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Abstract

It is well known that weighted sum of node states plays an essential role in
function implementation of neural networks. Therefore, this paper proposes
a new weighted sum synchronization model for memristive neural networks.
Unlike the existing synchronization models of memristive neural networks which
control each network node to reach synchronization, the proposed model treats
the networks as dynamic entireties by weighted sum of node states and makes
the entireties instead of each node reach expected synchronization. In this
paper, weighted sum complete synchronization and quasi-synchronization are
both investigated by designing feedback controller and aperiodically intermittent
controller, respectively. Meanwhile, a flexible control scheme is designed for
the proposed model by utilizing some switching parameters and can improve
anti-interference ability of control system. By applying Lyapunov method and
some differential inequalities, some effective criteria are derived to ensure the
synchronizations of memristive neural networks. Moreover, the error level of
the quasi-synchronization is given. Finally, numerical simulation examples are
used to certify the effectiveness of the derived results.

Key words: Feedback control, intermittent control, Lyapunov function,
memristive coupled neural networks, weighted sum synchronization.

1. Introduction

Before memristor was discovered, there are three elementary circuit ele-
ments: resistor, capacitor and inductor. In 1971, Chua predicted memristor
and proved that any combination of the other three circuit elements could not
obtain memristor behavior. In 2008, Hewlett-Packard Company succeeded in5
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fabricating practical memristor devices, see [1], [2]. Compared to conventional
resistor, memristor has better peculiarities such as large density, low power con-
sumption and non-volatile memory. Because of these excellent features, mem-
ristor has been successfully applied in different scientific and engineering fields
[3–7], one of which is to establish memristive neural networks. Different from10

general nonlinear dynamic systems [8–10], memristive neural network is a kind
of state-dependent nonlinear switching system. Therefore, many researchers
have studied the dynamic behaviors of memristive neural networks [11–17].

As a significant collective dynamical behavior, synchronization has drawn
much attention owing to its applications in associative memory, information en-15

cryption and secure communication [18–20]. Until now, many different kinds of
synchronization models have been observed and presented such as global syn-
chronization [21], finite-time synchronization [22, 23],complete synchronization
[24] and output synchronization [25]. In neural networks, synchronous behavior
has a vital role in some functions such as information expression and pattern20

recognition [26]. Thus, plenty of studies on synchronization of memristive neu-
ral networks have been presented [27–37]. According to synchronization error,
these researches can be divided into two categories: complete synchronization
and quasi-synchronization. Complete synchronization whose eventual error is
zero means that systems will reach expected synchronization trajectory perfect-25

ly. This synchronization is widely studied because it can completely eliminate
synchronization error. But in a real-world environment, there exist some inter-
ference factors such as outside perturbation and parameter mismatch [38], [39].
In these undesirable situations, synchronization error may not be controlled to
zero and then quasi-synchronization is in the spotlight whose final error is non-30

zero but within an acceptable bound for practical applications. Up to now,
many efforts have been devoted to study quasi-synchronization of memristive
neural networks [34–37]. For example, in [36], Xin et al. investigated quasi-
synchronization of a kind of chaotic memristive neural networks by treating
memristive neural networks as the neural networks with uncertain continuous35

parameters. In [37], Fan et al. employed some intermittent controllers to tack-
le quasi-synchronization issue of memristive neural networks with time delay
by combining interval matrix algorithm and matrix measure method. As we
known, sometimes systems can not be synchronized only by themselves. Thus
some control strategies are put forward to drive systems to synchronize, such40

as sliding-mode control [20], impulsive control [27], adaptive control [40], and
aperiodically intermittent control [37, 41]. As a discontinuous control strategy,
aperiodically intermittent control is practical and economical for engineering
applications since it has a unfixed control interval and can reduce information
communication effectively. Thus in this paper, this control approach is employed45

to study the proposed synchronization model.
As introduced above, various synchronization models have been proposed

for memristive neural networks. But actually, these synchronization models, ac-
cording to model structure, can almost be classified as a class of synchronization
pattern: node-to-node synchronization, that is, each node in response system50

synchronizes with the corresponding node in drive system under controller, as
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Figure 1: The node-to-node synchronization model of memristive neural networks.

shown in Fig.1. However, this scheme may not be suitable for practical applica-
tions because neural networks in reality usually consist of so many neuron nodes
and it is difficult or even impossible to control each node to achieve synchro-
nization. Actually in neural networks including artificial and biological neural55

networks, nodes are always combined by weighted sum form to achieve certain
function [42], [43], that is, weighted sum of node states is an essential step in
function achievement of neural networks. Thus, it is unnecessary for neural
networks to control each node behavior and the control of weighted sum of node
states will be more direct and effective for function achievement. Moreover, such60

a control pattern is economic since the number of controllers can be reduced.
Therefore, for neural networks, it is important and profound to propose a syn-
chronization model to study weighted sum of node states. Stimulated by the
above analysis, this paper proposes a weighted sum synchronization model for
memristive neural networks, as illustrated by Fig. 2 where the synchronization65

is reached between weighted sums of node states in drive and response systems.
The main contributions can be highlighted as follows.

1) A new weighted sum synchronization model is proposed for memristive
neural networks (also for neural networks). By designing two different con-
trollers, this paper investigates weighted sum complete synchronization as well70

as quasi-synchronization. By utilizing Lyapunov function and differential in-
equalities, the sufficient conditions of two synchronizations are obtained in the
paper. Moreover, an explicit expression of the error level is also derived for the
quasi-synchronization.

2) A flexible control scheme is designed for the proposed model by using some75

time-varying switching parameters. Changing these parameters, the scheme
can adjust controller in real time and thus can deal with some sudden control
problems in synchronization process. Therefore, compared with the existing
controllers which are fixed and unadjustable in synchronization process, our
controller based on this scheme will be more flexible and have a better anti-80

interference ability.
The remainder of this paper is organized as follows. Section 2 describes

model of memristive neural networks and some preliminaries. Section 3 devel-
ops some new criteria for weighted sum synchronization of memristive neural
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Figure 2: A new weighted sum synchronization model for memristive neural networks.

networks. Section 4 gives numerical simulation to demonstrate the effectiveness85

of proposed results. Finally, some conclusions are presented in Section 5.
Notation: co[ξ∗, ξ∗∗] denotes the convex hull. For a matrix A, λmax(A) and

λmin(A) denote the largest and smallest eigenvalues of A, respectively, and AT

represents its transposition. I denotes the identity matrix of compatible dimen-
sion. For a n-dimension vector x = (x1, ..., xn) , ‖x‖ represents the Euclidian90

vector norm. For a positive real number τ , C([−τ, 0],R) is the family of function
G from [−τ, 0] to R.

2. Model and preliminaries

In this paper, based on the early works [21, 22, 30], we consider the following
memristive coupled neural networks whose dynamics can be described by state
equation:

ẋ`(t) = −s`(x`(t))x`(t) +

n∑
z=1

ϕ`z(x`(t))fz(xz(t))

+

n∑
z=1

φ`z(x`(t))gz(xz(t− ε(t))) + I`, ` = 1, 2, . . . , n

(1)

where fz(·) and gz(·) are activation functions, I` is the external input, ε(t)
represents time-varying transmission delay, s`(x`(t)), ϕ`z(x`(t)) and φ`z(x`(t))
are state-dependent memristive coefficients which make the system (1) differ-
ent from the traditional neural networks [44], [45] whose coefficients are time-
dependent or some constants. According to the general mathematical model of
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memristor [46], these coefficients can be described as follows:

s`(x`(t)) =

{ ←
s `, |x`(t)| ≤ T`
~s`, |x`(t)| > T`

ϕ`z(x`(t)) =

{ ←
ϕ`z, |x`(t)| ≤ T`
~ϕ`z, |x`(t)| > T`

φ`z(x`(t)) =

{
←
φ`z, |x`(t)| ≤ T`
~φ`z, |x`(t)| > T`.

(2)

where switching jumps T` > 0,
←
s ` > 0, ~s` > 0,

←
ϕ`z, ~ϕ`z,

←
φ`z and ~φ`z, `, z =

1, ..., n, are all constant numbers.95

In the following, we introduce two assumptions which are needed for our
study.

Assumption (H1): The nonlinear functions f`(·) and g`(·)(` = 1, ..., n) satisfy

|f`(h1(t))− f`(h2(t))| ≤ a` |h1(t)− h2(t)| ,

|f`(.)| ≤ l1,

|g`(.)| ≤ l2,

where h1(t), h2(t) ∈ R, a` > 0, l1 > 0, and l2 > 0 are some known constants.
Assumption (H2): The time delay ε(t) satisfies 0 < ε(t) ≤ µ, where µ > 0.
From (2), it is easy to see that s`(x`(t)), ϕ`z(x`(t)) and φ`z(x`(t)) are discon-100

tinuous. Therefore, the solutions of (1) are handled in Filippov’s sense. Now,
we give the following definition.

Definition 1 (Filippov Regularization [47]): The Filippov set-valued map of
f(t, x) at x ∈ Rn is defined as follows:

F (t, x) =
⋂
δ>0

⋂
µ(N)=0

co[f(B(x, δ)\N)]

where F (t, x) =
⋂
δ>0

⋂
µ(N)=0

co[f(B(x, δ)\N)], and µ(N) is the Lebesgue measure

of set N. co[E] denotes the closure of the convex hull of the set E.
Then, according to Definition 1 and by applying the theory of differential

inclusion, we can get the memristive neural networks:

ẋ` ∈ − co(s∗` ,s
∗∗
` )x`(t) +

n∑
z=1

co(ϕ∗`z,ϕ
∗∗
`z )fz(xz(t))

+

n∑
z=1

co(φ∗`z,φ
∗∗
`z )gz(xz(t− ε(t))) + I`, ` = 1, 2, . . . , n

(3)

where s∗` = min
{
←
s `, ~s`

}
, s∗∗` = max

{
←
s `, ~s`

}
, ϕ∗`z = min

{
←
ϕ`z, ~ϕ`z

}
, ϕ∗∗`z =105

max
{
←
ϕ`z, ~ϕ`z

}
, φ∗`z = min

{←
φ`z,

~φ`z

}
, φ∗∗`z = max

{←
φ`z,

~φ`z

}
, and
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co(s∗` ,s
∗∗
` ) =


←
s `, |x`(t)| < T`
[s∗` ,s

∗∗
` ] , |x`(t)| = T`

~s`, |x`(t)| > T`

co(ϕ∗`z,ϕ
∗∗
`z ) =


←
ϕ`z, |x`(t)| < T`
[ϕ∗`z,ϕ

∗∗
`z ] , |x`(t)| = T`

~ϕ`z, |x`(t)| > T`

co(φ∗`z,φ
∗∗
`z ) =


←
φ`z, |x`(t)| < T`
[φ∗`z,φ

∗∗
`z ] , |x`(t)| = T`

~φ`z, |x`(t)| > T`.

In this paper, the corresponding response system with control is considered
as:

ẏ`(t) =− s`(y`(t))y`(t) +

n∑
z=1

ϕ`z(y`(t))fz(yz(t))

+

n∑
z=1

φ`z(y`(t))gz(yz(t− ε(t))) + I` + u`, ` = 1, 2, . . . , n

(4)

where

s`(y`(t)) =

{ ←
s `, |y`(t)| ≤ T`
~s`, |y`(t)| > T`

ϕ`z(y`(t)) =

{ ←
ϕ`z, |y`(t)| ≤ T`
~ϕ`z, |y`(t)| > T`

φ`z(y`(t)) =

{
←
φ`z, |y`(t)| ≤ T`
~φ`z, |y`(t)| > T`.

u`(t) is the controller to be designed.
Similar to (3), the response system can be written as follows:

ẏ` ∈ − co(s∗` ,s
∗∗
` )y`(t) +

n∑
z=1

co(ϕ∗`z,ϕ
∗∗
`z )fz(yz(t))

+

n∑
z=1

co(φ∗`z,φ
∗∗
`z )gz(yz(t− ε(t))) + I` + u`, `= 1, 2,...,n

where

co(s∗` ,s
∗∗
` ) =


←
s `, |y`(t)| < T`
[s∗` ,s

∗∗
` ] , |y`(t)| = T`

~s`, |y`(t)| > T`

co(ϕ∗`z,ϕ
∗∗
`z ) =


←
ϕ`z, |y`(t)| < T`
[ϕ∗`z,ϕ

∗∗
`z ] , |y`(t)| = T`

~ϕ`z, |y`(t)| > T`

6



co(φ∗`z,φ
∗∗
`z ) =


←
φ`z, |y`(t)| < T`
[φ∗`z,φ

∗∗
`z ] , |y`(t)| = T`

~φ`z, |y`(t)| > T`.

Now, we give the definitions of weighted sum complete synchronization and
quasi-synchronization, and some lemmas which will help to derive the main
results of our work.110

Definition 2 : The weighted sum complete synchronization of drive-response
memristive neural networks (1) and (4) is said to be achieved if, by designing
suitable controllers u`(t), ` = 1, 2, ..., n, there are the nonnegative weights w`,` =
1, 2, ..., n, such that for any initial values x(t), y(t) ∈ C([−µ, 0] ;R),

lim
t→∞

∥∥∥∥∥
n∑
`=1

w`y`(t)−
n∑
`=1

w`x`(t)

∥∥∥∥∥ = 0.

Definition 3 : The weighted sum quasi-synchronization of drive-response
memristive neural networks (1) and (4) is said to be achieved if, by design-
ing suitable controllers u`(t), ` = 1, 2, ..., n, there are constants ∂ > 0, w` ≥
0,` = 1, 2, ..., n, such that for any initial values x(t), y(t) ∈ C([−µ, 0] ;R),

lim
t→∞

∥∥∥∥∥
n∑
`=1

w`y`(t)−
n∑
`=1

w`x`(t)

∥∥∥∥∥ ≤ ∂.
Remark 1 : Recently, output synchronization has been investigated in [25]

and [48–51]. In these researches, each network node xi has multiple states
x` ∈ Rp, p > 1 , and node output is expressed as o` = bx` , where b is a con-
stant matrix. In these researches, the synchronization is achieved between node
outputs. From synchronization form, there is similarity between output syn-115

chronization and the proposed synchronization since they both combined node
states by using a matrix b or a vector (w1, . . . , wn). But in fact, our work is
different from these researches. First, output coupling condition and dissipation
coupling condition (i.e., the sum of each row of coupling configuration matrix
must be zero ), some strong conditions for memristive neural networks, do not120

need to be satisfied in our work but play a crucial role in the synchronization
achievements of [25] and [48–51]. Therefore, their obtained results are not suit-
able for this paper at all. On the other hand, different from general nonlinear
networks in [25] and [48–51], memristive neural network, a more complex state-
dependent switching system, is considered in this paper, which makes our work125

more challenging and difficult.
Lemma 1 ([52]): For chosen non-negative continuous function g(t), if it

satisfies: ġ(t) ≤ −αg(t) + βg(t− ε(t)), t ≥ t0, where α > β > 0, 0 < ε(t) ≤ µ.
Then, g(t) ≤ gµ(t0)e−r(t−t0),t ≥ t0, where gµ(t0) = supt0−µ≤s≤t0{g(s)} and

r > 0 is the unique positive solution of the equation r − α+ βerµ = 0.130

Lemma 2 [37] : For chosen continuous non-negative function g(t), if it sat-
isfies: ġ(t) ≤ −αg(t) + βg(t − ε(t)) + ψ, t ≥ t0, where α > β > 0, ψ> 0,
0 < ε(t) ≤ µ.

7



Then, g(t) ≤ gµ(t0)e−$(t−t0)+ ψ
$ , t ≥ t0, where gµ(t0) = supt0−µ≤s≤t0{g(s)},

$ is the unique positive solution of the equation −$ = −α+ βe$µ.135

Lemma 3 [37] : For chosen continuous function g(t), if it is non-negative and
satisfies: ġ(t) ≤ αg(t)+βg(t−ε(t))+ψ, t>t0, where β, α+β, and ψ are positive
scalars, 0 < ε(t) ≤ µ.

Then, the following inequality holds:

g(t) ≤
(
gµ(t0) +

ψ

α+ β

)
e(α+β)(t−t0) − ψ

α+ β
, t ≥ t0

where gµ(t0) = supt0−µ≤s≤t0{g(s)}.
Lemma 4 [53] : For chosen function g(t), if it is non-negative and satisfies:

g(t) ≤ gµ(tr)e
−$(t−tr) + ς, tr ≤ t<τr

g(t) ≤ (gµ(τr) + ξ)eω(t−τr) − ξ, τr ≤ t<tr+1.

Then, the following inequality holds:

g(t) ≤ gµ(0)ehe−(h/σ)t +
ρ

1− e−h
+ ς, t > 0.

where h = h1 − h2 > 0, h1 = $(θ − µ), h2 = ω(σ − θ), θ = infr(τr − tr),140

σ = supr(tr+1 − tr), ρ = (ς + ξ)eh2 − ξ.
Lemma 5 : For any vectors q, p ∈ Rn, there exists the following inequality.

2qT p ≤ qT q + pT p.

3. Main results

In this section, state feedback control is first considered for weighted sum
complete synchronization of the drive-response systems (1) and (4). Then a
flexible aperiodically intermittent control scheme is designed to ensure weighted145

sum quasi-synchronization of the systems. By constructing Lyapunov function
and applying some differential inequalities, we will derive the sufficient condi-
tions of two synchronizations in this section.

Define the node error signal as e`(t) = y`(t) − x`(t), ` = 1, 2, ..., n. For
convenience of the following proof, let150

W = (w1, . . . , wn), e(t) = (e1, . . . , en)T , S= diag(s1(x1(t)),...,sn(xn(t))),

K = (k`z(t))n×n, ~S= diag(~s1,...,~sn),
←
S= diag(

←
s1,...,

←
sn), ~ϕ = (~ϕ`z)n×n,

←
ϕ =

(
←
ϕ`z)n×n, ~φ = (~φ`z)n×n,

←
φ = (

←
φ`z)n×n, U = (u1, . . . , un)T , A = diag(a1, ..., an),

Πx
` = (

←
s ` − ~s`)x`(t) +

n∑
z=1

(~ϕ`z −
←
ϕ`z)fz(xz(t)) +

n∑
z=1

(~φ`z −
←
φ`z)gz(xz(t− ε(t))),

Πy
` = (~s` −

←
s `)y`(t) +

n∑
z=1

(
←
ϕ`z − ~ϕ`z)fz(yz(t)) +

n∑
z=1

(
←
φ`z − ~φ`z)gz(yz(t− ε(t))),

Π` =
∣∣∣←s ` − ~s`∣∣∣T` +

n∑
z=1

az

∣∣∣←ϕ`z − ~ϕ`z

∣∣∣Tz +

n∑
z=1

∣∣∣←φ`z − ~φ`z∣∣∣ l2,Πy = (Πy
1, ...,Π

y
n)T ,

Πx = (Πx
1 , ...,Π

x
n)T , Π = (Π1, ...,Πn)T .

8



3.1. Weighted sum complete synchronization

For weighted sum complete synchronization, only one state feedback con-
troller is designed to reduce control cost. Without loss of generality, assume
the weight of the first node is non-zero and the controller can be designed as
follows: 

u1(t) =

n∑
`=1

w`
w1

[

n∑
z=1

k`z(t)(xz(t)− yz(t))

+ η`(sign(

n∑
z=1

wz(xz(t)− yz(t))))], w1 6= 0

u`(t) = 0, ` = 2, 3, ..., n

(5)

where w` denotes weight parameter, k`z(t) and η` are the control gain parame-
ters, and sign(·) is the standard sign function.

Theorem 1 : By applying Assumptions (H1) and (H2), the weighted sum155

complete synchronization of drive system (1) and response system (4) is achieved

under the synchronization controller (5), if for positive constants q,
←
M `, ~M`,

←
c `,

and ~c`, (` = 1, 2), control gain K and η` satisfy condition C1) and condition
C2), respectively.

C1): W (−S−K) = −qW, where q satisfies α = min(q−~c1− ~c2
2 , q−

←
c 1−

←
c 2

2 ) >160

β = max(
←
c 2

2 ,
~c2
2 ).

C2):
n∑̀
=1

w`η` > γ =
n∑̀
=1

w`Π` + max( ~M1 + ~M2,
←
M1 +

←
M2)

Proof : Construct a Lyapunov-Krasovskii function as follows:

V (t) =
1

2
(We(t))TWe(t).

Since connection coefficients of memristive neural networks are state-dependent,
the proof can be divided into the following four cases.

Case 1: If |x`(t)| ≤ T`, |y`(t)| ≤ T` at time t, we can obtain the error system

ė`(t) = −←s `e`(t) +
n∑
z=1

←
ϕ`z f̃z(ez(t)) +

n∑
z=1

←
φ`z g̃z(ez(t− ε(t))) + u`

where f̃z(ez(t)) = fz(yz(t))− fz(xz(t)) and g̃z(ez(t− ε(t))) = gz(yz(t− ε(t)))−165

gz(xz(t− ε(t))) .
By Assumption (H1), we can get

(We(t))TW
←
ϕf̃(e(t)) = (We(t))T

n∑
z=1

f̃z(ez(t))

n∑
`=1

w`
←
ϕ`z

≤ |We(t)|
n∑
z=1

∣∣∣f̃z(ez(t))∣∣∣
∣∣∣∣∣
n∑
`=1

w`
←
ϕ`z

∣∣∣∣∣
≤ 2l1 |We(t)|

n∑
z=1

∣∣∣∣∣
n∑
`=1

w`
←
ϕ`z

∣∣∣∣∣ .
9



The 2l1
n∑
z=1

∣∣∣∣ n∑̀
=1

w`
←
ϕ`z

∣∣∣∣ is a bounded constant, which means that there are

positive constants
←
M1 and

←
c 1, such that

2l1

n∑
z=1

∣∣∣∣∣
n∑
`=1

w`
←
ϕ`z

∣∣∣∣∣ ≤ ←
M1 +

←
c 1 |We(t)| .

Thus

(We(t))TW
←
ϕf̃(e(t)) ≤

←
M1

∣∣∣(We(t))
T
∣∣∣+

←
c 1(We(t))TWe(t). (6)

Similarly

(We(t))TW
←
φg̃(e(t− ε(t)))) ≤ |We(t)|

n∑
j=1

2l2

∣∣∣∣∣
n∑
`=1

w`
←
φ`z

∣∣∣∣∣
≤ |We(t)| (

←
M2 +

←
c 2 |We(t− ε(t))|)

=
←
M2

∣∣∣(We(t))
T
∣∣∣ +

←
c 2

∣∣∣(We(t))
T
∣∣∣ |We(t− ε(t))| .

According to Lemma 5, we can obtain

(We(t))TW
←
φg̃(e(t− ε(t)))) ≤

←
M2

∣∣∣(We(t))
T
∣∣∣+

←
c 2

2
(We(t))TWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t)).

(7)

Note that WU = −WKe(t)−
n∑
i=1

wiηisign(We(t)).

Based on the above results, we can derive the time derivative of V (t) as
follows

D+V (t) = (We(t))TW (−
←
Se(t) +

←
ϕf̃(e(t)) +

←
φg̃(e(t− ε(t))) + U)

≤ (We(t))T (−W
←
Se(t) +

←
c 1We(t) +

←
c 2

2
We(t)−WKe(t))

+
←
M1

∣∣∣(We(t))
T
∣∣∣+

←
M2

∣∣∣(We(t))
T
∣∣∣

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t))−

n∑
`=1

w`η`

∣∣∣(We(t))
T
∣∣∣

= (
←
c 1 +

←
c 2

2
)(We(t))TWe(t) + (We(t))TW (−

←
S −K)e(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t))

− (

n∑
`=1

w`η` −
←
M1 −

←
M2)

∣∣∣(We(t))
T
∣∣∣.

10



Then, from the conditions C1) and C2), we obtain

D+V (t) ≤ −(q − ←c 1 −
←
c 2

2
)(We(t))TWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t))

≤ −αV (t) + βV (t− ε(t)).

(8)

Case 2: If |x`(t)| > T`|y`(t)| > T` at time t, we have the error system

ė`(t) = −~s`e`(t) +

n∑
z=1

~ϕ`z f̃z(ez(t)) +

n∑
z=1

~φ`z g̃z(ez(t− ε(t))) + u`

Analogously, there are positive constants ~M` and ~c`(` = 1, 2), such that

D+V (t) ≤ (~c1 +
~c2
2

)(We(t))TWe(t) + (We(t))TW (−~S −K)e(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

− (

n∑
`=1

w`η` − ~M1 − ~M2)
∣∣∣(We(t))

T
∣∣∣

= (−q + ~c1 +
~c2
2

)(We(t))TWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

≤ −αV (t) + βV (t− ε(t)).

(9)

Case 3: If |x`(t)| > T`, |y`(t)| ≤ T` at time t, we rewrite the error system as

ė`(t) = −~s`e`(t) +

n∑
z=1

~ϕ`z f̃z(ez(t)) +

n∑
z=1

~φ`z g̃z(ez(t− ε(t))) + Πy
` + u`.

Noting that |Πy
` | ≤ Π`, we can calculate the derivative of V (t) as

D+V (t) ≤ (~c1 +
~c2
2

)(We(t))TWe(t) + (We(t))TW (−~S −K)e(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

− (

n∑
`=1

w`(η` −Π`)− ~M1 − ~M2)
∣∣∣(We(t))

T
∣∣∣

From conditions C1) and C2), we can obtain

D+V (t) ≤ (−q + ~c1 +
~c2
2

)(We(t))TWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

≤ −αV (t) + βV (t− ε(t)).

(10)
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Case 4: If |x`(t)| ≤ T`, |y`(t)| > T` at time t, we obtain the corresponding
error system as follows:

ė`(t) = −~s`e`(t) +

n∑
z=1

~ϕ`z f̃z(ez(t)) +

n∑
z=1

~φ`z g̃z(ez(t− ε(t))) + Πx
` + u`.

After similar analysis to Case 3, one has

D+V (t) ≤ (~c1 +
~c2
2

)(We(t))TWe(t) + (We(t))TW (−~S −K)e(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

− (

n∑
`=1

w`(η` −Π`)− ~M1 − ~M2)
∣∣∣(We(t))

T
∣∣∣

≤ (−q + ~c1 +
~c2
2

)(We(t))TWe(t) +
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

≤ −αV (t) + βV (t− ε(t)).
(11)

Finally, by (8)-(11) and according to Lemma 1, the following synchronization
result can be derived:

‖We(t)‖ ≤ sup
−µ≤s≤0

‖We(s)‖ e−rt (12)

where r is the unique solution of r = α − βerµ. From the above, one can
see that weighted sum complete synchronization is achieved with exponential
synchronization rate r, and this completes the proof of Theorem 1.170

Remark 2 : In some published researches [46], [40], [54], in addition to meet
Assumption (H1), the activation functions need to satisfy f`(±T`) = g`(±T`) =
0 or f`(0) = g`(0) = 0, but many functions do not have these properties. In this
paper, we eliminate the strong conditions and only need to meet Assumption
(H1), which is more reasonable and general.175

Remark 3 : Current synchronization researches on neural networks only focus
on single node behavior. Actually in neural networks, there exists important
combination behavior: weighted sum of node states. It is clear that weighted
sum of node states is an important and essential step in function achievement of
artificial neural networks [45]. In many researches on biological neural networks180

[43, 55, 56], it is indicated that weighted sum of node states plays a crucial role
in information expression and coding; in contrast, single node can only express
limited and rough information. Therefore, for function of neural networks, it
is theoretically and practically important to study and control weighted sum of
node states.185

Remark 4 : In this section, only one controller is designed to achieve weighted
sum complete synchronization. Obviously, designing one controller can reduce
economic costs and is also easy to be implemented. Whereas, only one con-
troller may make the entire control system fragile and paralyzed easily when

12



the controller is subject to external deliberate attacks. Therefore, a new control190

scheme is needed to improve the situation.

3.2. Weighted sum quasi-synchronization

In the above section, weighted sum complete synchronization has been stud-
ied. As discussed before, the study of quasi-synchronization is also very mean-
ingful for practical applications owing to the existence of interference factors in195

real environment. Therefore in this section, weighted sum quasi-synchronization
will be investigated via designing a flexible aperiodically intermittent controller.

Note that in Theorem 1, only one controller is designed for the complete syn-
chronization. Actually, for the proposed model, a more flexible control scheme
can be devised because there exist multiple nodes but only one synchroniza-
tion target. Considering the advantages of aperiodically intermittent control
in saving control costs and based on this method, we will design a flexible
control scheme to make the systems (1) and (4) achieve weighted sum quasi-
synchronization. Without loss of generality, the weights of the first l nodes of
the systems are assumed to be non-zero, and then the controller is designed as

um(t) =

 r(t)
n∑̀
=1

pm`(t)w`

wm

n∑
z=1

k∗`z(t)(xz(t)− yz(t)),m = 1, . . . , l

0,m = l + 1, ..., n
(13)

where k∗`z(t) is control gain, r(t) is intermittent control parameter and defined
as follows: when t ∈ Twork, r(t) = 1;when t ∈ Trest, r(t) = 0. Here, Twork rep-
resents the work time interval [tr, τr) and Trest represents the rest time interval
[τr, tr+1). pmi(t) is switching control parameter and taken as 0 or 1; it is worth

noting that when pm`(t) meets
l∑

m=1

n∑̀
=1

pm`(t) = n, after a simple calculation,

we have

WU =

{
−WK∗e(t), tr ≤ t<τr
0, τr ≤ t<tr+1.

(14)

where K∗ = (k∗`z(t))n×n.
Remark 5 : In current synchronization researches, controller is almost de-

signed fixedly, that is, controller is invariable and unadjustable in synchroniza-200

tion process. For our synchronization model, the controller (13) is flexibly de-
signed by introducing switching parameter pm`(t), (m = 1, ..., l, ` = 1, ..., n).
According to (13), it can be seen that we, by changing the value of pm`(t), can
adjust the number of controllers or their positions in the networks. For example,
let
∑n
`=1 pm`(t) = n, m = j and

∑n
`=1 pm`(t) = 0, m 6= j, where 1 ≤ j ≤ l is an205

arbitrary integer, and then we obtain one controller but the controller position
can be arbitrarily chosen. Also, multiple controllers can be obtained by corre-
spondingly changing pm`(t). More importantly, pm`(t) is time-varying, which
means that its value can be adjusted in real time to adapt to the new changes
or solve some new sudden control problems. Particularly, when the network is210

deliberately disturbed or attacked from the outside, timely adjusting controller
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by pm`(t) can help control system to deal with these problems, which is very
important for the stability and security of the networks.

Theorem 2 : By applying Assumptions (H1) and (H2), weighted sum quasi-
synchronization of drive system (1) and response system (4) is achieved under215

the controller (13), if parameter pm`(t) meet
l∑

m=1

n∑̀
=1

pm`(t) = n,and the follow-

ing conditions hold.
C1): W (−S −K∗) = −q∗W, where q∗ satisfies α∗ = min(q∗ − ~c1 − ~c2+1

2 , q∗ −
←
c 1 −

←
c 2+1

2 ) > β = max(
←
c 2

2 ,
~c2
2 ).

C2):α∗∗ = max( 1+
←
c 2

2 − λmin(
←
Θ)

λmax(WTW )
, 1+~c2

2 − λmin(~Θ)
λmax(WTW )

), α∗∗ + β > 0.220

where
←
Θ = 1

2 (
←
S
T

WTW+WTW
←
S−WTW

←
ϕ
←
ϕ
T
WTW−ATA), ~Θ = 1

2 (~STWTW+

WTW ~S −WTW ~ϕ~ϕTWTW −ATA).
Proof : Introduce the following Lyapunov-Krasovskii function

V (t) =
1

2
(We(t))TWe(t).

1) When tr < t ≤ τr, the proof can be also divided into four cases.
Case 1: If |x`(t)| ≤ T`, |y`(t)| ≤ T` at time t, from (14), one has

D+V (t) = (We(t))TWė(t)

= (We(t))TW [(−
←
S −K∗)e(t) +

←
ϕf̃(e(t)) +

←
φg̃(e(t− ε(t)))]

Note that the results similar to (6) and (7) of Theorem 1 are still valid in
this proof; and based on these results, we have

D+V (t) ≤ (We(t))TW (−
←
S −K∗)e(t) + (

←
c 1 +

←
c 2

2
)(We(t))TWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t)) + (

←
M1 +

←
M2)

∣∣∣(We(t))
T
∣∣∣

≤ −(q∗ − ←c 1 −
←
c 2

2
)(We(t))TWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t))

+
1

2
(We(t))TWe(t) +

1

2
(
←
M1 +

←
M2)2

By the condition C1), we have

D+V (t) ≤ −(q∗ − ←c 1 −
←
c 2 + 1

2
)(We(t))TWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t)) +

1

2
(
←
M1 +

←
M2)2

≤ −α∗V (t) + βV (t− ε(t)) + ψ

(15)

14



where ψ = max( 1
2 (
←
M1 +

←
M2)2, 1

2 ( ~M1 + ~M2 +WΠ)2), and α∗andβ are defined
as mentioned earlier.225

Case 2: If |x`(t)| > T`, |y`(t)| > T` at time t, after a similar inference to
Case 1, one obtains

D+V (t) ≤ −(q∗ − ~c1 −
~c2 + 1

2
)(We(t))TWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t)) +
1

2
( ~M1 + ~M2)2

≤ −α∗V (t) + βV (t− ε(t)) + ψ

(16)

Case 3: If |x`(t)| > T`, |y`(t)| ≤ T` at time t, the time derivative of V (t) can
be described as

D+V (t) = (We(t))TW [(−~S −K∗)e(t) + ~ϕf̃(e(t))

+ ~φg̃(e(t− ε(t))) + Πy]

Noting that (We(t))TWΠy ≤WΠ
∣∣∣(We(t))

T
∣∣∣ and according to the condition

C1), then one has

D+V (t) ≤ (We(t))TW (−~S −K∗)e(t) + (~c1 +
~c2
2

)(We(t))TWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

+ ( ~M1 + ~M2 +WΠ)
∣∣∣(We(t))

T
∣∣∣

≤ −(q∗ − ~c1 −
~c2
2

)(We(t))TWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

+
1

2
(We(t))TWe(t) +

1

2
( ~M1 + ~M2 +WΠ)2

≤ −α∗V (t) + βV (t− ε(t)) + ψ

(17)

Case 4: If |x`(t)| ≤ T`, |y`(t)| > T` at time t, similar to Case 3, it is obtained
that

D+V (t) = (We(t))TW [(−~S −K∗)e(t) + ~ϕf̃(e(t))

+ ~φg̃(e(t− ε(t))) + Πx]

≤ −(q∗ − ~c1 −
~c2 + 1

2
)(We(t))TWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t))

+
1

2
( ~M1 + ~M2 +WΠ)2

≤ −α∗V (t) + βV (t− ε(t)) + ψ

(18)
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Thus, according to (15)-(18), condition C1) and Lemma 2, we obtain

V (t) ≤ Vµ(tr)e
−$(t−tr) + ς, tr < t ≤ τr

where $ is the unique positive solution of −α∗ + βe$µ +$ = 0, and ς = ψ/$.
2) When τr < t ≤ tr+1, in Case 1, one has

D+V (t) = (We(t))TW [−
←
Se(t) +

←
ϕf̃(e(t)) +

←
φg̃(e(t− ε(t)))]

≤ −1

2
e(t)T (

←
S
T

WTW +WTW
←
S)e(t)

+ (We(t))TW [
←
ϕf̃(e(t)) +

←
φg̃(e(t− ε(t)))]

From Lemma 5 and Assumption (H1), we obtain

(We(t))TW
←
ϕf̃(e(t)) ≤ 1

2
e(t)TWTW

←
ϕ
←
ϕ
T
WTWe(t) +

1

2
f̃(e(t))T f̃(e(t))

≤ 1

2
e(t)TWTW

←
ϕ
←
ϕ
T
WTWe(t) +

1

2
e(t)TATAe(t)

Then, by (7), we have

D+V (t) ≤ e(t)T [−1

2
(
←
S
T

WTW +WTW
←
S) +

1

2
WTW

←
ϕ
←
ϕ
T
WTW

+
1

2
ATA]e(t) +

1 +
←
c 2

2
(We(t))TWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t)) +

1

2

←
M2

2

Note that

e(t)T [− 1

2
(
←
S
T

WTW +WTW
←
S) +

1

2
WTW

←
ϕ
←
ϕ
T
WTW +

1

2
ATA]e(t)

≤ − λmin(
←
Θ)

λmax(WTW )
)e(t)TWTWe(t)

where
←
Θ has been defined in Theorem 2.

Thus

D+V (t) ≤ (
1 +

←
c 2

2
− λmin(

←
Θ)

λmax(WTW )
)e(t)TWTWe(t)

+
←
c 2

2
(We(t− ε(t)))TWe(t− ε(t)) +

1

2

←
M2

2

≤ −α∗∗V (t) + βV (t− ε(t)) + ψ∗

(19)

where ψ∗ = max( 1
2

←
M2

2

, 1
2
~M2

2 ,
1
2 ( ~M2 +WΠ)2), and α∗∗, β have been defined in

Theorem 2.
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In Case 2, similarly, it is inferred that

D+V (t) ≤ (
1 + ~c2

2
− λmin(~Θ)

λmax(WTW )
)e(t)TWTWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t)) +
1

2
~M2

2

≤ −α∗∗V (t) + βV (t− ε(t)) + ψ∗

(20)

In Case 3, we have

D+V (t) = (We(t))TW [−~Se(t) + ~ϕf̃(e(t)) + ~φg̃(e(t− ε(t))) + Πy]

≤ e(t)T [−1

2
(~STWTW +WTW ~S) +

1

2
WTW ~ϕ~ϕTWTW

+
1

2
ATA]e(t) +

~c2
2

(We(t− ε(t)))TWe(t− ε(t))

+
~c2
2

(We(t))TWe(t) + ( ~M2 + Π)
∣∣∣(We(t))

T
∣∣∣

≤ (
1 + ~c2

2
− λmin(~Θ)

λmax(WTW )
)e(t)TWTWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t)) +
1

2
( ~M2 +WΠ)2

≤ −α∗∗V (t) + βV (t− ε(t)) + ψ∗

(21)

In Case 4, similarly, we obtain

D+V (t) = (We(t))TW [−~Se(t) + ~ϕf̃(e(t)) + ~φg̃(e(t− ε(t))) + Πx]

≤ (
1 + ~c2

2
− λmin(~Θ)

λmax(WTW )
)e(t)TWTWe(t)

+
~c2
2

(We(t− ε(t)))TWe(t− ε(t)) +
1

2
( ~M2 +WΠ)2

≤ −α∗∗V (t) + βV (t− ε(t)) + ψ∗

(22)

Let ω = α∗∗ + β, and according to (19)-(22), condition C2) and Lemma 3,
we obtain

V (t) ≤ (Vµ(τr) + ξ)eω(t−τr) − ξ, τr < t ≤ tr+1

where ξ = ψ∗/ω.230

Finally, based on Lemma (4), we have

V (t) ≤ Vµ(0)ehe−(h/σ)t +
ρ

1− e−h
+ ς, t > 0. (23)

where h = h1 − h2 > 0, h1 = $(θ − µ), h2 = ω(σ − θ), θ = infr(τr − tr), σ =
supr(tr+1 − tr), ρ = (ς + ξ)eh2 − ξ.

Thus, it can be inferred that

|We(t)| ≤
√

2ρ

1− e−h
+ 2ς, t→ +∞.
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which indicates that drive-response systems (1) and (4) obtain weighted sum
quasi-synchronization with exponential synchronization rate and error range√

2ρ/(1− e−h) + 2ς. This completes the proof.235

Remark 6 : It is worth noting that the aperiodically intermittent control can
achieve complete synchronization of general nonlinear dynamic system [41], [57],
but cannot guarantee complete synchronization of memristive neural networks.
The main reason is that unlike general nonlinear dynamic networks, memristive
neural networks are state-dependent switching systems, that is, the values of240

the network coefficients depend on node state. This will result in mismatches
of corresponding parameters of drive-response systems particularly when drive-
response systems have different initial values. Over time, parameter mismatches
will occur and produce unwanted disturbances and errors in synchronization
process. Because during the rest time interval [τr, tr+1), these disturbances and245

errors cannot be guaranteed to be eliminated, intermittent control methods are
currently used to ensure quasi-synchronization of memristive neural networks.

3.3. Illustrative examples

In this section, two numerical simulations will be given to check the validity
of the above theoretical results.250

Example 1 : consider the following 2-D memristive coupled neural networks:

ẋ1(t) =− s1(x1(t))x1(t) + ϕ11(x1(t))f(x1(t))

+ ϕ12(x1(t))f(x2(t)) + φ11(x1(t))g(x1(t− ε(t)))
+ φ12(x1(t))g(x2(t− ε(t))) + I1

ẋ2(t) =− s2(x2(t))x2(t) + ϕ21(x2(t))f(x1(t))

+ ϕ22(x2(t))f(x2(t)) + φ21(x2(t))g(x1(t− ε(t)))
+ φ22(x2(t))g(x2(t− ε(t))) + I2

where

s1(x1(t)) =

{
1, |x1(t)| ≤ 1.1
1, |x1(t)| > 1.1

s2(x2(t)) =

{
1, |x2(t)| ≤ 1.1
1, |x2(t)| > 1.1

ϕ11(x1(t)) =

{
−0.4, |x1(t)| ≤ 1.1
−0.5, |x1(t)| > 1.1

ϕ12(x1(t)) =

{
1.2, |x1(t)| ≤ 1.1
1.3, |x1(t)| > 1.1

ϕ21(x2(t)) =

{
1.6, |x2(t)| ≤ 1.1
1.7, |x2(t)| > 1.1

ϕ22(x2(t)) =

{
−0.55, |x2(t)| ≤ 1.1
−0.45, |x2(t)| > 1.1

φ11(x1(t)) =

{
−0.3, |x1(t)| ≤ 1.1
−0.5, |x1(t)| > 1.1

φ12(x1(t)) =

{
2.5, |x1(t)| ≤ 1.1
2.1, |x1(t)| > 1.1

φ21(x2(t)) =

{
2.4, |x2(t)| ≤ 1.1
2.3, |x2(t)| > 1.1

φ22(x2(t)) =

{
−0.2, |x2(t)| ≤ 1.1
−0.3, |x2(t)| > 1.1.
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Correspondingly, response system (4) with controller is written as

ẏ1(t) = −s1(y1(t))y1(t) + ϕ11(y1(t))f(y1(t))

+ ϕ12(y1(t))f(y2(t)) + φ11(y1(t))g(y1(t− ε(t)))
+ φ12(y1(t))g(y2(t− ε(t)))
+ k11(t)(x1(t)− y1(t)) + k12(t)(x2(t)− y2(t))

+ η1sign(w1(x1(t)− y1(t)) + w2(x2(t)− y2(t)))

+
w2

w1
[k21(t)(x1(t)− y1(t)) + k22(t)(x2(t)− y2(t))

+ η2sign(w1(x1(t)− y1(t)) + w2(x2(t)− y2(t)))] + I1

ẏ2(t) = −s2(y2(t))y2(t) + ϕ21(y2(t))f(y1(t))

+ ϕ22(y2(t))f(y2(t)) + φ21(y2(t))g(y1(t− ε(t)))
+ φ22(y2(t))g(y2(t− ε(t))) + I2.

Let the nonlinear activation functions fi(x) =gi(x) = sin(x),i= 1, 2, time de-
lay ε(t) = (e(t) − 1)/(e(t) + 1), and external inputs I1 = I2 = 0. It is easy to
get that l` = a` = 1, ` = 1, 2. By choosing W = (1 2),~c1 =

←
c 1 = 0.1,~c2 =

←
c 2 =

0.2,K =

[
0 2
1 1

]
, η1 = η2 = 7, after a simple calculation, we obtain q = 3,

α=2.8>β=0.1 and w1η1 + w2η2 = 21 > γ = 20.7, which verifies Theorem 1. In255

the following, MATLAB simulation will manifest the correctness of the derived
results.

Take the initial values of the systems x(t) = (−3, 7)T and y(t) = (0,−1.3)T ,
where t ∈ [−1, 0]. Fig. 3 presents the phase trajectories of memristive neural
network model and Fig. 4 shows the change of a coefficient ϕ12(x1(t)). The260

node trajectories of the drive and response systems are illustrated by Figs. 5
and 6, from which one can see that nodes x1(t) and x2(t) are not synchronized
with the corresponding nodes y1(t) and y2(t). Fig. 7 shows that the node errors
e1(t)ande2(t) do not approach to zero as time evolves, but the weighted error
sum, as shown in Fig. 8, clearly tends to zero, which confirms the proposed265

results in Theorem 1.
Example 2 : consider the memristive neural networks:

cẋ1(t) = −s1(x1(t))x1(t) + ϕ11(x1(t))f(x1(t))

+ ϕ12(x1(t))f(x2(t)) + φ11(x1(t))g(x1(t− ε(t)))
+ φ12(x1(t))g(x2(t− ε(t))) + I1

ẋ2(t) = −s2(x2(t))x2(t) + ϕ21(x2(t))f(x1(t))

+ ϕ22(x2(t))f(x2(t)) + φ21(x2(t))g(x1(t− ε(t)))
+ φ22(x2(t))g(x2(t− ε(t))) + I2

where

s1(x1(t)) =

{
1, |x1(t)| ≤ 1.1
1, |x1(t)| > 1.1

s2(x2(t)) =

{
1, |x2(t)| ≤ 1.1
1, |x2(t)| > 1.1
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Figure 3: Phase portrait of memristive neural
network model.
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Figure 4: Memristive connection coefficient
ϕ12(x1(t)).
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Figure 5: States of x1(t) and y1(t).
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Figure 6: States of x2(t) and y2(t).
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Figure 7: Errors e1(t) and e2(t) under the con-
troller.
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Figure 8: Weighted error sum e1(t) + 2e2(t).
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ϕ11(x1(t)) =

{
−5, |x1(t)| ≤ 1.1
−5.1, |x1(t)| > 1.1

ϕ12(x1(t)) =

{
3.1, |x1(t)| ≤ 1.1
3.2, |x1(t)| > 1.1

ϕ21(x2(t)) =

{
2.55, |x2(t)| ≤ 1.1
2.6, |x2(t)| > 1.1

ϕ22(x2(t)) =

{
−1.5, |x2(t)| ≤ 1.1
−1.6, |x2(t)| > 1.1

φ11(x1(t)) =

{
−6.1, |x1(t)| ≤ 1.1
−6.2, |x1(t)| > 1.1

φ12(x1(t)) =

{
5.15, |x1(t)| ≤ 1.1
5.2, |x1(t)| > 1.1

φ21(x2(t)) =

{
3.0, |x2(t)| ≤ 1.1
3.1, |x2(t)| > 1.1

φ22(x2(t)) =

{
−2.5, |x2(t)| ≤ 1.1
−2.6, |x2(t)| > 1.1.

In the following, the effectiveness of another proposed control scheme will
be proved. It is worth noting that to save control cost, switching control matrix
P remains invariant until something motivational happens such as a big syn-
chronization error. Thus, at first, an experiment is given where P is invariant.270

Then, to verify anti-interference ability of the control scheme, another simula-
tion experiment is given where an attack happens and P is adjusted to ensure
synchronization achievement.

At first, we choose and keep

P =

[
1 1
0 0

]
.

Then, the response system (4) can be written as

ẏ1(t) = −s1(y1(t))y1(t) + ϕ11(y1(t))f(y1(t))

+ ϕ12(y1(t))f(y2(t)) + φ11(y1(t))g(y1(t− ε(t)))
+ φ12(y1(t))g(y2(t− ε(t)))
+ r(t)k11(t)(x1(t)− y1(t)) + r(t)k12(t)(x2(t)− y2(t))

+
w2

w1
r(t)[k21(t)(x1(t)− y1(t)) + k22(t)(x2(t)− y2(t))] + I1

ẏ2(t) = −s2(y2(t))y2(t) + ϕ21(y2(t))f(y1(t))

+ ϕ22(y2(t))f(y2(t)) + φ21(y2(t))g(y1(t− ε(t)))
+ φ22(y2(t))g(y2(t− ε(t))) + I2.

Consider time delay ε(t) = e(t)/(1+e(t)) < 1 and let the nonlinear activation275

functions f(x) =g(x) = ( sinx1, sinx2). We can derive l1 = l2 = a` = 1, ` =

1, . . . , n. By choosing ~c` =
←
c ` = 0.1, ` = 1, 2, K =

[
2 4
2 4

]
,it can be calculated

that α∗ = 6.35 > β = 0.05, α∗∗ + β = 0.7 > 0, ψ = 0.85, ψ∗ = 0.61, q∗ =
7, $ = 3.9, ω = 0.7, ς = 0.28, ξ = 0.86, and these results guarantee the
conditions in Theorem 2. For convenience, choose fixed intermittent control280

interval τ` − t` = 3.9, t`+1 − t` = 4, ` = 1, 2, 3, .... Then, we can compute
h1 = 11.31, h2 = 0.07, h = 11.24, ρ = 0.30,

√
2ρ/(1− e−h) + 2ς=1.01.

With the initial values x(t) = (−1, 2)T and y(t) = (0,−1.3)T , t ∈ [−1, 0] ,
time trajectories of states of x(t) and y(t) can be presented in Figs. 9 and 10, and
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from the figures, we can find that the nodes x(t) and y(t) are not synchronized,285

which is also verified by Fig. 11. But, as shown in Fig. 12, the drive-response
systems reach weighted sum quasi-synchronization and the error level is less
than our estimated value 1.01. It proves the results in Theorem 2. It is worth
noting that from Fig. 12, it can be seen that although weighted error sum at
the initial time is close to zero, however, as time evolves, it will not tend to zero290

since some disturbances against synchronization will occur when memristive
connection coefficients of the systems change and become mismatched.

In the following, to verify the effectiveness of the control scheme in improving
anti-interference ability, a case is considered where the controller in the first
node is attacked and paralyzed from t = 10s, that is, u1 = 0 for t > 10s in295

this case. If no operation is performed, simulation result of weighted error sum
is given in Fig.13, from which, it is seen that the error magnitude significantly
increases with time from the attack moment . But, in the control scheme, P

can be timely taken as

[
0 0
1 1

]
at time t̂ = 10s to obtain a new controller

u2 which is added to the second node and avoids the similar attack on the first300

node. Obviously, this new controller satisfies all conditions in Theorem 2 and
can make the systems continue to achieve weighted sum quasi-synchronization,
which is verified by simulation result in Fig. 14 where the error sum is still
small and close to the previous weighted error sum. Whereas if we take t̂ = 35s
to adjust controller, the result in Fig. 15 shows that weighted sum error is305

significantly reduced at the moment of adding the new controller, which also
shows the effectiveness of our control scheme.

Remark 7 : In the above simulation, for experiment comparison, one con-
troller is designed. Actually, other control schemes can be also designed by
choose proper values of pm`(t), and only if the controllers satisfy the conditions310

in Theorem 2, the systems can also achieve weighted sum quasi-synchronization.
Remark 8 : Compared to the existing literatures which employ linear matrix

inequalities (LMIs) to derive some synchronization conditions, such as [58] and
[59], our conditions are directly obtained from the network parameters and can
be verified more easily.
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Figure 9: States of x1(t) and y1(t).
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Figure 11: Errors e1(t) and e2(t) under the
controller.
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Figure 12: Weighted error sum e1(t) + 2e2(t).
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Figure 13: The weighted error sums under the
attack.
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Figure 14: The weighted error sums after adding
new controllers at the time t = 10s.
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adding new controllers at the time t = 35s
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4. Conclusion

In this paper, different to current node-to-node synchronization model, a
new weighted sum synchronization of memristive neural networks has been s-
tudied. And aimed at the proposed synchronization model, two control methods
are designed. First, in order to achieve weighted sum complete synchroniza-320

tion, a state feedback controller is designed and based on Lyapunov function
and Halanary inequality, several sufficient conditions of weighted sum complete
synchronization have been derived. Then, a flexible aperiodically intermittent
control method is designed to investigat weighted sum quasi-synchronization.
Moreover, by introducing some switching parameters, this method can improve325

the anti-interference ability of control system, which is very important for the
network stability. Meanwhile, the sufficient conditions of quasi-synchronization
and the error level have also been presented. Finally, numerical simulations
verify the theoretical analysis precisely. In this paper, the new synchroniza-
tion model is achieved but with exponential synchronization rate. In practical330

applications, there always exists a time-efficiency requirement for synchroniza-
tion implementation. Thus it will be very meaningful to study finite-time and
fixed-time synchronization problems in our future works.
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