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Nuts and Bolts of a Realistic Stochastic Geometric
Analysis of mmWave HetNets: Hardware

Impairments and Channel Aging
Anastasios Papazafeiropoulos, Tharmalingam Ratnarajah, Pandelis Kourtessis, and Symeon Chatzinotas

Abstract—otivated by heterogeneous networks (HetNets) de-
sign in improving coverage and by millimeter-wave (mmWave)
transmission offering an abundance of extra spectrum, we present
a general analytical framework shedding light to the downlink
of realistic mmWave HetNets consisting of K tiers of randomly
located base stations (BSs). Specifically, we model, by virtue
of stochastic geometry tools, the multi-tier multi-user multiple-
input multiple-output (MU-MIMO) mmWave network degraded by
the inevitable residual additive transceiver hardware impairments
(RATHIs) and channel aging. Given this setting, we derive the
coverage probability and the area spectral efficiency (ASE), and
we subsequently evaluate the impact of residual transceiver
hardware impairments (RTHIs) and channel aging on these
metrics. Different path-loss laws for line-of-sight (LOS) and non-
line-of-sight (NLOS) are accounted for the analysis, which are
among the distinguishing features of mmWave systems. Among
the findings, we show that the RATHIs have a meaningful impact
at the high signal-to-noise ratio (SNR) regime, while the transmit
additive distortion degrades further than the receive distortion
the system performance. Moreover, serving fewer users proves
to be preferable, and the more directive the mmWaves are, the
higher the ASE becomes.otivated by heterogeneous networks
(HetNets) design in improving coverage and by millimeter-wave
(mmWave) transmission offering an abundance of extra spectrum,
we present a general analytical framework shedding light to
the downlink of realistic mmWave HetNets consisting of K
tiers of randomly located base stations (BSs). Specifically, we
model, by virtue of stochastic geometry tools, the multi-tier multi-
user multiple-input multiple-output (MU-MIMO) mmWave network
degraded by the inevitable residual additive transceiver hardware
impairments (RATHIs) and channel aging. Given this setting, we
derive the coverage probability and the area spectral efficiency
(ASE), and we subsequently evaluate the impact of residual
transceiver hardware impairments (RTHIs) and channel aging
on these metrics. Different path-loss laws for line-of-sight (LOS)
and non-line-of-sight (NLOS) are accounted for the analysis,
which are among the distinguishing features of mmWave systems.
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Among the findings, we show that the RATHIs have a meaningful
impact at the high signal-to-noise ratio (SNR) regime, while the
transmit additive distortion degrades further than the receive
distortion the system performance. Moreover, serving fewer users
proves to be preferable, and the more directive the mmWaves
are, the higher the ASE becomes.M

Index Terms—Heterogeneous MIMO networks, millimeter
wave transmission systems, channel aging, transceiver hardware
impairments, performance analysis.

I. INTRODUCTION

Current cellular networks have manifested an exponential
increase in traffic load [1]. In this direction, among the
dominant effective ways to increase the network capacity in
the forthcoming fifth generation (5G) networks is the cell
densification, which reduces user distance since the base station
(BS) density becomes very large [2]. In fact, the advent of
hotspots has improved the coverage and spatial reuse, has
achieved efficient offloading of the traffic, and has boosted
the spectral efficiency per unit area. In order to avoid Monte-
Carlo simulations, tractable and accurate models have been
introduced via the theory of Poisson point processes (PPPs) to
describe the randomness concerning the locations of the BSs.
Having started from the downlink of single-input single-output
(SISO) systems [3], an extension to multi-tier network has
been encountered in [4]. In a similar way, the coexistence of
MIMO and stochastic geometry in heterogeneous networks
(HetNets) has been actualized in [5].

In a parallel avenue, another key technology, aiming to
achieve the increased capacity demand, is millimeter-wave
(mmWave) transmission systems. Such systems offer large
portions of the unused spectrum, which can be exploited for
boosting the data rate [6]–[8]. Commercial wireless systems
such as the IEEE 802.11ad for local area networking [9]
have already considered the mmWave band ranging from 30
GHz to 300 GHz, where field measurements have taken place
recently [7], [9].

Notably, mmWave cellular systems employ large antenna
arrays to benefit from the application of beamforming that
can compensate the frequency-dependent path-loss, and reduce
the out-of-cell interference [6]. At the same time, the smaller
the wavelength, the smaller the antenna aperture to be used.
Hence, multiple antenna elements can be packed into a
smaller volume, i.e., mmWave transmission is required to
implement hundreds or thousands of antennas to a practical
cost-efficient BS. Unfortunately, mmWave communication
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systems become more sensitive to blockage effects with
increasing frequency [9]. Different materials have different
penetration losses [9]. Interestingly, channel measurements
with directional antennas have revealed that blockages cause
substantial differences in the line-of-sight (LOS) paths and
non-line-of-sight (NLOS) path-loss features [7], [10], [11]. In
other words, in the case of a comprehensive system analysis
for mmWave systems, the characteristics of the propagation
environment should be accurately accounted for because the
use of directional beamforming does not allow the application
of results from the conventional analysis.

The application of stochastic geometry to study mmWave
cellular networks is limited to a few substantial works [12]–
[15]. For example, reference [12] presents a basic work,
where directional beamforming is considered for single and
multiple users describing a simplified path-loss model without
considering any mmWave propagation characteristics. Similarly,
in [13], the author assumed that the actual array beam pattern
follows a step function with a constant main lobe over the
beamwidth and a constant side lobe otherwise. Moreover,
generalized fading (Nakagami-m) was considered as a suitable
distribution to model the LOS and NLOS components. Another
example is [14], where authors exploited the directional
beamforming in mmWave cellular networks to improve the
coverage probability by increasing the main lobe gain.

Remarkably, HetNets massive MIMO, and mmWave trans-
mission are currently mostly studied in isolation [2], however,
it is expected they will coexist in 5G systems and beyond
to address some of the critical challenges. Although these
solutions target the implementation of 5G networks, a number
of technical misconceptions and challenges are met and
remain unsolved. A fundamental example is the impact of
the detrimental unavoidable residual transceiver hardware
impairments (RTHIs) is a highly active area of great industrial
interest, which has not been taken into account in next-
generation networks. Unfortunately, although 5G networks,
and especially, mmWave systems and HetNets should be the
cynosure regarding the study of residual transceiver hardware
impairments (RTHIs), the situation is different as a literature
survey reveals. In the majority of literature, ideal transceiver
hardware is assumed which is far form realistic, considering
the inevitability of RTHIs [16]–[21], [21]–[27]1. In particular,
the additive RTHIs (RATHIs), which describe the aggregate
effect of many impairments, are modeled as additive Gaussian
noises at both the BS and user’s side [16], [17]. Note that the
Gaussian model is adopted because of its analytical tractability
and experimental validation [16].

In this context, the relative movement between antennas
and scatterers, which is common in practical systems, results
in channel variation between what is learned via estimation
and what is used for precoding or detection [27], [28]. This
effect is known as channel aging, and its study appears a gap
in the 5G literature. Notably, the lack of study of channel

1The RTHIs denote the amount of distortions, which occur by the partially
mitigation of the transceiver hardware because although real-world applications
employ calibration schemes at the transmitter and compensation algorithms
at the receiver, the transceiver hardware impairments are only partially
mitigated [16], [26], [27]

aging becomes more significant in outdoor urban environments
that are characterized by increased mobility. Especially, this
work, including the concept of channel aging during mmWave
transmission is quite meaningful since mmWave systems
are very sensitive to outdoor communications with high
velocities [8]. Hence, given that user mobility is one of the main
causes for the inevitably imperfect channel state information
at the transmitter (CSIT), it should be taken seriously into
account.

A. Motivation

Most existing works consider perfect hardware and CSIT,
which are highly unrealistic assumptions. Thus, the inconsis-
tency between theory and reality grows and results in mislead-
ing conclusions. Hence, this work relies on the recognition that
the 5G solutions should consider the RTHIs and user mobility.
In addition, in order to avoid Monte-Carlo simulations, we
have introduced tractable and accurate models for HetNets in
terms of the theory of PPPs to describe the randomness of BSs
locations. Also, the RTHIs have been taken into account only
in [22] and [24]. Specifically, [22] studies RTHIs in the case
of perfect CSIT, while [24] investigates the system under the
presence of RTHIs, pilot contamination, and channel aging,
which is closer to our work but not at the full extend of
technologies we propose. Furthermore, although in [29], the
authors have taken into consideration the mmWave condition,
their scenario focuses only on unrealistic assumptions of perfect
CSIT and hardware. As a result, noticing the marriage of many
studies between HetNets and mmWave transmission, we enrich
the general setting of HetNets with the special characteristics of
high frequencies. In fact, we formulate a general practical MU-
MIMO with randomly-located BSs serving in the mmWave
band, and impaired by the unavoidable RTHIs and imperfect
CSIT due to channel aging. We focus on the determination of
the potentials of HetNets enriched by the mmWave technology
before their final implementation, in order to comply with the
increasing need for conducting realistic characterization of 5G
networks.

B. Contributions

The main contributions are summarised as follows.
• We shed light on the impact of RTHIs and channel

aging on the performance of the downlink coverage
probability and the ASE of MU multiple-antenna BSs
employing mmWave transmission in a HetNet design. In
our investigations, we take into account for the residual
additive distortions at both the transmitter and the receiver
as well as amplified thermal noise (ATN) in a general
realistic scenario, where only imperfect CSIT is available.
For the sake of comparison, we also present the results
corresponding to perfect hardware.

• Contrary to existing works [22], [24], which have studied
the effect of RTHIs on the performance of heterogeneous
cellular networks with perfect and imperfect CSIT, respec-
tively, we focus on the mmWave band with its special
characteristics. Moreover, with comparison to [29], we
introduce the RTHIs and channel aging, as well as we,
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investigate a more general setting which includes a multi-
tier multi-user (MU) mmWave setup with multiple BS
antennas instead of single-tier single-input single-output
(SISO) channels.

• We present several observations that proper system design
should take into account. We show how the additive
distortions and the amplified thermal noise degrade system
performance. Furthermore, we quantify the degradation
of the system due to time variation of the channel.

• The drawn characteristics confirm that the higher the
channel aging becomes, i.e., with increasing user mobility,
the more severe the degradation of the systems is,
especially for certain Doppler shifts. In addition, the
additive distortion at the transmitter has a higher impact
than the distortion at the receiver side, but, in general,
the impact of both RATHIs becomes apparent at high
signal-to-noise ratio (SNR). At the same time, the ATN
contributes to the degradation of the system at low SNR,
while at high SNR, ATN is negligible. It is also apparent
that by increasing the directivity of the main lobe of
the mmWave transmission, ASE increases resulting in
a tradeoff. In fact, a trade-off between quality and cost
should be chosen.

• We have also provided information on how the number
of BS antennas and users can affect the drawn results.
It is shown that it is better to employ more antennas at
the BS, which agrees with the general idea of combining
massive MIMO and mmWave transmission in a HetNet
design. Also, it is a better design choice for every BS to
serve as few users as possible.

C. Paper Outline

The remainder of this paper is organised as follows. Sec-
tion II develops the system model of a realistic multi-tier MU-
multiple-input multiple-output (MIMO) mmWave HetNet with
channel aging and RTHIs operating at mmWave frequencies.
In the same section, channel aging is introduced and a
description of the RATHIs is provided. Next, Section III
presents the downlink mmWave transmission under RATHIs
and imperfect CSIT. Section IV provides the main results of this
work. Especially, Subsection IV-A includes the derivation and
investigation of the coverage probability, while Subsection IV-B,
provides the presentation of the ASE under the same realistic
conditions. The numerical results are placed in Section V, and
Section VI concludes the paper.

D. Notation

Vectors and matrices are denoted by boldface lower and up-
per case symbols. The symbols (·)T, (·)H, and tr(·) express the
transpose, Hermitian transpose, and trace operators, respectively.
The expectation operator is denoted by E [·], while the diag{·}
operator generates a diagonal matrix from a given vector, and
the symbol , declares definition. The notations CM×1 and
CM×N refer to complex M -dimensional vectors and M ×N
matrices, respectively. The indicator function 1(e) is 1 when
event e holds and 0 otherwise. Moreover, J0(·) is the zeroth-
order Bessel function of the first kind, and Γ (x, y) denotes the

Gamma distribution with shape and scale parameters x and y,
respectively. Furthermore, ∪

x∈A
denotes the union with A being

an index set. Also, LI(s) expresses the Laplace transform of
I . Finally, b ∼ CN (0,Σ) represents a circularly symmetric
complex Gaussian vector with zero mean and covariance matrix
Σ.

II. SYSTEM MODEL

This section introduces the downlink model of a realistic
HetNet embodying the principles of PPP modeling as well as
MU-MIMO and mmWave transmission under the presence of
imperfect CSIT with channel aging and inevitable hardware
impairments.

A. General Characteristics

We consider a set of W different classes (tiers) of BSs with
W = {1, 2, . . . ,W}, where hundreds of femtocells coexist in
each macrocell with a multi-antenna BS and multiple single-
antenna users per cell2. In addition, capturing the deployment
trends in 5G networks (massive MIMO), each BS can employ
a number of antennas Nw, which can be quite large by
approaching the regime of massive MIMO systems [30], which,
in turn, is suggested by mmWave technology [8]. In such a
case, many degrees of freedom are available to share per cell.
The locations of the BSs of each tier are drawn from a general
stationary point process ΦBw with deployment density λBw .
More compactly, we imply an MU-MIMO HetNet formulation,
where Kw ≤ Nw users, that are independently distributed
with a comparison to the BSs and blockages on the plane,
belong to the wth Voronoi cell. Across tiers, the BSs differ
in terms of the transmit power ρw, the number of antennas
Nw, the number of users Kw served by each BS in a given
resource block, and target signal-to-distortion-plus-interference-
plus-noise ratios (SDINRs) Tw. In essence, each macro BS
serves a higher load than its femto counterpart. Similarly,
the user locations in the wth tier are modeled by means of
a stationary independent PPP ΦKw with a sufficiently high
density λKw such that Kw users are associated per BS3. In
other words, we assume that the size of each cell is so large
that it can accommodate Kw users.

Blockages such as buildings comprise a stationary and
isotropic (invariant to the motions of translation and rotation)
process of random shapes [31, Ch. 10]. The BSs can be
arranged inside or outside the blockages. Focusing on the
outside BSs of the wth tier, we denote Φ̃w = {Xwl} their
point process, while Xwl represents the lth outdoor BS at tier
w, and Rwl represents the distance between the lth BS in the
wth tier and the origin 0. The average fraction of the indoor
area in the network in the wth tier, defined by γw coincides

2In practice, such a setting means that the BSs of femtocells transmit with
orders of magnitude lower power than macrocells, have a smaller number of
antennas, and serve a smaller number of users.

3It is worthwhile to mention, that in reality, the various parameters also differ
across the tiers. For example, such parameters are the number of antennas per
BS, and the number of associated users. Hence, the BSs in the wth tier include
Nw antennas and serve Kw users. For the sake of simplicity, we indicate that
the various parameters do not vary among the cells of tier w, i.e., the number
of BS antennas in the w tier is Nw ∀l, where l denotes the cell number.
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with the average fraction of the land covered by blockages. On
this ground, the probability each BS to be located outdoor is
i.i.d. and given by 1− γw. Taking into account the thinning
theorem of PPP [31], the density of the outdoor BS process
Φ̃w, being a PPP, is λw = (1− γw)λBw .

The focal point of this work is the downlink transmission,
initiated at a BS located outdoor and ending at a single-antenna
user located at the origin, which is found outdoor4. Exploiting
Slivnyak’s theorem, we are able to conduct the analysis by
focusing on a typical user, being a user chosen at random
from amongst all users in the network [32]. Without loss of
generality, we assume that the typical user is located at the
origin. We assume that the serving BS is located at X0. The
user with the smallest path-loss L (Rw) associates with this
BS. We neglect the index w since we refer to the current tier
(wth tier). The coverage region of each outdoor BS defines the
region with the maximum average received power, and the set
of all cells constitutes a weighted Voronoi tessellation.

Notably, we invoke that a BS is LOS to the typical user,
found at the origin, when there is no blockage between them.
Reasonably, in each tier, the blockages allow an assortment
of outdoor BSs to be LOS, while the rest BSs are NLOS. In
other words, an outdoor BS can be discerned to NLOS and
LOS to the typical user. We denote ΦLw the point process of
LOS BSs, while ΦNw = ΦBw\ΦLw is the process of NLOS
BSs. NwL and NwN express the number of LOS and NLOS
BSs. Moreover, the probability that a link of length Rwl is
LOS is called LOS probability function and is denoted by
p (Rwl). In particular, the LOS probability function depends
only on the length of the link Rwl because the distribution of
the blockage process has been assumed stationary and isotropic.
Also, p (Rwl) is a non-increasing function of Rwl since the
shorter the link, the more unlikely it will be intersected by one
or more BSs. Obviously, the NLOS probability of a link is
1− p (Rwl). The LOS probability function in a network can
be obtained by means of stochastic blockage models [33] or
field measurements [34], while the blockage parameters can be
defined by some random distributions. For example, we have
that p (Rwl) = e−βwRwl with βw being a parameter described
by the density and the average size of the blockages (1/βw is
called the average LOS range of the network), if the blockages
are modeled as a rectangle Boolean scheme [33]. Moreover,
in this work, we ignore any correlations of blockage effects
between the links, and, as a result, the LOS probabilities are
assumed to be independent. Also, the LOS and the NLOS
BS processes are assumed independent with density functions
p (Rwl)λw and (1− p (Rwl))λw, respectively. In addition, the
LOS and NLOS links obey to different path loss laws. Hence,
the path-loss L (Rwl), where Rwl is the length of the link in
polar coordinates, is obtained by

L (Rwl) = I (p (Rwl))CLw
R
−αLw

wl

+ (1− I (p (Rwl)))CNwR
−αNw

wl , (1)

4We consider that the outdoor user cannot receive any signal or interference
from an indoor BS because we assume that the indoor-to-outdoor penetration
loss is high enough in the mmWave band. Furthermore, the coverage of the
indoor users can be achieved by either indoor BSs or by outdoor BSs operating
at ultra high frequencies (UHFs) since they have smaller indoor-to-outdoor
penetration losses.

where I (x) denotes a Bernoulli random variable with parameter
x, while αLw , CLw and αNw , CNw are the LOS and NLOS
path loss exponents, intercepts of the LOS and NLOS BSs,
respectively. Prior works such as [8] provide typical values for
the mmWave path loss exponents and intercept constants.

Directional beamforming by means of antenna arrays de-
ployed at the BSs is another assumption that could also hold
for the mobile stations. However, for the sake of exposition,
we assume single-antenna users as already stated. In order to
make the analysis tractable, the array patterns from the lth BS
GMwi,mwi,θwli (φwli), where Mwi is the main lobe directivity
gain, mwi is the back lobe gain, θwli is the beamwidth of the
main lobe, and φwli is the angle of the boresight direction,
are approximated by a sectored antenna model as in [29].
Note that the index i takes two values. If it is t, it describes
the parameters of the BS, while if it is r, it represents the
variables of the user (mobile station). Setting the boresight
direction of the antennas equal to 0o, the total directivity
gain in the link between the lth BS and the typical user is
Gwl = GMwt,mwt,θwlt (φwlt)GMwr,mwr,θwlr (φwlr) with φwlt
and φwlr being the angle of departure and the angle of arrival
of the signal. The directivity gain in an interference link Gwl
is a discrete random variable with probability distribution
Gwl = αwk with probability bwk, where k = 1, 2, 3, 4. The
constants αwk and bwk are given in Table I, where cwr = θwr

2π

as cwlt = θwt

2π . The random directivity gain Gwl for the lth
interfering link results, if we assume that the angles φwlt and
φwlr are assumed to be independently and uniformly distributed
in (0, 2π]. Especially, in the case of the directivity gain for the
desired signal link, it is Gw = MwrMwt

5.

B. CSIT Model

In practical systems, the CSIT available at the transmitter
can be imperfect due to several reasons. In this work, we
focus on the lack of accuracy due to limited feedback and
channel aging. Below, we describe these two sources, which
are present in both small and large antenna regimes [24], [28],
[36], and are quite meaningful in mmWave systems. As a result,
the proposed model is capable of describing any number of
antennas. As far as the small-scale fading is concerned, we
assume independent Rayleigh fading with different parameters
for each link.

1) Channel Estimation: During the system design, a se-
lection between time division duplex (TDD) and frequency
division duplex (FDD) is made according to the requirements
and the constraints [36]. Although massive MIMO systems,
suffering from pilot contamination, employ the former de-
sign [37], the implementation of an FDD solution due to
existing infrastructure is viable and can be employed in both

5Given that the proposed model and analysis are quite flexible, their extensive
performance under 3GPP practical models is an interesting topic for futute
work due to limited space. As an example, we provide an 3GPP antenna gain
pattern G3GPP (θ) defined by

G3GPP (θ) =

{
g110

− 3
10

(
2|θ|
|ω|

)2

if |θ| ≤ θ1
g2 if θ1 < |θ| ≤ π,

(2)

where ω is the 3 dB-beamwidth, θ1 = ω/2
√

10/3 log10(g1/g2), while g1
and g2 are the max and side-lobe gains, respectively with 0 ≤ g2 < g1 [35].
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TABLE I
PROBABILITY MASS FUNCTIONS OF Gwl [29]

k 1 2 3 4

awk MwrMwt Mwrmwt mwrMwt mwrmwt

bwk cwrcwt cwr (1− cwt) (1− cwr) cwt (1− cwr) (1− cwt)

small and large number of antennas BS designs [36]. Herein,
for the sake of simplicity and without loss of any generality,
we assume FDD, where the BS has available imperfect CSIT
due to limited feedback, e.g., a quantized feedback with a fixed
number of quantization bits [36], [38]. Thus, the estimated
channel at the associated BS of the wth tier is given by

hw =
√

1− τ2
wĥw + τwh̃w, (3)

where h̃w, being the estimation error, has i.i.d. CN (0, 1) entries
independent of ĥw. Note that τw ∈ [0, 1] is a parameter
indicating the quality of instantaneous CSIT for the associated
BS. For example, τw = 0 denotes perfect CSIT, whereas
τw = 1 expresses that the estimated CSIT and perfect channel
are completely uncorrelated. Note that both network nodes,
i.e., the BS and the user, calculate their channels (angles of
arrivals and fading) driven to profit the maximum directivity
gain by adjusting their antenna steering orientations.

2) Channel Aging: In common environments, relative mo-
bility of the users with a comparison to the BS antennas takes
place. Hence, the channel varies with time, and the result is a
time-varying CSIT model [28]. Mathematically, we consider an
autoregressive model of order 1, where the current sample is
related to its previous sample, that depends on the second-order
statistics of the channel in terms of its autocorrelation function.
Note that the autocorrelation function is generally a function
of the velocity of the user, the propagation geometry, and the
antenna characteristics. More concretely, we ponder a Gauss-
Markov model of low order (1) for reasons of computational
complexity and tractability [28], [39]. In such case, the current
channel at the wth tier between the associated BS and the
typical user belonging to its cell tier is related to its previous
sample as

hw,n =δwhw,n−1 + ew,n, (4)

where hw,n−1 is the channel in the previous symbol duration
and ew,n ∈ CNw is an uncorrelated channel error due to the
channel variation modeled as a stationary Gaussian random pro-
cess with i.i.d. entries and distribution CN (0, (1−δ2

w)INw [40].
Regarding δw, it is related to the autocorrelation function, and it
is provided by the following line of reasoning. Specifically, we
engage the Jakes model for the autocorrelation function, which
is widely accepted due to its generality and simplicity [41].
Note that the Jakes model describes a propagation medium with
two-dimensional isotropic scattering and a monopole antenna at
the receiver [42]. Mathematically, the normalized discrete-time
autocorrelation function of the fading channel in the wth tier
is expressed by

rw[k] =J0(2πfDwTsw |k|), (5)

where |k|, fDw , and Tsw are the delay in terms of the number of
symbols, the maximum Doppler shift, and the channel sampling
period, respectively. Concerning the maximum Doppler shift
fD, it can be expressed in terms of the relative velocity of the
v, i.e., fDw = vwfc

c , where c = 3 × 108 m/s is the speed of
light and fc is the carrier frequency. For the sake of simplicity,
we assume k = 1, and that the associated BS has perfect
knowledge of δw = rw[1].

Both effects of limited CSIT and time-variation of the
channel can be combined. Specifically, the fading channel
at time slot n can be expressed by

hw,n = δwhw,n−1 + ew,n

= δw
√

1− τ2
wĥw,n−1 + ẽw,n, (6)

where ĥw,n−1 and ẽw,n = δwτwh̃w,n−1 + ew,n ∼
CN

(
0, σ2

w,ẽw
IM
)

with σ2
w,êw

=
(
1− δ2

w

(
1− τ2

w

))
are mutu-

ally independent. In other words, the estimated channel at time
n is now ĥw,n = δw

√
1− τ2

wĥw,n−1. Given that, especially
in highly mobile scenarios, misalignments such as imperfect
antenna steering and suboptimal directivity gain may emerge,
we have left their study as a topic of future research. Note
that beem steering concerns the change of the direction of the
main lobe of a radiation pattern. The current model assumes
perfect antenna steering and maximum directivity gain, where,
especially, perfect antenna steering means that the main lobes
between each transmitter and receiver pair are aligned.

C. Hardware Impairments

The transceiver of practical systems includes unavoidable
hardware imperfections. Herein, we examine the impact of
RATHIs and ATN. The study of multiplicative impairments
such as the phase noise is left for future work.

1) Emergence of RATHIs: Despite the mitigation schemes,
implemented in both the transmitter and receiver, RATHIs still
emerge by means of residual additive distortion noises [16],
[17]. Hence, the transmitter side introduces an impairment
causing a mismatch between the intended signal and what is
actually transmitted during the transmit processing, while at
the receiver side the received signal appears a distortion.

Especially, the majority of HetNets literature, except [22],
[24], relies on the assumption of perfect transceiver hardware
with the hardware imperfections being ignored. In this direction,
the gap between theory and practice increases. Interestingly,
steps forward towards a more realistic approach necessitate
the incorporation of RATHIs in the design. In fact, from
conventional wireless systems and continuing to 5G networks
such as massive MIMO systems, the inclusion of RATHIs in the
analysis results in more down-to-earth conclusions [16]–[19],
[23], [24], [26], [27], [43].
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In mathematical terms, it has been shown by means of mea-
surement results that the conditional transmitter and receiver
distortion noises for the ith link, given the channel realizations,
are modeled as Gaussian distributed having average power
proportional to the average signal power [17]. The justification
behind the circularly-symmetric complex Gaussianity relies on
the aggregate contribution of many impairments. Moreover,
since the additive distortions take new realizations for each
new data signal, they are time-dependent.

The RATHIs at the transmitter (associated BS) and the
receiver (typical user) in the wth tier are given by

ηBS
wt,n ∼ CN

(
0,ΛBS

w,n

)
(7)

ηUE
wr,n ∼ CN

(
0,ΥUE

w,n

)
, (8)

where ΛBS
w,n = κ2

tBSw,ndiag (q1,n, . . . , qM,n) and ΥBS
w,n =

κ2
rUEw,nGwLw (Rw) hH

k,n tr (QBS,n) hk,n, with QBS,n be-
ing the transmit covariance matrix at time instance n of
the associated BS with diagonal elements qi1,n, . . . , qTi,n.
Hence, we have ΛBS

w,n = κ2
tBSw,nρ

UE
w /M and ΥUE

w,n =

κrUEw,n

√
Lw (Rw)MρUE

w ‖hH

k,n‖2. The proportionality param-
eters κ2

tBSw,n and κ2
rUEw,n, where, in applications are met as

the error vector magnitudes (EVM) at each transceiver side,
describe the severity of the residual impairments at the BS
and the user [44]. In particular, the requirements, concerning
the proportionality parameteres provided by the long term
evolution (LTE) standard, are in the range [0.08, 0.175] [45].
Notably, practical mmWave-enabled massive MIMO systems,
encouraged to be constructed by cheap equipments, will be
characterized by larger values of κtBS

and κtUE
, which are taken

into consideration in this paper as can be seen in Section V.
Remark 1: The receive distortion at the typical user incorpo-

rates the path-loss coming from the associated LOS or NLOS
BS.

2) ATN: This impairment is modeled by the variance ξ2
n of a

Gaussian distributed random variable with zero mean. In fact, it
is expressed by an amplification of the thermal noise, appearing
as an increase of its variance [26]. In other words, we have
σ2 ≤ ξn, where σ2 is the variance of the actual thermal noise.
From the physical point of view, this amplification emerges
from the low noise amplifier, the mixers at the receiver as well
as other components that engender a relevant amplified effect.

III. DOWNLINK TRANSMISSION UNDER IMPERFECT CSIT
AND RTHIS

The purpose of this section is to model the downlink transmis-
sion and obtain the corresponding SDINR and the probability
densities functions (PDFs) of its terms, in order to derive the
coverage probability and the ASE. Based on the proposed MU-
MIMO HetNet, employing mmWave transmission, the received
signal at the typical user in the wth tier from its associated
LOS/NLOS BS at Rw during the transmission phase n can be
written as

yw,n =
√
GwLw (Rw)hH

w,n

(
sw,n + ηBS

wt,n

)
+ ηUE

wr,n

+
∑
j∈W

∑
l:Xjl∈ΦBj \X0

√
GjlLj (Rjl)g

H

jl,nsjl,n + zw,n, (9)

where sw,n = Vw,ndw,n ∈ CNw×1 is the transmit signal
vector from the associated LOS/NLOS BS at the wth tier
with covariance matrix QBS

w,n = E
[
sw,nsH

w,n

]
= PBS

w INw =
ρBS
w /NwINw and tr (QBS,n) = ρBS

w is the average transmit
power. Also, zw,n is the amplified thermal noise. The channel
vector hw,n ∈ CNw×1 represents the desired channel vector
between the associated BS located at Rw at time-instance n and
the typical user. In a similar manner, gjl,n ∈ CNj×1 denotes
the interference channel vector from the BSs found at Rjl
far from the typical user at time-instance n. Notably, in the
special case of Rayleigh fading, the PDFs of the powers of
both the direct and the interfering links follow the Gamma
distribution [5], [24].

Since the system setting includes a MU-MIMO design,
for the sake of exposition, we employ zero-forcing (ZF)
precoding to support multi-stream transmission. We denote
Vw,n = [vw1,n, . . . ,vwKw,n] ∈ CNw×Kw the precoding ma-
trix of the associated BS, which multiplies the data signal vector
dw,n =

[
dw1,n, . . . , dwKw,n

]T ∈ CKw ∼ CN (0, PBS
w IKw)

for all users in that cell. Especially, taking account (6), the
ZF precoder, engaged by the associated BS of the typical user,
can be written as

Vw,n = H̄w,n

(
H̄H

w,nH̄w,n

)−1
(10)

= δ−1
w H̄†w,n−1 = δ−1

w V̂w,n−1, (11)

where H̄w,n is the normalised version of Ĥw,n given by
H̄w,n =

[
h̄w1,n, . . . , h̄Kw,n

]
∈ C(Nw×Kw) with columns

h̄wi,n =
ĥwi,n

‖ĥwi,n‖
. Note that the average transmit power per user

of the associated BS is constrained to ρBS
w since the precoder

is normalised, i.e., E
[
tr
(
V̂w,nV̂H

w,n

) ]
= 1. In (11), we have

introduced the user mobility effect for the kth user by means
of ĥw,n = δwĥw,n−1.

Remark 2: Interestingly, (11) illustrates the user mobility
effect on the ZF precoder in the downlink transmission between
the associated BS and the typical user.

Assumption 1: Given the increased path-loss and that
mmWave transmission takes place, we assume that the RATHIs
from other BSs are negligible.

Assumption 2: Although in HetNet studies the thermal
noise is omitted due to very low impact, hereafter, based on
simulations, we include the presence of thermal noise since
its effect is not negligible with a comparison to the additive
distortion noises and the interference coming from the other
cells.

Taking into consideration the practical conditions of a
realistic transmission by including the assumptions of limited
CSIT and channel aging (time variation of the channel, i.e.,
see (6)), the downlink received signal by the typical user is
given by

yw,n =
√
GwLw (Rw)ĥH

w,n−1v̂w,n−1dwk,n

+ δ−1
w

√
GwLw (Rw)ẽH

w,nV̂w,n−1dw,n

+
√
GwL (Rw)hH

w,nη
BS
wt,n + ηUE

wr,n + zw,n

+
∑
j∈W

∑
l:Xjl∈ΦBj \X0

√
GjlL (Rjl)g

H

jl,nV̂jl,ndjl,n, (12)
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where we have substituted (6), in order to replace the current
desired channel vector with its estimated version. In addition,
we have expressed the current precoder by means of its delayed
instance, known at the associated BS, by considering (11).

Remark 3: If we assume a single-tier network operating in
UHF and TDD design, we result in [24]. In addition, if we
assume perfect CSIT, we obtain the model in [22]. Setting the
additive distortion parameters in (12) to zero, neglecting the
amplified thermal noise, assuming perfect CSIT and single-
tier mode the closest signal model corresponding to the ideal
downlink model with the mmWave transmission, which does
not account for RATHIs is [29]. Similar properties/observations
hold for any other expression including the downlink RATHIs
and the channel aging.

Encoding the message over many realizations of all sources
of randomness in the model, described by (12), we obtain the
SDINR. Note that this model consists of the imperfect CSIT
noise, the accompanied channel estimate error, and RATHIs. In
order to facilitate the statistical description of the SDINR, we
denote Zw,n the desired channel power from the associated BS
at time n located at Lw (Rw) to the typical user, found at the
origin. Similarly, we denote Ijl,n the power of the interfering
link from other BSs located at Lz (Rjl).

Proposition 1: The SDINR of the downlink transmission
from the associated LOS/NLOS BS in Φzw (z ∈ {L,N}) to
the typical user at Rw, taking into account for RATHIs and
imperfect CSI due to limited feedback, and time variation of
the channel due to user mobility, is given by

SDINRz (qw, xw)=
βwzZw,n(

Ewz,n+Iηwtz,n
+Iηwrz,n

)
+Iz,n + ξ2

w,n

,

(13)

where βwz = MwrMwtP
BS
w CZwR

−αZw
w , and the PDF of the

desired signal power Zw,n = |ĥH
w,n−1v̂w,n−1|2, following a

scaled Gamma distribution, is given by

pZw,n (z) =
e
−z/σ2

ĥw

(Nw −Kw)!σ2
ĥw

(
z

σ2
ĥw

)Nw−Kw
, z ≥ 0 (14)

while the other power terms are provided by6

Ewz,n=βwzδ
−2
w

(
1 + κ2

tBSw,n

) ∥∥ẽH

w,nV̂w,n−1]
∥∥2

(15)

Iηwtz,n
=βwzκ

2
tBSw,n‖hw,n‖

2 (16)

Iηwrz,n
=βwzκ

2
rUEw,n‖hw,n‖

2 (17)

Iz,n=
∑
j∈W

∑
l:Xjl∈ΦBj \X0

GjlL (Rjl)P
BS
w ‖gH

jl,nV̂jl,n‖2

=
∑
j∈W

∑
l:Xjl∈ΦBj \X0

GjlL (Rjl)P
BS
w gjl,n. (18)

As can be seen in (13), the SDINR is a function of the
position xw and qw defining a set of parameters. Specifically,
we define qw , {Kw, Nw, λBw , αw, δw, τw, κtBSw, κrUEw,
ξw,Mwt,Mwr,mwt,mwt}.

Proof: See Appendix B.

6We assume that the manufacturing characteristics of the LOS and NLOS
BSs are the same, i.e., the additive impairments do not change.

Remark 4: Each term of the denominator of (13) describes
different effects. Indeed, the terms from left to right indicate
the estimation error, the transmit additive distortion noise, the
receive distortion noise, the inter-cell interference coming from
other BSs belonging in different cells and tiers, and the last
term expresses the ATN. Notably, the estimation error depends
on both channel aging and additive transmit impairment. Note
that the term in the numerator expresses the desired signal
contribution in the typical current cell.

Remark 5: The ideal mmWave model with no hardware
impairments and channel aging is obtained if τw = δw = 1,
κtBSw,n = κrUEw,n = 0, and ξn = σ2 ∀w, n.

IV. MAIN RESULTS

This section presents the main results of this work in terms
of theorems, describing the coverage probability and the ASE
of the typical user. Henceforth, we omit the time index n for
the sake of simplicity.

A. Coverage Probability

The investigation of the coverage probability, being one
of the main cores of this work, is the topic of this section.
Specifically, we derive an upper bound of the downlink
coverage probability of the typical user in a multiple antenna
HetNet operating at mmWave frequencies under the practical
conditions of imperfect CSIT, channel aging, and RATHIs. For
this reason, it is important to provide first a formal definition of
the coverage probability in the case of randomly located BSs.
Next, we continue with the main result by means of a theorem,
derived in Appendix C. Notably, despite the abstraction of the
definition, we result in the most general expression known
in the literature approaching a more realistic appraisal of a
network with randomly located BSs operating at mmWave
frequencies.

Definition 1 ([5], [24]): A typical user is in coverage if its
effective downlink SDINR from at least one of the randomly
located BSs in the network is higher than the corresponding
target Tw. In general, we have

pc (qw, Tw) , P

( ⋃
w∈W

max
xw∈ΦBw

SDINR (qw, xw) > Tw

)
.

(19)

Having provided the definition of the coverage probability,
we present its expression by means of the following theorem.

Theorem 1: The upper bound of the downlink coverage prob-
ability pc (Tw, qw) of a general realistic MU-MIMO HetNet
with randomly distributed multiple antenna BSs transmitting in
the mmWave region, accounting for RATHIs, imperfect CSIT,
and channel aging is given by7

pc (qw, Tw) = pc,L (qw, Tw) + pc,N (qw, Tw) , (20)

where pc,L and pc,N are the conditional coverage probabilities
given that the user is associated with a LOS in ΦLw or a NLOS
BS in ΦNw .

7pc,L and pc,N are obtained by means of Definition 1.
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Specifically, pc,z (qw, Tw) with z ∈ {L,N} is given by

pc,z (qw, Tw) =
∑
w∈W

Azw

∆w−1∑
i=0

i∑
u=0

∑
u1+u2+u3+u4=i−u

e−swzξ
2

×
∫ ∞

0

(
i

u

)(
i−u

u1 + u2 + u3 + u4

)
(−1)

i
suwz

(
swuξ

2
)u4

i!

× du1

dsu1
wz
LEwz

(swz)
du2

dsu2
wz
LIηtwz

(swz)
du3

dsu3
wz
LIηrwz

(swz)

× du

dsuwz

LIz(swz) f̂z(xw) dxw, (21)

where Azw is defined in Lemma 3, and swz =
Twβ

−1
wz

σ2
ĥw

. LEwz(s),

LIηwtz
(s), LIηwrz

(s), and LIwl(s) are the Laplace transforms
of the powers of the estimation error, the transmit distortion,
the receive distortion, and the interference coming from other
BSs across all the tiers.

Proof: See Appendix C.
The calculation of the coverage probability is based on

the Laplace transforms obtained in terms of Lemma 1 and
Proposition 2 as provided below.

Lemma 1: The Laplace transforms of the random variables
given by (15), (16), and (17), expressing the estimation error,
Iηwtz , and Iηwrz , respectively, are given by

LEwz
(swz) =

1(
1 + δ−2

w

(
1 + κ2

tBSw

)
σ2
êk
ζwzswz

)Kw (22)

LIηtwz(swz) =
1(

1 + κ2
tBSw

ζwzswz

)Nw , (23)

LIηrwz(swz) =
1(

1 + κ2
rUEw

ζwzswz

)Nw , (24)

where ζwz =
σ2
ĥw

Twβ
−1
wz

.
Proof: In Appendix B, it is mentioned that Iηwtz

and
Iηwrz

are scaled Gamma distributions. Hence, their Laplace
transforms can be easily obtained. In a similar way, the Laplace
transforms of the estimation error is also derived.

Proposition 2: Given that the typical user is associated with
a LOS BS, the Laplace transform of the interference power in
a general realistic cellular network with randomly distributed
multiple antenna BSs, operating at mmWave frequencies,
having RATHIs and imperfect CSIT is given by

LIL (sw) =
∏
j∈W

4∏
k=1

e(−2πλwbwk(Vjk(x)+Wjk(x))), (25)

where Vjk (x) =
∫∞
x

1− 1(
1+

f̄wkCLj
sw

Kj
( yt )

−αL

)Kj
 p (t) dt,

Wjk (x) =
∫∞
ψj(xj)

1− 1(
1+

f̄wkCNj
sw

Kj
( yt )

−αN

)Kj
(1−p (t)) dt,

f̄wk = awk
MrwMtw

, p (t) is the LOS PDF as well as awk and
bwk are constants defined in Table I.

Proof: See Appendix D.

When a typical user is associated with an NLOS BS,
the interference LIN (sw) is obtained by means of a similar
proposition.

These results are more general than [22], [24] for several rea-
sons. For example, one reason, regarding the former reference,
is the realistic consideration of imperfect CSIT, while, with
a comparison to the latter reference, we consider a mmWave
transmission with its special characteristics.

B. ASE

Herein, we present the other main result of this paper, which
is unique in the research area of practical mmWave systems
with hardware impairments, when the BSs are randomly
positioned. Specifically, we refer to the ASE for a typical
user served with mmWave transmission, while both the CSIT
and the transceiver hardware are imperfect due to channel
aging and RATHIs, respectively. The presentation is concise
to avoid any repetition since the analysis and some definitions
are similar to Section IV-A.

We start with the definition of the ASE for a multi-tier setup.
Specifically, we have [5]

η (qw, Tw) =
∑
w∈W

Kwλw log2 (1 + Tw)Pwc (qw, Tw) , (26)

where Pwc is the coverage probability conditional on the serving
BS found in the wth tier given Theorem 1. Similar to [5], we
do not derive the per tier coverage probability. However, we
can assume that the ASE is Pwc = Pc ∀w8.

Theorem 2: The downlink area spectral efficiency of a real-
istic MU-MIMO HetNet operating in the mmWave frequencies
in the presence of the inevitable RATHIs and channel aging, is

η (qw, Tw) = Pc (qw, Tw)
∑
w∈W

Kwλw log2 (1 + Tw) , (27)

where Pc (qw, Tw) is given by Theorem 1. The various parame-
ters, concerning this result, are also defined in Subsection IV-A
by means of Theorem 1.

V. NUMERICAL RESULTS

This section presents illustrations of the analytical expres-
sions, which are also verified by Monte Carlo simulations.
We examine the impact of various design parameters such
as the channel aging, RATHIs, numbers of users and BS
antennas on the general theoretical expressions describing the
coverage probability and the ASE provided by Theorems 1
and 2, respectively. We choose a sufficiently large area of
5 km × 5 km, where the locations of different classes of
BSs are simulated as realizations of different PPPs with
given densities λBw . The users’ PPP densities in all tiers are
considered to be λKw = 6λBw . For the ease of exposition,
we focus on a two-tier setup, where λB2

= 0.5λB1
. Note that

the simulation takes place over a finite window, while the
analytical expressions rely on the assumption of an infinite
plane, which results in border effects, being visible at high SNR.

8The theorem holds for the cases of SISO transmission when the target
SIRs are the same for all tiers and for SDMA transmission under the same
assumption plus when the number of BS antennas are the same for all tiers.
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The setup under consideration includes BSs of M = 5 number
of antennas serving K = 2 users. The LOS and NLOS path-
loss exponents are set to αLw = 3 and αNw = 4, respectively.
The average downlink transmit power is ρBS

w = 5 dBW. The
network operates at 50 GHz, while the bandwidth allocated
for each user is 100 MHz. The parameter β, included in the
LOS probability function is given by 1/β = 141.4 meters.
Moreover, the transmit antenna pattern is assumed to be
G20 dB, 0 dB, 30◦ [29].

Remarkably, even in the special case of perfect CSIT, but
still, time-varying, there is no known result in the literature
studying RATHIs in the mmWave area. Moreover, if we assume
a static channel, i.e., δw = 1, again, there is no known reference
corresponding to this model since RATHIs and ATN are present.
However, especially, when there is no channel aging, all the
impairments are set to zero and we consider only one tier, i.e.,
w = 1, Theorem 1 coincides with [29, Theorem 1], but there
is no study regarding the ASE.

The figures depicting the proposed analytical expressions
of the coverage probability pc (qw, Tw) and the achievable
user rate η (qw, Tw) are plotted along with the corresponding
simulated results. The “solid” lines with certain patterns
illustrate the proposed analytical results with specific quality
of imperfect CSIT, RATHIs, and user mobility, while the
“dot” lines, in most of the figures, correspond to the “ideal”
expressions with no transceiver impairments and no relative
user movement. Similarly, the “stars” represent the simulation
results. Apparently, the unavoidable effects under study, i.e.,
the RATHIs and the time variation of the channel degrade
the system performance since the corresponding terms are
met in the denominator of the SDINR. In fact, by increasing
the severity of these effects, the performance worsens. Below,
for the sake of exposition and and without any impact on the
following extracted conclusions, we assume that the transceivers
of both tiers employ the same hardware. As a result, the
parameters defining the quality of the hardware are equal in
both tiers. Also, for the sake of simplification, we consider
that, in general, all the other parameters in the two tiers are
the same, e.g., δ1 = δ2 = δ.

A. Impact of Channel Aging
In order to focus only on the impact of channel aging, we

set all the additive impairments equal to zero and the ATN
equal to σ2 i.e., κtUEw = κrUEw = 0 and ξ = σ2. Hence, in
Fig. 1, we depict the variation of the coverage probability for
varying values of δ. Obviously, increasing δ, being equivalent
to lower mobility, the coverage probability increases. If the
normalized variable fDTs becomes high enough, which means
high mobility, then δ becomes very small, and the coverage
probability is inadequate to support any service. In other words,
by focusing on the normalized variable fDTs, we observe that
its increase degrades pc. Interestingly, when fDTs → 0.4 and
given this channel aging model, fDTs → 0, i.e., there is no user
mobility and the coverage probability decreases to minimum.
Further increase of fDTs results in improvement of the
coverage probability. Indirectly, this behavior is explained by
noticing that δ follows the variation of the Jakes autocorrelation
function with fDTs as an argument.
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Fig. 1. Coverage probability of a MU- MIMO mmWave HetNet versus the
target SDINR T for varying severity of channel aging, while the RATHIs and
ATN are assumed to have no impact (κtBS = κrUE = 0, ξ = σ2).

Fig. 2. Area spectral efficiency of a MU-MIMO mmWave HetNet versus the
target normalized Doppler shift fDTs for varying number of BS antennas,
while the RATHIs and ATN are assumed to have no impact (κtBS = κrUE = 0,
ξ = σ2).

Regarding Fig. 2, it depicts the ASE versus the normalized
Doppler shift fDTs for varying number of BS antennas.
Especially, in the case N = 2, then we have space division
multiple access (SDMA) since we have considered K = 2
number of users. It is obvious that the channel aging (lower
quality of CSIT) decreases the downlink ASE to zero several
times. In fact, the curves have some ripples with their behavior
following the shape of the J0(·), i.e., the zeroth-order Bessel
function of the first kind. Hence, we note that the ASE increases
up to a point and then decreases to zero, again and again,
tending finally to zero. The basic shape of the plots does not
change with the number of BS antennas. Hence, the zero points
appear at specific values of the normalized Doppler shift. This
is justified because δ = r[1], depending only on fDTs. Only
the magnitude increases with increasing N since more degrees
of freedom are provided.
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B. Impact of RATHIs

In Fig. 3, we plot the coverage probability as a function
of the target SDINR for varying values of the RATHIs, but
with no channel aging and no ATN. These nominal values
of RATHIs are quite reasonable since these values can be
found in practical systems. Specifically, according to [24], [26],
if we assume that we have an Analog-to-Digital Converter
(ADC) quantizing the received signal to a b bit resolution,
then κtBS

= κrUE
= 2−b/

√
1− 2−2b. This expression for 2, 3,

and 4 bits gives κtBS
= 0.258, 0.126, and 0.062, respectively.

The chosen number of bits concerns the trend to employ low-
precision ADCs in 5G networks [46], [47]. Clearly, the number
of bits defines the impact on the coverage probability. In
fact, the smaller the resolution, the higher the degradation.
Moreover, as the transmit power increases, the degradation
from the RATHIs becomes more severe because these are
power-dependent. Actually, as we characterize conventional
systems with interference as interference-limited at high SNR,
in practice, they are also RATHIs-limited. In other words,
the impact of RATHIs becomes more severe at high SNR.
Fortunately, next-generation systems such as massive MIMO
are supposed to work with very low transmit power. However,
during the system design, special attention has to be taken, in
order not to exceed the specifications of the system.

Fig. 4 illustrates the variation of the ASE with the SDINR
for varying RATHIs. Clearly, an increase of the additive
hardware impairments brings a decrease to the ASE as expected.
Moreover, at the same figure, we show the ASE for ideal
hardware and no channel aging. The great gap between the
curves appears at high SDINR since at this regime, the RATHIs
start having an impact (RATHIs are power dependent). For
the same reason, the variation of RATHIs becomes more
distinguishable. Furthermore, we demonstrate a comparison
between the impacts transmit and receive additive impairments.
Notably, the transmit impairments result in a higher loss. This
is reasonable since the additive impairments affect also the
term including the estimation error as can be seen by (15).

Fig. 3. Coverage probability of a MU-MIMO mmWave HetNet versus the
target SDINR T for varying severity of the RATHIs, while the channel aging
and ATN are assumed to have no impact (δ = 1, ξ = σ2).

Fig. 4. Area spectral efficiency of a MU-MIMO mmWave HetNet versus the
target SDINR T for varying severity of the RATHIs, while the channel aging
and ATN are assumed to have no impact (δ = 1, ξ = σ2).

C. Impact of ATN

Fig. 5 illustrates the impact of ATN on the coverage
probability. The selected values are multiples of ξ = 1.6σ2,
which has been borrowed from [26]. Specifically, in [26], the
authors assumed a low noise amplifier with F being the noise
amplification factor. Hence, if we assume that F = 2 dB and
b = 3 bits, then ξ = Fσ2

1−2−2b = 1.6σ2. As can be seen, ATN
affects the coverage probability, but less than the other factors
under consideration in this work. Notably, at high SNR, the
system becomes power-limited, and thus, the ATN does not
make the coverage probability change. As a result, the lines
coincide at high SNR.

Fig. 5. Coverage probability of a MU-MIMO mmWave HetNet versus the
target SDINR T for varying quality of the ATN, while the RATHIs and channel
aging are assumed to have no impact (κtBS = κrUE = 0, δ = 1).

D. Impact of Transmit Diversity Gain

In Fig. 6, we have plot the ASE for different values of the
main lobe transmit diversity gain Mt. As Mt increases, the
ASE increases since the beams of mmWaves appear higher
directivity. In fact, by doubling Mt, the ASE increases by
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Fig. 6. Area spectral efficiency of a MU-MIMO mmWave HetNet versus
the target SDINR T for varying the main lobe directivity gain Mt (κtBS =
κrUE = 0.126, ξ = 1.6σ2, and δ = 0.7).

2.6 bps/Hz/m2, while by tripling Mt, the ASE increases
almost 14 units. Hence, the increase of the directivity gain of
the main lobe offers high positive contribution to the ASE. The
study of the other parameters concerning the antennas arrays
is left for future work.

E. Impact of Numbers of Users and Antennas

Figs. 7 and 8, assuming certain values for the hardware
impairments and channel aging, shed light into the impact of
users and BS antennas, respectively. It is important to mention
that K and M affect the severity of the hardware impairments
as can be seen from Proposition 1 that relates the various terms
with K and M . In particular, in Fig. 7, having set K = 2
and increasing the number of BS antennas, we observe an
improvement in terms of the coverage probability as expected.
On the other hand, Fig. 8 shows the impact of increasing K on
the coverage probability, i.e., pc decreases and gets the lowest
value in the case of space division multiple access (SDMA).
These results have been already reported from other similar
works [5], [22], [24]. In fact, we confirm that serving less users
is preferable.

VI. CONCLUSION

In this paper, we proposed a novel general framework
to model realistic multi-tier MU-MIMO downlink mmWave
networks with PPP distributed BSs. First, we obtained the
SDINR, and then, we derived the coverage probability as
well as the ASE. As far as the authors are aware, this is the
first work introducing the mmWave transmission in a realistic
MIMO HetNet, where the RTHIs and channel aging are taken
into account. The assessment of the practical potential of
such system resulted in a comprehensive understanding. The
consideration of aggregation or repulsion e.g., in terms of Cox
or Gibbs processes, respectively, is an interesting topic for
future research in the areas of both mmWave transmission and
impairments. Specifically, in this work, we showed in terms of
numerical results that directional beamforming with sectored
antenna is preferable, while when the directivity collapses, the

Fig. 7. Coverage probability of a MU-MIMO mmWave HetNet versus the
target SDINR T for varying number of BS antennas M (κtBS = κrUE =
0.126, ξ = 1.6σ2, and δ = 0.9).

Fig. 8. Coverage probability of a MU-MIMO mmWave HetNet versus the
target SDINR T for varying number of users K (κtBS = κrUE = 0.126,
ξ = 1.6σ2, and δ = 0.9).

system does not behave efficiently. Moreover, we examined the
impact of RATHIs and ATN, and we depicted that the former
and the latter impairments become important at high SNR and
low SNR, respectively. Another interesting observation is the
demonstration of the degradation of the system by increasing
user mobility.

APPENDIX A
USEFUL LEMMAS [29]

Lemma 2: Assuming that the typical user has at least one
LOS BS, the conditional PDF of its distance to the nearest
LOS BS is

fL (xw) = 2πλwxwp (xw) e−2πλw
∫ xw
0

rp(r)dr/BLw , (28)

where BLw = 1− e−2πλw
∫∞
0
rp(r)dr is the probability that a

user observes at least one LOS BS, and p (r) is the LOS PDF.
In a similar case, given the user has at least one NLOS BS,
the conditional PDF of the distance to the nearest NLOS BS is

fN(xw)=2πλwxw(1−p (xw))e−2πλw
∫ xw
0
r(1−p(r))dr/BNw , (29)
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where BNw = 1−e−2πλw
∫∞
0
r(1−p(r))dr is the probability that

a user observes at least one NLOS BS.
Lemma 3: The probability that the user is associated with a

LOS BS is

ALw = BLw

∫ ∞
0

e−2πλw
∫ΨL(x)

0 (1−p(t))tdtfL (x) dx, (30)

where ΨL (xw) = (CN/CL)
1/αNw x

αLw/αNw
w , while the prob-

ability that the user is associated with a NLOS BS is
ANw = 1−ALw .
Assuming that a user is associated with a LOS BS, the PDF
of the distance to its serving BS is

f̂L (xw) =
BLwfL (xw)

ALw

e−2πλw
∫ΨL(xw)

0 (1−p(t))tdt/BLw . (31)

Taking for granted that the user can be served by a NLOS BS,
the PDF of the distance to its serving is

f̂N (xw) =
BNwfN (xw)

ALw

e−2πλw
∫ΨN(xw)

0 p(t)tdt/BNw , (32)

where ΨN (xw) = (CL/CN)
1/αLw x

αNw/αLw
w .

APPENDIX B
PROOF OF PROPOSITION 1

Let us first define V̂w,n = H̄H
w,n

(
H̄w,nH̄H

w,n

)−1
. The PDF

of the desired signal power, being in the numerator of the
SDINR in (13), is Γ

(
∆w, σ

2
ĥw

)
distributed with ∆w = Nw−

Kw + 1 because it can be written as

Zw,n = |h̄H

w,n−1vw,n−1|2 · ‖hw,n−1‖2. (33)

As can be seen, Zw,n is written as the product
of two independent random variables distributed
as B (Nw −Kw + 1,Kw − 1) and Γ

(
Nw, σ

2
ĥw

)
,

respectively [48]9. Note that ‖ĥH
w,n−1‖2

d∼Γ[Nw, σ
2
ĥw

]

since the random variable ‖ĥH
w,n−1‖2 is the linear combination

of Nw i.i.d. exponential random variables each with variance
σ2
ĥ

. In a similar manner, the term including the error in the
denominator can be in written as a sum of Kw independent
random variables since

Ew,n = βwzδ
−2
w

(
1 + κ2

tBSw

) ∥∥ẽH

w,nV̂w,n−1

∥∥2

== δ−2
w

(
1 + κ2

tBSw

) Kw∑
i=1

∣∣ẽH

w,nv̂wi,n−1

∣∣2.
Given that v̂wi,n−1 has unit norm and is independent of
ẽw,n,

∣∣ẽH
w,nv̂wi,n−1

∣∣2 is the squared modulus of a linear
combination of Kw complex random variables distributed
as Γ

(
1, σ2

êw

)
. As a result,

∥∥ẽH
w,nV̂w,n−1

∥∥2
is Γ

(
Kw, σ

2
êw

)
distributed. Taking the expectation over the transmit and receive
distortion noises, we have Iηwtz,n

= βwzκ
2
tBSw,n‖hw,n‖

2

and Iηwrz,n
= βwzκ

2
rUEw,n‖hw,n‖

2, which both follow a
scaled Γ(Nw, 1) distribution. Moreover, the last term in the
denominator, representing the interference from other BSs
Iz,n, can be written as gjl,n = |gH

jl,nVjl,n|2 ∼ Γ(Kj , 1)

9An equivalent description can be made by means of the Erlang distribution
with shape and scale parameters ∆w and σ2

ĥw
, respectively

because Vjl,n expresses the precoding matrices of other
BSs, having unit-norm and being independent from gjl,n.
Consequently, since gjl,n can be written as a linear combination
of Kj independent complex normal random variables with unit
variance, we obtain that gjl,n ∼ Γ(Kj , 1).

APPENDIX C
PROOF OF THEOREM 1

The proof starts with the description of pc by the law of
total probability. Specifically, taking into consideration that a
user can be associated with a LOS or a NLOS BS, we have to
provide the corresponding conditional coverage probabilities
pc,L and pc,N, respectively. Hence, we have

pc = pc,L + pc,N. (34)

The derivation of the conditional probabilities follows. We start
with the definition 1 by focusing on the LOS BS case. We
have

pc,L=E

1
 ⋃
w∈W

ALw

⋃
xw∈ΦLw

SDINRL(qw, xw)>Tw

 (35)

≤ E

∑
w∈W

ALw

∑
xw∈ΦLw

1 (SDINRL (qw, xw) > Tw)

 (36)

=
∑
w∈W

ALwE

 ∑
xw∈ΦLw

1 (SDINRL (qw, xw) > Tw)

 (37)

=
∑
w∈W

ALwE

 ∑
xw∈ΦLw

P
(
Zw > Twβ

−1
wL

(
Ew +Dw + IL + ξ2

w,n

))
=
∑
w∈W

ALwE
[∫ ∞

0

P
(
Zw>Twβ

−1
wL

(
EwL+DwL+IL + ξ2

w,n

))]
× f̂L(xw)dxw (38)

where DwL = IηwtL + IηwrL expresses the total additive
distortion from both the transmitter and the receiver. Note
that Ew and Dw do not depend on the BSs located at Rjl far
from the typical user. In (36), we have applied the Boole’s
inequality (union bound). Then, we substitute the SDINR
in (37). Next, we employ the Campbell-Mecke Theorem [32],
and use the fact that Zw is Gamma distributed with PDF given

by P (Zw > z) = e−z
∆w−1∑
i=0

zi

i!
. Hence, its PDF is provided

by (14). Now, (38) becomes

pc,L ≤
∑
w∈W

ALw

∫ ∞
0

E
[
e
−
Twβ

−1
wL(Ew+Dw+ξ2)

σ2
ĥw e

−
Twβ

−1
wL

IL

σ2
ĥw

×
∆−1∑
i=0

i∑
u=0

(
i

u

)(
Twβ

−1
wL

(
Ew+Dw+ξ2

))i−u(
Twβ

−1
wLIL

)u
i!
(
σ2
ĥw

)i ]
× f̂L(xw) dxw (39)

=
∑
w∈W

ALw

∆w−1∑
i=0

i∑
u=0

∑
u1+u2+u3+u4=i−u

e−swLξ
2
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×
∫ ∞

0

(
i

u

)(
i−u

u1 + u2 + u3 + u4

)
(−1)

i
suwL

(
swLξ

2
)u4

i!

× du1

dsu1

wL

LEwz
(swL)

du2

dsu2

wL

LIηtwL
(swL)

du3

dsu3

wL

LIηrwL
(swL)

× du

dsuwL

LIL(swL) f̂L(xw) dxw, (40)

where ALw in (39) is defined in Lemma 3, and we have applied
the Binomial theorem. Setting swL =

Twβ
−1
wL

σ2
ĥw

, and using the

Multinomial theorem, we result in (40). Actually, we have
taken the inner sum over all combinations of nonnegative
integer indices u1 to u3 constraining the sum u1 + u2 + u3 to
i−u. In addition, we have applied the definition of the Laplace
transform EI

[
e−sI (sI)

i
]

= siL{tigI (t)} (s) and the Laplace

identity tigI (t) ←→ (−1)
i di

dsiLI{gI (t)} (s). As far as the
Laplace transforms LEwL

(s), LIηtwL
(s), and LIηrwL

(s) are
concerned, these are provided by means of Lemma 1. Finally,
the Laplace transform LIL(s) is obtained by Proposition 2. The
conditional coverage probability pc,N, denoting the association
with the NLOS BSs, is obtained after following the same
approach with pc,L. In order to avoid any repetition, we omit
the details.

APPENDIX D
PROOF OF PROPOSITION 2

In order to derive the Laplace transform of the interference
power gjl when the typical user is associated with a LOS BS,
it is necessary to employ its PDF, which has been characterised
in Appendix B as Γ(Kj , 1). In other words, the PDF depends
on the number of users, which is assumed that it is the same
across all the cells in tier j. Note that we omit the index L
from some variables for the sake of simplicity. Specifically,
we have

LI(sw)=EIjl
[
e−swIjl

]
=EΦBj ,ILj ,INj

[
e−sw

∑
j∈W(ILj+INj)

]
=
∏
j∈W

EΦBj ,ILj ,INj

[
e−sw(ILj+INj)

]
=
∏
j∈W

EΦLj ,ILj

[
e−swILj

]
EΦNj ,INj

[
e−swNj

]
, (41)

where sw =
Twβ

−1
w

σ2
ĥw

R−αw , and (41) results from the indepen-

dence betweem the LOS and NLOS BSs in terms of location
and powers of the corresponding fading distributions. Now, we
focus on the term describing the LOS interfering links. We
have

E
[
e−swILj

]
=E

[
e
−sw

∑
l:Xjl∈ΦLj

∩B̄j(0,xj)
GjlCLj

R
−αLj
jl gjl

]
(42)

= e

(
−2πλw

∑4
k=1 bk

∫∞
x

(
1−Lgjl

(
CLj

sw( yt )
−αL

))
p(t)dt

)
(43)

=
4∏
k=1

e

−2πλwbk
∫∞
x

1− 11+
f̄wkCLj

sw

Kj
( yt )

−αL

Kj

p(t)dt

,

(44)

where in (42) we have substituted ILj . Note that
ILj =

∑
l:Xjl∈ΦLj

∩B̄j(0,xj)GjlCLjR
−αLj

jl hjl and INj =∑
l:Xjl∈ΦNj

∩B̄j
(

0,ψLj(xj)

)GjlCNjR
−αNj

jl hjl are the interfer-

ence powers from the LOS and NLOS BS of the jth tier,
respectively. Next, we apply the property of the probability
generating functional (PGFL) regarding the PPP [32] to
obtain (43). Moreover, we substitute the Laplace transform
of the fading distribution following a Gamma distribution with
Kj parameter, and f̄wk = awk

MrwMtw
. Similarly, the other term

concerning the NLOS interfering links is written as

E
[
e−swINj

]
=E

[
e
−sw

∑
l:Xjl∈ΦNj

∩B̄j(0,ψj(xj))GjlCNj
R
−αNj
jl gjl

]

= e

(
−2πλw

∑4
k=1 bk

∫∞
ψj(xj)

(
1−Lgjl

(
CNj

sw( yt )
−αN

))
p(t)dt

)

=
4∏
k=1

e

−2πλwbk
∫∞
ψj(xj)

1− 11+
f̄wkCNj

sw

Kj
( yt )

−αN

Kj

(1−p(t))dt


.

(45)

Substituting (44) and (45) into (41), we conclude the proof.
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