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Abstract— This paper introduces a Half-Wavelength Peak 

Matching (HWPM) model, which improves the accuracy of 

vehicle based longitudinal road profilers used in evaluating road 

unevenness and mega-textures. In this application, the HWPM 

model is designed for profilers which utilize a laser displacement 

sensor with an accelerometer for detecting surface irregularities. 

The process of converting acceleration to displacement by double 

integration (which is used in most profilers) is error-prone, and 

although there are techniques to minimize the effect of this error, 

this paper proposes a novel approach for improving the 

generated road profile results. The technique amends the vertical 

displacement derived from the accelerometer samples, by using 

data from the laser displacement sensor as a reference. The 

vehicle based profiler developed for this experiment (which uses 

the HWPM model) shows a huge improvement in detected 

longitudinal irregularities when compared with pre-processed 

results, and uses a 3m rolling straight edge as a benchmark.  

 
Index Terms— Accelerometer, Displacement, Integration 

error, Laser Displacement Sensor 

 

I. INTRODUCTION 

OAD roughness is a term used to indicate road quality, and 

this is essential to both vehicle and road maintenance. 

According to the American Society of Testing and Materials 

(ASTM), road roughness is “the deviations of a pavement 

surface from a true planar surface with characteristic 

dimensions that affect vehicle dynamics, ride quality, dynamic 

loads, and drainage, for example, longitudinal profile, 

transverse profile, and cross slope” [1]. 

The longitudinal road profile is a two-dimensional 

representation of the road, showing any height/vertical 

irregularities along a selected path. Road profiling plays an 

essential part in the maintenance, improvement, and 

development of road transportation in a general scale, from 

both point of view of vehicle and road users. From a vehicular 

standpoint, road surface texture can affect the longevity of 

parts of the vehicle, as driving on rough and uneven surfaces 

generate vibrations to the vehicle. Over time, this will have a 

negative mechanical effect to vehicle parts that make up its 

unsprung mass, as these are directly affected by the vibrations 

caused by the road irregularities, especially if this occurs 

consistently. As a road user, ride comfort and smoothness is 

the main factor, as this (to an extent) is relative to the vehicle’s 

 
 

control and balance during transit.  

Autonomous driving has gained considerable interest in 

recent years as part of the advancements in Intelligent 

Transport Systems (ITS) [2]–[5]. One major factors in its 

successful deployment is the ability for these vehicles to 

correctly interpret road surfaces, since this will allow the 

autonomous software to react appropriately to the different 

pavement conditions. The researchers in [6] propose a laser 

based method of road surface recognition, which detects lane 

markings and recognizes the surface conditions (i.e. dry, wet 

etc.) to enable automatic truck platooning. 

It is necessary to evaluate longitudinal road profiles, and 

with the current developments, fast, scalable, and accurate 

measurement concepts are ideal.  Conventional methods of 

Longitudinal road measurement, use equipment like the rod 

and level, dipstick, 3m Rolling Straight Edge (RSE), which 

has a dial in the middle of the frame used to measure vertical 

irregularities of the road. These are manual processes, and 

requires a person to be physically present at the location to 

operate the device and record measurements. More recent 

concepts employ the use of sensors such as cameras, 

accelerometers, laser, or a combination of any of these. These 

sensors are mounted on a vehicle and connected to an on-

board computer, which captures and processes samples of the 

road properties automatically, allowing faster road profiling. 

These systems usually contain GPS, which is used to tag 

measured road properties to their respective locations. 

A group of researchers [7]–[9] developed models to 

estimate road surface condition based on data obtained from 

smartphone sensors. Their work show a linear relationship 

between the road surface roughness and the vehicle’s vertical 

acceleration. Their goal is to explore easier and low cost 

methods in road monitoring, and with the increasing 

popularity and availability of smartphones, considering the 

presence of the various sensors bundled in them, they provide 

a viable option in this application. This method is better suited 

for road texture wavelengths greater than 5m (unevenness) as 

indicated by Figure 1. This is because the smartphones are 

typically mounted on the vehicle’s dashboard, therefore the 

range of movement sensed is limited to the allowed frequency 

range (1 – 4Hz [10]) of the vehicle’s sprung mass due to the 

effect of shock absorbers. Figure 1(a) show the different 

classifications of road textures, illustrating their respective 

effect on vehicles and road users. This image is taken from the 

ISO 13473-5 standard that characterizes pavement textures by 

Improving Displacement Measurement for 

Evaluating Longitudinal Road Profiles 

Chinedum A. Onuorah, Angus Hutton-Mckenzie, Sara Chaychian, Yichuang Sun, Senior Member, 

IEEE, and Johann Siau 

R 



 2 

use of surface profiles, where 𝜆 and 𝑓𝑠𝑝 represent the texture 

wavelength and spatial frequency (cycles/m) respectively. 

Lighter shades indicate favourable effect of texture over the 

stated range, where darker shades are unfavourable [11]. 

For finer texture measurements, other methods like [12] 

utilize a two dimensional laser displacement sensor to evaluate 

a three-dimensional road roughness. Guan et al describes an 

algorithm to automatically detect and extract road features 

(surface, markings and cracks) from a Mobile Laser Scanning 

(MLS) point cloud data [13]. In [14], a combination of vision 

and laser sensors was used, proposing a laser line recognition 

method that only depends on grey value to determine the 

roughness, employing an anisotropic diffusion (Perona-Malik) 

filter to smooth the pavement texture. 

Commercially, the combination of both laser and 

accelerometer sensors is the most widely used method in 

vehicle mounted profilers, and this is reflected by the services 

provided by several top pavement testing companies including 

Highway Data Systems (HDS), PaveTesting, Pavement 

Management Services (PMS), Oscorp Engineering, Dynatest 

etc. Where the laser measures the road irregularities (since 

they can precisely measure displacement, and support high 

sampling rates), while the accelerometer is used to compensate 

for the vehicle’s vertical displacement during transit. An 

accelerometer is better suited for measuring the vehicle 

dynamics in this application since they do not require a 

physical reference point as lasers do, because the evaluated 

displacement is relative to its previous position. As an 

example, if the vehicle drives over a hump, the true road 

profile, for the period where the tires are over the hump, will 

be the difference between the displacement measured by the 

laser (from mount position to the ground) and the vertical (z-

axis) displacement measured from the accelerometer (which is 

calculated by double integration of the acceleration samples). 

Yang et al shows an implementation of this system, which 

utilises two accelerometers and a laser displacement sensor 

mounted in front of a vehicle [15]. The advantage with this 

method is, the road texture wavelength measureable is a factor 

of the speed of the vehicle and the sampling rate of the laser 

displacement sensor. Hence, in theory road textures as low as 

0.5mm can be evaluated. 

One of the challenges with these systems is being able to 

precisely derive the vertical displacement from the 

accelerometer, since the integration process during conversion 

amplifies any slight error measured by the accelerometer. The 

presence of a low frequency or DC signals causes the 

evaluated displacement waveform to drift away from the 

expected result. This drift is due to the integration process of 

converting the acceleration samples to displacement, and the 

most common method of reducing this error is by passing the 

derived displacement through a high-pass filter, to eliminate 

low frequency signals present. The concept of utilizing Inertial 

Measurement Unit (IMU) sensors (which typically consists of 

an accelerometer and gyroscope) in motion applications to 

detect the movement of a body is common practice. Do et al 

proposes an inverted pendulum model [16] that evaluates the 

vertical displacement derived from an accelerometer (mounted 

at the upper torso), to detect a person’s step, and estimating 

the stride length for infrastructureless localization. Similarly, 

the researchers in [17], [18] integrate IMU sensors with 

Global Positioning System (GPS) signals to improve 

localization accuracy in areas where GPS signals are 

unavailable.  

The works carried out by the researchers in [19]–[25] 

confirm the negative effect of drift in applications that use 

IMU sensors to derive displacement. Various solutions were 

proposed in these studies to minimize the effect of this drift in 

their respective applications. For applications that require 

precise displacement calculations like in [20], [25]  where an 

IMU sensors is used to detect an object’s physical position, by 

computing the displacement from its initial location, Kalman 

filters are typically used. This technique works by estimating 

an error offset on the evaluated displacement, based on a 

mathematical model that integrates the measurements obtained 

from other related sensors. The correction models in [19], [21] 

are targeted to applications where the motion of the object is 

periodic, and its theory basically relies on pre-existing 

knowledge of the expected frequencies or band. 

This paper proposes a model based on a peak matching 

principle, that is applied to the displacement waveform 

derived from the accelerometer. This model compares the 

accelerometer’s displacement with that of the laser sensor, and 

then calculates a correction offset. This offset value is then 

subtracted from the accelerometer’s displacement, reducing 

the errors added to the signal during the integration process, 

thereby improving the accuracy of the overall system. 

Table 1, extracted from the Series 700 Road Pavement 

Standard [26], highlights the significance of this correction 

model for vehicle-based road measurement systems that 

combines accelerometers with displacement sensors to 

evaluate surface irregularities. There are two longitudinal 

threshold heights (4mm and 7mm), with their respective 

acceptable tolerances used to determine the eligibility of the 

road. From the standard, irregularities exceeding 10mm have 

zero tolerance, and is not permitted. 

II. SYSTEM SETUP AND DESIGN 

The Data Acquisition (DA) device used was designed and 

developed by the researchers of this project at component 

level by utilising commercially available sensors to achieve 

the required functionality. This DA system consists of an 

accelerometer (MPU-9250), a single point laser displacement 

sensor (optoNCDT 1700), and a Doppler radar (PEGASEM 

GSS15). The accelerometer is used to monitor the vertical 

displacement of the vehicle, the laser sensor measures the 

distance between the device’s mount position on the vehicle to 

the road surface, while the Doppler radar estimates the vehicle 

speed. All operations of the DA device are handled by a 

LPC1768 Microcontroller which runs a custom firmware. The 

firmware defines the operations of the system, exposing a 

platform for communication and control, acting as a bridge to 

interact with the integrated sensors. This device communicates 

with a computer over a Local Area Network (LAN), and is 

powered via Power Over Ethernet (POE). Figure 2 shows a 
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block level diagram of the system’s assembly.  

During road surface measurement, the device is mounted at 

the back of the vehicle and aligned to the right rear tire as 

shown in Figure 3. The project focuses at analyzing road 

surface conditions affecting vehicle wear and discomfort to 

travelers, which covers the texture wavelengths between 

50mm -  50m as shown in Figure 1a. The main factors that 

determine the road texture wavelength measureable by the DA 

device are the sensor’s sampling rates and vehicle speed. In 

terms of sampling rate, since the laser displacement sensor 

measures the actual road surface irregularities, its sampling 

rate has the most direct effect on the measureable texture 

wavelength, and hence, determines the overall sampling rate 

used by the DA unit. To measure smaller road texture 

wavelengths, a higher laser sampling rate and lower vehicle 

speed is required.  

The decision on the sampling rate and vehicle speed was 

chosen based on parameters that will yield a scalable and 

accurate analysis of the desired road texture. This includes 

considerations on the size of data that is generated by the DA 

device, without compromising the evaluated profile accuracy. 

For the results shown in this paper, a sampling rate of 625Hz 

was used, at vehicle speeds from 20mph to 50mph, which 

allows for road texture measurement within 14mm – 22m 

wavelength range (using equation  

(1)). 

 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑛𝑔𝑒 = 𝑣 ∗
𝑛

𝑓𝑠
  

(1) 

 

Where 𝒗 is the vehicle speed, 𝒇𝒔 is the sampling rate, and 

{𝒏 ∈ ℝ | 1 ≤ 𝒏 ≤ 𝑓𝑠}, which is used to calculate the possible 

measurement range where a value of 𝒏 = 1 and 𝒏 =  𝒇𝒔 are 

the minimum and maximum road textures that can be 

evaluated.   

Before applying the correction model, samples from the 

accelerometer must be converted to displacement by double 

integration. The derived accelerometer displacement (dA) and 

laser displacement (dL) must be high pass filtered to eliminate 

any DC or low frequency signals that may be present in the 

data to minimize the error. For this application, a cut-off 

frequency of 1Hz was chosen, which corresponds to the 

natural frequency (1 – 4Hz [10]) of a car’s sprung mass (part 

of the vehicle supported by the suspension). This is also 

reflected in Figure 4, which shows measured dL samples 

(obtained using the DA device) in the frequency domain. 

Note that all graphs showing dA and dL samples in this 

paper are actual road measurements taken with the DA device. 

The laser sensor shows the presence of a single frequency 

band between 0 < f < 4Hz, as opposed to the acceleration (z-

axis) samples which shows three different bands (A, B and C). 

The common band ‘A’ between the laser and accelerometer 

samples correlate with the natural frequency of the vehicle’s 

sprung mass. This frequency reflects the vertical dynamics of 

the vehicle supported by the suspension system while in 

motion. Bands B and C are a result of higher frequency 

vibrations acting on the chassis, caused by a combination of 

engine and mechanical vibrations. This is verified by 

comparing the samples obtained while the vehicle is static 

(with engine running), with samples obtained while the 

vehicle is in motion. The focus for this application is on band 

A, as the goal is to detect and subtract the vehicle’s vertical 

dynamics from the laser’s measurement samples when in 

motion. A low pass filter is applied to the acceleration samples 

to remove frequencies greater than band A. 

III. HALF-WAVELENGTH PEAK MATCHING (HWPM) MODEL 

The HWPM model compares and matches the peak 

amplitudes of two signals, where one acts as a reference, and 

the other is the signal to be corrected. The laser displacement 

sensor used operates on the principle of optical triangulation, 

where a visible point of light is projected on a surface from a 

light source, and an image receiver positioned at a pre-defined 

angle captures the reflection of the light spot, then calculates 

the distance between the visible spot and its projection source. 

This is a high precision sensor with error margins of ±0.25% 

(as stated in the optoNCDT 1700 datasheet). Since the 

measurement from the laser is expected to be more precise, it 

is better suited as the reference when compared to the 

displacement values derived from the accelerometer. 

Figure 5 shows the longitudinal profile estimation obtained 

before applying the HWPM model. At this stage, the 

displacement signals have been high-pass filtered at a cut-off 

frequency of 1Hz. Analysing the graph, there are clear 

similarities in the low frequency characteristics of both the 

laser and accelerometer samples. This is made clearer after 

both samples are low pass filtered (fc = 2Hz) to remove the 

high frequency components of the waveforms. This also 

exposes the error present in the dA waveform, where the low 

frequency displacement peaks appear higher than that of the 

dL as shown in Figure 6. 

Using a hump as an example, considering the mount 

position of the DA device (behind vehicle, aligned to left tire), 

for the period where the front tires climb over the hump, 

theoretically, both dA and dL record the same low frequency 

amplitudes caused by the back of the vehicle swinging down 

and up in the opposite direction of the front tires, as they climb 

up and down from the hump. This is a similar feature shown 

when the dampers on the vehicle balances the car after being 

displaced vertically because of road irregularities. The 

difference between dA and dL is expected to occur from the 

moments when the rear tires of the vehicle climb over the 

hump, to the laser sensor hovering over the hump. There is a 

phase difference on the signals at this point. While the dA 

maintains the absolute displacement of the DA device for the 

period where the rear tires climb over the hump, the laser 

sensor begins to record a dip in measurement since it hovers 

over the hump. 

Depending on the distance between the midpoint of the rear 

tires and the mount position of the DA device, this dip is 

reflected before or after the period where the dA begins to 

descend. 

In most cases, there is a direct correlation between the phase 

and peak amplitude of both dA and dL signals, however, as 
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the phase between the signals begin to drift apart, the 

difference in peak amplitudes for the same periods increases. 

Since little to no change is expected in the peak amplitudes of 

both dA and dL signals at periods where they are both in 

phase, the HWPM model detects and corrects this difference. 

The HWPM model implementation is done in three phases, as 

described below:  

1. Peak Detection and Classification 

2. Peak Matching 

3. Edge Smoothing. 

A. Peak Detection and Classification 

The aim of this stage in the correction technique is to 

identify all Common Peaks (CPs) present between the dA and 

dL signals. Peaks P1, P2, and P3 in Figure 6 are examples of 

these common peaks. These are essentially peaks (with the 

same polarity) present in both dA and dL waveform for any 

given wavelength, signifying correlation between the signals. 

Peaks P4 show peaks that are present in the dL signal but not 

on the dA, these will be referred to as uncommon peaks (UPs). 

The same goes for peaks that may be present in dA signal but 

not on the dL. 

There were two methods considered for identifying the 

peaks in the signal. The first method uses a Difference in 

Gradient Polarity (DGP) peak estimation process, which is 

ideal for low frequency signals, as it simply identifies peaks 

based on a difference in gradient polarity between the 

samples. Algorithm 1 shows an implementation of this 

method, the process sequentially runs through all the samples, 

calculating the gradient (equation  

(2)) between two subsequent samples, and comparing each 

one with previously calculated gradient. Peaks are detected at 

points when equation (3) is true, when the polarity of a 

gradient is different to its predecessor i.e. polarity of 𝒎𝒏−𝟏 is 

not equal to polarity of 𝒎𝒏. The output of the algorithm is a 

buffer with a length equal to the number of samples. The 

buffer contains a value of +1 or -1 at sample locations to 

represent a positive or negative peak respectively, otherwise 

the value is 0.  

𝑚𝑛 =  
Δ𝑦

Δ𝑥
 

 

(2) 

𝑠𝑖𝑔𝑛 (𝑚𝑛−1) ≠ 𝑠𝑖𝑔𝑛(𝑚𝑛) (3) 
 

Where 𝒎𝒏 is the gradient, 𝒎𝒏−𝟏 is the previous gradient, 

𝚫𝒚 is the difference between the samples, and 𝚫𝒙 is the 

change on the x-axis, which will always have a value of 1 in 

this case, since the comparison is done between two 

subsequent samples, hence: 

𝑚𝑛 =  Δ𝑦 (4) 
 

The other method considered was the Zero Threshold (ZT) 

peak estimation, which identifies peaks based on finding the 

maximum/minimum sample value between two subsequent 

points where the signal is at zero. 

There is a flaw with this technique especially in this 

application. Since the peak is identified based on the zero 

threshold, a signal containing peaks as shown in P5 (i.e. peaks 

that do not intersect with the x-axis zero threshold) will be 

missed by this method of estimation. Therefore, the DGP 

technique was preferred for this test. 

Algorithm 2 identifies the CPs in the signal, which is the 

focus of the HWPM model as mentioned earlier in the 

literature, as UPs suggests actual road irregularities and should 

not be corrected. With this DGP technique, it is expected that 

two consecutive peaks in a signal cannot be of the same 

polarity, since a peak can only be identified as a difference in 

gradient polarity. The output of the algorithm is two Lists 

containing the values of the identified common peaks for both 

dL and dA signals at the same index. 

 

Algorithm 1 Pseudocode for DGP peak detection 

1. Initialise ‘output_buffer’ with values equal to 0 

2. FOR EACH sample S in ‘input_buffer’ 

3.     calculate current gradient using previous sample 

4.     IF current polarity is not equal to previous polarity 

5.         IF current gradient is greater than or equal to 0 

6.             set value at index of ‘output_buffer’ to -1 

7.         ELSE 

8.             set value at index of ‘output_buffer’ to 1 

9.     update previous gradient equal to current gradient 

 

Algorithm 2 Pseudocode for CP classification 

1. FOR EACH sample A and B in ‘buf_A’ and ‘buf_B’ 

2.     IF A is not equal to 0 

3.         set ‘pkA_temp’ equal to A 

4.         IF ‘pkA_temp’ is equal to ‘pkB_temp’ 

5.             add ‘pkA_temp’ to ‘CP_buffer_A’ 

6.             add ‘pkB_temp’ to ‘CP_buffer_B’ 

7.     IF B is not equal to 0 

8.         set ‘pkB_temp’ equal to B 

9.         IF ‘pkB_temp is equal to ‘pkA_temp 

10.             add ‘pkB_temp’ to ‘CP_buffer_B’ 

11.             add ‘pkA_temp’ to ‘CP_buffer_A’ 

 

B. Peak Matching 

After detecting the peaks, the next phase is to apply the 

peak matching technique on the necessary sections of the 

waveform, ignoring areas where the peak appears on only one 

of the signals i.e. UPs. The peak matching is done in half 

wavelengths on the perimeter of either side of the peak point, 

as shown in Figure 7. 

For regular periodic signals, this process can be done by 

calculating the wavelength of one cycle of the signal, and 

performing the peak matching process at set intervals on half 

of the calculated wavelength. But from the wave sample 

shown in Figure 7, using this approach will result in false 

calculations because the actual dA and dL waveforms are not 
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periodic, and they contain multiple signals with multiple 

wavelengths. 

Therefore, the method employed in this model calculates 

the midpoint between each peak using equations  

(5) and (6) on the dA waveform to detect a quarter 

wavelength on either side of the peak. Both quarter 

wavelengths form the half wavelength to be corrected from the 

peak, and results obtained using this approach show accurate 

correction values. 

 

𝐿𝑀 = ⌈
𝑥(𝑡)𝑝 + 𝑥(𝑡)𝑝−1

2
⌉ 

 

(5) 

𝑅𝑀 = ⌊
𝑥(𝑡)𝑝+1 + 𝑥(𝑡)𝑝

2
⌋ 

 

(6) 

 

Where 𝑳𝑴 is the midpoint to the left of peak (point A in 

Figure 7), 𝑹𝑴 is the midpoint to the right of peak (point B in 

Figure 7), 𝒙(𝒕)𝒑 is the current peak’s x-axis index, 𝒙(𝒕)𝒑−𝟏 is 

the previous peak’s value to the left of 𝒙(𝒕)𝒑, and 𝒙(𝒕)𝒑+𝟏 is 

the next peak’s value to the right of 𝒙(𝒕)𝒑.  

After calculating the length for the half wavelength, 

equation  

(7) is used to determine the offset that needs to be 

subtracted from each data point in the signal to correct it. 

𝑜𝑓𝑓𝑠𝑒𝑡

= 𝑦𝑎𝑚𝑖𝑛 +
(𝑦𝑏𝑚𝑎𝑥 − 𝑦𝑏𝑚𝑖𝑛) ∗ (𝑦𝑎(𝑡) − 𝑦𝑎𝑚𝑖𝑛)

(𝑦𝑎𝑚𝑎𝑥 − 𝑦𝑎𝑚𝑖𝑛)
 

 

(7) 

 

Where 𝒚𝒂(𝒕) is the amplitude of the dA signal with respect 

to time, 𝒚𝒂𝒎𝒊𝒏 is the minimum value of the dA signal’s 

quarter wavelength, 𝒚𝒂𝒎𝒂𝒙 is the maximum value of the dA 

signal’s quarter wavelength, 𝒚𝒃𝒎𝒂𝒙 is the maximum value the 

dA signal can be scaled to (higher value between the dL’s 

peak and dA’s highest amplitude), and 𝒚𝒃𝒎𝒊𝒏 is the minimum 

value the dA signal can be scaled to (lower value between the 

dL’s peak and dA’s lowest amplitude). 

C. Edge Smoothing 

The peak matching process causes discontinuity on the 

waveform as shown in Figure 8, which primarily occurs at the 

mid-points between the peaks. This is expected since the scale 

factor for each half wavelength is only dependent on its CP 

difference, hence, the midpoint at which they join show 

features of discontinuity. The purpose of this part of the 

algorithm is to eliminate this property, giving the waveform a 

smooth transition between the corrected half wavelengths. The 

edge smoothing is accomplished using a low pass filter with 

an acceptable cut-off frequency (𝒇𝒄= 4Hz). 

IV. RESULTS 

As illustrated in Figure 9, the HWPM model corrects any 

amplitude error offset imposed on the dA signal. As shown, 

the process adjusts the peaks in the dA signal to match that of 

the dL, while maintaining the overall shape of the wave form 

and the phase difference between them. For the results shown, 

MATLAB was used to implement the HWPM model and 

perform all related analysis on the measured samples. 

A. Effect of a high-pass filter 

As the cutoff frequency is increased, dA becomes identical 

to dL, because the filter eliminates more of the drift in dA, as 

shown in Figure 10. There is a limit to this increment, because 

the amplitude of the signals is attenuated at higher cutoff 

frequencies, hence, losing useful information as indicated in 

Figure 10 (d). The cutoff frequency is based on the required 

road texture wavelength. Assuming a road texture wavelength 

of 10m, for a vehicle speed of 20m/s (45mph) the frequency of 

the texture wavelength is 2Hz. Therefore, the high-pass cutoff 

frequency should not exceed this value. 

B. Effect of speed on the high-pass cutoff frequencies 

Results gathered for the experiment suggests that the speed 

of the vehicle influences the amount of drift imposed on the 

dA signal after double integration. This is a direct relationship 

where the drift increases with speed, and requires a higher 

cutoff frequency from the high pass filter to eliminate it.  

Figure 11 illustrates this theory. Comparing the waveforms 

obtained at the different speeds, the drift on the dA signal 

increases progressively as the speed rises from 20mph to 

50mph, and this is more evident when the cutoff frequency is 

at 0.1Hz. This is mainly due to the difference in wavelengths 

occurring at these speeds. Ultimately, the frequency sensed by 

the vehicle chassis is limited because of the dampers, and 

although this frequency range is consistent, the equivalent 

wavelength changes because it is dependent on the speed of 

the vehicle. On the waveform, a wavelength with a frequency 

of 1Hz will have an equivalent travel distance of 8.9m at a 

vehicle speed of 20mph (8.9m/s), and 22.4m when the vehicle 

is travelling at 50mph (22.3m/s). The low frequency 

component of the waveform equates to a larger distance at 

higher speeds, hence, the increase in drift after integration. 

C. Effect of HWPM on drift 

The plots (Figure 12 and Figure 13) demonstrates the 

purpose of the HWPM algorithm in correcting drift in the dA 

signal. The samples were obtained for two different speeds at 

20mph and 50mph respectively. Each image has two sets of 

data (separated by a column) showing the result of the 

evaluated dA waveform before and after applying the HWPM 

algorithm. Note that the profile samples were taken at 

different locations. As the cutoff frequency increases, the dA 

waveform becomes progressively equivalent to its dL 

counterpart irrespective of the HWPM. However, comparing 

both sets of results for the various speeds, better drift 

correction is achieved with the HWPM. Without the HWPM, a 

cutoff frequency of at least 1Hz is typically required to 

sufficiently eliminate any drifts in the waveform (as shown in 

the plots), especially in higher vehicle speeds. Whereas, with 

the HWPM the same level of drift elimination is achieved at 

half (50%) the cutoff frequency. The HWPM reduces the 

amount of low frequency signal that is ignored by the high 

pass filter that could potentially contain useful profiling 
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information.  

This is better observed in low speed conditions. Figure 14 

shows this data loss, where the vehicle is used to sample a 

road hump at 10mph. Comparing the waveforms in the image, 

there is a significant change at ‘x’ which depicts the hump. As 

the cutoff frequency increases, the filter progressively alters 

the representation of the hump. This is because the hump 

produces a very low frequency signal, which is increasingly 

ignored by the filter, as the cutoff frequency gets higher. Since 

the laser signal is used as the reference for the HWPM 

algorithm in this application, it is vital to maintain the 

originality of this reference signal as best as possible, because 

inaccuracies are translated to the active signal in HWPM. 

For laser based road profilers, it is important to select an 

appropriate high pass cutoff frequency for the dA signal. 

Because of the longitudinal irregularity thresholds defined in 

the series 700 road pavement standard (Table 1), an incorrect 

cutoff frequency could cause a pavement to be evaluated 

above or below the outlined thresholds. 

D. Comparing the evaluated road profile against a 3m 

Rolling Straight Edge 

Figure 15 shows the effect of the HWPM model on the 

results in terms of irregularities measurements, and the results 

are based on running a 12cm diameter wheel filter over the 

original dA samples to simulate a Rolling Straight Edge 

(RSE). The laser sensor has a light spot diameter of 

approximately 1mm, compared to a RSE which uses a wheel 

to measure the road longitudinal displacements. The purpose 

of the wheel filter is to imitate the effect of the RSE wheel 

over the laser samples, and this is done with a moving average 

filter.  

Over the 300m distance analysed for the test, using a 3m 

rolling straight edge, the device measured a total of 9 

irregularities on the 4mm scale. Before applying the HWPM 

model, 19 irregularities were detected on the 4mm scale.  

Applying the technique brought the measured number of 

irregularities to 6. Using the data obtained from the RSE as a 

benchmark, the results obtained before and after the HWPM 

correction model indicates about 70% improvement on the 

4mm scale (from 19 to 6 respectively), which is significant 

considering the analysis is done based on the maximum 

permitted number of surface irregularities on each scale. No 

irregularity was measured on the 7mm and 10mm scale for all 

three cases. 

V. CONCLUSION 

Vehicle-based rapid road profiling has become a popular 

concept in road analysis because of its speed, as opposed to 

more traditional methods like 3m rolling straight edge. 

Although traditional methods of road measurements are still 

very much in use, as they offer better accuracy and are 

relatively cheaper, steps are being taken to improve vehicle-

based methods as there is still room for improving its 

accuracy. The proposed HWPM correction model shows 

significant improvements (~ 70%) to laser based vehicle 

profilers, by using an amplitude matching technique to adjust 

the offset displacement derived from the accelerometer.  

There is still room for improvement of this algorithm. As it 

is, the HWPM model does not consider any phase difference 

between each half wavelength during the correction process. 

Brief investigations made on this suggests there is an effect on 

the dA signal’s amplitude, caused by a phase difference with 

the dL signal. Further analysis will be carried out to verify this 

evidence. 

 

REFERENCES 

 
[1] ASTM E867-06(2012), “Standard Terminology Relating to Vehicle-

Pavement Systems,” 2012. 

[2] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. 
Kovacs, “Enhancements of V2X communication in support of 

cooperative autonomous driving,” IEEE Communications 
Magazine, vol. 53, no. 12. pp. 64–70, 2015. 

[3] I. Pettersson and I. C. M. Karlsson, “Setting the stage for 

autonomous cars: a pilot study of future autonomous driving 
experiences,” IET Intelligent Transport Systems, vol. 9, no. 7. pp. 

694–701, 2015. 

[4] B. Okumura, M. R. James, Y. Kanzawa, M. Derry, K. Sakai, T. 
Nishi, and D. Prokhorov, “Challenges in Perception and Decision 

Making for Intelligent Automotive Vehicles: A Case Study,” IEEE 

Transactions on Intelligent Vehicles, vol. 1, no. 1. pp. 20–32, 2016. 
[5] C. H. Fleming and N. G. Leveson, “Early Concept Development 

and Safety Analysis of Future Transportation Systems,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 17, no. 12. 
pp. 3512–3523, 2016. 

[6] M. Aki, T. Rojanaarpa, K. Nakano, Y. Suda, N. Takasuka, T. Isogai, 

and T. Kawai, “Road Surface Recognition Using Laser Radar for 
Automatic Platooning,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 17, no. 10. pp. 2800–2810, 2016. 

[7] G. Alessandroni, A. Carini, and L. Emanuele, “Sensing road 
roughness via mobile devices: A study on speed influence,” 2015 

9th Int. Symp. Image Signal Process. Anal., pp. 270–275, 2015. 

[8] V. Douangphachanh and H. Oneyama, “Formulation of a simple 

model to estimate road surface roughness condition from Android 

smartphone sensors,” 2014 IEEE Ninth Int. Conf. Intell. Sensors, 

Sens. Networks Inf. Process., pp. 1–6, 2014. 
[9] H. P. M. and V. P. Gopi, “Vehicle Vibration Signal Processing for 

Road Surface Monitoring,” IEEE Sensors Journal, vol. 17, no. 16. 

pp. 5192–5197, 2017. 
[10] Y. J. Wong, “Theory of Ground Vehicles,” 4th ed., JOHN WILEY 

& SONS, 2008, p. 592. 

[11] ISO, “ISO 13473-5:2009 Characterization of pavement texture by 
use of surface profiles — Part 5: Determination of megatexture,” p. 

29, 2009. 

[12] X. Zhu, Y. Chen, Y. Liu, and D. Liu, “Three-Dimensional Road 
Roughness Measurement System Development Based on Laser 

Rangefinder,” 2015 International Conference on Computational 

Intelligence and Communication Networks (CICN). pp. 1613–1616, 
2015. 

[13] H. Guan, J. Li, Y. Yu, M. Chapman, and C. Wang, “Automated 

Road Information Extraction From Mobile Laser Scanning Data,” 

IEEE Transactions on Intelligent Transportation Systems, vol. 16, 

no. 1. pp. 194–205, 2015. 

[14] Z. Yuan, X. Zhang, S. Liu, X. Han, and Y. Du, “Laser line 
recognition for autonomous road roughness measurement,” 2015 

IEEE International Conference on Cyber Technology in 

Automation, Control, and Intelligent Systems (CYBER). pp. 436–
440, 2015. 

[15] D. Yang, Y. Han, and X. Lian, “Research on rapid measurement of 

medium short wave longitudinal road profiles,” Proc. - Int. Conf. 
Electr. Control Eng. ICECE 2010, vol. 1, pp. 1742–1745, 2010. 

[16] T. N. Do, R. Liu, C. Yuen, M. Zhang, and U. X. Tan, “Personal 

Dead Reckoning Using IMU Mounted on Upper Torso and Inverted 
Pendulum Model,” IEEE Sensors Journal, vol. 16, no. 21. pp. 

7600–7608, 2016. 
[17] A. Suprem, V. Deep, and T. Elarabi, “Orientation and Displacement 

Detection for Smartphone Device Based IMUs,” IEEE Access, vol. 



 7 

5. pp. 987–997, 2017. 

[18] S. Zihajehzadeh, T. J. Lee, J. K. Lee, R. Hoskinson, and E. J. Park, 
“Integration of MEMS Inertial and Pressure Sensors for Vertical 

Trajectory Determination,” IEEE Transactions on Instrumentation 

and Measurement, vol. 64, no. 3. pp. 804–814, 2015. 
[19] N. Millor, P. Lecumberri, M. Gómez, A. Martínez-Ramírez, and M. 

Izquierdo, “Drift-Free Position Estimation for Periodic Movements 

Using Inertial Units,” IEEE Journal of Biomedical and Health 
Informatics, vol. 18, no. 4. pp. 1131–1137, 2014. 

[20] H. Zhao and Z. Wang, “Motion Measurement Using Inertial 

Sensors, Ultrasonic Sensors, and Magnetometers With Extended 
Kalman Filter for Data Fusion,” IEEE Sensors Journal, vol. 12, no. 

5. pp. 943–953, 2012. 

[21] U. X. Tan, K. C. Veluvolu, W. T. Latt, C. Y. Shee, C. N. Riviere, 
and W. T. Ang, “Estimating Displacement of Periodic Motion With 

Inertial Sensors,” IEEE Sensors Journal, vol. 8, no. 8. pp. 1385–

1388, 2008. 
[22] Y. Stebler, S. Guerrier, and J. Skaloud, “An Approach for 

Observing and Modeling Errors in MEMS-Based Inertial Sensors 

Under Vehicle Dynamic,” IEEE Transactions on Instrumentation 
and Measurement, vol. 64, no. 11. pp. 2926–2936, 2015. 

[23] H. Ahmed and M. Tahir, “Accurate Attitude Estimation of a 

Moving Land Vehicle Using Low-Cost MEMS IMU Sensors,” 
IEEE Transactions on Intelligent Transportation Systems, vol. 18, 

no. 7. pp. 1723–1739, 2017. 

[24] Z. W. Wu, M. L. Yao, H. G. Ma, and W. M. Jia, “De-noising 
MEMS inertial sensors for lowcost vehicular attitude estimation 

based on singular spectrum analysis and independent component 
analysis,” Electronics Letters, vol. 49, no. 14. pp. 892–893, 2013. 

[25] R. Ferrero, F. Gandino, M. Hemmatpour, B. Montrucchio, and M. 

Rebaudengo, “Exploiting Accelerometers to Estimate 
Displacement,” 5th Mediterr. Conf. Embed. Comput. 2016, pp. 206–

210, 2016. 

[26] HA, “Volume 1 Series 700 Road Pavements -General,” 2016. 



 8 

Table 1 
MAXIMUM PERMITTED NUMBER OF SURFACE IRREGULARITIES [26]. 

 Surfaces of each lane of 
carriageway, each hard strip 
and each hard shoulder for 
each irregularity limit 

Surfaces of each lane of 
bituminous binder courses 
for carriageway, hard strip 
and hard shoulder for each 
irregularity limit 

Surfaces of lay-bys, service 
areas, and associated 
bituminous binder courses 
for each irregularity limit 

Irregularity Limits 4 mm 7 mm 4 mm 7 mm 4 mm 7 mm 

Length (m) 300 75 300 75 300 75 300 75 300 75 300 75 

Category A* Roads 20 9 2 1 40 18 4 2 40 18 4 2 

Category B* Roads 40 18 4 2 60 27 6 3 60 27 6 3 

 

 

 

(a) 

 

(b) 

 
Figure 1: Road texture classifications and visualization [11] 

 

 

 
 

Figure 2: Block diagram of DA device 
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(b) 

 

 

Figure 3: Data acquisition hardware. (a): mount location, (b): internal circuitry 

 

 

 

 

Figure 4: Frequency domain of laser and accelerometer samples. 
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Figure 5: Laser and accelerometer displacement waveforms before and after low pass filtering (fc=2Hz). 

 

 

 

Figure 6:  Peak identification using DGP estimation, showing the difference between CPs and UPs. 

 

 

 

Figure 7:  Laser and accelerometer samples, showing the half wavelength peak matching points between successive CPs. 
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Figure 8: Effect of  applying a low pass filter for edge smoothing. 

 

 

 

Figure 9: dA and dL signal before and after applying the HWPM. 

 

Figure 10: Comparing dA and dL at different cut-off frequencies. (a): fc = 0Hz, (b): fc = 0.3Hz, (c): fc = 1Hz, (d): fc = 2Hz 
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Figure 11: dL and dA samples high pass filtered with a cut-off frequency of 0.1Hz, showing the effect of speed on the dA drift. (a) v = 20mph, (b) v = 30mph, (c) 

v = 40mph, (d) v = 50mph. 
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Figure 12: dL and dA samples measured at 20mph to evaluate the drift correction done by HWPM at different cut-off frequencies. (a) fc = 0.1Hz, (b) fc = 0.3Hz, 
(c) fc = 0.5Hz, (d) fc = 1Hz. 
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Figure 13: dL and dA samples measured at 50mph to evaluate the drift correction done by HWPM at different cut-off frequencies. (a) fc = 0.1Hz, (b) fc = 0.3Hz, 

(c) fc = 0.5Hz, (d) fc = 1Hz. 
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Figure 14 dL sample of a road hump shown at different high-pass filter cut-off frequencies 

 

 

Figure 15: The evaluated longitudinal road profile before and after HWPM, showing the pavement irregularities at thresholds 4, 7 and 10 mm. 
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