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ABSTRACT

We homogeneously analyse ∼ 3.2 × 105 photometric measurements for ∼ 1100 tran-
sit lightcurves belonging to 17 exoplanet hosts. The photometric data cover 16 years
2004–2019 and include amateur and professional observations. Old archival lightcurves
were reprocessed using up-to-date exoplanetary parameters and empirically debiased
limb-darkening models. We also derive self-consistent transit and radial-velocity fits
for 13 targets. We confirm the nonlinear TTV trend in the WASP-12 data at a high
significance, and with a consistent magnitude. However, Doppler data reveal hints of a
radial acceleration about (−7.5±2.2) m/s/yr, indicating the presence of unseen distant
companions, and suggesting that roughly 10 per cent of the observed TTV was induced
via the light-travel (or Roemer) effect. For WASP-4, a similar TTV trend suspected af-
ter the recent TESS observations appears controversial and model-dependent. It is not
supported by our homogeneus TTV sample, including 10 ground-based EXPANSION
lightcurves obtained in 2018 simultaneously with TESS. Even if the TTV trend itself
does exist in WASP-4, its magnitude and tidal nature are uncertain. Doppler data
cannot entirely rule out the Roemer effect induced by possible distant companions.

Key words: planetary systems - techniques: photometric - techniques: radial veloc-
ities - methods: data analysis - methods: statistical - surveys
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1 INTRODUCTION

Transit photometry is now one of the primary exoplanets de-
tection tools. This method has a very promising descedant
branch — transit timing variations, or TTVs. The outstand-
ing value of the TTV method comes from its ability to di-
rectly detect observable hints of N-body interactions in a
planetary system. This method is even capable of detect-
ing previously unknown planets (Agol & Fabrycky 2017),
and directly reveal tidal interactions with the star, like now
famous example of WASP-12 b (Maciejewski et al. 2018b;
Bailey & Goodman 2019). This star demonstrates subtle pe-
riod drift, as if the planet was spiraling down onto its host
star. Such a physical phenomenon brings us unique oppor-
tunities to test the theories of tidal planet-star interaction
and even to put some constraints on the interior struc-
ture of this exoplanet (Patra et al. 2017). Recently, hints
of an analogous TTV drift were also reported for WASP-4
(Bouma et al. 2019), based on the first TESS observations.

Our present work is devoted to further development of
the TTV method. Basically, it presents results of a revised

analysis following (Baluev et al. 2015) but including addi-
tional targets, expanded photometric data, and improved
processing algorithms. However, if the goal of Baluev et al.
(2015) was to demonstrate the potential of amateur observa-
tions in the TTV field, the primary accent here is to highlight
the importance of using homogeneously derived TTVs.

The exoplanetary transit times published in literature
are derived by multiple independent teams that used very
different methods and models. For example, some works as-
sume linear limb-darkening law, but some quadratic. The
limb-darkening coefficients may be fixed at theoretically pre-
dicted values, or fitted as free parameters of the lightcurve.
The photometric noise can be modelled differently as well:
while some early measurements did not yet take into account
the red noise, others did, but all in different ways. Some tried
to reduce systematic effects by decorrelating them with air-
mass, some use more complicated correlation models, and
some just fit the systematics by a deterministic model (e.g.
trends plus multiple oscillations).

Moreover, any transit lightcurve fit also depends on the
exoplanetary parameters (planet/star radii ratio, impact pa-
rameter, etc.) which have an obvious tendency to improve
their accuracy with time. While many earlier transit obser-
vations were rather inaccurate because they could not rely
on good exoplanetary parameters, later ones can use a larger
record of observations to derive more accurate results.

As such, the transit times published in the literature
appear very heterogeneous: they may have subtle systematic
biases, including biases in their uncertainties. Those biases
are difficult to deal with, because they vary from one team to
another in an impredictable manner. Hence, it might appear
too difficult to analyse such merged TTV data as if they
were homogeneous, ultimately resulting in false detections
of spurious variations and so on.

This work presents an attempt to carefully reprocess the
archival and new observations in a homogeneous way, relying
on the same analysis protocol, including the use of the same
methods and of the same transit and noise models. Now we
can reprocess the entire photometry set available for each
target in a self-consistent manner, i.e. we should not neces-
sarily fit all the transits for the same target independently.
This approach was already tested in (Baluev et al. 2015),
and it allows us to reduce the number of degrees of free-
dom of the fit, thus improving the usability of lower-quality
observations.

Such a goal naturally implies substantial analysis of the
available photometric data, careful identification of possi-
bly outlying measurements or even entire lightcurves. Such
a work necessarily implies an investigation of the models in-
volved, in particular the limb-darkening models and noise
models. This also includes an analysis of the photometric
noise potentially yielding improved data-processing strate-
gies.

Moreover, we now aim to undertake a multimethod
study not relying on just the photometric observations. We
performed a self-consistent analysis of our homogeneously
processed photometry jointly with Doppler data, since the
combination of the transit and Doppler methods allows for
a much more comprehensive characterization of a planetary
system. This is especially important for several unique ex-
oplanets, like the above-mentioned WASP-12 or WASP-4
demonstrating possible TTV trends. In particular, relatively
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little attention was paid so far to a yet another explanation
of such trends, based on the light-travel effect induced by
outer bodies (Irwin 1952).

Finally, this work represents the first big practical test
of the EXPANSION project (EXoPlanetary trANsit Search
with an International Observational Network), grown on
the basis of the ETD (Exoplanet Transit Database) that
was used by Baluev et al. (2015). Now EXPANSION is a
standalone international project joining a network of sev-
eral dozens of relatively small-aperture telescopes, aimed to
monitor the exoplanetary transits (Sokov et al. 2018). This
network covers amateur as well as professional observatories
spreaded over the world in the both hemispheres.

The structure of the paper is as follows. In Sect. 2 we
provide a detailed description of the data that we analyse.
In Sect. 3 we introduce the algorithms used to process the
photometric data. In Sect. 4 we present results of empirical
debiasing of the limb-darkening theoretic models. In Sect. 5
we present the TTV data derived for our 17 targets and
results of their analysis, including a detailed discussion of
possible TTV trends in WASP-12 and WASP-4. In Sect. 6
we present results of self-cosistent fits using both the transit
and radial velocity data, available for 13 targets. In Sect. 7
we discuss in yet more detail the case of WASP-12, deriving
a purely tidal part in its observed TTV trend.

2 PHOTOMETRIC AND DOPPLER DATA

The EXPANSION project performs a long-term monitoring
of exoplanetary transits. Amateur and professional observa-
tories from Russia, Europe, North and South Americas with
relatively small telescopes from 25 cm to 2 m are used in
the photometric observations (Sokov et al. 2018). We used
data from this network, including all the data from ETD
that were used in (Baluev et al. 2015). Additionally, we used
lightcurves published in the literature or kindly provided by
the observers, as listed in Table 1. Most of them are available
in the VIZIER database.

We expanded our targets list by seven exoplanets:
Qatar-2, WASP-3, -6, -12, HAT-P-3, -13, and XO-5, thus
increasing their number to 17. The total amount of the in-
put data has grown considerably. This time we had ∼ 3×105

photometric measurements in ∼ 1000 lightcurves, compared
to ∼ 8 × 104 measurements in ∼ 300 lightcurves processed
by Baluev et al. (2015).

Whenever necessary, the timestamps in the photomet-
ric series were transformed to the BJDTDB system by means
of the public IDL software developed by Eastman et al.
(2010). To perform this reduction, we used ICRS coordi-
nates through the SIMBAD database which originate from
GAIA DR2 (Brown et al. 2018). We did not apply any cor-
rection to these coordinates due to proper motion, since this
would imply only a negligible correction to the time (below
∼ 0.1 sec).

Additionally, we used the precision radial velocity (RV)
measurements obtained from the archival spectra of the
HARPS, HARPS-N, SOPHIE, and HIRES spectrographs.
This involves the following targets from our photometry
sample: Corot-2, GJ 436, TrES-1, WASP-2, -4, -5, -6, -
12, HD 189733, XO-2N. The spectra were processed with
the HARPS–TERRA pipeline (Anglada-Escudé & Butler

Table 1. Sources of the photometric data (not including the EX-
PANSION project).

Target References Note

CoRoT-2 Gillon et al. (2010)

GJ 436 Gillon et al. (2007)
Bean et al. (2008) HST Fine Guidance Sensor
Shporer et al. (2009)
Cáceres et al. (2009) Very high cadence; we binned

these data to 10 sec chunks

HAT-P-3 Torres (2007)
Chan et al. (2011)
Nascimbeni et al. (2011a) Data initially uploaded to

VIZIER were not actually
in BJD system as claimed
(priv. comm.); correct data
uploaded in 2017

Mancini et al. (2018)

HAT-P-13 Bakos et al. (2009)
Szabó et al. (2010)
Nascimbeni et al. (2011b)
Fulton et al. (2011)
Southworth et al. (2012)

HD 189733 Bakos et al. (2006)
Winn et al. (2007a) T10APT data involve double

HJD correction by mistake
(priv. comm.)

Pont et al. (2007) HST Advanced Camera for
Surveys

McCullough et al. (2014) HST Wide Field Camera 3
Kasper et al. (2019) Multi-band transmission

spectroscopy; very high
accuracy data

Kelt-1 Siverd et al. (2012)
Maciejewski et al. (2018b)

Qatar-2 Bryan et al. (2012) It is not fully clear, whether
the “BJD” times are given in
UTC or TDB system. We as-
sume BJD TDB, because the
TTV residuals look bad oth-
erwise.

Mancini et al. (2014)

TrES-1 Winn et al. (2007b)

WASP-2 Southworth et al. (2010) Danish telescope tim-
ings might be unreli-
able (Nikolov et al. 2012;
Petrucci et al. 2013)

WASP-3 Tripathi et al. (2010)
Nascimbeni et al. (2013)

WASP-4 Wilson et al. (2008)
Gillon et al. (2009a)
Winn et al. (2009) Superseded by

Sanchis-Ojeda et al. (2011)
Southworth et al. (2009b) Danish telescope tim-

ings might be unreli-
able (Nikolov et al. 2012;
Petrucci et al. 2013)

Sanchis-Ojeda et al. (2011)
Nikolov et al. (2012)
Petrucci et al. (2013) These data were kindly pro-

vided by the authors

WASP-5 Southworth et al. (2009a) Danish telescope tim-
ings might be unreli-
able (Nikolov et al. 2012;
Petrucci et al. 2013)

WASP-6 Gillon et al. (2009b)
Tregloan-Reed et al. (2015)

WASP-12 Hebb et al. (2009) These data were kindly pro-
vided by the authors

Chan et al. (2011)
Maciejewski et al. (2013) Partly superseded by

Maciejewski et al. (2016)
Stevenson et al. (2014) Multi-band transmission

spectroscopy; very high
accuracy data

Maciejewski et al. (2016)
Maciejewski et al. (2018b)

WASP-52 Chen et al. (2017) Multi-band transmission
spectroscopy; very high
accuracy data

Mancini et al. (2017)

XO-2N Fernandez et al. (2009)
Kundurthy et al. (2013)
Damasso et al. (2015)

XO-5 None
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2012). Some of these data represent reprocessed versions
of the RV data available in the literature, e.g. from
(Baluev et al. 2015), and some are new. Whenever perform-
ing a self-consistent transit and radial velocity analysis we
transform all the Doppler time stamps to the BJDTDB sys-
tem consistent with the photometry. However, the RV data
that we release here correspond to the UTC rather than
TDB system (as traditionally adopted for this type of the
data).

Since Wilson et al. (2008), additional 31 RV measure-
ments have been obtained for WASP-4 with the high resolu-
tion spectrograph CORALIE on the Swiss 1.2 m Euler tele-
scope at La Silla Observatory, Chilie (Queloz et al. 2001).
RVs were re-computed for the new data and the dataset pre-
sented in Wilson et al. (2008), for 45 measurements in total,
by cross-correlating each spectrum with a G2 binary mask,
using the standard CORALIE data-reduction pipeline.

For WASP-2, WASP-3, WASP-4, WASP-12, and
XO-5 additional HIRES observations were presented by
Knutson et al. (2014), which we included in the analysis in
the published form. The Keck RV data from (Knutson et al.
2014) for XO-2N and GJ 436, and from (Albrecht et al.
2012) for GJ 436 were not used as they were found in our
TERRA-processed sample. The HAT-P-13 data available in
(Knutson et al. 2014) mysteriously appeared older and much
less complete than RV data set by Winn et al. (2010), so
we used the latter one. Some more in-transit RV data for
WASP-12 are also mentioned in (Albrecht et al. 2012) but
not published.

The data files containing the photometric and radial-
velocity measurements are attached as the online-only ma-
terial. The format of the files follows that of (Baluev et al.
2015). Concerning the RVs, we currently release only a par-
tial set, since we still plan to seek more RV data and perform
their more detailed analysis in a future work.

We notice that some TERRA-processed RV data in
(Baluev et al. 2015) appeared partly erratic. First, the
HARPSN data for HD 189733 appeared entirely wrong be-
cause they belong to its known companion B. Secondly, the
difference between the new and old HARPS data for GJ 436
revealed a clear systematic trend indicating some processing
error in the old data set. The long-term trend was highly sig-
nificant in the previous RV release, but now it disappeared.

3 DERIVING TRANSIT TIMES FROM

PHOTOMETRY

Our derivation of transit timing variations from photometry
uses a similar procedure to that of Baluev et al. (2015) which
we updated to follow the processing stages below.

(i) Fit the raw transit photometry and the resulting re-
sulting transit timings with a reference TTV model (linear
ephemeris plus a possible quadratic trend, see eq. (5)).

(ii) Clean TTV outliers (bad lightcurves) by verifying the
TTV residuals and then reprocessing the remaining data.

(iii) Clean photometry outliers in the remaining
lightcurves in a similar way and then reprocess the data.

(iv) Reprocess the data using semi-empirical limb-
darkening coefficients for lightcurves in which the limb-
darkening was ill-fitted or had poor accuracy. The semi-

empirical values are based on Claret & Bloemen (2011) cor-
rected for the systematic biases derived in Sect. 4.

(v) Among the remaining lightcurves, identify higher-
quality (HQ) ones, and reprocess them separately.

We note that in our previous work we were only able to
follow Stages 1 and 3. Stage 2 could not be completed due
to a relative lack of TTV data. Stage 4 was not performed
due to a simplistic limb-darkening treatment, which is now
revised, and Stage 5 was absent. Most of the analysis was
performed using the PlanetPack software (Baluev 2013,
2018). We now consider each stage in more detail.

3.1 Stage 1: lightcurve fitting

The light curve fitting is based on maximum-likelihood fit-
ting with a dedicated model of the photometric noise and
follows (Baluev et al. 2015). As in that work, we use circu-
lar model of the curved transiter orbital motion. Most of
our targets do not have a detectable orbital eccentricity, ex-
cept for GJ436b. However, the photometric data for GJ436
appeared mostly of a too low quality. Except for a very few
space-based HST observations, they do not justify the use of
a general Keplerian model. In any case, we include non-zero
orbital eccentricities in the joint transit+Doppler analysis
below.1

The initial steps of the algorithm involve a set of prelim-
inary fits, needed to avoid pathological solutions and fitting
traps:

(i) Fit the data with a fixed transit impact parame-
ter, fixed limb darkening coefficients and with a strictly
quadratic TTV ephemeris. Contrary to (Baluev et al. 2015),
who adopted a linear TTV ephemeris, here we decided to use
a quadratic one because now we have at least two candidates
with a quadratic TTV trend (WASP-12 and WASP-4), and
all other targets should be processed homogeneously.

(ii) Refit after releasing the transit impact parameter and
mid-times.

(iii) Refit after releasing limb darkening coefficients (ex-
cept for those that are fixed at the corrected theoretical val-
ues at Stage 4 or 5).

(iv) Determine very high-quality lightcurves that allow
independent fitting of the limb darkening coefficients and if
such lightcurves exist, refit the model yet again.

After these initial stages, our red noise auto-detection
sequence follows that of Baluev et al. 2015; Baluev 2018.
Our criteria for a robust red noise detection were: (i) the log-
likelihood ratio statistic Z should be at least 2, implying the
asymptotic false detection probability χ2

2(Z) = exp(−Z) ∼
14 per cent, (ii) the uncertainty in the red jitter σr is at most
the estimated value (iii) the uncertainty in the red noise
timescale τ is at most twice the estimated value. These cri-
teria appear very mild (even more mild than in Baluev et al.
2015). In fact, they assume that most of the lightcurves must

contain some red noise by default, except for the cases when-
ever the red noise could not be modelled reliably.

In this work we used 3 starting initial values for τ , thus

1 The WASP-6b nonzero eccentricity e ∼ 0.05, reported by
Gillon et al. (2009b), is not confirmed by our joint fits below.
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running up to 3 probe red-noise fits for each lightcurve.
These initial values were spreaded logarithmically in the
range from T/N to T (where T is the total time span of
the lightcurve, and N is the number of its photometric mea-
surements). In (Baluev et al. 2015) just a single initial value
τ = T/

√
N was used, with a single probe fit per a lightcurve.

It appeared that among our ∼ 1000 lightcurves, almost all
reveal their red noise after just this very first trial fit. How-
ever, in a few cases it appeared that the first fit did not
converge to a robust solution because the actual best fitting
value of τ was too far from T/

√
N . By adding two more

probe fits starting from τ closer to the low and upper lim-
its of the range, we could robustly detect the red noise in
several lightcurves additionally.

But even with these very mild detection criteria and
multiple trial fits it appeared that only 1/4 to 1/3 of
our lightcurves (depending on the target) revealed an in-
dividually fittable red noise. This is in agreement with
Baluev et al. (2015), however such a low fraction of the red-
noised lightcurves still appears surprising. The red noise may
exist in the rest of lightcurves too, but with ill-fitted individ-
ual parameters. Therefore, leaving the noise models in such
a partial model-mixed state might make the resulting TTV
data less homogeneous. For example, the uncertainties in the
white-noise portion of TTV data may appear systematically
smaller than in the red-noise one. To soften this effect we
tried to fit the red noise in the remaining lightcurves in an
averaged sense. Since the most uncertain and poorly deter-
minable red noise parameter is τ , we assumed that this τ is
the same among all the lightcurves that did not reveal an
individually detectable red noise. While binding τ at such
a shared ‘average’ value, the value of σr was still assumed
individually fittable for each lightcurve to allow an adaptive
match of the red noise magnitude. In this way, if this derived
shared τ appeared inconsistent with the actual observations
in a given lightcurve then this τ could be just ignored by
reducing σr to zero.

After that the fraction of lightcurves enclosed by a red-
noise model was raised to 50 − 80 per cent, depending on
the target. The rest of the data had the best fitting σr =
0, implying that they contradict either the derived shared
τ , or the red-noise hypothesis itself. This might formally
suggest the presence of a blue noise instead (or σ2

r < 0). If
the red noise infers an increase of the TTV uncertainties,
the blue noise would reduce them below the level expected
from the white noise. Such an apparent effect may appear
due to starspot transit events (see below), but they might
also imply large individual timing biases which we do not
detect or reduce in this work. In such circumstances, we
do not allow the TTV uncertainties to decrease below their
white-noise estimations.

Since we have a large set of red noise estimations for nu-
merous lighcurves, it is now possible to consider some statis-
tics. In Fig. 1 we show the histograms of the derived red noise
parameters τ and σr, and of the ratio σr/(RMS), the relative
red noise contribution in the total error budget. We can see
that τ spans a wide range from ∼ 10 sec to ∼ 50 min, but is
primarily located in the range 1−5 min. The typical magni-
tude of the red noise is ∼ 1 mmag, but also can deviate a lot
from this peak value. The relative red noise contribution is
typically above 30 per cent (smaller values typically cannot

be detected or estimated reliably, so they are mostly ignored
in these histograms).

Yet another major difference from (Baluev et al. 2015)
is a more careful treatment of the limb darkening. As before,
we adopted a quadratic limb darkening model:

I(ρ)/I(0) = 1− A(1− µ)−B(1− µ)2, µ =
√

1− ρ2, (1)

where ρ is the projected distance from the disk center, and
coefficients A and B should satisfy the constraints

A+B ≤ 1, A+ 2B ≥ 0, A ≥ 0, (2)

which guarantee that I(ρ) never turns negative and always
remains monotonically decreasing (no limb brightening al-
lowed), see Baluev et al. 2015; Kipping 2013.

In (Baluev et al. 2015) the limb darkening coefficients A
andB were assumed the same for the most of the lightcurves,
regardless of the spectral band. But now we considered this
as an inadmissibly rough assumption. Although a fully in-
dependent fit of these coefficients for every lightcurve is un-
necessary (and even practically impossible), we need at least
to fit them independently for different spectral filters.

We split all available lightcurves into several sets that
correspond to the same or similar spectral bands. For exam-
ple, we combined in a single set the Johnson RJ and Cousins
RC filters, as well as the Sloan r or r′ ones, treating them
all as the same“generic R”filter. The theoretically predicted
limb darkening coefficients appear almost equal in all these
filters: the differences are smaller than e.g. those implied by
different models of stellar atmosphere in (Claret 2000, 2004;
Claret & Bloemen 2011). Thus we sorted all our data into
8 classes, corresponding to the following “generic” spectral
ranges: U , B, V , G, R, I , Z, K. Many lightcurves (mostly
amateur ones) were obtained without any filter at all, or us-
ing a wide-band IR-UV cut-off filter, and we joined all such
data under another class labelled “clear”.

A few lightcurves could not be assigned to any of the
above band classes, because they were obtained in another
spectral band or with a different technique. Most of that
data appeared of an exceptional quality, so we always fit
their limb darkening coefficients independently. These spe-
cial cases include observations from Hubble Space Telescope,
“white”lightcurves from transmission spectroscopy, and data
from some other specialized instruments.

Finally, we carried out a systematic comparison of the
resulting “observed” coefficients A and B with their the-
oretically predicted values based on (Claret 2000, 2004;
Claret & Bloemen 2011). This comparison revealed certain
systematic biases, discussed in Section 4 below.

3.2 Stages 2 and 3: cleaning the outliers

The cleaning of outliers is performed as in (Baluev et al.
2015), by means of inspecting the Gaussian quantile-quantile
(QQ) plots of the TTV residuals. The QQ plot is a non-
linearly re-scaled graph of the empirical cumulative dis-
tribution Femp(ε) of the normalized residuals εi = ri/σi,
where ri is the best-fit residual and σi is the modelled
standard deviation.2 If the input data were good and all

2 Here we assumed the multiplicative noise model (see below)
without red noise.
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Figure 1. Histograms of the estimated photometric red noise parameters, τ and σr, and of the relative red noise contribution in the
total RMS. We used only those estimations of τ and σr on Stage 4 that exceeded their respective uncertainty.

models correct, then this Femp(ε) should be close to stan-
dard Gaussian, F (ε) = Φ(ε). Hence the quantile function
Q(ε) = Φ−1(Femp(ε)) should be close to Q(ε) = ε.

The graph of Q(ε) is the QQ plot that we examine.
These plots are given in the online-only Fig. 2, 1st row. We
can see that the empirical curves are indeed close to the main
diagonal, suggesting mostly Gaussian noise, but a number of
outliers deviate in the tails much more than a normal distri-
bution would allow. Therefore, the outliers can be identified
as points that reside in these tails. The photometric outliers
are detected in the same way as TTV ones. The correspond-
ing QQ plots are shown in the online-only Fig. 2, 2nd row.

We reviewed the list of potential ∼ 20 TTV outliers,
and decided to manually ‘whitelist’ two lightcurves look-
ing like outliers. Namely, this is one lightcurve for HAT-P-
13 from (Szabó et al. 2010) and one for HD 189733 from
(Kasper et al. 2019), both with ε ≃ 4. Concerning HAT-
P-13, it demonstrated inconclusive hints of a TTV in the
past, and it might appear to be the case that (Szabó et al.
2010) measurements actually reveal a true TTV, rather than
a statistical outlier (e.g. induced by known non-transiting
companions, see Winn et al. 2010). However, after that we
noticed that this large normalized residual was finally re-
duced on Stage 4, thanks to using corrected limb-darkening
coefficients which appeared ill-fit on Stage 3. Concerning the
HD 189733 lightcurve by Kasper et al. (2019), it belongs to
a homogeneous set of high-quality transmission spectroscopy
observations. The other observations also have rather large ǫ
level. We decided to allow all the Kasper et al. (2019) data to
Stage 5 despite the particular lightcurve being rather anoma-
lous. Possible reasons of such anomalies in the Kasper et al.
(2019) data are discussed in Sect. 5.1.

3.3 Stage 4: applying empirically corrected

limb-darkening

Many lightcurves have relatively poor quality, so it is not
possible to reliably fit a two-parametric limb-darkening
law (1). Therefore, on Stage 3 multiple estimates appear to
have large uncertainties in A and B about unity, or the co-
efficients themselves lie on the boundary of their admissible
domain (Kipping 2013), indicating a poor fit. To overcome
these issues, we performed one more processing pass, fixing
the limb-darkening coefficients with poor accuracy at cer-
tain semi-empirical values. See more detailed discussion and
motivation in Sect. 4.

3.4 Stage 5: determining high quality lightcurves

To identify transit times of a higher quality, we first intro-
duce the “quality characteristic” of a lightcurve:

Q =

√
measurements density

residuals RMS
(3)

The quantity 1/Q determines the uncertainty offered by a
“standard” chunk of the lightcurve of a unit length. The un-
certainty of an arbitrary chunk of length t scales as 1/(Q

√
t).

Here we neglect possible red noise, so even neighboring mea-
surements are assumed uncorrelated.

This characteristic is not yet indicative concerning a
particular exoplanet. Let τ be the transit duration, and r′ =
rpl/R⋆ be the planet/star radii ratio. Then the uncertainty
of the in-transit piece of the lightcurve would be 1/(Q√

τ),
and it should be compared to the transit depth r′2. That is,
the following normalized parameter:

Q′ = Q
√
τ/r′2 (4)

can serve as our idealized quality characteristic. Say, Q′ =
100, then the transit depth can be measured with an accu-
racy of 1 per cent, while Q′ = 10 implies relative accuracy
of 10 per cent.

Now let us plot the empirical distribution of Q′ com-
puted for all our lightcurves (online-only Fig. 2, bottom
row). We can see that Q′ varies in an very wide range from a
few tens to a few thousands. We choose a threshold Q′ > 100
to select the HQ lightcurves. Such a threshold keeps about
2/3 of the entire sample, so it is a relatively mild filter. Our
goal was mainly to filter out only very inaccurate and prob-
ably useless data, rather than to select a minor portion of
highly accurate ones.

Note that whenever a lightcurve has low Q′, this does
not necessarily mean that it must be immediately removed
from the analysis as unreliable. Such a lightcurve just has
a poor overall accuracy, but it already survived the normal-
ity tests of the previous processing stages. Statistically, the
derived timing value remains quite admissible and usable
(within its uncertainty). Below we consider results of Stage 4
and Stage 5 simultaneously so the reader can compare them.

4 EMPIRICAL CALIBRATION OF THE

LIMB-DARKENING COEFFICIENTS

Using the technique presented above, we performed a per-
target and per-band fit of the limb darkening coefficients
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A and B in the quadratic model (1). After that, we com-
pared these empirical estimates with their theoretically pre-
dicted values from (Claret 2000, 2004) and their update
from (Claret & Bloemen 2011) band-by-band. The coeffi-
cients for the “clear” band-class were compared with the
bolometric estimates by Claret. We utilized the jktld code
by Southworth (2015) that offers a convenient interface
for interpolating the original tables by Claret.3 The nec-
essary stellar parameters (Teff , log g, [Fe/H]) were taken
mainly from the SWEET-Cat (Santos et al. 2013), and from
(Siverd et al. 2012) for Kelt-1. In almost all cases we used
the coefficients corresponding to the ATLAS models, except
for GJ 436, for which only the PHOENIX-based coefficients
were available. We assumed microturbulence velocity vt of
2 km/s for all cases.

We found that many of our A and B estimations, even
the most accurate ones, significantly deviate from theoretical
values. In itself, this is not very surprising, because the the-
oretical values are expected to have some biases (Heyrovský
2007). Even if the theoretical brightness profile was entirely
perfect, the two-parameter models such as (1) cannot ap-
proximate it everywhere equally well. The resulting “theo-
retical” coefficients A and B depend on how we fit this pro-
file: they may appear biased to better fit one its portion or
another. And they should not necessarily coincide with the
empirical values obtained from transit fitting (even if the
latter had no significant errors at all).

In online-only Fig. 3, some worst-case discrepancies are
demonstrated. The empirical A and B estimations corre-
spond to the processing Stage 3, while the theoretical values
were derived from (Claret 2000, 2004), and one can see that
they systematically deviate by ∼ 0.1− 0.2.

Then we computed the universal shifts ∆A and ∆B,
necessary to minimize the differences between the observed
and theoretical coefficients. The weighted least squares fit
yielded the biases ∆A = 0.059± 0.008 and ∆B = −0.172±
0.014 for the quadratic law, and ∆A = −0.112 ± 0.002 for
the linear law. These shifts refer to the older tables by Claret
(2000, 2004), ATLAS models, and take into account only the
UBVGRIZK filters.

By fitting the newer models by Claret & Bloemen
(2011), corresponding to the flux-conservation method
(FCM), and for the same spectral filters as above, we
obtained the following biases: ∆A = 0.004 ± 0.008 and
∆B = −0.099 ± 0.014 for the quadratic law, and ∆A =
−0.035±0.002 for the linear law. The newer tables are clearly
better, though some minor bias still remains in B. By adding
the latter best-fitting corrections to the theoretical A and B
values the agreement can be improved remarkably. This be-
comes obvious in several high-accuracy cases (e.g. WASP-4,
Qatar-2), see online-only Fig. 4.

The coefficients from Claret & Bloemen (2011) ob-
tained by least-square fit of the brightness profile appear
less accurate than the FCM ones and more similar to those
from (Claret 2000, 2004). The differences between various

3 See http://www.astro.keele.ac.uk/jkt/codes/jktld.html

for download; we actually augmented this code to process
the newer tables by Claret & Bloemen (2011), and applied an
additional post-interpolation with respect to the metallicity,
which is merely selected rather than interpolated by jktld.

systems of the limb-darkening coefficients highlight the need
for a homogeneous TTV analysis, based on simultaneous fit-
ting of all raw lightcurves at once and using the same anal-
ysis pipeline. Direct mixing of independently derived timing
measurements, especially those released before or after the
2011 update, may lead to spurious timing biases.

In this work, we adopt a hybrid approach to model the
limb-darkening profile following the key aspects below.

(i) If at Stage 3 both A and B had a fitting uncertainty of
better than 0.2 and simultaneously did not reside on either
boundary of (2) then we did not rely on the theoretical val-
ues. Even the corrected ones may still appear to be biased
for an individual star, so we allowed these coefficients to be
fitted from the transit curves as free parameters (still tak-
ing into account the common binding constraints per each
spectral band class).

(ii) The limb-darkening coefficients corresponding to fil-
ters other than UBVGRIZK, were always fitted, including
the no-filter (“Clear”) cases, regardless of their resulting ac-
curacy. Notice that in the online-only Figs 3 and 4 we com-
pare the “Clear” band with the predicted bolometric values
only for a reference: we do not rely on the bolometric coef-
ficients in our processing.

(iii) If at Stage 3 either limb-darkening estimations ap-
peared too uncertain (above 0.2) or the model appeared
ill-fitted (residing at the boundary of (2)) then we fixed
such coefficients A,B at their theoretical FCM values from
(Claret & Bloemen 2011), corrected by the biases derived
above. This refers to only the UBVGRIZK filters. The mo-
tivation here was to get rid of unrealistic solutions.

The graphs of the final limb-darkening coefficients are
presented in the online-only Fig. 5.

5 RESULTS OF THE TRANSITS ANALYSIS

5.1 Verifying the quality of the derived timings

Before presenting our TTV analysis results, we need to dis-
cuss the quality of the derived transit timing data. Our
transit analysis pipeline differs in several important aspects
from the standard methods applied usually. In particular,
we treat the red noise using a parametric model by Gaus-
sian processes with exponential correlation function. While
many other works may use different techniques, e.g. origi-
nating from a seminal work by (Pont et al. 2006) or from
(Foreman-Mackey et al. 2017). Also, we used different sta-
tistical treatment paradigms and different software. Finally,
we analyse jointly lightcurves of a very different quality, from
amateur ones to professional ground-based and even space-
based HST data. Although we undertook multiple efforts to
handle such a heterogeneity, its side effects may still exist.

Therefore, we need some benchmark of the accuracy
and quality of our TTV data. This can be done by compar-
ing them with analogous TTV data from other published
works. However, most of the published TTV data were de-
rived by different teams who used different techniques and
different assumptions (e.g. concerning the limb-darkening).
Hence, their mixed compilations cannot usually serve as re-
liable benchmarks. We need a long record of TTV data,
obtained mostly by the same team.
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In our target list, only WASP-12 perfectly suits our
needs. It has ∼ 200 observed transit lightcurves in to-
tal, and about half of them were processed by the same
group (Maciejewski et al. 2013, 2016, 2018b). Simultane-
ously, these data were obtained at quite different telescopes
located in different astroclimate conditions. Therefore, they
have different quality characteristics, offering the necessary
degree of physical heterogeneity.

Here we used the transit times from (Maciejewski et al.
2018b) and (Maciejewski et al. 2016) that included the most
reprocessed lightcurves of (Maciejewski et al. 2013). We did
not include the timings from the 2013 paper not reprocessed
in the 2016 one (since they would be statistically different).
After that we sampled the same transits from our homoge-
neous data release. Thus we obtained two similar TTV time
series to be compared, each containing 73 data points at the
same epochs. We fitted both them with a quadratic trend
model (5), resulting in almost identical trend fits. We then
computed the resulting RMS: 22.1 sec for the Maciejew-
ski et al. data and 24.9 sec for our data release. The Ma-
ciejewski et al. data winning with a slightly smaller scatter
of the residuals, though this 12 per cent difference is com-
parable to the probable statistical uncertainty (1/

√
N for

N = 73 yields the same 12 per cent). Therefore, the intrin-
sic statistical accuracy of our processing pipeline appears
similar high quality TTV data sets available in the litera-
ture.

However, our data reveal important difference in an-
other aspect. The value of the reduced χ2 for the quadratic
TTV model is 0.79 for Maciejewski et al., implying that they
tend to overestimate their TTV uncertainties by 12 per cent
on average. On the contrary, our data imply the reduced
χ2 of 1.49, which means that our TTV uncertainties appear
underestimated by the factor

√
1.49, or by ∼ 22 per cent on

average.

We notice that it is quite frequent that the uncertainties
reported for some measurements have a remarkable system-
atic bias. This is expected, because there are always subtle
physical effects that were missed, or shortcomings of the
adopted models, or hidden inaccuracies of the statistical
processing. All this may lead to a systematically wrong un-
certainties in the derived data. The same phenomenon was
known long ago in the precision Doppler data (Wright 2005;
Baluev 2009), and a generally similar effect should be ex-
pected in TTVs.

Then the TTV data released by different groups may
have quite a different level of hidden noise. We therefore
caution the reader against simplistic joining of TTV data
coming from different sources. Such a merging should be
made in an adaptive manner instead, taking into account
possibly different relative weights of heterogeneous subsets.
One way of such an adaptive treatment is demonstrated be-
low for the WASP-4 case.

As we can see, the TTV noise uncertainties may appear
overestimated (like in Maciejewski et al.), as well as un-
derestimated (like in this work). Concerning the first case,
the data have a smaller actual scatter than expected, indi-
cating just some unclassified inaccuracies in the processing
algorithm. Concerning the second case, this can be also ex-
plained in a bit more physical manner via the effect of an
additional noise source, not taken into account when per-
forming the processing.

We believe that this source can be the starspot transit
events. Initially, we expected that such transit curve anoma-
lies might be taken into account by a red noise model, how-
ever it appeared that lightcurves with obvious spot-transit
anomalies usually do not have a detectable or even fittable
red noise. Moreover, in practice it sometimes appeared that
such transit curves demonstrated hints of a blue noise with
σ2
r < 0.

One may argue that such a behaviour is reasonable. The
type of the noise — white, red, or blue — is basically deter-
mined by its rate of decrease whenever it is averaged over N

consequent observations: either N−
1
2 (white), or slower than

that (red), or quicker than that (blue). A single spot-transit
perturbation in the lightcurve is actually not noise: it is a
determenistic curve anomaly. The noise-like effect here ap-
pears only because these anomalies change randomly from
one transit to another. However, for a given lightcurve any
spot-transit anomaly behaves as a deterministic function,
e.g. it is averaged out at the rate 1/T , where T is the length
of the observation sequence. This corresponds to the decay
rate of 1/N , if N is accumulated linearly with time. There-
fore, such an anomaly can be interpreted as a blue noise
rather than red or white one.

In particular, we notice that some HQ observations by
Kasper et al. (2019) may be affected by hidden starspot
transit or other activity-related phenomena (even though
they are not obvious from the lightcurve, possibly due to
a low cadence). This might explain why one of them was
identified as an outlier deviating by ∼ 2 min (see Sect. 3.2).
Note that our estimation of this transit time is essentially
consistent with the original Kasper et al. (2019) value (the
shift by just 6 sec, our uncertainty is 12 sec compared to the
original uncertainty of 11 sec), so this issue cannot be at-
tributed to our data-analysis pipeline. The star HD 189733
itself reveals a remarkably large scatter of the TTV resid-
uals (see Table 2 explained below), possibly indicating an
increased starspot activity.

5.2 Analysis of the TTV

We processed our TTV data in the homogeneous manner,
using the same protocol for each target. For the first step, we
tested the existence of a possible long-term nonlinear trend
in the TTV time series, expressing it as a quadratic model:

TTV(n) = T0 + P (n− n0) +
1

2

dP

dn
(n− n0)

2, (5)

where n is the transit count (or epoch), P is the orbital pe-
riod, and dP/dn is the small quadratic coefficient. Defining
a temporal variable t = nP , we can alternatively rewrite (5)
as:

TTV(t) = T0 + (t− t0) +
1

2

Ṗ

P
(t− t0)

2

= T0 + (t− t0)−
(t− t0)

2

2Td

. (6)

In this model the quantity Td = −P/Ṗ represents a char-
acteristic time of period decay (the time when the apparent
period would turn zero if it decreased linearly). Since it has
an intuitive interpretation, we often use this quantity below
as a reference fit parameter (rather than the quadratic coef-
ficient itself). However, we emphasize that multiple physical

MNRAS 000, 1–19 (2019)



Homogeneously derived transit timings for 17 exoplanets 9

phenomena may be approximated by mathematically the
same formula (5): tidal orbital decay, tidal apsidal drift, or
even non-tidal effect of a perturbation from a distant com-
panion (causing the TTV via the light-travel effect).

The TTV residuals themselves are plotted in the online-
only Fig. 6 and 7 for all our targets. They correspond to a
linear TTV ephemeris and are given separately for Stage 4
(all data) and Stage 5 (HQ data).

We were able to easily confirm the TTV trend of WASP-
12 (Maciejewski et al. 2016) at this step. This case is dis-
cussed in details below in a separate section. The TESS tim-
ing data (Bouma et al. 2019) claimed that a similar TTV
trend may exist in WASP-4, but our data do not confirm
such a trend. The detailed analysis of this target is discussed
below in a separate section.

The other targets did not demonstrate convincingly de-
tectable hints of nonlinear TTV trends (based on the log-
likelihood tests applied to the TTV time series, see Sec-
tion 5.5). Furthermore, we performed a search for periodic
TTV signals. We constructed a periodogram z3 from (Baluev
2008), shown in the online-only Fig. 8 (for Stage 4) and Fig. 9
(for Stage 5). The base model for this periodogram always
included a quadratic trend.

We could not find any periodic TTV for any of the tar-
gets. Peridograms did not reveal hints of significant period-
icity. In particular, we do not detect any hints of previously
claimed controversial TTV for HAT-P-13 (Nascimbeni et al.
2011b; Pál et al. 2011) or for WASP-3 (Maciejewski et al.
2010; Montalto et al. 2012; Maciejewski et al. 2018a). Con-
cerning the HAT-P-13 target, it has a second companion
HAT-P-13 c, and also reveals hints of additional long-period
companions appearing as a linear RV trend (Winn et al.
2010). These additional companions would impose a vari-
able light travel delay effect on the inner tight subsystem,
causing therefore a TTV. However, this type of TTV is not
detectable in HAT-P-13 due to the small magnitude (e.g.
∼ 7 sec from HAT-P-13 c). In this work we did not inves-
tigate the TTVs possibly coming from gravitational pertur-
bations of the planet b orbital motion.

For WASP-4 HQ data we find that multiple peaks rise
above the two-sigma significance level in the short-period
range. However, these peaks look more like noise rather
than a systematic variation. Moreover, they disappear if we
remove just a single timing measurement, namely the one
derived from the lightcurve by Sanchis-Ojeda et al. (2011),
dated by 02 Aug 2009. We believe that this lightcurve could
be affected by a subtle residual systematic effect or by a
spot-transit event, even though it was not classified as an
outlier and looks visually reasonable. Similar issues may ap-
ply to HD 189733, which involves at least one lightcurve by
Kasper et al. (2019) with anomalous timing.

We note that in (Baluev et al. 2015) inconclusive hints
of periodic TTVs for WASP-4 were claimed in the range
of a few days. However those periodogram peaks disap-
peared when applying a more careful treatment of the limb-
darkening coefficients. This highlights the practical value of
the limb-darkening model, even if it apparently does not
seem so important for TTV studies.

5.3 Updated planetary transit fits

The Table 2 contains fitted transit parameters for our 17 exo-
planets, both for the Stage 4 and Stage 5 data. We give only
rather raw parameters, while the complete set can be de-
termined only from the transit+RV fits (considered below).
In addition, we give the number of red-noise lightcurves for
each target (fitted individually or with shared τ ), the cumu-
lative quality characteristic for each target, the maximum
and mean absolute correlation of the derived transit times
(which appears between different transits through the shared
planetary parameters), and the reduced χ2 for the derived
transit times residuals (relative to a best fitting quadratic
TTV). We also performed alternative fits assuming that all
the transit times strictly follow a quadratic model. For these
alternative fits we only consider the best fitting quadratic
TTV ephemeris (5).

Our approach may inspire statistical correlations be-
tween different transit times (Baluev et al. 2015), but they
mostly appeared negligible. Only for GJ 436 and WASP-6
some pairs of transits generated a large correlation of up to
0.68. This is because now we included several partial transits
in the analysis. Nonetheless, on average the effect of correla-
tions becomes negligible, so we decided to keep such transits
particularly since we have rather little transits data for these
two targets.

We notice that for Kelt-1 the impact parameter estima-
tion b = 0.05 ± 0.64 is a formal and non-informative value,
since the parameter b becomes severely nonlinear and hence
non-Gaussian whenever it becomes smaller than the uncer-
tainty. In this case, a considerably more linear parameter
might be a =

√
1− b2 with σa = (b/a)σb (if b is the dis-

tance of the transit trajectory from the star disk center,
a is its distance from the star limb). This corresponds to
a = 0.999 ± 0.032, implying the 1σ low limit on a of 0.967,
hence a more realistic upper 1σ limit on b of 0.25 (rather
than 0.64). In Baluev et al. (2015) the Kelt-1 best fit would
formally correspond to an a > 1, i.e. imaginary b, so it was
set to the least physically sound value b = 0. Clearly, the
value of b is consistent with zero in any case, but its un-
certainty still remains large. To avoid the mathematical pe-
culiarity near b = 0, one could consider a or e.g. b2 as a
primary fit parameter, however we keep using b as it is more
traditional and intuitive.

Finally, the most important observation from Table 2 is
that all values of χ2

TTV are significantly above one. This indi-
cates, most probably, that our algorithm does not take into
account all the noise sources in full. As we already noticed
above in Sect. 5.1, one such escaped noise source is likely
the effect of spotting activity causing random anomalies in
transit lightcurves.

It is important for us that this activity effect, whatever
physical source it has, can be easily modelled at the TTV
processing stage. This can be achieved by fitting an additive
noise increasing derived timing uncertainties, or by multiply-
ing them by a constant factor (we did not find definite hints
clearly favouring either of these approaches). These methods
are discussed in detail in (Baluev 2009, 2015). However, all
self-consistent fits that avoid explicitly dealing with transit
timings may appear to have underestimated uncertainties
because of this activity effect. This refers, in particular, to
the quadratic ephemeris given in Table 2. For example, for
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WASP-12 the relative uncertainty of dP/dn following from
the table is 6.7 per cent, while after processing the transit
times with an adaptive noise model (see Section 5.4 below)
we obtain a larger relative uncertainty about 9.2 per cent,
which is more realistic. The ratio of these uncertainties is
almost equal to the value of

√

χ2
TTV from Table 2.

We expect that the values of T0 and P from Table 2
are affected in the same way, as well as P and Td from Ta-
ble 6 containing the self-consistent transit+RV fits. Their
uncertainties following from a self-consistent fit should be
multiplied by the factor of

√

χ2
TTV. Concerning the other

fitted parameters, their uncertainties may also be affected,
but in an unpredictable manner. The correction factor is not
necessarily related to χ2

TTV, if the parameter has no direct
relationship with transit times.

5.4 WASP-12: a nonlinear TTV trend

Our analysis yielded 9-sigma significance of the WASP-
12 quadratic TTV term. This appears convincing, and the
trend itself can be easily distinguished in Fig. 2 below. We
obtained the characteristic orbit decay time Td = P/|Ṗ | =
3.57± 0.33 Myr (or 3.60± 0.34 Myr for the HQ subsample).
This is consistent with the recent estimations by Patra et al.
(2017) and Maciejewski et al. (2018b). These estimates were
based on the multiplicative noise model (Baluev 2015). The
noise scale factor becomes 1.35 or 1.33, the values of

√

χ2
TTV

from Table 2.
We also considered the so-called regularized noise model

from (Baluev 2015), which in our conditions is almost equiv-
alent to the ‘additive’ model. In this model, the noise is
represented as a quadrature sum of the derived TTV un-
certainty and of a ‘jitter’. With this model we obtain Td =
3.55±0.31 Myr (3.60±0.31 Myr from only HQ TTVs), prac-
tically the same values. The best fitting TTV jitter for our
data is estimated to be 20.8± 2.5 sec (18.9± 2.5 sec for the
HQ subsample). Therefore, this result is practically model-
invariant and thus very trustable. As such, the tidal quality
factor remains at Q∗ ∼ 2 · 105, the value from (Patra et al.
2017).

We did not include secondary eclipses in our analy-
sis, and did not use some transit timings published without
lightcurves that could be reprocessed. From only the transit
timing data, we did not obtain any qualitatively new result
for WASP-12, but RV data brought a significant additional
information about the nature of this TTV trend (see Sec-
tion 6).

5.5 WASP-4: yet another TTV trend?

We suspected the nonlinear trend in WASP-4, analogous
to the WASP-12 one, right after the new EXPANSION
lightcurves from 2017 observing season were processed. The
magnitude of the trend corresponded to Td ∼ 10 Myr (sur-
prisingly close to what was recently claimed by Bouma et al.
2019). However, that time the trend interpretation depended
on just a few data points from 2017. To confirm or retract the
trend hypothesis we initiated in 2018 a prioritized observing
campaign of WASP-4 within the EXPANSION project. By
the end of 2018 we acquired 10 new transit lightcurves.

Table 3 shows the observation log, including the EX-
PANSION data, as well as a few older lightcurves found in

the ETD and AXA databases, and also 6 archival lightcurves
from the TRAPPIST-South telescope. This table does not
include data taken from the literature (29 lightcurves). The
total number of WASP-4 lightcurves reprocessed in this work
was 66 (plus one outlier not included in the final analy-
sis). The trend information mainly comes from 14 observa-
tions made in 2017-2018. Among them 10 were taken by
P. Evans with a 36 cm Planewave CDK telescope equipped
by a SBIG STT 1603-3 CCD and hosted at El Sauce Obser-
vatory, Chile. This is a good quality equipment at a good
site, and the corresponding TTV measurements appeared in
turn quite competitive with even TESS ones (which were
released later).

Our new data did not confirm the trend: the up-
dated TTV time series became consistent with strictly lin-
ear ephemeris, so we decided that our trend hypothesis was
wrong. But Bouma et al. (2019) reported a detection of this
trend based on the new TESS transit data, obtained practi-
cally simultaneously with our observations in the EXPAN-
SION network. To shed more light on this apparent contro-
versy, we then performed additional analysis, including the
TTV data published in the literature without lightcurves
and the new TESS timings. This includes very accurate
transit times derived from the transmission spectroscopy by
Huitson et al. (2017), transit times by Hoyer et al. (2013),
by Wilson et al. (2008) and two early WASP timings given
in (Gillon et al. 2009a). We did not use the HST spectral
observations from Ranjan et al. (2014): these data might be
inaccurate because the spectra were partly overexposed and
hence the flux measurements are likely not very reliable.

The full TTV time series is shown in Fig. 3. Now, with
the new TESS transit times added, the quadratic term of
the trend indeed appears significant, according to our analy-
sis. However, we obtain a smaller magnitude and significance
than Bouma et al. (2019) reported. The trend is still not de-
tectable with the use of only the homogeneously derived por-
tion of TTV data from this work. That is, the information
about the trend comes mainly from the third-party observa-
tions rather than from our data release. By inspecting Fig. 3
we may suspect that the trend depends primarily on just
the four high-accuracy timings provided by Huitson et al.
(2017). The TESS timing does not in fact contradict any-
thing and visually they are in a satisfactory agreement with
what was obtained in the EXPANSION project in 2018.

However, justifying the trend detection based on just
four data points, even apparently accurate ones, might
be quite dangerous. Looking into the details of the
(Huitson et al. 2017) TTV data, they were based on just
the linear limb-darkening model. Although the authors en-
sured that based on some preliminary analysis their results
(including fit uncertainties) did not change significantly for
linear and for more complicated limb-darkening models, we
remain concerned about this. Also, we could not find a clear
confirmation in the text that the red noise was taken into ac-
count when fitting the lightcurves. Although it is mentioned
that some ‘systematics’ are fitted, from the description given
in the text the ‘systematics’ appear to be a deterministic
parametric function rather than an autocorrelated random
process.

In view of this we notice that in the similar transmis-
sion spectroscopy lightcurves for WASP-12 (Stevenson et al.
2014) we robustly detect significant red noise. Inclusion
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Table 2. Fitted parameters of exoplanetary transit curves after Stages 4 and 5 processing.

total Assuming fittable transit times Fixing timings at a quadratic model2

transiter number of number of total radii ratio half-duration impact par. mid-times correl. ref. mid-time5 orbital period5 TTV trend5

host transits red-noised quality1 r = Rpl/R⋆ td/2 [days] b
√

χ2
TTV

2 MAD MAX T0 [BJDTDB− P [days] dP/dn

N lightcurves3 Q′
sum −2450000] [10−10day]

Corot-2 38 13 + 12 893 0.16524(93) 0.04726(20) 0.158(70) 1.37 0.00034 0.006 7622.43669(11) 1.74299767(36) 2.6(5.1)

GJ4364 47 8 + 7 857 0.0847(10) 0.02108(21) 0.8612(66) 1.10 0.0022 0.66 4439.41624(10) 2.64389938(67) −28(12)
HAT-P-13 51 19 + 12 1470 0.08826(78) 0.06919(38) 0.7500(77) 1.55 0.0011 0.036 5476.91220(19) 2.9162394(14) 92(33)
HAT-P-3 66 16 + 16 1400 0.11091(48) 0.04335(17) 0.615(12) 1.48 0.00015 0.011 7237.38678(10) 2.89973797(38) 8.0(9.6)
HD189733 106 27 + 32 12800 0.15703(32) 0.037514(48) 0.6646(20) 2.10 0.00029 0.17 3968.837026(20) 2.21857545(15) −5.3(1.9)
Kelt-1 34 12 + 14 938 0.07584(82) 0.05682(28) 0.05(64) 1.91 0.00092 0.023 8026.51487(14) 1.21749220(71) −20.6(8.6)
Qatar-2 59 12 + 20 1750 0.16165(91) 0.03812(11) 0.129(63) 1.26 0.00021 0.014 6045.458848(35) 1.33711643(26) 4.8(3.6)
TrES-1 56 13 + 23 1370 0.13799(83) 0.05233(17) 0.238(45) 1.17 0.00029 0.0067 4350.354597(84) 3.03006957(34) 1.0(7.1)
WASP-2 68 20 + 19 1530 0.13315(50) 0.03727(15) 0.7382(50) 1.47 0.00024 0.0042 5513.13577(12) 2.15222222(39) 3.0(8.0)
WASP-3 69 17 + 20 1710 0.10637(58) 0.05700(18) 0.492(17) 1.53 0.00025 0.068 5325.825419(88) 1.84683507(26) 5.4(4.0)
WASP-4 66 22 + 22 4250 0.15488(32) 0.044907(53) 0.130(29) 1.31 0.00019 0.0094 5045.738470(22) 1.338231531(83) −0.98(94)
WASP-5 17 9 + 3 1220 0.11459(79) 0.05030(22) 0.453(25) 1.62 0.002 0.022 5896.57891(15) 1.62843035(71) −10(17)
WASP-6 18 8 + 3 1460 0.14310(88) 0.05368(19) 0.222(50) 1.68 0.006 0.68 5379.546164(80) 3.36100260(57) −28(22)
WASP-12 230 84 + 72 9070 0.11840(17) 0.062362(49) 0.4312(48) 1.35 0.00013 0.018 5994.401004(25) 1.091420405(51) −9.51(64)
WASP-52 72 25 + 20 2010 0.16538(51) 0.03875(11) 0.5985(62) 1.56 0.00063 0.1 6904.792855(60) 1.74978179(37) −19(11)
XO-2N 73 29 + 20 3930 0.10348(38) 0.055937(92) 0.194(40) 1.44 0.0004 0.054 5167.935634(40) 2.61585965(16) −4.1(4.1)
XO-5 28 9 + 4 678 0.1026(15) 0.06354(58) 0.537(40) 2.12 0.00075 0.01 7760.49334(36) 4.1877641(22) 258(67)

Corot-2 25 10 + 9 856 0.16557(99) 0.04728(22) 0.190(63) 1.55 0.00061 0.0074 7629.40868(12) 1.74299768(47) 3.2(6.5)

GJ4364 11 2 + 0 757 0.0829(15) 0.02107(26) 0.8664(78) 1.32 0.041 0.66 4280.78227(12) 2.6439052(85) −160(190)
HAT-P-13 38 16 + 10 1420 0.08757(81) 0.06895(39) 0.7456(82) 1.54 0.0015 0.037 5511.90699(19) 2.9162394(14) 96(34)
HAT-P-3 34 7 + 7 1340 0.11075(50) 0.04337(18) 0.622(12) 1.54 0.00034 0.012 7237.38674(10) 2.89973825(42) 14(11)
HD189733 75 24 + 19 12800 0.15696(33) 0.037525(48) 0.6645(20) 2.39 0.00046 0.17 3968.837031(20) 2.21857545(16) −5.6(2.0)
Kelt-1 18 6 + 5 887 0.07523(89) 0.05694(31) 0.13(26) 1.57 0.0018 0.019 8026.51487(15) 1.21749273(88) −14(11)
Qatar-2 25 8 + 10 1720 0.16159(93) 0.03810(11) 0.125(66) 1.40 0.0005 0.014 6034.761900(36) 1.33711631(33) 4.0(5.6)
TrES-1 44 14 + 18 1340 0.13772(85) 0.05228(17) 0.235(47) 1.13 0.00036 0.0071 4347.324507(86) 3.03006949(35) 4.2(7.4)
WASP-2 32 12 + 10 1450 0.13328(52) 0.03730(16) 0.7378(54) 1.64 0.00037 0.0059 5405.52461(14) 2.15222181(58) 10(10)
WASP-3 45 10 + 16 1660 0.10630(60) 0.05704(19) 0.495(18) 1.52 0.00046 0.071 5325.825409(91) 1.84683487(28) 8.2(4.2)
WASP-4 50 17 + 19 4240 0.15488(32) 0.044915(53) 0.134(28) 1.22 0.00025 0.0093 5045.738469(23) 1.338231514(85) −1.0(1.0)
WASP-5 15 8 + 3 1220 0.11477(79) 0.05037(23) 0.459(25) 1.71 0.0026 0.022 5896.57894(15) 1.62843056(75) −16(19)
WASP-6 17 8 + 3 1460 0.14308(88) 0.05368(19) 0.220(51) 1.72 0.0067 0.68 5379.546159(80) 3.36100249(57) −30(22)
WASP-12 203 78 + 58 9090 0.11839(17) 0.062367(49) 0.4316(48) 1.33 0.00015 0.018 6003.132366(25) 1.091420385(52) −9.40(65)
WASP-52 44 19 + 10 1970 0.16530(53) 0.03877(12) 0.5965(65) 1.59 0.0013 0.11 6904.792887(62) 1.74978159(40) −14(12)
XO-2N 54 24 + 14 3920 0.10358(38) 0.055930(92) 0.207(37) 1.56 0.00069 0.054 5212.405250(40) 2.61585963(16) −2.5(4.3)
XO-5 12 3 + 0 595 0.1024(20) 0.06400(76) 0.560(48) 2.70 0.0015 0.0094 7802.37086(43) 4.1877642(29) 272(99)

The fitting uncertainties are given in parenthesis after each estimation, in the units of the last two figures. Most of the columns have the same meaning as in Table 4
from (Baluev et al. 2015)

1Defined as Q′
sum =

√

∑N
i=1

Q′
i
2.

2The quadratic TTV ephemeris and the value of χ2
TTV do not include the Southworth et al. (2009a,b, 2010) DFOSC data, because they may be affected by clock errors.

3Number of lightcurves fitted with individual red noise term + number of lightcurves fitted with shared τ.
4Orbital eccentricity of ∼ 0.15 is not taken into account, see Sect. 6 for a self-consistent fit.
5The realistic uncertainty also depends on the observed TTV scatter χ2

TTV, likely inspired by the star activity, see text.
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Figure 2. Transit times of WASP-12 derived in this work. Top panel is for all the TTV data (stage 4), bottom panel is for only HQ
ones (stage 5). The models of the quadratic TTV trend are also plotted (for the multiplicative noise model).
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Figure 3. Transit times of WASP-4, including the homogeneous sample from this work (without DFOSC data possibly affected by clock
errors), and the timing data published in literature without lightcurves. Top panel is for all the TTV data (Stage 4), bottom panel is for
only HQ ones (Stage 5). Several models of the quadratic TTV trend are also plotted with the trend significance labelled in the legend
(for the regularized noise model and simply merging heterogeneous TTV data).

of this red noise in the lightcurve model roughly dou-
bled the derived transit timing uncertainties from ∼ 3 sec
to ∼ 5 sec. Significant red noise was also detected in
the WASP-52 transmission spectroscopy lightcurve from
(Chen et al. 2017), though not detected in the HD 189733
data by Kasper et al. (2019). The latter, however, revealed
the anomalous transit time discussed above. A public release
of the Huitson et al. (2017) lightcurves is not available, so we
did not reanalyse them in our pipeline. We therefore decided
to investigate this issue using a different approach.

As it was explained above, formally declared TTV un-
certainties never appear entirely accurate: the actual scatter
of TTV residuals may be systematically different (usually
larger). However, different teams may process data quite
differently, and hence each team might have its own bias
in the reported TTV uncertainties. Therefore, different por-
tions of such a heterogeneous TTV compilation may need
to be weighted differently to balance this effect. However,
those weights are not known to us a priori, so they need to
be estimated from the TTV data ‘on-the-fly’, e.g. based on
the actually observed scatter of the TTV residuals in each
homogeneous portion.

We therefore separated all our TTV data into the fol-
lowing four more or less homogeneous classes: (i) the ‘main’
subset including transit timings derived in this work and
three old timings given in (Gillon et al. 2009a) without pub-
lic lightcurve data; (ii) the rich TTV subset by Hoyer et al.
(2013); (iii) the four high-accuracy timings by Huitson et al.
(2017); and (iv) the TESS timings from (Bouma et al. 2019).
All these data sets should have an independently fittable
noise parameter.

This noise was modelled by one of two models discussed

in (Baluev 2015), namely by (i) the multiplicative model,
or (ii) the so-called regularized model. These ‘noise mod-
els’ represent a parametrized model for the variance of each
TTV measurement, in which a single free parameter reg-
ulates the weight of the corresponding TTV data set as a
whole. Since this approach involves a separate and largely
independent treatment of each TTV data set, we call this as
‘separated’ model of the TTV data. It can be fitted by us-
ing the maximum-likelihood method, as discussed in (Baluev
2009). In such a way the relative weighting of different TTV
subsets is determined adaptively and basically tied to the
corresponding TTV residuals RMS.

For a comparison, we also analysed the TTV data
plainly merged into a single time series without any rel-
ative weighting. This analysis was also performed for the
same two noise models, multiplicative and regularized ones.
The TTV trend itself was always modelled by the quadratic
function (5) with three free coefficients.

As we expected, it appeared that the magnitude of the
quadratic term and especially its derived uncertainty is sen-
sitive to the choice of the noise model. In the case of a ‘sepa-
rated’ model the trend uncertainty gets increased. Therefore,
by allowing some TTV data to be actually less accurate than
stated, the significance of the trend may reduce. For exam-
ple, it may reduce if the four Huitson et al. (2017) transit
times are less accurate than formally stated. And because of
the small number of these data (just the four), their RMS
does not constrain the noise level well, so this level can be
varied relatively freely.

In Fig. 4, we demonstrate this effect in the shape of
the likelihood function L. For this goal we consider the log-
likelihood-ratio statistic Z determined in accordance with
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Figure 4. Logarithm of the likelihood ratio statistic for WASP-4, Z(q), as a function of q = T
−1
d

. Three graphs correspond to different
compilations of TTV data (homogeneous from this work / all / all but Huitson et al. (2017)). The curves within each graph correspond
to different models of the TTV noise (merged/separated and multiplicative/regularized). In each graph a set of the significance threshold
levels is also shown, corresponding to the frequentist χ2 test or to the Bayesian information criterion (BIC). See text for more details.

Table 3. Observation log for 31 of the WASP-4 transit
lightcurves.

Obs. Date Aperture Filter Cadence Airmass Observer
[m] [min]

2008-09-23 Rc 0.46 1.26 7−→ 1.03 Fernando Tifner (AXA)
2009-09-22 Rc 1.18 1.27 7−→ 1.02 Fernando Tifner (AXA)
2010-07-08 Rc 1.02 1.11 7−→ 1.19 Thomas Sauer (ETD)
2010-08-17 2.15 Ic 1.13 1.07 7−→ 1.34 Eduardo Fernandez-

Lajus, Romina P. Di
Sisto

2010-10-04 Clear 0.46 1.02 7−→ 1.15 Gavin Milne (ETD)
2010-11-01 Rc 0.41 1.03 7−→ 1.38 TG Tan (ETD)
2010-11-05 Clear 0.52 1.13 7−→ 1.85 Ivan Curtis (ETD)
2010-12-20 0.60 ‘I+z’ 0.53 1.14 7−→ 2.02 TRAPPIST
2011-09-15 0.60 ‘I+z’ 0.33 1.62 7−→ 1.04 TRAPPIST
2011-09-27 0.60 Ic 0.33 1.23 7−→ 1.05 TRAPPIST
2011-10-21 0.60 Ic 0.33 1.04 7−→ 1.61 TRAPPIST
2011-12-19 0.60 ‘I+z‘ 0.33 1.14 7−→ 2.07 TRAPPIST
2012-06-07 0.60 Ic 0.35 1.41 7−→ 1.03 TRAPPIST
2012-09-11 0.25 Clear 0.82 1.59 7−→ 1.14 Phil Evans
2013-09-21 Clear 0.79 1.19 7−→ 1.07 Colazo, C. Schneiter, E.

M.
2013-10-07 Rc 0.30 1.41 7−→ 1.05 Erin Miller (ETD)
2013-12-13 Rc 0.31 1.60 7−→ 1.10 Erin Miller (ETD)
2014-08-03 2.15 Clear 3.17 1.10 7−→ 1.04 Eduardo Fernandez-

Lajus, Romina P. Di
Sisto

2014-08-16 Clear 0.64 1.05 7−→ 1.60 Martin Masek (ETD)
2014-08-20 2.15 Ic 6.04 1.01 7−→ 1.27 Eduardo Fernandez-

Lajus, Romina P. Di
Sisto

2014-08-20 1.54 Clear 3.26 1.01 7−→ 1.42 Carlos Colazo, Carolina
Villarreal

2014-10-25 1.54 Rc 0.75 1.30 7−→ 2.91 Cecilia Quinones
2015-08-15 2.15 Ic 3.05 1.02 7−→ 1.22 Eduardo Fernandez-

Lajus, Romina P. Di
Sisto

2017-07-26 0.36 Rc 1.51 1.42 7−→ 1.04 Phil Evans
2017-09-07 0.36 Rc 1.19 2.44 7−→ 1.02 Phil Evans
2017-09-23 0.36 Rc 2.16 1.38 7−→ 1.02 Phil Evans
2017-09-24 0.46 Clear 1.02 1.19 7−→ 1.15 H. Durantini Luca, P.

Baez, C. Colazo
2018-05-23 0.36 Rc 2.07 2.74 7−→ 1.09 Phil Evans
2018-06-20 0.36 Rc 2.03 1.05 7−→ 1.02 Phil Evans
2018-07-25 0.36 Rc 2.26 1.75 7−→ 1.02 Phil Evans
2018-08-10 0.36 Rc 2.06 1.08 7−→ 1.31 Phil Evans
2018-08-12 0.30 Rc 1.55 1.10 7−→ 1.30 Carl R. Knight
2018-08-14 0.36 Rc 2.22 1.03 7−→ 1.32 Phil Evans
2018-08-15 2.15 Ic 3.05 1.05 7−→ 1.28 Eduardo Fernandez-

Lajus, Romina P. Di
Sisto

2018-08-22 0.36 Rc 2.12 1.02 7−→ 1.51 Phil Evans
2018-08-26 0.36 Rc 2.06 1.02 7−→ 1.58 Phil Evans
2018-10-14 0.30 Rc 1.61 1.10 7−→ 1.29 Carl R. Knight

(Baluev 2009). We compute (i) the global maximum of the
likelihood function Lmax with respect to all the noise pa-
rameters and all three TTV trend coefficients, and (ii) the
value L′

max(q) maximized with respect to all parameters ex-
cept for the quadratic coefficient dP/dn = P 2T−1

d = qP 2,
where q = T−1

d was fixed prior to the fit. The quantity
Z(q) = log[Lmax/L′

max(q)] therefore indicates whether the
given q is statistically consistent with the best-fitting value q̂
which corresponds to the global maximum Lmax. We always
have Z(q) ≥ 0, and the larger is Z, the more statistically sig-

nificant is the deviation of q from q̂ and the less consistent
with the data this q is. If our models are linearisable than
Z(q) should have an almost parabolic shape with a single
minimum at q̂.

We use two approaches to calibrate the levels of Z(q),
both rely on the assumption that the model is linearis-
able and hence Z(q) is quadratic (while the likelihood ratio
exp(−Z(q)) is Gaussian). The first approach is the frequen-
tist χ2 test, and the second one is the Bayesian Information
Criterion (BIC). In the frequentist treatment, the signifi-
cance level of a given Z is approximately the χ2

1(2Z), or
the χ2-distribution with d = 1 degree of reedom (one de-
gree because we have just one free parameter q left in Z(q)).
This would mean that the significance level for a given q
would correspond to

√
2Z in the n-sigma notation, or vice

versa, any n-sigma significance level would correspond to the
threshold level Z(q) = n2/2.

The BIC is defined as BIC = 2 logL− k logN , where k
is the total number of free parameters in the model, and N
is the number of observations (number of transit times). To
compare different models with k1 and k2 parameters we use
the difference ∆BIC = 2Z − d logN with d = k1 − k2 = 1 in
our case. Hence, the significance threshold for Z(q) becomes
Z = (∆BIC + logN)/2. Here ∆BIC is deemed to be an
input parameter determining the requested significance level
(typical practical values are 2, 4, 6, 10).

The special value Z(0) indicates the significance of the
nonlinear trend itself (i.e. how much q = 0 is consistent with
the data, with the adopted TTV noise model).

In Fig. 4, we plot this statistic Z(q) for three TTV data
compilations, including (i) only the homogeneous data from
this work, (ii) all TTV data, (iii) all TTV data excluding
(Huitson et al. 2017), and for all our noise models, includ-
ing (i) the plain merging of heterogeneous datasets and (ii)
adaptive merging of heterogeneous datasets with individu-
ally fittable noise parameters. For each of these model lay-
outs we adopt either a multiplicative or regularized noise
model, defined in (Baluev 2015).

As we can see, the shape of the likelihood function may
change a lot depending on the model and TTV data in-
volved. We can draw the following conclusions:

(i) Our homogeneously derived TTV data do not support
the existence of any quadratic trend. These data are consis-
tent with a linear ephemeris below 1-sigma level.
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(ii) Simultaneously, the value of Td = 9.2 Myr from
(Bouma et al. 2019) seems too poorly consistent with our
homogeneous TTV subsample, at the level above 3-sigma in
terms of the χ2 test or with ∆BIC ∼ 4 − 6 (depending on
the model). We believe this may appear, at least in some
part, because Bouma et al. (2019) did not take into account
the heterogeneous nature of the TTV data, merging them
into a single time series.

(iii) Joining our data with the remaining third-party TTV
measurements allows us to refine the localization of the pa-
rameter q greatly and even suggests that this q can be signifi-
cantly non-zero. However, the significance of this conclusion,
as well as possible confidence ranges for q appear very model
dependent. If we plainly merge all the TTV data, we obtain
that q is inconsistent with zero at the high ∼ 5 − 7-sigma
level. But using our adaptive separated noise model, this
significance drops to merely 3− 4-sigma.

(iv) The shape of the likelihood function becomes signif-
icantly non-parabolic in the case of our adaptive separated
noise model. This indicates that this model may be too non-
linear and therefore our significance estimates may appear
inaccurate. It may even appear that the significance of the
trend is reduced even further below the 3 − 4-sigma level
mentioned above.

(v) The most trustable and model-stable behaviour ap-
pears when we just remove the TTV data by Huitson et al.
(2017). Then Z(q) behaves as a nice parabolic function, in-
dicating an almost-linear model and nearly Gaussian likeli-
hood. In this case, the quadratic trend has the significance
2.8−3-sigma or ∆BIC ∼ 4, which is very remarkable but still
needs further confirmation by more observations. The mag-
nitude of the best fitting trend then becomes Td ∼ 20 Myr
with large uncertainty. Curiously, the value of Td = 9.2 Myr
given by Bouma et al. (2019) appears in this case even less
likely than the no-trend model (Td = ∞).

(vi) In any case, the trend magnitude is very uncer-
tain, while its confidence ranges appear very asymmetric
and non-Gaussian in the separated noise model. The value
Td = 9.2 Myr given in (Bouma et al. 2019) looks more like
a lower limit on Td, while the actual value may reach even
∼ 100 Myr, given the large uncertainty of this parameter.

Therefore the putative TTV trend magnitude and
the detection significance for WASP-4 are severely model-
dependent. They solely depend on how we treat the hetero-
geneous nature of the TTV data. Moreover, as recognized
by Bouma et al. (2019), Td as small as 9.2 Myr is inconsis-
tent with theoretical predictions of the tidal quality param-
eter. Given our discussion, we believe that it is too early to
definitely claim the detection of this trend until more ho-
mogeneous TTV data are collected. At least, it is too early
to claim that this object breaks any theoretical predictions.
However, WASP-4 remains a very interesting target that
may indeed hide serendipitous discoveries.

6 SELF-CONSISTENT ANALYSIS OF RADIAL

VELOCITY AND TRANSIT DATA

Below we layout our goals related for the self-consistent anal-
ysis of radial velocity and transit data.

(i) Derive a more complete set of parameters in a self-

Table 4. Star masses adopted in the joint transit+RV fits.

host star M⋆[M⊙] reference

Corot-2 0.97(6) Alonso et al. (2008)

GJ436 0.452
(

+14
−12

)

Torres et al. (2008)

HAT-P-13 1.22
(

+5

−10

)

Bakos et al. (2009)

HD189733 0.806(48) Torres et al. (2008)

TrES-1 0.878
(

+38
−40

)

Torres et al. (2008)

WASP-2 0.84
(

+11

−12

)

Triaud et al. (2010)

WASP-3 1.24
(

+6
−11

)

Pollacco et al. (2008)

WASP-4 0.930
(

+54

−53

)

Triaud et al. (2010)

WASP-5 1.000
(

+63
−64

)

Triaud et al. (2010)

WASP-6 0.88
(

+5
−8

)

Gillon et al. (2009b)

WASP-12 1.434
(

+110

−90

)

Collins et al. (2017)

XO-2N 0.96(5) Damasso et al. (2015)
XO-5 0.88(3) Pál et al. (2008)

consistent model, in particular planetary masses and physi-
cal radii (rather than merely the planet/star radii ratio).

(ii) Derive a more realistic fit of GJ 436 b, taking into
account its significant orbital eccentricity.

(iii) For WASP-12 and WASP-4, test whether their (pos-
sible) TTV trends could appear through the light-travel ef-
fect, caused by the gravity of a distant unseen companion.

(iv) Derive the rotation parameters of the stars via the
Rossiter-McLaughlin (hereafter RM) effect, and test how
much it is sensitive to the correction coeffiecients suggested
in (Baluev & Shaidulin 2015).

Notice that even the combination of transit and radial
velocity data does not allow to determine the star mass from
a self-consistent fit. The information about the star mass
usually comes from astrophysical models of stellar spectra,
e.g. based on stellar evolutionary tracks. Such models in fact
provide certain constraints on the stellar massM⋆ and radius
R⋆ that can be used to provide an entirely self-consistent
global fit. However, in this work we were more interested to
estimate the uncertainties inferred by the transit and radial
velocity data, so we still prefer not to mix them with the
uncertainties of astrophysical models that may also contain
an additional systematic error.

Therefore, we fixed certain ‘reference’ values of M⋆ for
our ten targets, as given in Table 4. We did not take into
account the stated uncertainties of M⋆ when computing our
fits. In case if the adopted M⋆ is different from the reference
value, the fit can be easily rebased to another M ′

⋆ based on
the following simple laws:

R′

⋆ = R⋆

(

M ′

⋆/M⋆

) 1
3 ,

r′pl = rpl
(

M ′

⋆/M⋆

) 1
3 ,

a′ = a
(

M ′

⋆/M⋆

) 2
3 ,

m′

pl sin i
′ = mpl sin i

(

M ′

⋆/M⋆

) 1
3 ,

cos i′ = cos i
(

M ′

⋆/M⋆

)−
1
3 . (7)

The first formula of this list comes from the known
property that a transit fit actually constrains the star
density ρ⋆ ∝ M⋆R

−3
⋆ , rather than R⋆ or M⋆ separately
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(Mandel & Agol 2002). The second one appears because the
transit data constrain the ratio rpl/R⋆, so the scaling law
of rpl is the same as for R⋆. The third and the fourth for-
mulae for the orbital semimajor axis and planetary mass,
respectively, follow from the basic properties of the Doppler
method and can be found e.g. in (Baluev 2013). The last re-
lationship for cosine of orbital inclination i follows because
i is constrained by only the transit data, via the measured
impact parameter b = a cos i/R⋆, so the scale law for cos i
corresponds to R⋆/a. The last two formulae can be combined
together to obtain

m′

pl = mpl

(M ′
⋆/M⋆)

1
3

√

1 +
(

1− (M ′
⋆/M⋆)

−
2
3

)

cotan2 i

. (8)

Since cotan i is below 0.15 for all our targets, the term be-
neath the square root represents only a negligible correction.
Some scale formulae above are not entirely accurate, neglect-
ing certain second-order corrections, but since the values of
M⋆ for all our targets are now restricted to quite narrow
ranges, the practical accuracy of (7,8) should be satisfac-
tory.

To perform the self-consistent analysis, for the transit
data we used basically the same model as above, except that
the planet motion was assumed Keplerian rather than cir-
cular. The radial velocity for each target was modelled by
the Keplerian curve plus a linear trend (to account e.g. for
possible long-period companions in the system). We also in-
clude a quadratic term in the planetary longitude, to take
into account possible TTV trends, see (Baluev 2018).

For many of our targets, the RV data contained sub-
stantial in-transit runs, obviously aimed to detect the RM
effect. For these targets we therefore included in our com-
pound RV model the RM effect based on the approach
by Baluev & Shaidulin (2015). To accurately approximate
this effect, we must know some effective values of the limb-
darkening coefficients ARV and BRV, corresponding to the
Doppler spectral range. Also, we need to specify two correc-
tion coefficients ν and µ that depend on the average charac-
teristics of spectral lines and on the method used to derive
the radial velocity from the spectrum. But unfortunately,
these four quantities are too difficult to derive reliably from
the spectra themselves. Instead, it is reasonable to treat
them as fittable parameters of the RV model. However, in
such a case the model becomes nearly degenerate, because
as discussed in (Baluev & Shaidulin 2015), the parameters
ν and µ are strongly correlated with A and B. We therefore
adopted the following hybrid approach. First, we assumed
that ARV and BRV are equal to the corresponding values of
the photometric data obtained with a clear aperture. Con-
cerning ν and µ, we considered them separately for different
instruments. This should take into account possible correc-
tions of the RM effect, jointly with possible inaccuracies of
the limb-darkening coefficients, on a per-instrument basis.

When computing the fits, we treated separately the RV
data obtained at different instruments. Moreover, if the RV
data belonging to the same instrument contained in-transit
pieces, we separated these portions of the data from each
other and treated them as individual RV data sets. This
might make the model more adequate, because e.g. the scat-
ter of the RV residuals within each such short run covering
just a few hours is significantly smaller than for the entire

dataset covering years. This is essentially the impact of red
noise in the RV data. Also, the red noise may result in a
small individual offset of each in-transit run.

For some targets we also found several compact series of
out-of-transit runs covering just a single night. Such portions
of the RV data were treated separately too, with an individ-
ual offset and individual noise parameters. After performing
a preliminary fit of the joint transit+RV model described
above, we run the red-noise detection algorithm described
above for transit data, but now we extended it to all the RV
data sets as well.

For Corot-2, WASP-4, and WASP-12 we computed an
additional alternative fit without splitting the RV data be-
longing to the same instrument. In this case, possible RV
offsets between different compact runs were taken into ac-
count implicitly, via a single red noise model of the merged
data set. All the analysis was performed with the PlanetPack
software of version 3 (Baluev 2018).

We separate our results in two parts: Table 5 gives some
most important non-planetary parameters of our fits, and
Table 6 contains only planetary parameters. The tables are
presented here in a reduced form; their expanded versions
that include e.g. RM correction coefficients can be found in
the online-only supplement.

First of all, we notice that the RM correction coefficients
ν and µ are usually consistent with zero, given their uncer-
tainties. We found only the following targets convincingly
demonstrating significant nonzero values: Corot-2 (µ for the
HARPS RV data), HD 189733 (ν for Keck/HIRES and SO-
PHIE, and µ for HARPS, HARPSN, and Keck/HIRES),
WASP-5 (µ for HARPS), and possibly GJ 436 (ν for GJ 436
HARPS, HARPSN, Keck/HIRES). In theory, ν should usu-
ally be zero, since most our RV data were derived with
TERRA, which is a kind of a spectrum modelling method
(Anglada-Escudé & Butler 2012). A nonzero ν may appear
only if the RV data were derived by the cross-correlation
technique, and simultaneously the spectral lines have some
asymmetry on average (Baluev & Shaidulin 2015). Since
this is not the case for the most targets, a few significantly
nonzero ν estimates may indicate that the adopted limb-
darkening coefficients ARV and BRV are inaccurate for the
relevant RV dataset. In such a case, the value of v sin i and λ
may involve an additional bias which is difficult to estimate
without a better guess for ARV and BRV.

Even though we did not detect here very many occur-
rences of significantly nonzero RM correction coefficients, it
is still important to preserve them in the RV model as free
parameters, in order to have a more realistic (increased) un-
certainty in v sin i and λ, as well as in other RV-derived
parameters, like e.g. the RV trends.

Now let us consider the putative RV trends (radial ac-
celerations). They are modelled by a linear function

RV = c′0 + c1(t− t0), (9)

where c′0 is a dataset-specific RV offset, and c1 is the trend
coefficient (common for all datasets).

If not an instrumental effect or some long-term astro-
physical variation, this trend can be explained through a
gravitational effect from a distant unseen companion. But
such a companion would also affect the observed transit
times via the light-travel effect. Basically, the light-travel
effect is determined by the position of the inner star-planet
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Table 5. Self-consistent fits of transit and radial velocity data:
stellar parameters and RV trends.

host star rad. accel. star radius rotation vel. spin-orbit ang.

c1 [m/s/yr] R⋆ [R⊙] v sin i [m/s] λ [◦]

Corot-2 −74(11) 0.925(19) 8930(400) 3.1(6.6)
Corot-2’ −0.5(3.1) 0.885(29) 8570(430) 3.0(8.2)
GJ436 0.02(11) 0.4266(89) 1800(1000) 354.5(4.9)
HAT-P-13 17.2(1.0) 1.691(25) 2300(1100) 359.5(5.5)
HAT-P-13’ 17.56(85) 1.692(25) 2600(1300) 0.0(5.4)
HD189733 −1.07(75) 0.7583(31) 2280(110) 0.08(36)
TrES-1 −1.9(1.4) 0.819(13) — —
WASP-2 −3.9(1.8) 0.8200(82) 960(850) 345(18)
WASP-3 −7.9(2.7) 1.337(28) — —
WASP-4 −0.7(1.1) 0.9029(43) 1890(220) 344(16)
WASP-4’ −0.8(1.2) 0.9045(46) 1890(220) 343(16)
WASP-5 −0.03(78) 1.127(16) 2470(400) 0.2(6.4)
WASP-6 −420(260) 0.829(23) 1620(130) 352(11)
WASP-12 −5.4(2.0) 1.657(12) 600(1200) 9(48)
WASP-12’ −7.5(2.2) 1.660(16) 1300(1500) 75(30)
XO-2N −1.2(1.2) 0.986(14) — —
XO-5 1.3(1.2) 1.068(51) — —

The fitting uncertainties are given in parenthesis after each estimation, in the
units of the last few figures. The star mass from Table 4 was assumed constant
here and its uncertainties were not included in the fit. Using the full set of
transits for GJ436, while only the HQ (Stage 5) transits for other targets. A
stroke stands for an alternative fit computed without splitting the RV data
belonging to the same instrument (see text).

system along the line of sight, which equals to the integral
of the RV trend. Therefore, the transit time delay (TTD)
corresponding to (9) would be:

TTD = const+
c0
C (t− t0) +

c1
C

(t− t0)
2

2

= const+
Pc0
C (n− n0) +

P 2c1
C

(n− n0)
2

2
,(10)

where C is the speed of light. This formula becomes math-
ematically identical to the quadratic TTV trend (5). But
now the second term in (10) with c0 (the absolute RV) rep-
resent a minor Doppler-like correction of the orbital period
P , while c1 is basically the same TTV effect as observed e.g.
for WASP-12.

Now, we simply have Td = C/c1. Taking into account
the adopted measurement units,

Td[Myr] ≃ − 300

c1[m s−1 yr−1]
. (11)

The minus sign appears because the positive RV trend means
increasingly late light arrival (apparent delay of the transits,
as if the planet was spiraling out).

We found the statistically significant RV trend in the
Corot-2, about −74± 11 m/s per year. However, this trend
can also be a hidden red-noise effect, because it disappears
in the alternative fit without splitting the HARPS data per
subsets. One of the HARPS subsets appeared to have just
seven observations, so the “split” fit might appear rather
unreliable statistically. Finally, we found several RV outliers
for Corot-2, possibly indicating some hidden anomalies in its
spectrum that suggest potential inaccuracies of the derived
Doppler information. Therefore, we conclude that the sus-
pected radial acceleration in Corot-2 remains controversial
and needs further confirmation.

For Corot-2, the formula above implies Td = (4.0 ±
0.6) Myr, or q = T−1

d ∼ (0.25 ± 0.04) Myr−1. The current
TTV data are unable to reliably detect such a trend. Finally,
from the transit times we obtain q ∼ −0.1± 0.1. The differ-
ence from the RV estimate of q is inconclusive given the high
level of model dependency. Nonetheless, Corot-2 remains an
interesting target for further monitoring, because it may pro-
vide the first detection of an unseen object simultaneously
by Doppler and Roemer effects.

Contrary to Corot-2, in WASP-12 we detect a more
model-stable radial acceleration about −5 or −8 m/s/yr, de-
pending on the model. The trend information mainly comes
from the rich set of SOPHIE data available for this target
(> 100 points). The RV trend looks rather reliable given its
uncertainty, so the “observed” Td need to be cleaned from
the non-tidal portion. This is performed in Sect. 7 below.

For WASP-4, the RV trend estimation is consistent
with zero, but given the uncertainty it may be as small as
−4 m/s/yr (the three-sigma limit). This infers a TTV trend
with Td ∼ 70 Myr, which is consistent with the observed
transit times within two sigma (see third panel in Fig. 4).
Therefore, we cannot conclusively rule out or confirm the
tidal nature of the putative WASP-4 TTV trend, even if
this trend exists. More Doppler observations are needed to
rule out the Roemer effect interpretation, or to determine in
which fraction this TTV trend can be explained so. Using
the same method as for WASP-12 (see Sect. 7), we obtain
for WASP-4 an estimate of the tidal portion of the TTV
trend of qtidal = (0.019± 0.025) Myr−1, again a statistically
insignificant value.

Yet another candidate with radial acceleration is
WASP-3 (−8 m/s/yr), but it has just 13 RV measurements.
Also, HAT-P-13 has an RV trend about 18 m/s/yr, estab-
lished long ago (Winn et al. 2010). Neither of these cases
can be verified by TTV due to the lack of data.

Concerning the search of possible periods in the RV
residuals, we leave this for a future work. But here we con-
firm that Corot-2, HAT-P-13, WASP-4, and WASP-12 re-
veal no hints of periodicity, so the corresponding RV trend
estimations should not be affected by such signals. Also, no
residual variations were detected, including trends, in the
updated RV data for GJ 436 (though a spurious RV trend
appeared in the older data release by Baluev et al. 2015).

7 TRULY TIDAL PORTION IN THE WASP-12

TTV TREND

According to (Bechter et al. 2014), WASP-12 is a member
of a triple star system. It has a stellar companion which
appears as binary itself. The total mass of these two com-
ponents B and C is 0.75M⊙, and they may induce the ra-
dial acceleration of up to 0.33 m/s/yr on the primary star
(Bailey & Goodman 2019). Therefore, the radial accelera-
tion of −7.5 m/s/yr would definitely belong to some other
unseen companions, possibly other distant planets, or brown
dwarfs, or even to an unresolved cool star.

Whatever object or multiple objects induced this radial
acceleration, they should also induce a quadratic TTV trend
according to the formula (10). Notice that even if the RV
trend was not significant at all, we should include it in the
model in order to determine a more realistic uncertainty of
the tidal part of Td. Our RV trend estimation implies the
same sign as the observed cumulative value of dP/dn, so
the tidal portion is smaller than the total observed TTV.
To determine how much it is smaller, and how uncertain
this value is, we perform a brief additional calculation.

First of all, we notice that information about the RV
and TTV trends comes from qualitatively different observa-
tions: either solely from RV data, or solely from transit tim-
ings. Therefore, we may expect that these two quantities are
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Table 6. Self-consistent fits of transit and radial velocity data: planetary parameters.

host star planet mass planet radius orbital period1 TTV trend1,2,3 mean longitude1 inclination eccentricity pericenter arg.

mpl [MJup] rpl [RJup] P [d] Td [Myr] l [◦] i [◦] e ω [◦]

Corot-2 2.744(51) 1.523(36) 1.74299686(44) −11.2(9.4) 359.4(1.6) 88.15(56) 0.042(18) 60(18)
Corot-2’ 2.85(10) 1.455(51) 1.74299682(45) −10.4(8.2) 0.7(2.4) 88.32(52) 0.013(26) 320(130)
GJ436 0.06896(56) 0.3581(97) 2.64389856(36) 7.1(3.2) 335.82(44) 86.83(10) 0.1666(57) 324.9(2.4)
HAT-P-13 b 0.8528(59) 1.465(30) 2.9162384(17) −2.42(86) 158.64(41) 82.12(22) 0.0126(46) 219(29)

c 14.17(28) — 446.32(24) — 63.99(18) — 0.6621(58) 175.28(37)
HAT-P-13’ b 0.8532(53) 1.466(30) 2.9162383(17) −2.41(85) 158.58(35) 82.10(22) 0.0117(41) 218(28)

c 14.16(25) — 446.29(21) — 63.99(16) — 0.6614(50) 175.28(32)
HD189733 1.1542(74) 1.1840(52) 2.218575123(57) 28(12) 20.45(38) 85.712(36) 0.0028(38) 62(64)
TrES-1 0.6967(82) 1.122(22) 3.03006960(18) −5.7(9.5) 298.67(49) 88.69(28) 0.003(12) 263(86)
WASP-2 0.8711(73) 1.087(14) 2.15222163(67) −12(11) 214.37(25) 84.82(10) 0.0134(56) 253(11)
WASP-3 1.982(49) 1.419(32) 1.84683480(30) −11.1(5.5) 274.88(83) 84.24(32) 0.010(15) 41(74)
WASP-4 1.1949(65) 1.3915(82) 1.338231501(75) 47(45) 235.80(26) 88.63(30) 0.0068(35) 258(20)
WASP-4’ 1.1976(68) 1.3940(86) 1.338231501(75) 47(45) 235.87(26) 88.63(30) 0.0053(38) 247(28)
WASP-5 1.5351(80) 1.294(25) 1.6284311(14) 5.2(6.3) 343.01(32) 84.57(33) 0.0086(46) 66(22)
WASP-6 0.458(20) 1.175(35) 3.36100264(65) 14(14) 32.6(2.4) 89.00(36) 0.036(24) 116(36)
WASP-12 1.422(14) 1.953(15) 1.091421080(96) 3.46(24) 37.00(51) 81.86(16) 0.0259(74) 250(11)
WASP-12’ 1.413(15) 1.956(20) 1.091421078(96) 3.47(24) 36.82(49) 81.96(18) 0.024(11) 252(11)
XO-2N 0.5924(68) 1.017(16) 2.61585963(16) 80(140) 198.72(48) 88.33(25) 0.008(13) 91(29)
XO-5 1.050(15) 1.061(67) 4.1877477(38) −1.82(68) 83.5(1.2) 86.82(51) 0.009(12) 200(94)

Same comments as in Table 5 also apply here.
1These parameters refer to T0 = 2455197.5 (1 Jan, 2015) in the BJD TDB system.
2Except for WASP-12 case, the uncertainties for Td are rather formal here, because this parameter becomes very nonlinear and non-Gaussian whenever it is

comparable to the uncertainty. The linear parameter is q = 1/Td = −Ṗ /P with the uncertainty σq = σTd
/T2

d .

3The realistic uncertainty in Td also depends on the observed TTV scatter χ2
TTV from Table 2, see Section 5.3.

practically uncorrelated (even though some negligible corre-
lation may appear because e.g. the planetary orbital period
P is shared between the RV and transit data). Thanks to
this property, the corresponding trend coefficients may be
treated independently from each other.

In terms of the TTV trend, its magnitude is defined by
q = T−1

d , where Td from Table 6 is (3.47±0.24) Myr. Here we
notice again that this uncertainty is likely underestimated
by the factor of

√

χ2
TTV from Table 2, or 1.33. Therefore, a

more realistic estimate is Td = (3.47±0.32) Myr. The radial
acceleration c1 is estimated in Table 5. Based on the Corot-
2 example, we believe that the alternative fit WASP-12’ is
more realistic in terms of the RV trend, because in the ba-
sic fit (for split RV data) the estimated radial acceleration
may also include a local red noise effect appearing within
individual short in-transit runs. We do not expect that the
estimated c1 value may have any significant escaped ran-
dom uncertainty, since the stellar activity was already mod-
elled through the white and red RV jitter. Based on the
formula (11), from c1 = (−7.5 ± 2.2) m/s/yr we obtain the
apparent orbital decay time TRA

d = (40± 12) Myr.
The tidal part of the TTV trend is then defined as:

1

T tidal
d

=
1

Td

− 1

TRA
d

. (12)

Since Td and TRA
d are practically uncorrelated, this formula

yields an estimation T tidal
d = (3.80 ± 0.40) Myr. Therefore,

the truly tidal orbital decay time is ∼ 10 per cent larger
than the observed (apparent) Td, and also it has a larger
uncertainty. Although the bias is only ∼ 1σ, the increase of
the uncertainty is noticeable.

In this work we did not consider the alternative ex-
planation of the WASP-12 TTV via the apsidal precession
(Patra et al. 2017), although this model should also be cor-
rected for the nontidal part of the TTV.

8 CONCLUSIONS AND DISCUSSION

The main conclusion of our work is that TTV data present in
published literature are significantly inhomogeneous. There-

fore, they cannot be plainly processed by merging them with
each other. Substantial efforts must be made to increase
the degree of homogeneity of the TTV data by reprocess-
ing the archival lightcurves, or by employing sophisticated
noise models separating different TTV subsets from each
other. A lack of careful analysis of heterogeneous TTV data
may prove dangerous, potentially leading to spurious anal-
ysis artefacts. In view of this it appears necessary to al-
ways verify our conclusions against different data models, in
order to gain an impression of how much they are model-
dependent.

For the particular cases of WASP-12 and WASP-4 we
notice that the Roemer effect induced by possible additional
companions may cause biased interpretation of the results.
In particular, the apparent value of the TTV trend may
appear biased, and even mimicking tidal phenomena. The
Doppler observations are crucial in verifying such cases. In
particular, they may help to assess a more realistic uncer-
tainty of the truly tidal part of a TTV trend. Note that even
if the RV trend estimation is consistent with zero it is impor-
tant to keep it as a free parameter, because its uncertainty
increases the uncertainty in the tidal portion of a TTV.

When performing the lightcurve analysis, the primary
nuisance effect that currently remains rather poorly mod-
elled is the spot activity that implies anomalies in the transit
curve. It induces an additional TTV noise, which is difficult
to predict or assess, except through the post-hoc estima-
tion of the TTV scatter. Various self-consistent (“global”) fits
that avoid using transit times as intermediate data do not in-
clude, as a rule, the spot-transit effect in their uncertainties.
To further improve their quality, we need to spend more ef-
forts to reducing the spot-transit event, e.g. to perform some
kind of their automated detection followed by a dedicated fit-
ting or removing the associated piece of a lightcurve. In our
work the red noise model did not appear effective enough in
removing the effect of spot-transit anomalies, since from the
statistical point of view such anomalies may behave closer
to a blue noise rather than red one.

We also consider the limb-darkening coefficients by
Claret & Bloemen (2011), and conclude that their FCM ver-
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sions are rather accurate, though there is a detectable re-
maining bias in the coefficient B of about 0.1. The LF ver-
sion of these coefficients is rather poor for practical use, as
well as the older coefficients from (Claret 2000, 2004).
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G., Regály Z., 2011, MNRAS, 413, L43

Patra K. C., Winn J. N., Holman M. J., Yu L., Deming D., Dai
F., 2017, AJ, 154, 4
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