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ABSTRACT As energy demand continues to increase, demand response (DR) programs in the electricity 

distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. 

Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity 

usage during peak periods which helps support grid balancing of supply-demand and generate revenue by 

selling surplus of energy back to the grid. This paper proposes an effective energy management system for 

residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is 

considered as a model-free control strategy which learns from the interaction with its environment by 

performing actions and evaluating the results. The proposed algorithm considers human preference by 

directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, 

a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of 

smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, 

to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The 

proposed approach works with a single agent to control 14 household appliances and uses a reduced number 

of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The 

simulation results show that the proposed appliances scheduling approach can smooth the power consumption 

profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action 

taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home 

Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes 

features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, 

battery energy storage, electric vehicle and grid supply.  

INDEX TERMS Demand response, home energy management system, smart home, smart appliances, 

reinforcement learning, Q-learning, fuzzy reasoning. 

I.  INTRODUCTION 

Greenhouse gas emissions are posing a serious concern across 

the world due to their negative impacts on the environment 

and climate change. On the other hand, the global economy is 

in the midst of unprecedented demand for energy seeking new 

investments for the reinforcement and expansion of power 

grid infrastructures and the large adoption of renewable 

energy resources. As a result, the electric power sector 

around the world is experiencing an ongoing global 

restructuration to establish the ground rules and legislations 

for the generation and trading of electricity from this energy 

mix. This has created deregulated wholesale electricity 

markets, mostly in developed countries, and the emergence 

of new business opportunities for independent producers and 

energy service providers which are changing the way energy 

is bought and sold. A reliable operation of the electricity grid, 

under these conditions, requires that supply and demand 

must be perfectly balanced [1], [2]. 

DR programs are being introduced by some electricity grid 

operators as resource options for curtailing and reducing the 

demand of electricity during certain time periods for balancing 

supply and demand. DR is considered as a class of demand-

side management programs, where utilities offer incentives to 

end-users to reduce their power consumption during peak 

periods [3]. DR is, indeed, a promising opportunity for 

consumers to control their energy usage in response to 

electricity tariffs or other incentives from their energy 

suppliers [4], [5]. 
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Generally, DR schemes are classified into two categories 

namely incentives-based programs and price-based programs.  

In incentives-based programs, participants receive fix or time-

varying payments for their consent to reduce power 

consumption during peak demand or system contingencies. 

There are two categories: classical programs and market-based 

programs. Participating in classical programs offers 

participation payments as bill credits or discount rates. In 

market-based programs, customers receive money rewards 

depending on their performance after they consent to reduce 

their power consumption during peak periods [6].  

Incentive-based programs include: Direct Load Control 

(DLC), Interruptible/Curtailable (I/C) and Emergency DR 

programs. DLC programs are considered as classical 

incentive-based programs. They enable utility companies to 

remotely turn off consumers’ electrical loads. Participants in 

this program receive payments in return for reducing their 

energy usage below a pre-defined threshold.  In I/C DR 

programs, participants are also offered economic incentives. 

The power utility can curtail a specific part or the total users’ 

consumption to a certain level during emergency situations. 

Consumers who do not reduce their energy consumption 

receive penalties as per the pre-defined terms and conditions 

of the program. Emergency DR program are a combination of 

both DLC and I/C programs and are considered as market-

based programs.  

Price-based programs, on the other hand, can be considered 

as indirect means for controlling customers’ loads. Using these 

programs, time-varying prices are offered to customers based 

on electricity cost at different time periods. Customers willing 

to reduce their energy usage during peak hours, when the 

electricity prices are high, can participate in these programs. 

They are expected to adjust their demand in response to 

electricity price signals [7]. Price-based programs are of three 

types: Time-of Use (TOU) pricing, Real-Time-Pricing (RTP) 

and Inclining Block Rate (IBR).  

In TOU tariff plan, electricity pricing varies depending on 

the time of the day, day of the week and season. It contains 

three time periods namely; off-peak, mid-peak and on-peak 

period. TOU pricing is easy to follow and give participants the 

opportunity to take control of their energy usage by shifting 

their electricity consumption to lower-prices hours. While 

TOU pricing reduces the electricity demand during peak 

hours, there is a risk that this may create a similar or larger 

peak demand during off-peak periods [8]. Under RTP, 

electricity prices change over short time periods typically 

hourly or less and are announced in advance by energy 

suppliers. The IBR program has a two-level rate structure with 

lower and higher electricity price. It aims to incentivise users 

to avoid high prices by distributing their consumption across 

different periods of the day. 

Home Energy Management System (HEMS) provides the 

interface for consumers to monitor and control their various 

household electrical devices in real-time. HEMS can be 

considered as the enabling technology for realizing the 

potential of DR strategies and enable consumers to improve 

the energy usage and minimise electricity bills by shifting and 

curtailing their loads in response to electricity tariffs during 

peak periods without compromising their lifestyle and 

preferences [3], [5], [9], [10].  

User’s comfort has mainly been considered in HEMS. In 

[11], the authors proposed a scheduling model for HEMS 

considering energy payment and user’s preferences level as a 

comprehensive objective in the optimization process. The 

HEMS is proposed in [12] with the objective to reduce the 

electricity cost and avoid compromising consumers’ lifestyle 

and preferences. The authors in [13] focused on HEMS 

algorithm considering customer preferences setting, priority of 

appliances and comfortable lifestyle.      

Although HEMS technology is still in its early stages, in the 

past few years, the market for HEMS has been on the rise and 

is quickly expanding. Many researchers have worked on 

developing HEMS using rule-based control strategies. In [14], 

the author proposed a Hybrid Genetic Particle Swarm 

Optimisation (HGPO) to schedule the appliances of a house 

with local generation from Renewable Energy Sources (RES). 

However, this algorithm attempts to minimise electricity bills 

without considering consumer’s preferences. Optimisation 

techniques based on Integer Linear Programming (ILP) and 

Dynamic Programming (DP) have been used to manage 

energy usage and reduce the electricity cost in smart homes. 

In [15], the household appliances are divided into two types; 

appliances with a flexible starting time and a fixed power, and 

other appliances with a flexible power and a predefined 

working time. This approach aimed to achieve a desired trade-

off between electricity bills reduction and discomfort where 

the users can modify the starting time of the first type of 

appliances or reduce the energy consumption of the second 

appliances to reduce the bills. However, this algorithm does 

not consider consumer’s comfort. The authors in [16] focused 

on load scheduling problems and power trading using DP 

algorithm. This enables users to sell their surplus of generated 

power to the power grid or other local users. However, due to 

its computational complexity, the model is difficult to 

implement in real-time.   

Recently, much attention has been devoted to the 

development of controllers based on computational 

intelligence and machine learning techniques for HEMS [17], 

[18]. According to RTP program, end-users receive energy 

prices from power utility an hour-ahead in order to make a 

decision to shift or reduce their energy consumption. 

Therefore, in [18], Artificial Neural Networks (ANN) have 

been used to design energy price forecasting models and 

overcome the uncertainty in future prices. The ANN approach 

is used due to its ease of implementation, good performance 

and less time-consuming.  

Recently, Reinforcement Learning (RL) has emerged as a 

potential machine learning algorithm for energy management, 

decision and control. RL models have excellent decision-

making ability due to their potential to solve problems without 
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a priori knowledge of the environment. Multi-agent 

reinforcement learning has been proposed for the optimal 

scheduling of household appliances to optimise the energy 

utilisation [17], [19]. However, multi-agents RL requires 

setting several agents, where each household appliances 

represents an environment that has its own agent with different 

actions and rewards. Therefore, the learning process becomes 

more complex [20]. Other studies have focused on using Q-

learning and SARSA (State-Action-Reward-State-Action) 

algorithms in HEMS to schedule controllable appliances and 

shift the operation time of shiftable devices [21], [22]. 

However, these algorithms require many state-action pairs and 

consequently the convergence speed of the Q-values is 

reduced. In this research, a new and flexible HEMS is 

proposed, to smooth the power consumption profile without 

compromising user comfort and preferences. The proposed 

approach works with a single agent and uses a reduced number 

of state-action pairs and fuzzy logic for rewards functions. 

This paper is organised as follows: In Section II, the HEMS 

architecture and functionalities are briefly described. In 

Section III, the concepts of RL and Q-learning are overviewed. 

HEMS and RL models are presented in Section IV. Section V 

presents the results and discussion. Finally, the conclusions of 

the paper are summarised in Section VI.    

 
II.  DESCRIPTION OF THE HEMS ARCHITECHTURE 
AND FUNCTIONALITIES 

Smart HEMS is an essential home system to achieve an 

effective demand-side response (DSR) and DR in the context 

of smart grids. It is used to monitor, control and optimise the 

amount of energy consumed or to be consumed in real time, 

based on the customer’s preferences via a Human-Machine 

Interface (HMI). Consequently, this helps users to actively 

participate in DR programs to reduce electricity cost and 

achieve efficient energy utilisation by shifting electricity 

consumption during peak demand in response to changes in 

the electricity price. To achieve electricity saving and DR 

objectives, HEMS should be more flexible and able to manage 

different types of household resources such as Renewable 

Energy Sources (RERs) and Home Energy Storage System 

(HESS). Power consumption and electricity pricing should be 

offered to users in real-time to enables them choose their 

preferences to schedule the operation time of various 

appliances via the HMI which in turn improves their energy 

usage efficiency.  

A. SMART HEMS ARCHITECTURE   

HEMS will play an integral role in future smart electricity 

networks. They provide end-users with the ability to 

participate in demand response which aims to optimise energy 

utilisation and minimise electricity bills.                    

Figure 1 illustrates a typical smart HEMS architecture. The 

system includes a user interface, smart meters, home 

communication networks and smart household appliances. 

Smart meters are advanced energy electricity meters which 

offer, in real-time, a range of services to households, such as 

information about electricity usage, local generation from 

RER and costs, via a two-way communication infrastructure 

Since each household appliance has a specific electrical 

characteristic and energy consumption profile, several studies 

have focused on the disaggregation of the whole home energy 

profiles into appliance-by-appliance energy usage profile. 

Energy disaggregation, also known as Non-Intrusive Load 

Monitoring (NILM), takes the total energy consumption and 

attempts to match the disaggregated signals to individual 

appliances. In [23], a NILM based on deep learning techniques 

is developed and tested. The algorithm can identify household 

electrical appliances and their energy consumed using smart 

FIGURE 1  Smart HEMS architecture including Renewable Energy Resources, Energy Storage (battery), Power Utility, User-interface, Smart HEMS 

Center, and Household Appliances (Shiftable and Non-shiftable). 
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meter measurement. However, NILM techniques tend to 

reveal consumer’s habits and life style and presents privacy 

concerns. Therefore, several researchers have worked on the 

privacy preserving techniques of smart meters. In [24], a real-

time different privacy load monitoring (DPLM) algorithm is 

proposed using Laplacian Noise. A privacy-preserving and 

efficient data aggregation scheme is proposed in [25]. Authors 

divide users into different groups where each group has a 

private database to store his/her data. Pseudonyms to hide 

costumers’ identities are used to preserve the privacy of each 

group. 

In the last decade, different communication and network 

technologies for HEMS have been designed to connect smart 

devices with each other and exchange information to allow 

users to remotely manage and control their devices. Recently, 

many protocols have been used in Home Area Networks 

(HANs), such as Bluetooth, ZigBee, BACnet and INSTEON. 

Small-scale networks (12 to 100 meters) such as Local Area 

Network (LAN), Body Area Network (BAN) and Personal 

Area Network (PAN) are integrated to HEMS to provide users 

with movement flexibility and do not need high expertise to 

manage the network operations. In [26], [27], ZigBee protocol 

with PAN is used for the proposed HEMS. ZigBee is 

considered as a low power, low cost wireless communication 

technology for HEMS.    

Household appliances are usually classified into shiftable 

and non-shiftable. Where shiftable refer to the class of 

appliances that can operate at any time within user’s defined 

time periods (such as washing machine, dishwasher and 

clothes dryer). Non-shiftable refer to appliances that require 

permanent electric power supply to complete their tasks (such 

as refrigerator, water heater and lighting). An additional class 

of appliances includes battery-assisted devices. In [28], major 

home appliances, such as dishwasher, clothes washer and 

dryer, refrigerator, air-conditioning and oven are described.  

B. SMART HEMS FUNCTIONALITIES      

The primary aim of a smart HEMS is to provide efficient 

management and control systems to achieve the DR 

objectives. Therefore, it should be flexible enough to manage 

several power consumption patterns, dynamic electricity 

prices and different types of household appliances. HEMS 

enables consumers easy access to their energy usage data in 

real-time to make them more aware about their electricity 

saving. It also provides services for the operational modes and 

energy status of each household appliance via HMI. 

The control functionality provides customers the ability to 

access their household appliances and can be classified into 

two types namely, direct control and remote control. Whereas 

remote control enables consumers to monitor and control their 

appliances on-line via a personal computer or smart phone 

from outside the home. 

The key function of HEMS is energy management services 

in order to optimise the power consumption in the smart home. 

This functionality includes renewable energy generation 

management, energy storage management, home appliance 

management. 

HEMS also collect and store data on power consumption of 

appliances, generation from renewable energy resources, and 

energy storage state of charge. It also receives real-time prices 

from power utility and performs demand response analysis.   

III.  REINFORCEMENT LEARNING AND Q-VALUE 

Household Energy Management (HEM) is an optimisation 
problem, which aims to minimise the total power 
consumption of electrical appliances and reduce the 
electricity bills in a smart home. A typical HEMS can neither 
be adapted to a variety of appliances with varying scheduling 
complexity nor it is appropriate for real-time application. 
Reinforcement Learning (RL) algorithms have been recently 
proposed as potential candidates to address these issues due 
to their adaptability and ability to learn customer’s 
preferences, and optimise the management of energy systems 
which are often subject to various inputs such as dynamic 
electricity prices, forecast data and energy consumption 
patterns [29],[30]. RL is considered as a machine-learning 
type of algorithm for decision-making in a stochastic 
environment [10]. It does not require a mathematical model 
and is suitable for complex and real-time applications. RL 
algorithm has six parameters namely, agent, environment, 
state space 𝑆, action space 𝐴, rewards 𝑅, and action-value 
𝑄(𝑠, 𝑎). Generally, the RL-agent interacts with an 
environment as illustrated by Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2  Reinforcement learning process. 

 

Firstly, at each time step 𝑡 = {0, 1, 2, … }, the agent 

executes an action  according to a certain policy 𝜋 at a current 

state 𝑠𝑡  ∈ 𝑆(𝑡). The environment then computes the new 

state 𝑠𝑡+1 ∈ 𝑆(𝑡) and a numerical reward 𝑟(𝑠𝑡 , 𝑎𝑡) and feed it 

back to the agent in order to evaluate the action taken as 

shown in Figure 2. Based on the reward received, the agent is 

able to optimise its policy 𝜋 and hence maximise the total 

rewards it will receive in the future. 

The action-value function which indicates how good is the 

action taken in each state is denoted by  𝑄𝜋(𝑠, 𝑎). According 

to a certain policy 𝜋, 𝑄𝜋(𝑠, 𝑎) expresses the value of action 

taken 𝑎𝑡 and is selected from a valid set of actions space 𝐴 in 

the current state 𝑠𝑡:     
 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞

𝑘=0
| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                  (1) 

 

Agent 

Environment 

Reward 

Next state 



 

VOLUME XX, 2017 9 

𝐸𝜋 denotes the expectation of total rewards defined by  

policy 𝜋. 𝛾 is called the discount rate and indicates the 

relationship between the future and current rewards. It takes 

a fraction between [0, 1]. When 𝛾 = 0, the agent considers 

only the current reward, while 𝛾 = 1 means that the agent 

will strive for the future rewards. For each state, there is at 

least one optimal action which receives the highest reward.  

Therefore, the policy works to select the action with the 

highest Q-value as follows: 

 

𝜋(𝑎|𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎)                                        (2) 

  

Q-Learning algorithms are RL techniques that are adopted 

to acquire the optimal policy 𝜋. The main procedure of Q-

Learning is to assign a Q-value 𝑄(𝑠𝑡 , 𝑎𝑡) to each state-action 

pair at time step 𝑡, and then update this value at each iteration 

in order to optimise the agent’s performance. The optimal 

 𝑄𝜋
∗(𝑠𝑡 , 𝑎𝑡) expresses the maximum discounted achieved with 

the future reward 𝑟(𝑠𝑡 , 𝑎𝑡) for action 𝑎𝑡 taken at state 𝑠𝑡, 
which is expressed as follows: 
                    

 𝑄𝜋
∗(𝑠𝑡, 𝑎𝑡) =  𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾.max𝑄(𝑠𝑡+1 , 𝑎𝑡+1)                (3) 

 

Once the action 𝑎𝑡 is taken based on a certain policy 𝜋, the 

defined reward 𝑟(𝑠𝑡 , 𝑎𝑡) (or calculated using reward function) 

will be received, and then the agent assume a  new state 𝑠𝑡+1. 

Simultaneously, the action-value 𝑄(𝑠𝑡 , 𝑎𝑡) is updated using 

the following equation: 
      

𝑄(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡. 𝑎𝑡) + 𝛼 [
𝑟(𝑠𝑡, 𝑎𝑡) +

𝛾.maxQ(𝑠𝑡+1, 𝑎𝑡+1)
]         (4) 

 

Where 𝛼 denotes the learning rate which determines how 

much the new reward affects the old value of the 𝑄(𝑠𝑡 , 𝑎𝑡). 
For example, 𝛼 = 0 means that the new information acquired 

is not used in the leaning process and hence the reward 

received does not affect the Q-value. When 𝛼 = 1, only the 

latest information is considered.   

IV.  HOME ENERGY MANAGEMENT AND Q-LEARNING 
MODELLING 

In this section, the HEM structure is presented, where RL is 
modelled using Q-learning algorithm that contains a state 
space, action space, reward definition.   

A. HOME ENERGY MANAGEMENT MODEL  

Figure 3 shows the daily power demand profile of a typical 

household. Two peak demand periods occur during morning 

and evening times when energy prices are higher. Whereas 

off-peak demand periods correspond to periods of the day 

where electricity prices are lower since customer’s activities 

such as washing, cleaning, cooking, and watching TV are 

reduced [31]. Therefore, the aim of this study is to shift the 

operating time of specific appliances from peak demand hours 

to off-peak periods without compromising the costumer’s 

preferences. In this study, household appliances are divided 

into shiftable and non-shiftable appliances.  

1) NON-SHIFTABLE APPLIANCES 

Once started, these appliances must be continuously powered 

to complete their tasks and they cannot be shifted to another 

time regardless of the electricity price. 

Table 1 shows the rated power consumption of non-

shiftable household appliances. The total power consumption 

of these appliances at each time step is: 
 

𝐸𝑡
𝑛𝑜𝑛 =∑𝑒𝑡

𝑛,𝑛𝑜𝑛. 𝐼𝑡
𝑛                                                 

𝑁

𝑛=1

(5) 

 
𝐸𝑡
𝑛𝑜𝑛 represents the total power demand of all non-shiftable 

appliances for each hour, 𝑒𝑡
𝑛,𝑛𝑜𝑛

  is the rated power of a 

specific non-shiftable appliance, 𝐼𝑡
𝑛  denotes the status of the 

appliance and takes values 0 (off) or 1 (on) respectively, 𝑡 ∈
{1,2,3…24} represents the hour of the day, 𝑛 ∈ {1,2, …𝑁} is 
the appliance number and 𝑁 is the total number of the non-

shifatble appliances. 

 
TABLE 1: RATED POWER FOR NON-SHIFTABLE APPLIANCES 

 

2) SHIFATBLE APPLIANCES 

Shiftable appliances include the washing machine, dish 

washer, electric vehicle and others, and their operation time 

can be re-scheduled based on appliance priority and 

preference setting. The power demand of these appliances is 

defined as follows: 

   

Index Number Appliance Rated Power (W) 

1 Iron 1000 

2 Oven 2000 

3 Laptop 20 

4 Microwave 600 

5 Television 200 

6 
 

Lighting 100 

7 Refrigerator 200 

8 Water heater 2000 

FIGURE 3  Daily household power demand. 
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𝐸𝑡
𝑠ℎ𝑡 =∑𝑒𝑡

𝑛,𝑠ℎ𝑡. 𝐼𝑡
𝑛

𝑁

𝑛=1

                                                  (6) 

 

Where 𝐸𝑡
𝑠ℎ𝑡 is the total power required from all shiftable 

appliances for each hour, 𝑒𝑡
𝑛,𝑠ℎ𝑡

 represents the rated power of 

each shiftable appliance at that hour. The rated power for 

shiftable appliances is illustrated in Table 2.  

Therefore, at each time step (considered as an hour in this 

work), the total power demand of both shiftable and non-

shiftable appliances during a certain hour is:  

 
𝐸𝑡
𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑡

𝑛𝑜𝑛 + 𝐸𝑡
𝑠ℎ𝑡                                               (7)  

 
TABLE 2: RATED POWER FOR NON-SHIFTABLE APPLIANCES 

 

3) DEMAND RESPONSE PROGRAM 

Due to the changes in the electricity price during a day, DR 

program aims to inform customers about the prices on hour-

ahead basis. Smart meters receive the RTP signal from the 

utility and record the current power demand data of all 

household appliances during their operating times, and then 

send them to the HEM system. 

B. Q-LEARNING MODEL 

RL is adopted to make an optimal decision in a stochastic 

environment (dynamic electricity prices and different energy 

consumption patterns) using an intelligent agent. Practically, 

the agent can control a dynamic system by executing 

sequential actions. Where the dynamic system could be 

characterised by a state-space and a numerical reward that 

evaluates the new state when a given action is taken. In this 

paper, the Q-learning model components are defined as 

follows: 

1) STATE SPACE 

The state-space here is represented by the power demand and 

the electricity price signal. To reduce the computation time 

and make the model much simpler, the power demand is 

divided into three levels namely; low, average and high-power 

demand. Whereas the price signal is categorised into cheap 

and expensive price as follows: 

 

𝐸𝑡,𝑖𝑛𝑑𝑒𝑥
𝑡𝑜𝑡𝑎𝑙 =

{
 

 
𝐸𝑙𝑜𝑤
𝑡𝑜𝑡𝑎𝑙             if 𝐸𝑡

𝑡𝑜𝑡𝑎𝑙 ≤ 3.8 𝑘𝑊                                    

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙        if 4.65 𝑊 < 𝐸𝑡

𝑡𝑜𝑡𝑎𝑙 < 3.8 𝑘𝑊               

𝐸ℎ𝑖𝑔ℎ
𝑡𝑜𝑡𝑎𝑙              if 𝐸𝑡

𝑡𝑜𝑡𝑎𝑙 ≥ 4.65 𝑘𝑊                                    
 

(8) 

                                  

𝑃𝑡
𝑖𝑛𝑑𝑒𝑥 = {

𝑃𝑡
𝑐ℎ𝑒𝑎𝑝

          if 𝑃𝑡 ≤ 0.1  £/𝑘𝑊ℎ

𝑃𝑡
𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒

    if 𝑃𝑡 > 0.1  £/𝑘𝑊ℎ
                           (9) 

           

For each time step (an hour), the state is defined to contain 

both power demand and electricity price indexes: 

 
𝑠𝑡 = [𝐸𝑡,𝑖𝑛𝑑𝑒𝑥

𝑡𝑜𝑡𝑎𝑙   , 𝑃𝑡
𝑖𝑛𝑑𝑒𝑥]                                         (10) 

 

Table 3 summarises all available states that can be created 

from power demand and real-time electricity price. It also 

shows the index of each state. 

 
TABLE 3: INDEXING OF ALL POSSIBLE STATES 

 

2) ACTION SPACE 

The aim is to shift the operating time of the specific appliance 

that has the lowest priority during peak demand when 

required, and then turn on the appliance that has the highest 

priority during off-peak hours.  

Based on the relationship of the real-time price, the total 

power demand of all household appliances, taking into 

account load priority and customer preferences, the agent 

(HEMS) chooses one action from the action space 𝐴 that given 

by: - 
                    

𝐴 = [𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔, 𝑣𝑎𝑙𝑙𝑒𝑦 𝑓𝑖𝑙𝑙𝑖𝑛𝑔]                     (11) 
                

Where shifting action shifts the lowest priority device. This 

mode occurs always during peak demand when the price and 

the power consumed are high. Valley-filling action seeks to 

turn on the shifted appliance with the highest priority, usually 

during off-peak demand hours. When do-nothing is set, the 

system works in normal conditions and there is no need to shift 

any appliance. 

3) REWARDS FUNCTION IMPLEMENTATION USING 
FUZZY LOGIC 

Let 𝑟(𝑠𝑡 , 𝑎𝑡) denote the numerical reward that the agent 

receives after executing a random action and observing a new 

state. The aim of this reward is to evaluate how much the 

action taken 𝑎𝑡 is suitable for a certain state 𝑠𝑡 . Fuzzy logic is 

Index Number Appliance 
Rated Power 

(W) 

 

Priority 

1 Washing 

machine 

800 1 

2 Dish washer 
 

1100 2 

3 Clothes dryer 400 3 

4 Hair dryer 
 

450 4 

5 Hair straightener 20 5 

6 

 

PEV 1200 6 

Power Demand Price State Index 

𝐸ℎ𝑖𝑔ℎ
𝑡𝑜𝑡𝑎𝑙 𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒 6 

𝐸ℎ𝑖𝑔ℎ
𝑡𝑜𝑡𝑎𝑙 𝑃𝑡

𝑐ℎ𝑒𝑎𝑝
 5 

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙  𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒
 4 

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙  𝑃𝑡

𝑐ℎ𝑒𝑎𝑝
 3 

𝐸𝑙𝑜𝑤
𝑡𝑜𝑡𝑎𝑙 𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒
 2 

𝐸𝑙𝑜𝑤
𝑡𝑜𝑡𝑎𝑙 𝑃𝑡

𝑐ℎ𝑒𝑎𝑝
  1 
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used here to evaluate the action taken at a certain state. Fuzzy 

reasoning is a decision-making model that deals with 

approximate values rather than exact values. A Fuzzy 

Inference System (FIS) provides the mapping from the inputs 

to the outputs, based on a set of fuzzy rule and associated fuzzy 

Membership Functions (MFs). There are two types of FIS, 

Mamdani-type FIS and Sugeno-type FIS. Mamdani method is 

used in this paper because it offers a smoother output. The 

inputs variables to the fuzzy reward model are the power 

demand 𝐸𝑡
𝑡𝑜𝑡𝑎𝑙  and the electricity price 𝑃𝑡   (referred to as 

“states” in Q-learning) and the outputs variables are the 

evaluation of shifting, valley-filling and do-nothing (refer to as 

“actions” in Q-learning) as shown in Figure 4. 

   The MFs for the input variable “power demand are 

triangular and are labelled as: Low, Average and High. The 

universe of discourse of power demand is chosen as [0 6300] 

(Watt) as shown in Figure 5. 

 

The fuzzy sets of electricity price are defined as “cheap” 

and “expensive”. The MFs are Gaussian and the universe 

discourse is [0 0.16] (£/kWh) as shown in Figure 6. 

The outputs of the system are the evaluation of the random 

action which was defined in Q-learning. For each action taken 

(output), the fuzzy sets are determined as Bad Action (BA), 

Good Action (GA) and Very Good Action (VGA). The 

universe of discourse of MFs is defined as [0 100] to evaluate 

all possible actions with values out of 100 as shown in Figure 

7.  

Table 4 shows the list of fuzzy rules. Figure 8 illustrates an 

example of how the FIS evaluates the possible actions for each 

state. The example shows that the power demand is 5500 W 

FIGURE 4  FIS system of the reward function. 

FIGURE 5  Fuzzy sets and MFs of power demand input. 

FIGURE 6  Fuzzy sets and MFs of electricity price input. 
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FIGURE 7  Fuzzy sets and MFs of output variables. 
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and the electricity price is 0.14 £/kWh which refers to state 

index 6 according to Table 3. The values of the three actions 

are 86.5 for shifting action, 13.5 for valley-filling action and 

13.5 for do-nothing action. Therefore, if the agent selects 

shifting and will receive a reward of 86.5. Conversely, it will 

receive a reward of only 13.5 if either valley-filling or do-

nothing action is selected. 

 
TABLE 4: FUZZY RULES OF FIS SYSTEM 

 

 

V. HOME ENERGY MANAGEMENT ALGORITHM 
USING Q-LEARNING 

Q-learning is considered as an off-policy RL algorithm that 

seeks to make the best decision at a given state. Off-policy 

means that the Q-learning function learns from taking random 

actions without following a current policy. Therefore, a policy 

is not needed during a training process. The Q-matrix, which 

has a dimension of [𝑠𝑡𝑎𝑡𝑒𝑠 × 𝑎𝑐𝑡𝑖𝑜𝑛𝑠], should be initialised 

to zero (i.e. the Q-value of each state-action pair is signed to 

zero). Then, the agent will interact with the environment and 

update each pair in that matrix after each action taken at a 

certain state using equation (4). In this paper, a random action 

called “exploring” is applied. In this case, a sufficient number 

of iterations will be required to explore and update the values 

of 𝑄(𝑠𝑡 , 𝑎𝑡) for all state-action pairs at least once. After 

convergence of the Q-matrix the optimal Q-values will be 

obtained. 

The pseudo-code listed in Table 5 (Algorithm 1) illustrates 

the procedure of the main algorithm of the HEM using Q-

learning. Firstly, the numerical rewards are defined using 

fuzzy logic. The parameters 𝛾 and 𝛼 are set to 0.8 and 0.2 

respectively and Q-value matrix entries are initialised to zeros. 

For each current state, all possible actions are specified, and 

then an action will be selected randomly. After the selected 

action is executed, the numerical reward (using fuzzy logic) 

for that action and the new state will be observed by the agent. 

The maximum Q-value for the next state should be also 

determined and then the Q-value of the state-action pair will 

be updated using equation (4). Finally, the next state will be 

used as a current state. 

 

Figure 9 shows an example of Q-matrix updating. Each row 

indicates a state and each column indicates an action. Assume 

that the current state index at time step 𝑡 is 6 (which represents 

high power demand and expensive price [𝐸ℎ𝑖𝑔ℎ
𝑡𝑜𝑡𝑎𝑙 , 𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒
]), 

the random selected action is [Shifting]. Using the fuzzy 

model, the reward will be obtained as a value of shifting action. 

The next state is observed as 4 (i.e. 

state [𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙 , 𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒
 ]). max𝑄(𝑠𝑡+1 , 𝑎𝑡+1)  is 3.19 

which is found in Q-matrix based on the next state. Using 

equation (4), the new Q-value for [state: 6, action: 1] is 2.60.   

 

To allow the agent to visit all state-state pairs and learn new 

knowledge, the training process is set to 1000 iterations. The 

convergence of the Q-Matrix after execution of this number of 

iterations is shown in Table 6.  

 

Power 

Demand 

Electricity 

Price 

 
shifting 

valley- 

filling 

do- 

nothing 

Low Cheap  BA VGA GA 

Low Expensive 

 

 BA GA GA 

Average Cheap  BA GA VGA 

Average Expensive 
 

 BA BA VGA 

High Cheap  BA BA VGA 
High Expensive 

 

 VGA BA BA 

 

ALGORITHM 1: HOME ENERGY MANAGEMENT USING Q-

LEARNING ALGORITHM 

1. Set 𝜸,𝜶 parameters and environment rewards in matrix as 

in Table 4. 
2. Initialise 𝑸(𝒔𝒕, 𝒂𝒕) , ∀𝒔 ∈ 𝑺, ∀𝒂 ∈ 𝑨. 
3. For each time step 𝑡 do 
4.           Choose a random initial state. 
5.           While hour = 1:24 
6.                    Determine all available actions. 
7.                    Select random action from all possible actions           

                   for the current state.  
8.                    Execute the selected action 𝒂𝒕, and observe  

                   the new state 𝒔𝒕+𝟏 and numerical reward  

                   𝒓(𝒔𝒕, 𝒂𝒕).  
9.                    Determine the maximum Q-value for next   

                   state in Q-matrix. 
10.                    Update the 𝑸(𝒔𝒕, 𝒂𝒕) using Equation 4.  
11.                    Set the next state as current state. 

12.          End while 
13. End for                        

FIGURE 8  Example of FIS process. 

FIGURE 9  Simple example of Q-matrix updating. 



 

VOLUME XX, 2017 9 

TABLE 5: CONVERGENCE Q-MATRIX AFTER 1000 ITERATIONS 

 

 VI. RESULT AND DISCUSSION  

Smart meters are used in smart home to receive the price signal 

from an energy supplier and collect the power data of all 

household appliances, and then send them to HEMS. 

Consequently, an optimal decision could be made by HEM 

system to shift the operating time of the appliance that has the 

lowest priority during peak demand when required using the 

convergence Q-Matrix that shown in Table 5, and then turn on 

the appliance that has been shifted and has the highest priority 

during off-peak hours. This process works based on the 

relationship of the real-time price, the consumed power by all 

household appliances considering load priority and customer 

comfort preference. 

Figure 10 shows the electricity price in £/kWh received 

from the utility grid.  

 

In Figure 11 is shown the total power demand in Watts of 

the smart home including all electrical appliances. These two 

values define the state and are passed to the agent at each time 

step. Based on the convergence Q-matrix, the action will be 

selected as the maximum Q-value for that current state.   

Figure 12 shows all different states that are detected based 

on the different prices and power demand. For example, at 

6:00 am the electricity price is low (£0.082) and the power 

demand is average (4500 W). Thus, the state index is 3. Using 

Table 5, the maximum value is 3.27 that refers to do-nothing 

action as shown in Figure 13.   

At 8:00 am, the energy price is high (£0.15) and the power 

demand is also high (5000 W). According to Table 3, the 

current state index is 6. Using Table 5 again, the maximum Q-

value is 3.34 which indicates that a shifting action should be 

applied. During night-time, for example at 23:00 pm, the 

action of valley-filling is desirable because the price of 

electricity is cheap (£0.08) and the power consumption is low 

(3000 W).     

Based on this technique, Figure 14 shows the final power 

consumption profile of the household appliances over 24 

hours. Three periods are identified namely, shifting which 

occurred during [7am-9am] and [15pm-18pm], valley-filling 

occurred during [21pm-5am] and do-nothing occurred during 

[5am-7am], [11am-14pm] and [19pm-20pm]. 

Figures 15 and 16 show the total electricity cost of all 

appliances for each hour without and with the Q-value 

algorithm.  The energy cost is reduced during peak demand 

(when the electricity price is higher). For example, during 

morning peak demand the energy cost is reduced from £0.8 to 

£0.7, and from £1.0 to £0.8 during evening peak period. Which 

demonstrates the effectiveness of the proposed Q-learning-

based HEM scheme. To consider the user’s comfort, based on 

          Action 
State 

 
Shifting Valley filling 

 
Do nothing 

1 2.57 3.21 2.96 

2 

 

2.62 3.01 3.17 

3 2.62 3.00 3.27 

4 2.92 2.47 3.30 

5 2.62 

 

2.87 3.21 

6 3.34 2.72 2.76 

 

FIGURE 10  Real time price (blue) and average price (green) signals. 

FIGURE 11  Total power demand of the smart home.   

FIGURE 12  All different states based on the price signal and power 

demand.   

FIGURE 13  Action taken based on the current state and convergence 
of Q-matrix; Mode 1: Do nothing, Mode 2: Shifting and Mode 3: Valley 

filling.   
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the priority of appliances in Table 2, the appliance that has the 

lowest priority will be shifted during shifting mode and that 

with higher priority. During valley filling mode, the shifted 

appliance that has the highest priority will be turned on.    

 

This study was aimed also to develop a useful user-interface 

for HEMS algorithms that enables researchers and developers 

to implement and test their proposed control algorithms. The 

designed user-interface enables the user to control and manage 

the power consumption and input his/her preference settings. 

Furthermore, it allows the user to monitor the energy cost for 

each individual appliance and the total energy cost of all 

devices. The proposed user-interface provides the user with 

both auto and manual operation for every appliance as shown 

in Figure 17. Using auto mode, the system shifts the appliance 

operating time when required without user’s permission and 

sends an alert signal by lighting the green LED of shifting 

action. The system turns on automatically the shifted 

appliance during off-peak by taking into consideration the 

appliances’ priorities, and then sends a green light signal to 

indicate the valley-filling action.    

The system can also operate in manual mode by switching 

the manual button of the appliance to be controlled manually. 

This mode is useful when the user wants to override the system 

by switching on or off each appliance manually.  

VII. CONCLUSION 

This paper proposed a demand response algorithm to minimise 

energy utilisation efficiency and electricity bills by shifting 

load demand, in response to electricity price signal and 

consumer preferences, from peak periods when the electricity 

price is high, to off-peak demand when the electricity price is 

low. In this study, an effective household energy management 

FIGURE 14  Power consumption profile after the implementation of RL 

algorithm. 

FIGURE 16  Electricity cost without Q-learning. 

FIGURE 15  Electricity cost with Q-learning. 

FIGURE 17  User-interface for household appliances implemented using 

MATLAB/SIMULINK. 
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is developed using Q-learning to deal with the dynamic 

electricity prices and different power consumption patterns 

without compromising the users’ lifestyle and preferences. 

The proposed RL-based approach uses a single agent with less 

number of states and actions to deal with 14 household 

appliances which in turn makes the implementation much 

easier, better performance and lower time-consuming 

comparing to other techniques. Fuzzy reasoning is also used 

as human thinking to evaluate the random action that the agent 

could take as a reward function. This helps with avoiding the 

rules-based technique (crisp values) and obtaining good 

performance. 

The simulation scenarios presented showed that the 

proposed RL leads to a smooth the power consumption profile 

and minimises electricity cost by 15% and 18.5% during the 

morning  and evening peak periods respectively, considering 

user’s comfort using priorities for shiftable appliances, user’s 

feedbacks on each action taken and his/her preference settings 

of the user’s interface. Furthermore, the energy costs of two 

different cases without and with DR were compared to 

demonstrate how the DR algorithm can contribute to the 

reduction of electricity cost.  
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