilities of Streamix.

2The project homepage of valgrind can be found here: http://valgrind.org/

https://github.com/moiri/streamix-rts
https://github.com/moiri/streamix-c
https://github.com/moiri/streamix-graph2c
https://github.com/moiri/streamix-sia
http://valgrind.org/

Chapter 7 Toolchain for Streamix 123

stream.smx performs a serial composition between two nets and demonstrates how
to specify a buffer length in Streamix. The example requires inputs by the user
over the standard input stream. The program terminates once the character ESC
is received by the consumer.

tb.smx demonstrates a rate-bound communication over a decoupled channel.

tcp.smx serves as a simple example to show the support of Streamix for complex
components. Note that in this example the port order of the box declarations
does not correspond to the communication protocol of the interacting processes.
In order to prevent an error message from the permanent blocking analysis tool
smxsia a custom SIA description is provided in the file tcp.sia. I did this
intentionally to provide an example where a custom SIA description is required.

tt.smx demonstrates the support of Streamix for temporal firewalls and the time-
triggered communication scheme.

This chapter is structured as follows: First, in Section 7.1 I describe the RTS library of
Streamix to give the reader an understanding of how a Streamix program is mapped onto
a software architecture and then run on a hardware platform. Section 7.2 gives technical
insight on the compiler of the coordination language Streamix. In Section 7.3 I describe
the RTS preprocessor and in Section 7.4 I provide an overview of the implementation
of the permanent blocking analysis. Finally, in Section 7.5 I discuss the result and the
limitations of the implementation and in Section 7.6 I summarise the chapter.

7.1 The Streamix RTS Library

The RTS of Streamix defines the execution model of a Streamix program. It maps
Streamix language elements to run-time constructs that can be executed on a hardware
platform. The Streamix RTS library provides a set of functions and macros that allows
to create, initialise, execute, and destroy such run-time constructs.

In the following I describe a prototype of an RTS library for Streamix which I imple-
mented as a proof of concept for the Streamix language. The RTS is implemented in
C and targets x86 architectures running a Linux operating system. The RTS library
uses POSIX threads [67] and the zlog3 library. Timers which I use for the rate-control
mechanism, are created with the timerfd API which limits the RTS to Linux systems
with kernel version 2.6.25 and newer.

3The homepage of the zlog project: https://github.com/HardySimpson/zlog

https://github.com/HardySimpson/zlog

Chapter 7 Toolchain for Streamix 124

A Streamix program defines, simply put, a network of computational components which
interact with each other via channels. In the RTS each computational component is
represented as a POSIX thread and each channel is a static structure with mutex vari-
ables that allow to model the blocking behaviour of FIFO channels. The RTS provides
function macros to connect threads by channels according to the Streamix network. I
chose mutex variables for the implementation because it is a simple and easy to un-
derstand mechanism to handle concurrent access on shared resources. It has, however,
the limitation that unbuffered synchronous communication between two computational
components is not supported, i.e. all channels are of type FIFO with a minimal length
of one.

7.1.1 Implementation of Computational Components

The RTS does not distinguish between implicitly generated and user-defined computa-
tional components. The only difference is that the function describing the behaviour
of an implicitly generated computational component is part of the RTS library whereas
a user-defined computational component is associated to a user-defined function. A
user-defined Streamix box (see Section 6.2.1) is linked to the user-defined function by
name matching. For each computational component a POSIX thread and a static inter-
face structure is created. The interface structure represents the interface of a Streamix
net. Upon creation of the thread the function start_routine_net() is called. This
function is defined in Algorithm 7.1. It takes a pointer to the function ccomp() and

Algorithm 7.1 PThread Start Routine of Computational Component
Require:

ccomp(), the function defining the behaviour of the computational component
P, the net interface structure, associated to the computational component where PI

and PO are the sets of input and output ports, respectively.

1: function start_routine_net(ccomp(), P)
2: state ← SMX_NET_CONTINUE
3: while state = SMX_NET_CONTINUE do
4: state ← ccomp(P)
5: state ← smx_net_update_state(PI , state)
6: end while
7: smx_net_terminate(PO)
8: return Null
9: end function

the net interface handler P as input arguments and returns Null. The net interface
handler P is a void pointer to a C structure with a field for each input and output port
of the net, associated to the computational component. The sets of input and output

Chapter 7 Toolchain for Streamix 125

ports are represented by the symbols P I and PO, respectively. Each port field in the C
structure points to a connecting channel structure. The fields have the same names as
the Streamix ports which allows to access the corresponding channel by name instead
of an index (this allows a user-friendly access to channels). The interface structure also
contains an array of channel pointers which allows to access the channels by index rather
than by name (this allows a machine-friendly access to channels). The function ccomp()
implements the behaviour of the computational component represented by the thread
and takes the net interface structure as argument.

The body of the function consists of a while loop that is repeatedly making a call to
the function ccomp() (line 4). The state variable is either updated by the return value
of the function ccomp() or by the function smx_net_update_state() (line 5). The
function ccomp() can return three values:

SMX_NET_RETURN lets the RTS decide whether to terminate the thread or not.
The decision is made by the smx_net_update_state() (line 5) function.

SMX_NET_CONTINUE forces the RTS to continue the repeated execution of the
computational component function.

SMX_NET_END forces the RTS to terminate the thread.

The function smx_net_update_state() takes the set of input ports PI and the state
variable as arguments and returns a state value. The function returns SMX_NET_END
if all connected triggering producers are terminated or if the function ccomp() sets the
state variable to SMX_NET_END. Otherwise the smx_net_update_state() re-
turns SMX_NET_CONTINUE . Consumers connected to the thread are signalled if the
thread terminates. This is accomplished through the function smx_net_terminate()
(line 7). It takes the set of output ports PO as argument and has no return value.

To instantiate a computational component as a thread the RTS provides the following
functions as macros:

SMX_NET_CREATE(f) takes the function name f of the computational component as
input argument and returns a pointer to the interface handler structure of a net,
i.e. a Streamix instance of the computational component. The macro allocates
memory space for the net interface structure.

SMX_NET_INIT(f,P, indegree, outdegree) takes the function name f of the compu-
tational component, the net interface structure, the number of input ports, and
the number of output ports as arguments (no return value). The macro allocates

Chapter 7 Toolchain for Streamix 126

memory space for channel arrays. These are needed to access channels by index
instead of accessing them by name.

SMX_NET_RUN(P, f) takes the net interface structure P and the function name f of the
computational component as arguments and returns a POSIX thread identifier.
The macro creates a POSIX thread with the function start_routine_net, as
defined in Algorithm 7.1, and a pointer to the net interface structure as argument
to the start routine.

SMX_NET_DESTROY(f) takes the function name f of the computational component and
the net interface structure as argument and frees the allocated memory space.

7.1.2 Implementation of Channels

Each channel is represented by a C structure. Hence, in contrast to computational
components, channels are passive elements and only serve as memory locations to store
message tokens in order to achieve decoupling in time and space (see Section 4.1). A
channel structure consists of the following elements:

type defines the type of a FIFO buffer that is associated to the channel. It can either
be a FIFO buffer that is fully coupled in synchronisation, fully decoupled or partly
decoupled (see Section 4.1.2).

name is a human readable identifier that is used in log messages. It is derived from the
port name of the connected producer net.

state indicates the state of the channel. The following states are possible:

SMX_CHANNEL_READY indicates that the channel is ready and has available
data.

SMX_CHANNEL_PENDING indicates that the channel is pending and is cur-
rently empty and blocking. If the channel is decoupled at the output, this
state is not possible.

SMX_CHANNEL_END indicates that the producer of this channel has termi-
nated. This state is set by the function smx_net_terminate of the pro-
ducer net.

fifo is a pointer to a FIFO buffer structure. In this structure the arriving message
tokens are stored until they are consumed by the consumer. The FIFO structure
is a circular buffer of static length. In addition to the circular buffer, the FIFO
structure has one more space to store the last message token if the circular buffer

Chapter 7 Toolchain for Streamix 127

is empty. This backup storage is used to duplicate the last message token if the
output of the channel is decoupled. A counter variable indicates the number of
occupied spaces in the circular buffer.

guard is a pointer to a structure that serves to bound the communication rate on this
channel (see Subsection 7.1.2.2).

collector is a pointer to a structure that serves to notify a summing routing node (a
node with multiple inputs) if a message token on any of the channels connecting
to a input port is available (see Subsection 7.1.2.3).

In order to protect critical sections such as the state of the channel or the count variable
in the FIFO structure, mutex (short for mutual exclusion) variables are used. Producer
and consumer threads are synchronized by conditional variables:

It is only possible to read from a channel if the channel is ready, i.e. the channel state
is set to SMX_CHANNEL_READY . Otherwise the read access is blocking until a
message token is written to the channel and the channel becomes ready. If a channel
is decoupled on its input, the channel is either ready or its producer is terminated, i.e.
the channel state is set to SMX_CHANNEL_END, but the channel is never pending.

It is only possible to write to a channel if the counter in the FIFO structure is lower
than the length of the circular buffer, i.e. there is still space in the circular buffer.
Otherwise the write operation is blocking until space is made available in the buffer. An
exception to this is when the channel is decoupled on its input. In this case, if all spaces
are occupied, the tail of the FIFO buffer is overwritten with the new message token.
Whenever a message token is written to the channel, the channel becomes ready. This
is signalled to the consumer thread connected to this channel.

The Streamix RTS library provides the following function macros to create and destroy
channels.

SMX_CHANNEL_CREATE(len, type) takes the specified length len of the channel buffer
and the channel type type as arguments and returns a pointer to the created
channel structure. The macro allocates the space for the channel and the FIFO
structure according to the specified length of the buffer. It further initialises
the state of the channel and the pthread mutex variables. The state is set to
SMX_CHANNEL_PENDING if the input is coupled in synchronisation. If the in-
put is decoupled in synchronisation, the state is set to SMX_CHANNEL_READY .

SMX_CHANNEL_DESTROY(ch) takes a pointer to the channel structure ch as argument
and frees the allocated memory for the channel structure and the FIFO structure.

Chapter 7 Toolchain for Streamix 128

In order to connect the channels to nets according to the dependency graph, specified
by the Streamix program, the following macro functions are provided by the RTS:

SMX_CONNECT(P, ch, f, pname, pmode) takes a pointer to a net interface structure P, a
pointer to a channel structure ch, the computational component function name
f , the port name pname, and the port mode pmode (e.g. in or out) as arguments
(no return value). The macro assigns the channel structure pointer to the corre-
sponding port in the net interface structure. This allows to access a channel from
the computational component function by name identification (easy access for a
human).

SMX_CONNECT_ARR(P, ch, f, pmode) takes a pointer to a net interface structure P, a
pointer to a channel structure ch, the computational component function name f ,
and the port mode pmode as arguments (no return value). The macro increases
the port counter and assigns the channel structure pointer to the corresponding
index port in the net interface structure. This allows to access a channel from
the computational component function by index identification (easy access for a
machine).

When programming the computational component function, a domain expert must use
predefined macros of the RTS library to access the connected channels. Note that for
all types of channels the same macro is used. Hence, the computational component
function is oblivious to the blocking semantics of the channel as well as to where the
other end of the channel is connected. The port identification in the macros is achieved
via macro concatenation by the preprocessor operator ‘##’. If a port name is passed as
argument that cannot be found in the net interface structure, the C compiler fails with
an error message. The interface handler is passed as a void pointer to the start routine
of a thread. The computational component function name is passed as argument to a
macro in order to typecast the interface handler to the net interface structure within
the macro. The following two macro functions are provided to access a channel:

SMX_CHANNEL_READ(P, f, pname) takes a pointer to the interface handler P, the com-
putational component function name f , and the port name pname as arguments
and returns a pointer to a message token structure. The macro can only access
input ports. Depending on the type of the connected channel, the message token
is removed from the buffer in the channel or is duplicated. Whether the access is
blocking depends on availability of data and the communication coupling specified
by the Streamix program.

SMX_CHANNEL_WRITE(P, f, pname,msg) takes a pointer to the interface handler P, the
computational component function name f , the port name pname, and a pointer to

Chapter 7 Toolchain for Streamix 129

a message token msg as arguments (no return value). The macro can only access
output ports. Depending on the type of the connected channel, the message token
is appended to the buffer in the channel or is overwriting an existing message token
in the channel buffer. Whether the access is blocking depends on availability of
space and the communication coupling specified by the Streamix program.

In order to work with message tokens the RTS library provides the following macro
functions to create and destroy message tokens:

SMX_MSG_CREATE(data, size, copy, free) takes a pointer to a data structure data, the
size of the data structure size, a copy function pointer, and a free function pointer
as input arguments and returns a pointer to the created message token structure.
The copy function defines the copy operation that is performed on the data stored
inside the message token structure once the message token is copied. This can
happen because of the decoupling of an input port of a net or because of a diverging
routing node. The copy function must take a void pointer to the data structure
and the size of the data structure as arguments and return a void pointer to the
copied data structure. If the copy function argument is set to Null, a memcpy() is
performed on the data structure instead. The free function defines the operation
that is performed on the data structure once a message token is destroyed. This
can happen if a message token is overwritten due to the decoupling of an output
port of a computational component or because message tokens are dismissed in a
rate-bound communication protocol. The free function must take a void pointer to
the data structure as argument and return nothing. If the free function argument
is set to Null, a free() is performed on the data structure instead.

SMX_MSG_DESTROY(msg) takes a pointer to a message token structure msg as argu-
ment and frees the allocated message token structure and performs the user-defined
free function on the data structure stored in the message token.

7.1.2.1 Implementation of Time-triggered Communication

In Section 4.2.1 I described the PNSC extension to achieve a time-triggered network
by introducing temporal firewalls. In the Streamix RTS, temporal firewalls with the
same rate are grouped into one single timer net that is associated to a single POSIX
thread. This allows to only use one timer for all temporal firewalls and automati-
cally synchronizes the temporal firewalls. The start routine of such a thread is de-
fined by the function start_routine_tf(), described in Algorithm 7.2. The function
start_routine_tf(P, T) takes the interface of the assembled temporal firewalls P,

Chapter 7 Toolchain for Streamix 130

Algorithm 7.2 PThread Start Routine of a Temporal Firewall
Require:
P, the net interface structure, associated to the timer net where PI and PO are
ordered sets of input and output ports, respectively.
T , a periodic timer structure with a period specified by the time-triggered Streamix
operator.

1: function start_routine_tf(P, T)
2: state ← SMX_NET_CONTINUE
3: smx_tf_enable(T)
4: while state = SMX_NET_CONTINUE do
5: msg ← smx_tf_read_inputs(PI)
6: smx_tf_write_outputs(PO, msg)
7: smx_tf_wait(T)
8: state ← smx_net_update_state(PI ,SMX_NET_RETURN)
9: end while

10: smx_net_terminate(PO)
11: return Null
12: end function

and the timer T as input arguments and returns Null. The interface P of a timer net
TN is a set of tuples 〈pi

k, p
o
k〉 where pi

k is an input port and po
k an output port of the k-th

temporal firewall grouped in the timer net TN . PI and PO each represent an ordered
set where a port pi

k ∈ PI and a port po
k ∈ PO belong to the k-th temporal firewall in a

timer net. The timer T is a periodic timer where the period is set to a time interval ttt,
specified by the tt operator of the Streamix language (see Section 6.4.5).

The behaviour of a timer net, as described by Algorithm 7.2, performs the following
actions: Before the thread starts to execute the while loop, the timer T is armed with
the function smx_tf_enable(T) which takes the timer structure T as input argu-
ment and returns nothing. The timer T is triggering periodically without being armed
again. The same as any other computational component, the body of the function
consists of a while loop where the stop condition depends on the value of the state
variable. The state variable is influenced by the function smx_net_update_state()
which returns the state SMX_NET_TERMINATE if all producer nets, connected to
the timer net, are terminated (see Section 7.1.1). In the while loop, the timer net is
first reading from the input of each temporal firewall and stores the message tokens in
the set msg (line 5). This is accomplished by the function smx_tf_read_inputs().
Next, all message tokens are written to the output of each temporal firewall with
the function smx_tf_write_outputs() (line 6). The function then blocks until
timer T expires (line 7). Finally, the state variable is updated with the function
smx_net_update_state() and the iteration starts at the beginning.

Chapter 7 Toolchain for Streamix 131

To detect whether a producer net, connected to a temporal firewall, has missed its
deadline, the function smx_tf_read_inputs() checks whether a message token is
available in the buffer of the channel connecting the producer net to the temporal firewall.
If no message token is available, the producer was not able to terminate its execution
before the deadline (due to Property 4.2) and the following error message is produced:

producer on channel ‘<channel>’ missed its deadline

where <channel> is a human readable identifier of the channel connecting the producer
to the temporal firewall. To detect whether a consumer net, connected to a temporal fire-
wall has missed its deadline, the function smx_tf_write_outputs() checks whether
a message token was overwritten in the buffer of the channel connecting the tempo-
ral firewall to the consumer net. If this is the case, the consumer net has missed its
deadline as it was not able to consume the message token from the previous round (see
Property 4.1). In this case the following error message is produced:

consumer on channel ‘<channel>’ missed its deadline

where <channel> is a human readable identifier of the channel connecting the temporal
firewall to the consumer net.

The RTS library provides the macro function SMX_TF_CREATE(ts, tns) to create the
timer interface structure. It takes the time specification in seconds ts and nanoseconds
tns as input parameters and returns a pointer to the created timer structure. The macro
function SMX_TF_DESTROY(T) takes a pointer to a timer interface structure T as input
argument and frees the allocated memory. The macro function SMX_TF_RUN(T) takes
a pointer to the timer interface structure T as input parameter and creates a thread,
associated with the routine defined in Algorithm 7.2. The individual temporal fire-
walls are added dynamically to the timer interface structure through the macro function
SMX_CONNECT_TF(T , chin, chout). This macro takes a pointer to the timer interface
structure T , a pointer to the input channel chin, and a pointer to the output channel
chout as input parameters.

7.1.2.2 Implementation of Rate-bounded Communication

In Section 4.2.2 I described the rate-control extension of the PNSC model. In the
Streamix RTS the rate-control is achieved with the help of a timer (provided by the
timerfd library) that is accessed through the guard structure, assigned to the guard field
of the channel structure. The guard structure consists of a file-descriptor pointing to
the timer and the minimal inter-arrival time specified by the Streamix program. If no

Chapter 7 Toolchain for Streamix 132

rate-control is specified on a channel, the guard field of the channel structure is set to
Null.

If the output port, connected to a rate-controlled channel, is not decoupled, back-
pressure is excerpt on the producer in order to not exceed the maximal rate: When
performing a blocking write operation to a channel where a rate-control is specified, the
write process not only blocks if the channel buffer is full but it also blocks until the timer
has reached the specified minimal inter-arrival time. The timer is reset and armed after
a message token has successfully been written to the rate-controlled channel buffer.

In the case of communication decoupling where the output port of the producer is de-
coupled, the rate-control is achieved by discarding message tokens. In Section 4.2.2 I
introduced four protocols to achieve rate-bounded communication in a decoupled chan-
nel. From the four protocols I implemented the unbuffered Minimal Inter-release Time
(MIRT) protocol because it does not affect the latency of a transmitted message to-
kens and guarantees that the communication rate never exceeds the specified bound.
Because the protocol is unbuffered, no separate thread is required to handle the rate-
control: The decision of whether a message token is discarded is made immediately after
a write operation. A message token is written to the rate-bounded channel only if the
minimal inter-arrival time is exceeded, i.e. the timer has reached its threshold. Other-
wise a message token is discarded. The timer is reset and armed after a message token
has successfully been written to the rate-controlled channel buffer.

The RTS library provides the macro function SMX_CONNECT_GUARD(ch, ts, tns) which
takes a pointer to a channel structure ch, the minimal inter-arrival time in seconds
ts, and the minimal inter-arrival time in nanoseconds tns as input arguments (no return
value). The minimal inter-arrival time is stored in a timespec structure (time.h library)
where time is specified by two integer values: one specifying the seconds and one the
nanoseconds. The macro allocates the memory for the guard structure, initializes and
arms the timer, and assigns the structure pointer to the guard field of the channel
structure that was passed as an argument.

7.1.2.3 Implementation of Routing Nodes

Routing nodes are computational components that are implicitly created by the Streamix
coordination language (see Section 6.2.2.2). Thus, the computational component func-
tion is provided by the RTS library. In addition to this, the net interface structure of
a routing node is slightly different to the net interface structure of a user-defined box:
First, ports are not accessed by name matching but by index matching. Hence, it is

Chapter 7 Toolchain for Streamix 133

sufficient to store the connecting channel structure pointers in an array instead of a spe-
cific field for each port. Second, because a summing routing node is non-deterministic
it is allowed to peak whether a message is available on a channel before performing a
blocking read. Hence, instead of using the state variable of the channel structure as
blocking condition an alternative conditional variable is used. This variable is stored in
a collector structure.

A collector structure is initialised with the macro function SMX_NET_RN_INIT(P)
which takes a pointer to the routing node interface structure P as an argument, allocates
the memory space for a collector structure and assigns the collector structure to the corre-
sponding field in the routing node interface structure. The collector structure has a state
field and a count field. The state field can take the values SMX_CHANNEL_READY ,
SMX_CHANNEL_PENDING, and SMX_CHANNEL_END (the same as the state
field of the channel structure). The count field indicates the number of available mes-
sage tokens on all channels connected to the input ports of the routing node. The fields
state and count of the collector structure form a critical section and are protected by a
mutex.

The macro function SMX_CONNECT_RN(P, ch) is used to assign the collector structure of
a routing node to a channel. It takes a pointer to the net interface structure P of the rout-
ing node and a pointer to a channel structure ch as input arguments (no return value).
If the collector structure of a channel is not Null, a write access to this channel increases
the count field by one and changes the collector state to SMX_CHANNEL_READY .

In order to access a channel that is connected to the input port of a routing node,
the implementation does not use the macro function SMX_CHANNEL_READ() as a user-
defined box implementation would. Instead a custom read access is performed that is not
blocking on the channel state but on the state of the collector structure assigned to the
net interface structure of the routing node: As long as the state of the collector structure
of the routing node is SMX_CHANNEL_PENDING the read access is blocking. This
allows a control-node to trigger whenever a message token is available on any channel
connected to its input ports.

Every message token that reaches a routing node is copied to each channel, connected to
an output port of the routing node. The write operation is equivalent to the operation
performed by the macro function SMX_CHANNEL_WRITE().

Chapter 7 Toolchain for Streamix 134

7.2 smxc - The Streamix Compiler

The Streamix compiler smxc is implemented in C. Its main job is to read an input
Streamix file, i.e. a hierarchical network description written in the language Streamix
(as defined in Chapter 6), and translate it into a flat dependency graph of the network.
This generated dependency graph holds all the necessary information for the runtime
system to generate a multi-threaded application. The compiler consists of a scanner, a
parser, a context checker, a network generator, and a SIA generator. When executing the
compiler smxc one input file, describing the Streamix program, is passed as argument.
The following options can be specified:

-h displays the usage message and exits the program.

-v displays the version number and exits the program.

-s <path> specifies the path to a file where the SIA descriptions of the user-defined
boxes are stored. This option expects a path to a file as argument.

-S skips the automatic SIA generation step (no SIA graphs are produced).

-p <path> specifies the build path to the folder where the generated output files are
stored. This option expects a path to a folder as argument. The default path is
./build/.

-o <file> specifies the filename of the generated network dependency graph. This
option expects a filename as argument. The default name is out.<format>

where <format> is specified by the -f option.

-f <format> specifies the format of the produced output files. This option expects
either gml [68] or graphml [69] as argument. The default format is graphml [69].

Whenever the compiler detects an error or an inaccuracy in the Streamix program an
error or a warning message is produced. Such a message is of the form

<filename>: <line#>: <type>: <message>

where <filename> indicates the name of the file that caused the message, <line#>
the line number, and <type> whether the message is a warning or an error. In the
following subsections I will describe each error or warning message in detail but, for
the sake of readability, I will omit all information but the <message> itself. In the
messages I will use different tags as placeholders for information that depends on the
Streamix program producing the messages:

Chapter 7 Toolchain for Streamix 135

<symbol> stands for a user-defined symbol.

<net> stands for a user-defined, human-readable identifier of a net.

<id> stands for an internal identifier of a net.

<port> stands for a user-defined, human-readable identifier of a port.

<sia> stands for a user-defined, human-readable identifier of a SIA.

<state> stands for a user-defined, human-readable identifier of a SIA state.

<action> stands for a user-defined, human-readable identifier of an SIA action.

The Streamix scanner is generated with flex, the fast lexical analyzer generator4. The flex
definition file in the Streamix compiler repository can be found in the file streamix.lex.
The Streamix parser is generated with bison, a general purpose parser generator5. The
parser is defined in the file streamix.y in the Streamix compiler repository. In the
parsing step, the Streamix program is represented as an Abstract Syntax Tree (AST)
which is then passed to the context checker. In the following subsection I will describe
the context checker, the graph analyser and the SIA generator in more detail.

7.2.1 The Streamix Context Checker

In order to check the context of the symbols in the Streamix program, the compiler uses
the AST generated by the parser and iterates through each node. Every defined symbol
in the Streamix program is stored into a hash table (library uthash6) where each symbol
has a unique key 〈name, scope,mode〉 to avoid collisions. name describes the name of
the symbol, scope the scope in which the symbol is defined, and mode describes the
direction of ports. The mode is omitted for symbols that do not describe ports. For
ports, mode is added to the key string in order to prevent two ports with the same name
and the same mode in a scope. The hash table is then used to check whether a symbol
is used in the right context of the Streamix program. If any of the following rules does
not hold, the compiler produces an error message:

1. A symbol must be defined before it is used, otherwise an error message is produced:

use of undeclared identifier ‘<symbol>’

4The project homepage of flex can be found here: https://github.com/westes/flex
5The project homepage of bison can be found here: https://www.gnu.org/software/bison/
6The project homepage of uthash can be found here: http://troydhanson.github.io/uthash/

Chapter 7 Toolchain for Streamix 136

In the following I use ‘. . . ’ to indicate that something else is required for a correct
syntax which is omitted here to keep the examples minimal. A symbol can be
defined through a

• box assignment, e.g. box A in A = fa box(...)

• net assignment, e.g. net N in N = ...

• wrapper declaration, e.g. wrapper W in wrapper W(...)...

• port declaration in a box, wrapper or net prototype, e.g. port x in
A = box fa(in x)

2. A symbol must be unique in its scope, otherwise the following error message is
produced:

redefinition of ‘<symbol>’

The uniqueness of a symbol depends on its name, its scope, and its mode if the
symbol is a port. Scopes, in the following denoted as <scope>, are defined as
follows:

• The body of a wrapper has its own scope,
e.g. wrapper W(...){<scope>}net(...).

• The port interface declaration of a box, wrapper, or net prototype has its
own scope, e.g. A = box fa(<scope>).

3. The symbol name of a net prototype must match the symbol name of a net defi-
nition in this scope. Otherwise the following error message is produced:

undefined reference to net ‘<symbol>’

4. Net prototypes must have a net definition with a matching symbol name. The port
list of a net prototype must match with its corresponding net definition, hence the
condition as defined in Equation 6.8 must hold. If the condition does not hold,
the following error message is produced:

conflicting types for ‘<symbol>’

7.2.2 Generation of Dependency Graph

At the same time as the context check of symbols is performed, the Streamix program
is checked for connection errors and the dependency graph is generated with all valid
connections. In order to have a powerful graph tool at hand, the igraph7 library is

7The project homepage of igraph can be found here: http://igraph.org/c/

Chapter 7 Toolchain for Streamix 137

used to represent the dependency graph. As Streamix allows a hierarchical structure of
networks, in a first step a local dependency graph is built for each net at each hierarchy
level. Only in a second step, the network is flattened into one big dependency graph.

The nodes of a dependency graph represent net instances and edges between different
nodes are used to represent the interactions of the net instances. When building the local
dependency graphs on one hierarchy level, for each net an instance structure is generated
and attached to its corresponding node in the graph structure. The net, represented
by a single node, can be a box with an associated user-defined implementation, or
the net itself can be a network of a different hierarchical level, composed out of other
nets. An instance structure is defined by the tuple 〈id, name, type〉. The id is a unique
identifier corresponding to the id of the graph node that is representing the instance
in the dependency graph. The name is the human readable identifier, given to the
instance by the programmer (this name is not necessarily unique). The type is used
internally to distinguish between different types of instances (e.g. wrapper, boxes, nets).
The following checks are performed in order to verify whether the program respects the
Streamix connection rules as defined in Section 6.4:

1. At least one input port of a net must be triggering. This means that it is not
allowed to decouple all input ports if the net is event-triggered. Otherwise the
following error message is produced:

all input ports are decoupled

2. Modes of ports with matching names must be of opposite direction when forming
one of the following connections:

• A self-loop connection as defined in Definition 6.1.

• A serial connection as defined in Definition 6.4.

• A bypass connection of wrappers as defined in Equation 6.13.

Modes of ports with matching names must be of the same direction when forming
connections between a wrapper and its inner net as defined in Equation 6.14. The
port mode of two ports with matching names does not matter when forming a side-
port connection as defined in Definition 6.2. If a port mode conflict is detected,
the following error message is produced:

conflicting modes of ports ‘<port>’ in ‘<net>’(<id>)

and ‘<net>’(<id>)

3. A serial connection must spawn at least one channel. If the serial connection
operator is used, it must perform a connection. Otherwise the compiler assumes

Chapter 7 Toolchain for Streamix 138

that the intention of the programmer is not represented by the actual connection
and throws the following error message:

no port connection in serial combination

‘<net>(<id>).<net>(<id>)’

4. The deterministic parallel composition operator ‘|’ (see Definition 6.7) is not al-
lowed to spawn a summing control flow node (see Section 6.2.2.2), i.e. two output
ports with the same name and the same collection (or no collection) are not al-
lowed. This is indicated by the error message

nondeterminism on deterministic operation

‘<net>(<id>)|<net>(<id>)’, use ‘!’ instead

5. The locality enforcing serial composition operator ‘.’ (see Definition 6.5) must
connect all ports that are not assigned to a port collection. A port is not assigned
to a port collection if the condition defined in Equation 6.7 holds. If such ports
cannot be connected, the following error message is produced:

unconnected port ‘<port>’ in ‘<net>’(<id>) of serial

combination ‘<net>.<net>’

-> for bypassing, use operator ‘:’ or a wrapper

6. If a net is framed by temporal firewalls through the operator tt (see Section 6.4.5)
but the net has no open ports, the operator has no effect as the net is not interacting
with any other net. To indicate this situation the following warning is produced:

net has no open ports, operator ‘tt’ has no effect

Once the local dependency graphs are built on each hierarchy, they are combined into
one big dependency graph where all hierarchies are removed. If a local net, defined by a
local dependency graph, is instantiated multiple times on a higher hierarchy level, every
instance in the local dependency graph has to be replicated recursively in the flattened
graph. On the flattened dependency graph the following two final connection checks are
performed:

1. Every flow control node must have at least one output and at least one input. If
this condition is not met the following error message is produced:

single mode in routing node ‘smx_rn’(<id>)

Because of side-port connections and the parallel composition, it is possible that
routing nodes are generated where all connected ports are of the same mode. If
such a routing node is not further connected, the aforementioned error occurs.

Chapter 7 Toolchain for Streamix 139

2. In the final dependency graph all ports must be connected. Otherwise the error
message

port ‘<port>’ in ‘<net>’(<id>) is not connected

is produced.

In the resulting flattened dependency graph each vertex represents either an implicitly
created routing node or a user-defined box. Every hierarchical element is replaced by
its net definition. This graph of the network is then written to a file. The language in
which the graph is defined in the output file can be chosen between the Graph Modelling
Language (GML) [68] and the GraphML [69] format which is based on the Extensible
Markup Language (XML). The GraphML format is preferred because it is more com-
pletely implemented in the igraph library. The produced dependency graph has the
following attributes:

Vertex Attributes

id (number) is an internal unique identifier of the net.

label (string) is a human-readable identifier of the net.

func (string) is the function name of the computational component implementa-
tion.

static (bool) indicates whether the net is static or not (see Section 6.2.4).

pure (bool) indicates whether the net is pure or not (see Section 6.2.4).

Edge Attributes

id (number) is an internal unique identifier of the channel.

label (string) is a human-readable identifier of the channel.

nsrc (string) is a human-readable identifier of the source port of the channel (the
value is set to "smx_null" if it is identical to label).

ndst (string) is a human-readable identifier of the destination port of the channel
(the value is set to "smx_null" if it is identical to label).

dsrc (bool) indicates whether the source port is decoupled.

ddst (bool) indicates whether the destination port is decoupled.

len (number) is defining the length of the channel, i.e. the space for len number
of message tokens.

sts (number) is the timing information in seconds of the connected producer net.

Chapter 7 Toolchain for Streamix 140

stns (number) is the timing information in nanoseconds of the connected pro-
ducer net.

dts (number) is the timing information in seconds of the connected consumer net.

dtns (number) is the timing information in nanoseconds of the connected con-
sumer net.

type (number) indicates the type of timing annotations (0: no timing, 1: time-
triggered, 2: time-bound).

7.2.3 Generation of Interaction Protocol Descriptions

Optionally, the compiler also accepts a SIA description file where the interaction protocol
of user-defined boxes is described (see Section 6.2.3). This SIA description file is read
by the Streamix compiler and then scanned, parsed, and a graph, representing the SIA
is generated. As with the Streamix language, the scanner is produced with flex and the
parser with bison. A user-defined SIA is associated to a user-defined box by matching
the name of the computational component implementation with the name of the SIA.
The context of symbols is checked as follows:

• Each SIA name must be unique in a Streamix program (the same as the function
name of the computational component implementation). If a SIA is detected
where the name matches an already existing SIA, the following error message is
produced:

redefinition of ‘<sia>’

• Each state in a SIA must be defined with a unique name. Otherwise the following
error message is produced:

redefinition of ‘<state>’

• Each state in a SIA must be defined before it can be used in a transition definition.
Otherwise the following error message is produced:

use of undeclared identifier ‘<state>’

• Each action in a SIA must correspond to a port of the corresponding Streamix box.
If no such correspondence can be found, the following error message is produced:

action ‘<action>’ does not match the box signature

Chapter 7 Toolchain for Streamix 141

For each box in the Streamix program, the compiler produces a graph file representing
the SIA of the box. Such a graph is either created according to the definition provided
by the programmer or the SIA is generated automatically, as described in Section 6.2.3.
The representation language of the SIA output graph files is specified as either GML [68]
or GraphML [69] (the same format as for the dependency graph is used). SIA states
are represented by graph vertices and SIA transitions are represented by graph edges.
A SIA graph has the following attributes:

Graph Attributes

sia (string) is an internal unique identifier of the SIA.

name (string) is a human-readable identifier of the SIA.

Edge Attributes

name (string) is an internal unique identifier of the SIA transition.

pname (string) is a human-readable identifier of the action, labelling the transi-
tion.

mode (character) describes the SIA action type where ‘!’ stands for an output
action, ‘?’ for an input action and ‘;’ for an internal action.

7.3 smxrtsp - The Streamix RTS Preprocessor

The Streamix RTS preprocessor smxrtsp is implemented in C and uses the igraph li-
brary8. It takes the network dependency graph, generated by the Streamix compiler, as
an input and produces a C program that creates and initialises the network, described
by the network dependency graph, using macros defined in the Streamix RTS (see Sec-
tion 7.1). The benefit from this is that the initialising step of a final program is much
more performant because no parsing of the entire network graph is necessary as this was
already performed by the RTS preprocessor. Further, the RTS preprocessor generates
a C header file that defines the net interface structures for each net. This allows to use
macro concatenations in the RTS library to access ports by name without having to
perform a lookup during runtime.

The code generated by the Streamix RTS preprocessor can be linked with the Streamix
RTS system library and compiled together with the user-defined computational compo-
nent function definitions into the final executable program.

8The project homepage of igraph can be found here: http://igraph.org/c/

Chapter 7 Toolchain for Streamix 142

The second purpose of the Streamix RTS preprocessor is to extend the network depen-
dency graph such that it corresponds to a PNSC model. In order to achieve this, each
channel, represented by an edge in the dependency graph, needs to be represented as a
PNSC process. Hence, for each edge e in the dependency graph a new vertex v and two
new edges e1 and e2 are introduced. Let source(e) describe the source vertex of an edge
e and target(e) describe the target vertex of an edge e, then vertex v must be connected
such that the following condition holds:

source(e) = source(e1) ∧ target(e) = target(e2) ∧ target(e1) = v ∧ source(e2) = v

Edge e is removed from the graph. Further, all the vertex and edge attributes are re-
moved and replaced by an attribute sia. The vertex attribute sia is a unique identifier
(string) of the net or the FIFO channel, represented by the vertex. The edge attribute
sia is a unique identifier (string) of the synchronous channel, represented by the edge.
These are the only attributes that are relevant for the SIA checker (described in Sec-
tion 7.4). In order to cope with the different scopes of a Streamix program and to
prevent naming conflicts in the flattened dependency graph (described in Section 7.2.2)
an internal naming scheme is used.

In a last step, the RTS preprocessor generates SIA description graphs for every implicitly
generated process, i.e. for routing nodes and for FIFO channels. The interaction protocol
of a routing node is defined in Section 6.2.2.2. The interaction protocols of the different
types of FIFO channels are defined in Section 3.3.1 and Section 4.1.2.

When executing the Streamix RTS preprocessor smxrtsp it takes the network depen-
dency graph input.smx generated by the Streamix compiler as input and allows the
following options:

-h displays the usage message and exits the program.

-v displays the version number and exits the program.

-p <path> specifies the build path to the folder where the generated output files are
stored. This option expects a path to a folder as argument. The default path is
./build/. The generated SIA description files are stored in a folder sia at the
build path. The following output files are generated:

build/input.c contains the main function where threads are spawned for each
net and nets are connected by channels according to the dependency graph.

build/boxgen.c defines the start routine of a thread for each box where the
computational component function provided by the domain expert is called.

Chapter 7 Toolchain for Streamix 143

build/boxgen.h defines the net interface structure for each computational com-
ponent function, providing an interface to access the channels from within the
function.

build/sia_input.graphml describes the PNSC dependency graph where each
FIFO channel is represented as a vertex in order to work with the SIA checker.

build/sia/smx_rn_i.graphml describes the SIAs for each routing node.

build/sia/smx_ch_i.graphml describes the SIAs for each channel.

-f <format> specifies the format of the produced output files. This option expects
either gml [68] or graphml [69] as argument. The default format is graphml [69].

7.4 smxsia - The Permanent Blocking Analysis

The permanent blocking analysis smxsia is a prototype implementation of the perma-
nent blocking analysis, described in Chapter 5. It is implemented in python and makes
use of the igraph library9. In order to perform the permanent blocking analysis, all
SIA graph description files generated by the Streamix compiler and the Streamix RTS
preprocessor are composed incrementally. This process is described by Algorithm 7.3.
In the algorithm, the function readSia reads a SIA graph description file and returns

Algorithm 7.3 Incremental SIA composition
Require:

gnw, the dependency graph produced by the RTS preprocessor

1: sia1 ← readSia()
2: while sia2 ← readSia() do
3: shared ← getShared(gnw, sia1, sia2)
4: sia1 ← foldSia(sia1, sia2, shared)
5: gnw ← abstractPNSC(gnw, sia1, sia2, shared)
6: end while

a graph structure representing the SIA. The network dependency graph produced by
the RTS preprocessor is used to identify shared actions of SIAs defined in Equation 3.6.
This is possible because of the relation between PNSC process ports and SIA actions as
defined in Section 3.2.3. This is implemented in the function getShared which takes
the dependency graph gnw and two SIAs as input and returns the shared actions shared.
The function foldSia takes two SIAs and the shared actions between the SIAs as in-
put arguments and returns the composed SIA. The composition is performed with the
composition operator ⊗ defined in Definition 3.4. The function abstractPNSC takes

9The project homepage of igraph can be found here: http://igraph.org/python/

http://igraph.org/python/

Chapter 7 Toolchain for Streamix 144

the dependency graph gnw, two SIAs, and the set of shared actions between the two
SIAs as input arguments and returns the abstracted dependency graph where the two
processes corresponding to the SIAs passed as input argument are abstracted according
to Definition 3.2. The loop is repeated until all SIA description files are read.

Finally, the permanent blocking analysis as described in Section 5 is performed on the
resulting composed SIA. If a permanent blocking situation is detected, error messages
are produced to indicate the permanent blocking state and the name of the action that
is blocked.

When executing the SIA permanent blocking analysis smxsia it takes the network de-
pendency graph and all SIA description files as input arguments and allows the following
options:

-h displays the usage message and exits the program.

-f <format> specifies the format of the produced output files. This option expects
either gml [68] or graphml [69] as argument. The default format is graphml [69].

-o <file> specifies the filename of the generated SIA description graph. This op-
tion expects a filename as argument. The default name is out.<format> where
<format> is specified by the -f option.

7.5 Discussion

All the tools presented in this chapter are prototypes and only serve as a proof of concept.
That being said, I spent quite some effort to implement unit and integration tests and
performed memory analysis with the valgrind tool10. The source code of the RTS and the
compiler are well documented, however, the source for the permanent blocking analysis
and the RTS preprocessor are lacking in this respect.

In terms of features, it is especially noteworthy that from within a computational com-
ponent function, channels are accessed through one macro for read access and one macro
for write access, independently of the channel that is connected. This represents well
the exogenous property of the coordination language Streamix. Further, it is very handy
that channels can be accessed through name matching. I achieved this without any cost
in terms of runtime performance because I made use of macro concatenations of the C
preprocessor.

10The project homepage of valgrind can be found here: http://valgrind.org/

http://valgrind.org/

Chapter 7 Toolchain for Streamix 145

7.5.1 Scheduler of the Streamix RTS

Even though the focus of my thesis is not on the scheduling aspect of Streamix programs,
it cannot be left unmentioned. The Streamix RTS does not provide a scheduler but
relies on the Completely Fair Scheduler (CFS) provided by the linux kernel. This is not
a practical solution for a time-critical system but it serves its purpose for a prototype
implementation that aims at testing the usability of the language Streamix.

It is interesting to note that newer versions of linux kernels (version 3.14 and newer) in-
clude a real-time scheduler that supports Earliest Deadline First (EDF) scheduling which
allows to check whether a set of tasks is schedulable (given the Worst-case Execution
Time (WCET) of the tasks).

The close relation between software and hardware of Cyber-physical Systems (CPSs)
and its implications on multi/many-core programming is discussed in a recent paper by
Castrillon et al. [5] where they survey existing models and tools.

7.5.2 Order of SIA Composition

The SIA checker composes the SIAs in the order they are provided as input parame-
ters. It does this after the Streamix compiler and RTS preprocessor have generated the
flattened out dependency graph of the PNSC. Given that Streamix provides operators
that indicate whether two nets are connected or not (serial and parallel composition
operators), it would make sense to perform SIA composition operations at compile time
of the Streamix compiler. This would allow to perform further checks with Streamix
net prototyping and simplify intermediate composed SIAs to reduce the state space.
Further, as mentioned in Chapter 5, reducing the state space of composed SIAs should
also be possible by removing internal actions after a composition.

7.5.3 Static and Pure Nets

The coordination language Streamix allows to annotate nets with the keywords static
and pure. The current RTS prototype does not make use of these annotations. The
reason is that the current implementation builds a static network of connected POSIX
threads but does not change the network dynamically at runtime. Consequently, no
relocation or proliferation of nets is done.

Chapter 7 Toolchain for Streamix 146

7.6 Chapter Summary

In this chapter I provided technical details on the set of tools I implemented for the
Streamix coordination language project. This includes the compiler smxc, the RTS
preprocessor smxrtsp, the RTS library, and the permanent blocking analysis smxsia.
For more detailed information for specific functions and structures, please refer to the
documentation in the source code, provided on GitHub11.

11Streamix root project: https://github.com/moiri/streamix

https://github.com/moiri/streamix

Chapter 8

Related Work

In this chapter I discuss existing work which I used as an inspiration for my thesis or
is related to some aspects of it. Section 8.1 discusses the topic of interface theory and
related models that served as an inspiration for the model of Chapter 3. Section 8.3
relates the coordination aspects of Streamix and its underlying model, discussed in
Chapter 3, Chapter 4, and Chapter 6, to existing coordination models and languages.
Finally, Section 8.4 relates the permanent blocking analysis, described in Section 5, to
existing work in this area and I discuss specific properties of languages and models,
mentioned in previous section, with respect to permanent blocking.

8.1 Interface Theory

For complex component-based system designs, compatibility checks need to consider
the behaviour of components and their reaction to the environment they are placed in.
This problem was addressed by Lynch and Tuttle when they introduced Input/Output
Automata (IOAs) [70]. They present a model that allows to describe the behaviour of
an algorithm and to compose the descriptions hierarchically. The description is done in
the form of an automaton that captures the order of input, output, and internal actions
of an algorithm. The concept was later adopted by de Alfaro and Henzinger [15] for
their work on Interface Automata (IAs), a model to describe the interface of compo-
nents. While IAs are syntactically similar to IOAs, the composition operation is defined
differently. This is due to the conceptual difference between the two models with respect
to the assumptions made on the environment. An IOA has to accept any input of the
environment, independent of the state it is in. This lies in contrast to an IA which
assumes a helpful environment. This means that IOAs must be able to cope with any
environment, while, in the case of IAs, the compatibility check returns a valid result if

147

Chapter 8 Related Work 148

there is at least one environment that is compatible. IOAs are called input-enabled or
pessimistic, while IAs are called optimistic. As a consequence, the input operations of
IAs become blocking. IAs and IOAs have been combined by Larsen et al. in their work
on Interface Input/Output Automata (IIOAs) [16]. By formally separating assumptions
and specifications of a component, the authors eliminate the blocking inputs of IAs.
The separation is achieved by describing each aspect with a separate automaton. The
work was further extended in [18] where they introduce Modal Input/Output Automata
(MIOAs) in order to distinguish between must and may modalities of transitions. The
modalities are used to indicate whether an instantiation of a MIOA must support the
transitions of the generic system description or may be omitted.

Synchronous Interface Automata (SIAs), introduced in this dissertation, are syntactical
similar to IAs. There is, however, a fundamental difference in the blocking semantics of
output actions. Whenever an output action is produced by an IA it must be accepted
by the environment and cannot be blocked by an action that is controlled by another
component (output or internal action). A state where an output action cannot be
served without blocking is called an error state: The error state of a composed IA
P ⊗ Q is a state where P produces an output that cannot be served by an input of Q
or where Q produces an output that cannot be served by an input of P . This semantics
allows to guarantee that if a composed IA has no non-autonomously reachable error
states, autonomous actions of one component are always served by the other. IAs are,
however, a simplification of the synchronous communication semantics and the model
can therefore not be used to detect permanent blocking states. SIAs, on the other hand,
have blocking input and output actions in order to model synchronous communication
and therefore allow to check for the possibility of being blocked in a blocking state
indefinitely. Simply put, IOAs and IIOAs are neither blocking on inputs nor outputs,
IAs are only blocking on inputs, and SIAs are blocking on inputs and outputs.

Hennicker and Knapp [17] developed a theory based on both, IAs and MIOAs where
they not only focus on a pairwise component analysis but consider the interoperability
of an assembly of components. They propose to check that the assumption of each
component on its environment (the rest of the network) is met, i.e. given an assembly of
components A = {C1, . . . , Cn} and an operation

⊗
〈A〉 denoting the n-ary composition

of the assembly of components, they compute
⊗
〈A \ Ci〉 ⊗ Ci for each component Ci.

8.2 Mixed-criticality Models

In Chapter 4 I described an extension of the Process Network with Synchronous Com-
munication (PNSC) model to allow time-triggered processes to coexist and interact with

Chapter 8 Related Work 149

event-triggered processes. To my knowledge the PNSC model is the first model to in-
corporate time-triggered and event-triggered semantics where interaction between the
two is possible with Cross-criticality Interfaces (CCIs). However, the co-existence of
time-triggered and event-triggered communication paradigms on the same system has
already been discussed in the past: Pop et al. proposed to separate communication into
two phases and statically pass them as input to the scheduler [71]. The work of Ferreira
et al. on FTT-CAN is similar to this concept [24]. Steiner proposed a scheduler for
mixed-critical CPSs using the concept of schedule porosity [25]. Obermaisser proposed
an implementation of the Controller Area Network (CAN) bus, which is event-driven,
on a system based on the time-triggered communication principle using a tunnelling
approach [26]. In terms of mixed-criticality systems, Burns et al. provide a review doc-
ument that is constantly updated and maintained [2].

Tan et al. made the argument that given that the human society is event-driven, fu-
ture Cyber-physical Systems (CPSs) should be event-triggered [46]. Given that today
most critical applications employ the Time-triggered Architecture (TTA) because of its
predictability and fault-tolerance it is unlikely that the time-triggered model will be re-
placed completely. But because of efficiency reasons and because event-triggered models
represent the physical world better the interaction of the two systems is becoming more
frequent [61].

8.3 Coordination Models and Languages

Since the publication of the first coordination language Linda [32], a multitude of co-
ordination languages have been proposed, based on the same general principle of tuple
space [50, 51]. In their landmark survey on coordination languages [41] Papadopou-
los and Arbab distinguish between data-driven and control-driven coordination lan-
guages where languages based on the tuple space model fall into the former classifica-
tion. Streamix is a control-driven coordination language because the underlying PNSC
model is component-based and corresponds to the black-box approach where the com-
ponent itself is unaware of being coordinated (such a model is also called an exogenous
coordination model [33]). In the following I will describe several coordination models
and languages in more detail and compare them to Streamix and its underlying model
PNSC.

Chapter 8 Related Work 150

8.3.1 S-Net

A first approach of coordinating streaming applications was introduced with StreamIt [8],
a language that allows to create a loosely structured streaming network by interconnect-
ing computational components, called filters, with network constructors such as split-
join, feedback, or simple one-to-one streams. The fully fledged coordination language
S-Net [10] is also based on streaming networks but unlike StreamIt, S-Net is exogenous
and achieves a tighter structuring with network operators. S-Net uses binary operators
to construct a streaming network from functional components, interlinked by First-
in, First-out (FIFO)-channels. S-Net aims at exploiting the inherent pipelined network
structure of streaming applications to run components in parallel. Feedbacks are avoided
by replicating components dynamically and building a pipeline with the replicas. As a
consequence, S-Net relies on the requirement that all components are pure, i.e. purely
functional and therefore without persistent state, and of type Single Input, Single Out-
put (SISO). S-Net features an extensive type system which allows to build arbitrary
networks through concepts like flow inheritance and sub-typing. The concept of S-Net
to use binary operators to construct a network out of pure SISO components is very ap-
pealing because it allows to describe networks in a very concise and structured way and
imposes a fixed information flow from the left to the right. However, the complex type
system of S-Net makes it exceedingly hard to understand how message tokens are routed
in an S-Net network, which contradicts the conciseness of the network operators to some
extent. Also, the requirement of only accepting pure components makes S-Net not very
suitable for applications with legacy code because it is hard to transform components
with persistent state into a system of stateless components.

Streamix is similar to S-Net with respect to their blocking semantics as they both are
similar to the model of Kahn Process Network (KPN) [23]. Further, Streamix borrows
the concept of using binary operators to describe a network in a structured way from
S-Net. The underlying model of the two coordination languages, however, differs largely
because S-Net targets transformational systems and aims at exploiting parallel archi-
tectures by dynamically proliferating components while Streamix targets CPSs where
predictability and analysability is key. One major difference is that Streamix allows
components with persistent state, internal synchronisation points, and multiple inputs
and multiple outputs while Streamix restricts components to be pure and of type SISO.
Consequently, the semantics of the network operators are different in both languages:
The network operators of S-Net are specifically designed to allow the programmer to
explicitly control how parts of the application are executed concurrently on a multicore
architecture. While the operators in Streamix also provide information on whether there
is a direct dependency between operands or not, they serve more the purpose of letting

Chapter 8 Related Work 151

a programmer compose reactive networks in a structured manner. By doing this, some
of the expressiveness of the language is lost because dependencies are not immediately
observable through the operators. What is gained, however, is a convenient and con-
cise way of describing reactive systems. Also, Streamix does not rely on type routing
which preserves observable connectivity information at the level of the operators and,
thus, provides more local network information than S-Net does. In order to preserve
analysability of the system, the underlying PNSC model provides an interface language
(SIAs) to describe the interaction behaviour of components with their environment.

8.3.2 BIP

The coordination language Behaviour, Interaction, Priorities (BIP) [72, 73] is a lan-
guage that allows to compose and coordinate concurrent components. A three-layered
approach allows a clear separation between computation and coordination. The be-
haviour layer is an automata-based model that describes the behaviour of a component
and the interaction of the component with its interface. The interaction layer describes
connections between the interfaces of components. The priority layer is used to impose
scheduler constraints. Connections in BIP are stateless, as are the basic connections
in the PNSC model presented in this dissertation. By extending the PNSC model,
however, a library of modular, potentially stateful channels is provided (e.g. FIFO chan-
nels). Further, connections in the PNSC model are one to one while in BIP multiple
ports can form a connection. The interaction layer specifies the level of synchronisation
(e.g. rendez-vous, broadcast). The interaction model of BIP does not support a decou-
pling mechanism as described in Section 4.1.2. In BIP, the composition of components
is achieved through user-defined connectors where port connections are explicitly listed.
In Streamix this is avoided with the help of network operators.

An interesting application of BIP is described in [74] where the behaviour layer is ex-
tended by timed automata. This extended BIP model is then used to first, describe
a platform independent timing behaviour of a component and second, to represent the
physical timing behaviour of a hardware platform. Using a composition operation it
can then be checked whether the timing behaviour of the application is compatible with
the timing behaviour of the hardware platform. Given the similarity between the two
models, it should be possible to apply this method on the PNSC model.

8.3.3 Giotto

Giotto [56] is a coordination language that allows the implementation of concurrent
real-time tasks while providing composable I/O behaviour. The aim is to provide an

Chapter 8 Related Work 152

abstraction for real-time systems to make real-time software less dependent on hardware
and to control I/O jitter. Giotto is based on the Logical Execution Time (LET) model
where tasks are executed within a statically allocated time slot. At the beginning of the
LET inputs are made available and outputs are released at the end of the LET of a task.
The time instants of input and output operations are independent of the execution time
as it is not specified when and where tasks are executed.

The extended PNSC model achieves the LET behaviour by replacing input and output
channels of processes by temporal firewalls (see Section 4.2.1). The coordination lan-
guage Streamix allows to instantiate such temporal firewalls with the tt operator on a
single net or a composed net (see Section 6.4.5).

8.3.4 Ptolemy and Ptides

The focus of the Ptolemy [3] project lies on providing a unified modelling language that
allows to integrate and compose heterogeneous real-time systems. Ptolemy is based on
an actor-oriented design [9] where actors are executed concurrently and communicate
with other actors by sending message tokens through ports (not to be confused with
the actor model [29]). It allows to model heterogeneous systems by assigning different
predefined model semantics, called Model of Computations (MoCs), to assemblies of
actors, called platforms. Ptolemy supports many different MoCs, i.a. KPN [23], the LET
model of Giotto [56], Synchronous Data Flow (SDF) [11] (e.g. the underlying model of
StreamIt [8]), or the discrete-event model [75]. A detailed description of Ptolemy and
an extensive list of available MoCs is provided in [55].

In contrast to the Ptolemy project, the presented approach in this dissertation is not
an assembly of submodels but one single model where a modular composition opera-
tion applied on processes preserves the model properties, independent of the triggering
semantics or communication coupling of the individual processes. It is clear that the
here presented model is not as diverse as the Ptolemy project but it provides well de-
fined interfaces between interacting subsystems with different triggering semantics and
provides flexible control over communication coupling which allows the design of mixed-
criticality systems. Further, in contrast to the underlying model of Ptolemy where one
actor models a simple task, the PNSC allows to model complex tasks with multiple
synchronisation points within.

One MoC of Ptolemy that is particularly interesting and needs to be considered for
future work on the PNSC model is Ptides [54]. Ptides extends the discrete-event MoC
and allows to describe the timing behaviour in a network of event-triggered actors. This
is achieved by distinguishing between physical time and model time where the former is

Chapter 8 Related Work 153

tied to sensors and actuators, i.e. components that interact with the physical world, and
the progression of the latter is specified within the model. It is a promising approach to
loosen the coupling between the software development of time-critical systems and the
hardware platform where the system is executed.

8.4 Deadlocks and Permanent Blocking

In this section I discuss research related to the analysis of deadlocks and permanent
blocking presented in Chapter 5. I will discuss methods already mentioned in the sections
before but also mention approaches that are not related to already discussed related
work. Neither of the methods discussed in the following make a distinction between
deadlocks and permanent blocking but always use the term deadlock, in some cases in
accordance with our definition but more often as a synonym for what we describe as
permanent blocking.

The work on interface theory, presented in Section 8.1, aims at checking the interoper-
ability of components. The goal is to check whether a component is compatible with the
environment it is placed in. In [16, 18], Larsen et al. relate mutual deadlock freeness of
two components to whether they are violating each other’s assumptions or not. However,
in their work on an assembly theory [17], Hennicker and Knapp point out that neither
IAs nor MIOAs imply deadlock, thus an analysis of permanent blocking, as presented in
Chapter 5, is needed. Note that they use examples of lonely blockers and address them
as deadlocks. Further note that because MIOAs are input-enabled, a component has to
be able to cope with any input in any state. This delegates the handling of unexpected
inputs to the component implementation and thus prevents permanent blocking at the
interface as long as the implementation is correct.

While interface theory is component centric and uses interface specification to check for
compatibility of components, session types use a communication-centric approach and
specify the protocol between components in order to check for compatibility. Bartoletti
et al. present a survey on behavioural contracts in [76] where session types are related to
IAs and classified as a subset of IAs. Further, they define binary asymmetric compliance
relations, amongst others, the notion of progress. Their definition differs from the one
given in this dissertation in two points: Firstly, they require each subsystem to reach
a success state where we consider any action as a contribution to progress. Secondly,
they do not make a distinction between shared and open actions because they restrict
the notion of progress to two participants.

Chapter 8 Related Work 154

When it comes to CPSs, one often distinguishes between two types of tasks: simple tasks
(S-task) and complex tasks (C-task) [43]. An S-task has no synchronization point within
while a C-task has one or multiple blocking synchronization points. An example of a
streaming network composed purely out of S-tasks is the Ptolemy II project [9]. Zhou
and Lee present a statical deadlock analysis of such a streaming network in [12]. The
approach is based on causality interfaces where port to port dependencies are described
as functions. A function d(n) describes the output rate with the parameter n describing
the input rate. The approach is general in the sense that the multiplicity of each input-
output relation is not static. Operators are used to compose the dependencies in order to
form causality interfaces. To detect deadlocks, causality loops are identified and checked
against a certain criteria. Given that the analysis is based on circular dependencies, the
approach is suitable to identify deadlocks but not permanent blocking.

As described by Lee et al. in [9], the triggering semantics of Ptolemy II actors (an
equivalent to processes as described in this dissertation) requires actors to have no
synchronization point. This imposes more restrictions on the actor implementation than
the model presented in this dissertation does on process implementations. Hence, their
approach to detect deadlocks cannot simply be applied to my model. In order to apply
their analysis to PNSCs, each process in a PNSC would have to be split into multiple
Ptolemy II actors to eliminate blocking synchronization points within the processes.
This is a difficult task because it would require to transform processes with persistent
state into a system of stateless components.

Kroening et al. present an approach to guarantee deadlock-freedom in C/Pthread pro-
grams by statically analysing the code [77]. As their analysis is tailored for a specific
technology (C/Pthread) it is applied on a lower level of abstraction than the work
presented in Chapter 5 which is not restricted to a particular programming language.
Furthermore, the approach checks for cycles in a lock-graph and therefore focuses on
deadlocks but not permanent blocking.

A topic related to static detection of permanent blocking situations is preventing them
out of construction due to inherent properties of the model. The coordination language
BIP [72] uses an underlying model [40] that avoids permanent blocking by construc-
tion: BIP describes the behaviour of components with an automata-based model and
composes components based on different synchronization protocols (e.g. rendez-vous,
broadcast). Freedom of permanent blocking is guaranteed with priority rules that al-
low to describe alternative actions, should an interaction be prevented from occurring.
As a consequence, this means that priority rules have to be met by the implementa-
tion of the component and hence, handling of permanent blocking is delegated to the
implementation.

Chapter 8 Related Work 155

Another coordination language, offering freedom of deadlocks by construction, is S-
Net [10]. S-Net uses binary operators to construct a streaming network from functional
components, interlinked by FIFO-channels. Freedom of deadlocks is guaranteed due
to the absence of feedback loops. Feedbacks are avoided by dynamically, potentially
infinitely, replicating components and arranging them in a pipeline. S-Net is not com-
pletely free of permanent blocking because an implementation with finite buffer sizes
can cause starvation, which is equivalent to what we call a lonely blocking situation.
Later, feedback loops were introduced to S-Net [78], for which to preserve the guarantee
of deadlocks freedom they had to introduce the assumption of infinite buffer length on
the feedback channel.

Communicating Sequential Processes (CSP) is a process calculus introduced by Tony
Hoare where atomic processes, which can be considered as labelled transition systems,
communicate over a set of channels [30]. In his book, A. W. Roscoe [79] presents a refined
theory of CSP and discusses deadlocks in Chapter 13 where he proposes a number of
design rules to avoid deadlocks. The proposed methods are all based on a local analysis,
involving only a small collection of processes. He states that, ultimately, a state space
exploration is required to decide on global deadlock-freedom which corresponds to the
approach taken in this thesis by using the underlying model described in Chapter 5.

A method that is often used in industry is the so-called Ostrich Algorithm as mentioned
by Tanenbaum and Bos [80]. The rationale behind this is that permanent blocking is
happening so rarely that it is not worth the price to invest resources to handle such
cases. However, ignoring the potential problem is not a suitable solution for critical
systems which are addressed by the work presented in this dissertation.

Chapter 9

Conclusion and Outlook

In this chapter I conclude my dissertation by providing a summary of the accomplish-
ments, discussing the result, and giving an outlook for future research to improve and
refine aspects of the work presented in this dissertation.

9.1 Summary of the Dissertation

In my work I introduced the coordination model Process Network with Synchronous
Communication (PNSC) with the aim to describe concurrent, time-critical Cyber-physical
Systems (CPSs). The coordination model provides a separation between the concerns
of computation and coordination (i.e. communication and synchronisation). This is
achieved by a component-based design where computational components are abstracted
by an interface description. I introduced Synchronous Interface Automata (SIAs), an
automata-based interface language that allows to clearly define the communication pro-
tocol of interacting components and incrementally compose interfaces of components.
The interaction of components uses a blocking semantics that allows to model stream-
ing networks where complex components, i.e. components with persistent state and
internal synchronisation points, interact over synchronous communication channels. An
extension of the model supports an event-triggered as well as a time-triggered execu-
tion strategy and allows interaction between components independent of the execution
strategy. A communication decoupling mechanism allows to control the level of inter-
ference and thus, provides support for mixed-criticality systems. Further, the extended
model provides rate-control mechanisms for communication and computation to allow
the specification of timing requirements of an application. Computational components
are oblivious of the coordination that is excerpt on them by the model, hence, the do-
main expert who implements the computation component is not required to know the

156

Chapter 9 Conclusion and Outlook 157

context in which the component will be used. To statically check for freedom of perma-
nent blocking in an assembly of interacting computational components, I introduced an
analytic method that uses the SIA interface description of a composed system to identify
states in the system that can cause permanent blocking.

As an instance of the coordination model PNSC I designed the coordination language
Streamix. Streamix is an exogenous coordination language that allows to construct net-
works of concurrent processes in a structured and hierarchical way. It accomplishes this
by using network operators that allow to compose simple networks into more complex
ones. The language uses the extended PNSC model as a backbone to detect permanent
blocking situations in a composed network. Streamix supports all the features of the
extended PNSC model and adds syntax and structure to it. I implemented a prototype
of a compiler, a Run-time System (RTS) preprocessor, an RTS, and a SIA model checker
to allow to build executable applications with the Streamix coordination language.

9.2 Discussion of the Results

The main priority of a coordination model is to separate the concerns of computation
and coordination. The PNSC model provides separation of concerns out of construction
because of the process abstraction through SIAs and the communication decoupling in
space: The behavioural description of a process is solely tied to the interaction protocol
specified by its SIA which describes the temporal ordering of read and write opera-
tions of the process. Read and write operations are performed on ports without any
knowledge of what is connected to the port. This is by itself not a novelty as the prin-
ciple of using channels as coordination primitives, or glue-code, between components
has been used in many instances (e.g. [10, 53]) and the concept of interface theories
was initially proposed by de Alfaro and Henzinger [14]. What is new however, is the
combination of coordination primitives and an interface theory that allows to model a
network of complex, reactive components with a blocking semantics of interacting pro-
cesses that is fundamentally different from interface theories such as Interface Automata
(IAs) [15]. The permanent blocking analysis, introduced in this dissertation, is based
on the blocking semantics of SIAs and is a novel approach to statically detect perma-
nent blocking situations in a network of concurrent processes. The coordination model
PNSC offers Cross-criticality Interface (CCI) to selectively decouple communication in
synchronisation and remove the blocking behaviour in order to prevent unwanted in-
terference between subsystems. This mechanism, in conjunction with clock signals, is
further used to create temporal firewalls that allow to create subnets of time-triggered
processes, similar to Giotto [56]. The novelty of the PNSC model is the concept of

Chapter 9 Conclusion and Outlook 158

selectively introducing temporal firewalls where required and allow interaction between
time-triggered and event-triggered processes. PNSCs also allow to control the commu-
nication rate of single channels in order to increase the predictability of event-triggered
communication.

All the above mentioned coordination aspects are applied on processes without any re-
quirement of changing the implementation of the processes. The RTS implementation
for the coordination language Streamix achieves this by providing one singe macro func-
tion for read access and one single macro function for write access to channels connected
to the process. The semantics of the read and write operations differs, depending on the
coordination elements that are specified in the Streamix program. The macro functions
allow to access the channels by name mapping and position mapping where the former
tends to be more convenient for humans while the latter is more convenient for machines.

The coordination language Streamix adds syntax to the PNSC model and allows to
structure a network of processes by using network operators. Structure in a program
is provided by keeping information local. This means that when composing a network
out of processes, the composition operation must hold as much information about the
connections of the individual processes as possible. To gain expressiveness, Streamix pro-
vides multiple composition operators to describe different types of grouping, e.g. parallel
grouping where no connections are established between processes or serial grouping, i.e.
enforcing connections between processes. It is a difficult act to balance between pro-
viding convenience for the programmer and keeping the expressiveness of an operator:
An example in Streamix is the bypassing serial composition operator as defined in Def-
inition 6.6. It relaxes the more strict requirements of the locally enforcing serial com-
position operator to allow the construction of more complex connections in a network
(e.g. bypassing processes). Such networks can also be built with the wrapper operator
(see Section 6.4.1) but at the cost of more writing work. However, the advantage of the
wrapper is that it provides a better code structure as local connections are kept local.
There is no definitive answer on which option is the better.

The PNSC model (and therefore also Streamix) targets mixed-criticality CPSs. As a
conclusion, let me summarize the main properties of the model that support this claim:

Time-criticality of CPSs A main requirement to give guarantees on timing require-
ments is predictability and analysability. The PNSC achieves the former through
rate-control, i.e. limiting the communication rate and imposing a fixed rate to
achieve a time-triggered communication semantics. The latter is achieved with
interface abstraction of the SIA model that allows to check whether a PNSC is
free of permanent blocking situations.

Chapter 9 Conclusion and Outlook 159

Mixed-criticality of CPSs The CCIs provided by the extended PNSC model allow
to describe a system that simultaneously operates with event-triggered and time-
triggered communication. The corner stone of the CCIs is the selectively applicable
mechanism to decouple communication in synchronisation that allows interaction
between components with different criticality levels while preventing unwanted
interference.

The Reactive Nature of CPSs The PNSC model copes with the reactive nature of
CPS by allowing complex processes with persistent state and internal synchroni-
sation points. SIAs allow to preserve a detailed understanding of how processes
interact and serve as instrument to detect permanent blocking situations in a
network. Further, the coordination language Streamix provides convenient net-
work operators that allow to structure a network of processes in a concise way
without removing the possibility to describe bidirectional communication between
processes. Because a PNSC process can be of arbitrary complexity, the model is
expected to be well suited to support legacy code.

9.3 Outlook

One of the achievements of my work is the interface model for blocking communication
and based on it the permanent blocking analysis that finds potential permanent blocking
states in a composed PNSC. While the analysis performed on a composed PNSC is of
linear time complexity O(S + T), where S denotes the number of states and T the
number of transitions in a composed system, the number of states S and transitions T
grow exponentially with respect to the number of subsystems. This problem is known
as the state space explosion of automata composition. There are existing approaches
that help to alleviate this problem (e.g. reducing internal actions) which needs to be
addressed in future work.

The SIA model, serving as a backbone of the permanent blocking analysis, was inspired
by the work of de Alfaro and Henzinger on IAs [15]. A property of IAs is independent
implementability which means that if an interface is compatible with a system it can
be refined separately and remains compatible. No refinement for SIAs was defined
throughout this dissertation and it is left to future work to define refinement conditions
suitable for SIAs.

The software development of a time-critical system is still often tightly coupled to a
specific hardware platform because a time-critical application must be guaranteed to

Chapter 9 Conclusion and Outlook 160

produce a correct result before a specified deadline. As the execution time of an appli-
cation is heavily influenced by the hardware platform the application is running on, such
guarantees are usually given by extensive testing of the software application in conjunc-
tion with its hardware platform. This leads to the problem that whenever something
has to be changed (in hardware or software) these extensive tests have to be performed
again. The aim is to loosen the tight coupling between the software application and the
hardware platform of a time-critical system in order to facilitate the development and
maintenance process of cyber-physical systems. This would alleviate the necessity of
expensive, holistic testing and allow the efficient redeployment of developed applications
on different platforms.

A coordination model, such as the one presented in this dissertation, can help to get
closer to this goal with separation of concerns: Computational components can be
checked for correctness independently and the coordination model allows to assemble
the components into a network by keeping a tight control on the interactions of the
components. The time-triggered communication semantics of a PNSC allows to design
a predictable system where each time-triggered process can be analysed individually. In
the current model it must be guaranteed that the Worst-case Execution Time (WCET)
of the process implementation respects the specified timing constraints of the model.
As future work it would be interesting to extend SIAs with a timed automata model
to describe the timing behaviour of a process (similar to the Behaviour, Interaction,
Priorities (BIP) [74] approach mentioned in Section 8.3.2).

Given that the PNSC model allows to describe systems that operate simultaneously
with time-triggered and event-triggered components, timing specifications solely based
on rate-control are not sufficient to fully describe time-critical systems. The specification
of latency must also be supported for an event-triggered subnetwork. This is an aspect
that was not covered in this dissertation. An interesting approach related to this problem
was introduced with Ptides [54]. It remains to be seen whether a similar approach can
be adapted to work with complex processes where the interaction of a process with its
environment is described by a (timed) automata model. Further, in parallel to the work
presented in this dissertation we (Kirner and Maurer) published a paper that discusses
the problem of specifying timing requirements in streaming networks and identified some
pitfalls when it comes to latency specifications in streaming networks [37]. One challenge
is to split global, system-wide timing requirements into meaningful chunks that can be
attributed to computational components. This is a problem that has, to my knowledge,
not yet been addressed.

Last but not least, I give an outlook on research for the coordination language Streamix
and the toolset I built around it. For my thesis it served as a proof of concept to

Chapter 9 Conclusion and Outlook 161

show the usability of the PNSC and SIA model. However, to exploit all the features
offered by the language the RTS must support a mixed-criticality scheduler for multi-
core architectures. This is a huge research field (Burns and Davis provide a review on
the topic [2]) and requires a thorough analysis.

Bibliography

[1] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems Design Chal-
lenge. In FM 2006: Formal Methods, pages 1–15. Springer, Berlin, Heidelberg,
August 2006. doi: 10.1007/11813040_1.

[2] Alan Burns and Rob Davis. Mixed Criticality Systems: A Review. Department of
Computer Science, University of York, Tech. Rep, December 2016.

[3] Johan. Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming Heterogeneity - The
Ptolemy Approach. Proceedings of the IEEE, 91(1):127–144, January 2003. ISSN
0018-9219. doi: 10.1109/JPROC.2002.805829.

[4] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical
Systems: The Next Computing Revolution. In Design Automation Conference,
pages 731–736, June 2010. doi: 10.1145/1837274.1837461.

[5] Jeronimo Castrillon, Lothar Thiele, Lars Schorr, Weihua Sheng, Ben Juurlink,
Mauricio Alvarez-Mesa, Angela Pohl, Ralph Jessenberger, Victor Reyes, and Rainer
Leupers. Multi/Many-core Programming: Where Are We Standing? In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE
’15, pages 1708–1717, San Jose, CA, USA, 2015. EDA Consortium.

[6] Edward A. Lee. Cyber Physical Systems: Design Challenges. In 2008 11th
IEEE International Symposium on Object Oriented Real-Time Distributed Com-
puting (ISORC), pages 363–369. IEEE, May 2008. ISBN 978-0-7695-3132-8. doi:
10.1109/ISORC.2008.25.

[7] Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34(7):491–541,
July 1997. ISSN 0001-5903, 1432-0525. doi: 10.1007/s002360050095.

[8] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications. In Compiler Construction, number 2304 in Lec-
ture Notes in Computer Science, pages 179–196. Springer Berlin Heidelberg, Jan-
uary 2002. ISBN 978-3-540-43369-9 978-3-540-45937-8.

162

Bibliography 163

[9] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-Oriented
Design of Embedded Hardware and Software Systems. J CIRCUIT SYST COMP,
12(03):231–260, June 2003. ISSN 0218-1266. doi: 10.1142/S0218126603000751.

[10] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Asynchronous Stream
Processing with S-Net. Int J Parallel Prog, 38(1):38–67, February 2010. ISSN
0885-7458, 1573-7640. doi: 10.1007/s10766-009-0121-x.

[11] Edward A. Lee and David G. Messerschmitt. Synchronous Data Flow. Proceedings
of the IEEE, 75(9):1235–1245, September 1987. ISSN 0018-9219. doi: 10.1109/
PROC.1987.13876.

[12] Ye Zhou and Edward A. Lee. A Causality Interface for Deadlock Analysis in
Dataflow. In Proceedings of the 6th ACM & IEEE International Conference on
Embedded Software, EMSOFT ’06, pages 44–52, New York, NY, USA, 2006. ACM.
ISBN 978-1-59593-542-7. doi: 10.1145/1176887.1176895.

[13] David Harel and Amir Pnueli. On the Development of Reactive Systems. In Logics
and Models of Concurrent Systems, NATO ASI Series, pages 477–498. Springer,
Berlin, Heidelberg, 1985. ISBN 978-3-642-82455-5 978-3-642-82453-1. doi: 10.1007/
978-3-642-82453-1_17.

[14] Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-Based
Design. In Thomas A. Henzinger and Christoph M. Kirsch, editors, Embedded Soft-
ware, number 2211 in Lecture Notes in Computer Science, pages 148–165. Springer
Berlin Heidelberg, October 2001. ISBN 978-3-540-42673-8 978-3-540-45449-6. doi:
10.1007/3-540-45449-7_11.

[15] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proceed-
ings of the 8th European Software Engineering Conference Held Jointly with 9th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-9, pages 109–120, New York, NY, USA, 2001. ACM. ISBN 978-1-
58113-390-5. doi: 10.1145/503209.503226.

[16] Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski. Interface Input/Output
Automata. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM
2006: Formal Methods, number 4085 in Lecture Notes in Computer Science, pages
82–97. Springer Berlin Heidelberg, August 2006. ISBN 978-3-540-37215-8 978-3-
540-37216-5. doi: 10.1007/11813040_7.

[17] Rolf Hennicker and Alexander Knapp. Moving from Interface Theories to Assembly
Theories. Acta Informatica, 52(2-3):235–268, March 2015. ISSN 0001-5903, 1432-
0525. doi: 10.1007/s00236-015-0220-7.

Bibliography 164

[18] Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski. Modal I/O Automata for
Interface and Product Line Theories. In Rocco De Nicola, editor, Programming
Languages and Systems, number 4421 in Lecture Notes in Computer Science, pages
64–79. Springer Berlin Heidelberg, March 2007. ISBN 978-3-540-71314-2 978-3-540-
71316-6. doi: 10.1007/978-3-540-71316-6_6.

[19] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle
Stoelinga. Resource Interfaces. In Rajeev Alur and Insup Lee, editors, Embed-
ded Software, number 2855 in Lecture Notes in Computer Science, pages 117–
133. Springer Berlin Heidelberg, October 2003. ISBN 978-3-540-20223-3 978-3-
540-45212-6. doi: 10.1007/978-3-540-45212-6_9.

[20] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-time Interfaces for
Composing Real-time Systems. In Proceedings of the 6th ACM & IEEE Interna-
tional Conference on Embedded Software, EMSOFT ’06, pages 34–43, New York,
NY, USA, 2006. ACM. ISBN 978-1-59593-542-7. doi: 10.1145/1176887.1176894.

[21] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed Interfaces.
In Alberto Sangiovanni-Vincentelli and Joseph Sifakis, editors, Embedded Software,
number 2491 in Lecture Notes in Computer Science, pages 108–122. Springer Berlin
Heidelberg, October 2002. ISBN 978-3-540-44307-0 978-3-540-45828-9. doi: 10.
1007/3-540-45828-X_9.

[22] Thomas A. Henzinger and Slobodan Matic. An Interface Algebra for Real-Time
Components. In 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’06), pages 253–266, April 2006. doi: 10.1109/RTAS.2006.11.

[23] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. In
In Information Processing’74: Proceedings of the IFIP Congress, volume 74, pages
471–475, 1974.

[24] Joaquim Ferreira, Piaulo Pedreiras, Luis Almeida, and José A. Fonseca. The FTT-
CAN Protocol for Flexibility in Safety-Critical Systems. IEEE Micro, 22(4):46–55,
July 2002. ISSN 0272-1732. doi: 10.1109/MM.2002.1028475.

[25] Wilfried Steiner. Synthesis of Static Communication Schedules for Mixed-Criticality
Systems. In 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), pages 11–18,
March 2011. doi: 10.1109/ISORCW.2011.12.

[26] Roman Obermaisser. Reuse of CAN-Based Legacy Applications in Time-Triggered
Architectures. IEEE Transactions on Industrial Informatics, 2(4):255–268, Novem-
ber 2006. ISSN 1551-3203. doi: 10.1109/TII.2006.885920.

Bibliography 165

[27] Hermann Kopetz and Roman Obermaisser. Temporal Composability. Computing
Control Engineering Journal, 13(4):156–162, August 2002. ISSN 0956-3385. doi:
10.1049/cce:20020401.

[28] Fred J. Pollack. New Microarchitecture Challenges in the Coming Generations of
CMOS Process Technologies (Keynote Address). In Proceedings of the 32Nd Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 32, pages 2–,
Washington, DC, USA, 1999. IEEE Computer Society. ISBN 978-0-7695-0437-7.

[29] Gul Abdulnabi Agha. ACTORS: A Model of Concurrent Computation in Dis-
tributed Systems. Phd, MIT, Massachusetts, US, June 1985.

[30] Charles A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21
(8):666–677, August 1978. ISSN 0001-0782. doi: 10.1145/359576.359585.

[31] Open MPI: Open Source High Performance Computing. https://www.

open-mpi.org/.

[32] David Gelernter and Nicholas Carriero. Coordination Languages and Their Sig-
nificance. Commun. ACM, 35(2):97–107, February 1992. ISSN 0001-0782. doi:
10.1145/129630.129635.

[33] Farhad Arbab. Composition of Interacting Computations. In Dina Goldin,
Scott A. Smolka, and Peter Wegner, editors, Interactive Computation, pages 277–
321. Springer Berlin Heidelberg, January 2006. ISBN 978-3-540-34666-1 978-3-540-
34874-0.

[34] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer Publishing Company, Incorporated, 2nd edition, 2011. ISBN
978-1-4419-8236-0.

[35] Simon Maurer and Raimund Kirner. Coordination with Structured Composi-
tion for Cyber-physical Systems. In Parallel Computing: On the Road to Ex-
ascale, volume 27 of Advances in Parallel Computing, pages 615 – 624, Edin-
burgh, UK, September 2015. IOS Press. ISBN 978-1-61499-620-0. doi: 10.3233/
978-1-61499-621-7-615.

[36] Simon Maurer and Raimund Kirner. Cross-criticality Interfaces for Cyber-physical
Systems. In Proc. 1st IEEE Int’l Conference on Event-Based Control, Communi-
cation, and Signal Processing, pages 1–8, Krakow, Poland, June 2015. IEEE. doi:
10.1109/EBCCSP.2015.7300670.

[37] Raimund Kirner and Simon Maurer. On the Specification of Real-time Properties
of Streaming Networks. In 18. Kolloquium Programmiersprachen und Grundlagen
der Programmierung, Kärnten, Austria, October 2015.

https://www.open-mpi.org/
https://www.open-mpi.org/

Bibliography 166

[38] Simon Maurer, Raimund Kirner, and Olga Tveretina. Static Deadlock Analysis of
Process Networks with Synchronous Interface Automata. Ready for Submission,
2017.

[39] Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In Manfred
Broy, Johannes Grünbauer, David Harel, and Tony Hoare, editors, Engineering
Theories of Software Intensive Systems, number 195 in NATO Science Series, pages
83–104. Springer Netherlands, 2005. ISBN 978-1-4020-3530-2 978-1-4020-3532-6.
doi: 10.1007/1-4020-3532-2_3.

[40] Gregor Gössler and Joseph Sifakis. Composition for Component-Based Modeling.
In Formal Methods for Components and Objects, pages 443–466. Springer, Berlin,
Heidelberg, November 2002. doi: 10.1007/978-3-540-39656-7_19.

[41] George A. Papadopoulos and Farhad Arbab. Coordination Models and Languages.
In Advances in Computers, volume 46, pages 329–400. Elsevier, 1998. ISBN 0065-
2458.

[42] Edward. G. Coffman, M. J. Elphick, and Arie Shoshani. System Deadlocks. ACM
Comput. Surv., 3(2):67–78, June 1971. ISSN 0360-0300. doi: 10.1145/356586.
356588.

[43] Hermann Kopetz. Task Management. In Real-Time Systems: Design Principles for
Distributed Embedded Applications, pages 218–221. Springer Publishing Company,
Incorporated, 2nd edition, 2011. ISBN 978-1-4419-8236-0.

[44] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-
lat, and Per Stenström. The Worst-case Execution-time Problem—Overview of
Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53,
May 2008. ISSN 1539-9087. doi: 10.1145/1347375.1347389.

[45] Steve Vestal. Preemptive Scheduling of Multi-criticality Systems with Vary-
ing Degrees of Execution Time Assurance. In 28th IEEE International Real-
Time Systems Symposium (RTSS 2007), pages 239–243, December 2007. doi:
10.1109/RTSS.2007.47.

[46] Ying Tan, Steve Goddard, and Lance C. Pérez. A Prototype Architecture for Cyber-
physical Systems. SIGBED Rev., 5(1):26:1–26:2, January 2008. ISSN 1551-3688.
doi: 10.1145/1366283.1366309.

Bibliography 167

[47] Hermann Kopetz. The Time-triggered Architecture. In Real-Time Systems: Design
Principles for Distributed Embedded Applications, pages 325–339. Springer Publish-
ing Company, Incorporated, 2nd edition, 2011. ISBN 978-1-4419-8236-0.

[48] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The Many Faces of Publish/Subscribe. ACM Comput. Surv., 35(2):114–131,
June 2003. ISSN 0360-0300. doi: 10.1145/857076.857078.

[49] Lachlan Aldred, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter
Hofstede. On the Notion of Coupling in Communication Middleware. In Robert
Meersman and Zahir Tari, editors, On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE, number 3761 in Lecture Notes in Computer
Science, pages 1015–1033. Springer Berlin Heidelberg, January 2005. ISBN 978-3-
540-29738-3 978-3-540-32120-0.

[50] Davide Rossi, Giacomo Cabri, and Enrico Denti. Tuple-based Technologies for
Coordination. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert
Tolksdorf, editors, Coordination of Internet Agents, pages 83–109. Springer Berlin
Heidelberg, January 2001. ISBN 978-3-642-07488-2 978-3-662-04401-8.

[51] Andrea Omicini and Mirko Viroli. Coordination Models and Languages: From
Parallel Computing to Self-Organisation. Knowledge Eng. Review, 26:53–59, 2011.
ISSN 1469-8005. doi: 10.1017/S026988891000041X.

[52] Farhad. Arbab, Ivan Herman, and Per Spilling. An Overview of Manifold and Its
Implementation. Concurrency: Pract. Exper., 5(1):23–70, February 1993. ISSN
1040-3108. doi: 10.1002/cpe.4330050103.

[53] Farhad Arbab. Reo: A Channel-based Coordination Model for Component Compo-
sition. Mathematical Structures in Computer Science, 14(03):329–366, June 2004.
ISSN 1469-8072. doi: 10.1017/S0960129504004153.

[54] Patricia Derler, Thomas Huining Feng, Edward A. Lee, Slobodan Matic, Hiren D.
Patel, Yang Zhao, and Jia Zou. PTIDES: A Programming Model for Distributed
Real-Time Embedded Systems. Technical Report UCB/EECS-2008-72, EECS De-
partment, University of California, Berkeley, May 2008.

[55] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation Using
Ptolemy II. Ptolemy.org, 2014.

[56] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto:
A Time-Triggered Language for Embedded Programming. In Embedded Software,
number 2211 in Lecture Notes in Computer Science, pages 166–184. Springer Berlin
Heidelberg, January 2001. ISBN 978-3-540-42673-8 978-3-540-45449-6.

Bibliography 168

[57] Jan F. Groote and Alex Sellink. Confluence for Process Verification. Theoretical
Computer Science, 170(1):47–81, December 1996. ISSN 0304-3975. doi: 10.1016/
S0304-3975(96)80702-X.

[58] Hermann Kopetz. Temporal Control Versus Logical Control. In Real-Time Systems:
Design Principles for Distributed Embedded Applications, pages 82–84. Springer
Publishing Company, Incorporated, 2nd edition, 2011. ISBN 978-1-4419-8236-0.

[59] Hermann Kopetz. The Message Concept. In Real-Time Systems: Design Principles
for Distributed Embedded Applications, pages 88–91. Springer Publishing Company,
Incorporated, 2nd edition, 2011. ISBN 978-1-4419-8236-0.

[60] Davis Powell. Time/Event Triggering is Orthogonal to State/Event Observation.
Workshop Presentation, October 2002.

[61] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clément
Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry Strudel. A Distributed
Run-Time Environment for the Kalray MPPA R©-256 Integrated Manycore Proces-
sor. Procedia Computer Science, 18:1654–1663, January 2013. ISSN 1877-0509. doi:
10.1016/j.procs.2013.05.333.

[62] Gordon J. Pace, Frédéric Lang, and Radu Mateescu. Calculating τ -Confluence
Compositionally. In Computer Aided Verification, pages 446–459. Springer, Berlin,
Heidelberg, July 2003. doi: 10.1007/978-3-540-45069-6_41.

[63] Donald B. Johnson. Finding All the Elementary Circuits of a Directed Graph. SIAM
J. Comput., 4(1):77–84, March 1975. ISSN 0097-5397. doi: 10.1137/0204007.

[64] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Com-
put., 1(2):146–160, June 1972. ISSN 0097-5397. doi: 10.1137/0201010.

[65] Farhad Arbab. What Do You Mean, Coordination? In Bulletin of the Dutch
Association for Theoretical Computer Science (NVTI), pages 11–22, 1998.

[66] Carl Bergenhem, Steven Shladover, Erik Coelingh, Christoffer Englund, and Sa-
dayuki Tsugawa. Overview of Platooning Systems. In Proceedings of the 19th ITS
World Congress, Oct 22-26, Vienna, Austria (2012), 2012.

[67] The Open Group and IEEE. Information Technology - Portable Operating Sys-
tem Interface (POSIX) Base Specifications, Issue 7. IEEE Std 1003.1-2008. IEEE,
September 2009. ISBN 978-0-7381-6032-0.

[68] Michael Himsolt. GML: A portable Graph File Format. Techincal report, Univer-
sität Passau, 94030 Passau, Germany, 1996.

Bibliography 169

[69] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and Scott M.
Marshall. GraphML Progress Report Structural Layer Proposal. In Graph
Drawing, Lecture Notes in Computer Science, pages 501–512. Springer, Berlin,
Heidelberg, September 2001. ISBN 978-3-540-43309-5 978-3-540-45848-7. doi:
10.1007/3-540-45848-4_59.

[70] Nancy A. Lynch and Mark R. Tuttle. Hierarchical Correctness Proofs for Dis-
tributed Algorithms. In Proceedings of the Sixth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’87, pages 137–151, New York, NY, USA,
1987. ACM. ISBN 978-0-89791-239-6. doi: 10.1145/41840.41852.

[71] Traian Pop, Petru Eles, and Zebo Peng. Holistic Scheduling and Analysis of Mixed
Time/Event-triggered Distributed Embedded Systems. In Proceedings of the Tenth
International Symposium on Hardware/Software Codesign, CODES ’02, pages 187–
192, New York, NY, USA, 2002. ACM. ISBN 1-58113-542-4. doi: 10.1145/774789.
774828.

[72] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous Real-
time Components in BIP. In Fourth IEEE International Conference on Software
Engineering and Formal Methods (SEFM’06), pages 3–12, September 2006. doi:
10.1109/SEFM.2006.27.

[73] Simon Bliudze and Joseph Sifakis. The Algebra of Connectors - Structuring Inter-
action in BIP. IEEE Transactions on Computers, 57(10):1315–1330, October 2008.
ISSN 0018-9340. doi: 10.1109/TC.2008.26.

[74] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based Implemen-
tation of Real-time Applications. In Proceedings of the Tenth ACM International
Conference on Embedded Software, EMSOFT ’10, pages 229–238, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-904-6. doi: 10.1145/1879021.1879052.

[75] Edward A. Lee. Modeling Concurrent Real-Time Processes Using Discrete Events.
Annals of Software Engineering, 7(1-4):25–45, October 1999. ISSN 1022-7091, 1573-
7489. doi: 10.1023/A:1018998524196.

[76] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Compliance in Be-
havioural Contracts: A Brief Survey. In Chiara Bodei, Gian-Luigi Ferrari, and Cor-
rado Priami, editors, Programming Languages with Applications to Biology and Se-
curity, number 9465 in Lecture Notes in Computer Science, pages 103–121. Springer
International Publishing, 2015. ISBN 978-3-319-25526-2 978-3-319-25527-9. doi:
10.1007/978-3-319-25527-9_9.

Bibliography 170

[77] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and Björn Wachter. Sound
Static Deadlock Analysis for C/Pthreads. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 379–390, September
2016.

[78] Clemens Grelck and Alex Shafarenko. S-Net Language Report. Technical Report
2.1, version 2.0. Technical Report 499, University of Hertfordshire, School of Com-
puter Science, Hatfield, AL10 9AB, United Kingdom, August 2013.

[79] Bill Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1997. ISBN 978-0-13-674409-2.

[80] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Prentice Hall
Press, Upper Saddle River, NJ, USA, 4th edition, 2014. ISBN 978-0-13-359162-0.

	Preface
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Definitions
	Acronyms

	Introduction
	Thesis and Research Questions
	Contributions
	Publications

	Structure of this Dissertation

	Background
	A Side-note on Terminology
	Component-based Design
	Permanent Blocking and Deadlocks
	Cyber-physical Systems
	Communication in Cyber-physical Systems
	Communication Coupling in Time
	Communication Coupling in Space
	Communication Coupling in Synchronisation

	Coordination Languages

	PNSC with SIA - An Analysable Event-based Component Model
	Process Networks with Synchronous Communication (PNSC)
	Synchronous Interface Automata (SIA)
	Definition of SIAs
	Composition of SIAs
	Relation of a SIA to its Process
	Interaction of SIAs

	Modelling a Crossroad with SIAs
	Streaming Network with Buffered Communication

	Chapter Summary

	Mixed-criticality PNSCs and Time-based Processes
	Communication Decoupling of PNSCs
	Decoupling PNSCs in Time
	Decoupling PNSCs in Synchronisation
	Decoupling PNSCs in Time and Synchronisation

	Time-based Component Model of PNSCs
	Time-triggered Processes in a PNSC
	Rate-bounded Communication
	Rate-control with the MIRT protocol
	Rate-control with the buffered MIRT protocol
	Rate-control with the PBRT protocol
	Rate-control with the buffered PBRT protocol

	Message Semantics
	Cross-criticality Interfaces
	Mixed-criticality Network with CCIs

	Discussion
	Chapter Summary

	Permanent Blocking Analysis of PNSCs with SIAs
	Permanent Blocking of SIAs
	Permanent Blocking Analysis
	Permanent Blocking Analysis with Acyclic SIAs
	Permanent Blocking Analysis with Cyclic SIAs
	Permanent Blocking Analysis on an Assembly of Processes

	Deadlock Analysis
	Deadlock Analysis on an Assembly of Processes

	Implementation of the Permanent Blocking Analysis
	Algorithm to Compute the Set of Progressing Subsystems
	Algorithm to Compute the Set of Deadlocking Subsystems

	Chapter Summary

	Streamix - An Instantiation of PNSCs as a Coordination Language
	Coordination Model
	Computational Components
	Routing Network
	Extra-functional Requirements Layer

	Box Abstraction
	User-defined Boxes
	Implicit Boxes
	FIFO Buffers
	Routing Node
	Temporal Firewall
	Rate-control Guard

	Interaction Protocol of a User-defined Box
	Box Annotations and Grammar

	Nets: Instantiations of Boxes
	Flow Direction Ambiguities
	Self-loop Connection
	Side-port Connection
	Net Interface
	Net Declaration and Prototyping

	Network Composition
	Net Assignments
	Serial Composition
	Parallel Composition
	Operator Precedence
	Time-controlled Nets
	Wrapper

	Describing a Cyber-physical System with Streamix
	Discussion
	Chapter Summary

	Toolchain for Streamix
	The Streamix RTS Library
	Implementation of Computational Components
	Implementation of Channels
	Implementation of Time-triggered Communication
	Implementation of Rate-bounded Communication
	Implementation of Routing Nodes

	smxc - The Streamix Compiler
	The Streamix Context Checker
	Generation of Dependency Graph
	Generation of Interaction Protocol Descriptions

	smxrtsp - The Streamix RTS Preprocessor
	smxsia - The Permanent Blocking Analysis
	Discussion
	Scheduler of the Streamix RTS
	Order of SIA Composition
	Static and Pure Nets

	Chapter Summary

	Related Work
	Interface Theory
	Mixed-criticality Models
	Coordination Models and Languages
	S-Net
	BIP
	Giotto
	Ptolemy and Ptides

	Deadlocks and Permanent Blocking

	Conclusion and Outlook
	Summary of the Dissertation
	Discussion of the Results
	Outlook

	Bibliography

