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ABSTRACT
Fault diagnosis of rolling bearing is of great importance to ensure high reliability and safety in the industrial
machinery system. Entropy measures are useful non-linear indicators for time series complexity analysis
and have been widely applied in bearing fault diagnosis in the past decade. In this paper, an improved
entropy measure is proposed, named Adaptive Multiscale Weighted Permutation Entropy (AMWPE). Then,
a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM.
For comparison, an experimental bearing dataset is analyzed using the AMWPE and conventional entropy
measures, and then multi-class SVM is adopted for fault type classification. Further, the robustness of
different entropy measures against noise is studied by analyzing noisy signals with various Signal-to-Noise
Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in
bearing fault diagnosis under different fault types, severity degrees, and SNR levels.

INDEX TERMS Fault Diagnosis, Rolling Bearing, Entropy Measure, Support Vector Machine.

I. INTRODUCTION

Rolling bearings are widely applied in the rotating ma-
chinery found in commercial and industrial applications.
Despite the wide application, rolling bearings are prone to
a variety of premature failures caused by many reasons, such
as fatigue, lack of lubrication, or overload. The occurrence
of failures in the bearing will introduce potential damages to
the machinery, resulting in performance degradation in the
system [1]–[3]. Therefore, fault diagnosis of rolling bearing
is of significance to ensure the reliability of the machinery,
enabling detecting and troubleshooting the potential failures
as early as possible [4].

Vibration monitoring is a useful technique to monitor
machine health conditions. However, interacting components
and environmental noise often exist in the operation of in-
dustrial machinery systems. Due to instantaneous variations
in bearing loads and clearance as well as other contributions
- such as non-linear stiffness effects in the bearing and
rotor, bearing vibration signals often exhibit non-linear and

non-stationary characteristics [5]–[7]. These factors bring
difficulty in vibration analysis and feature representation.
Traditional feature extraction methods can characterize rep-
resentations from time- or frequency-domain only; never-
theless, they may not appropriately detect the underlying
failures by directly analyzing the complexity change of the
system [8], [9]. Continuing advances in entropy analysis [10]
have significantly exhibited the prospect in time series com-
plexity analysis by characterizing the complexity change in
the system.

The most widely used entropy measures include Shannon
entropy, approximate entropy, Permutation Entropy (PE), and
their variants. Shannon entropy measures the information
content of a message in the context of information theory,
which can quantify the uncertainty in time series (measure-
ments collected from a system) [11], [12]. Approximate
entropy and its improvements (such as sample entropy and
fuzzy entropy) enable estimating the complexity and irreg-
ularity of measurements [13]. The PE measure quantifies

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992935, IEEE Access

Z. Huo et al.: Preparation of Papers for IEEE Access

dynamic changes based on ordinal patterns originated from
the structure of time series. Due to its theoretical simplicity
and fast calculation, PE has been widely applied in time
series complexity analysis. Many works have applied PE
measure as a non-linear health indicator to monitor machine
health conditions [14]–[16].

There exist some improvements in the PE algorithm, aim-
ing to enhance its performance in time series complexity
analysis. The main shortcoming of the original PE algorithm
is that it neglects the amplitude differences in the time series,
so that different time series may have the same entropy value.
Therefore, some works attempted to take into account the
amplitude differences in neighboring elements based on a
concept of “weighting factor". The basic idea is that the
amplitude differences will yield different weighting factors
accordingly, which will then alter the relative frequency of
ordinal patterns, thereby changing entropy values. Giving an
example, Liu and Wang [17] added an extra parameter in
the ordinal pattern type so that time series with different
amplitudes will produce different pattern types. Azami et
al. presented a modified PE method by applying weighted
coefficients that are based on average and absolute amplitude
difference values of neighboring elements [18]. Faldalllah
et al. developed a Weighted Permutation Entropy (WPE)
by accounting the variance of neighboring elements into
consideration in the calculation of PE [19]. Amongst these
improvements, the WPE measure has better computational
efficiency and has fewer extra parameters in calculating PE
values. It is noted that although the WPE is a refinement of
PE, the WPE values are extracted from the original time se-
ries over a single scale. However, in the fault diagnosis of ro-
tating machinery, rich information related to fault symptoms
may exist in the spatial-temporal structure of time series. In
this case, a concept of multiple-scale entropy measure was
developed to improve the entropy analysis from a multiple-
scale perspective.

Aziz and Arif [20] put forth the notion of Multiscale
Permutation Entropy (MPE), where PE values are calculated
over a range of scales through the coarse-graining procedure.
The MPE earns higher reliability and higher fault pattern
recognition accuracy than PE for bearing diagnosis [20].
Although MPE outperforms PE in complexity analysis, the
coarse-graining procedure is essentially a linear smoothing
filter. When the scale factor increases, the MPE value de-
creases because the data length is greatly reduced in the
coarse-grained time series. Also, the high-frequency com-
ponents in the coarse-grained time series are abandoned,
resulting in the loss of high-frequency information in en-
tropy analysis. Some works have developed improved MPE
algorithms through enhanced multiple-scale extraction mech-
anisms. For instance, Composite Multiscale Permutation En-
tropy (CMPE) [21] and refined CMPE [22] were introduced
based on an improved coarse-graining procedure. The CMPE
and refined CMPE alleviate the problem of sharply reduced
data length to some extent; however, neither of them consid-
ers high-frequency information in the analysis of vibration

Step 1: Data acquisition 

Bearing test rig Vibration signal collection

Step 2: Entropy feature extraction

Bearing signals with various states AMWPE features

Step 3: Fault type identification

Train multi-class SVM

Test multi-class SVM

Classification outputs

FIGURE 1. Flowchart of the proposed bearing diagnosis
method using the AMWPE and SVM.

signals. Thus, they may present limited diagnostic perfor-
mance in identifying bearing health state.

To take high-frequency information into account, some
improved scale-extraction mechanisms were later developed.
For example, Jiang et al. introduced a hierarchical decom-
position for multiple-scale entropy estimation [23], but they
did not consider the decreased data length in the calculation
of entropy values. Recently, a new entropy measure, termed
Fine-to-Coarse Multiscale Permutation Entropy (F2CMPE),
was put forward by Huo et al. [24] where a Fine-to-Coarse
(F2C) procedure is proposed. The F2CMPE measure at-
tempts to overcome the two limitations in conventional MPE
algorithms. It is worth mentioning that in traditional entropy
measures, entropy values are obtained from specified scales,
however, in bearing diagnosis, not all scales are closely
related to the fault information. In contrast, using all scales
may inevitably contain unexpected redundant information
and consume more computational resources, thus reducing
the efficiency of entropy analysis in fault diagnosis.

In this paper, an Adaptive Multiscale Weighted Permuta-
tion Entropy (AMWPE) measure is proposed for time series
complexity analysis. The AMWPE approach aims to yield
adaptive multiple-scale time series containing salient fault
information for bearing diagnosis through an improved scale-
extraction procedure. Also, a new rolling bearing fault diag-
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nosis method is proposed based on the AMWPE and multi-
class Support Vector Machine (SVM) techniques. The main
contributions of this paper are concluded as follows:

• An improved multiple-scale entropy measure is devel-
oped for time series complexity analysis. The efficiency
of the AMWPE in feature extraction and time cost
is investigated and compared with traditional entropy
measures.

• A new rolling bearing fault diagnosis method is pre-
sented based on the AMWPE and SVM. The procedure
is shown in Fig. 1. A comparative study is performed
using different diagnosis methods where the AMWPE
and traditional entropy measures are used, respectively,
to extract entropy features.

• The robustness of the AMWPE and traditional entropy
methods against noise is investigated. Their diagnosis
performances are studied and compared through ana-
lyzing noisy vibration signals with different Signal-to-
Noise Ratios (SNRs).

The rest of this paper is structured as follows: Section II
presents the principles of related entropy measures. Sec-
tion III introduces the proposed AMWPE entropy measure
and presents the proposed bearing fault diagnosis method
based on the AMWPE and SVM. Section IV discusses the
experimental results using the AMWPE and traditional en-
tropy algorithms for bearing diagnosis. Finally, a conclusion
is drawn in Section V.

II. RELATED ENTROPY PRINCIPLES
This section briefly introduces the theoretical background

of traditional PE and MPE measures and their related im-
provements.

A. PERMUTATION ENTROPY
Bandit and Pompe [25] introduced the PE approach for

measuring the complexity change of time series based on the
ordinal pattern. The PE can be interpreted as a quantifier that
evaluates the rate of generation of new ordinal patterns in the
time series. These ordinal (permutation) patterns naturally
originate from the local sequential structure of time series.
The principle of PE is briefly described as follows:

For a time series x = {x1, x2, · · · , xN}, the m-
dimensional embedding vector is constructed as

Xi = {xi, xi+λ, · · · , xi+(m−1)λ} (1)

wherem is the embedding dimension, λ is the time delay, and
1 ≤ i ≤ N − (m− 1)λ. For any Xi, it can be mapped onto a
specific distinct symbol πn = (j1, j2, · · · , jm) by ranking m
number of real values in an ascending order. πn is one of m!
possible symbol permutations, and each Xi corresponds to a
unique πn. Define P (πn) as the relative frequency of each
symbol sequence respectively

P (πn) =

∑k
i=1 1 | when Xi has type πn

N − (m− 1)λ
(2)

where k is no larger thanN−(m−1)λ, and P (πn) = 0 only
when there are no vectors belonging to the given permutation
type πn. Then, PE measure is defined as the Shannon entropy
of the probability distribution of permutation types:

PE(m,λ,N) =
m!∑
j=1

P (πj) log2(P (πj)) (3)

The value of PE ranges from [0, log2m!]. The minimum
value of PE is zero, which means that the time series is
regular. Usually, a larger PE value denotes that the time series
is more irregular and relatively unpredictable.

B. WEIGHTED PERMUTATION ENTROPY
Fadlallah et al. [19] developed the WPE approach by

incorporating amplitude differences in the calculation of the
probability distribution of permutation patterns. In contrast
to the PE, the WPE takes weighting factors, wi, into account
using the variance of neighboring elements. The weighted
relative frequency of each permutation πn is calculated as

Q(πn) =

∑k
i=1 1 ∗ wi | whenXi has typeπn∑m!

n=1

∑k
i=1 1 ∗ wi | whenXi has typeπn

(4)

where k is no greater than N − (m − 1)λ, and Q(πn) = 0
only when there are no vectors Xi belonging to the given
permutation type πn. The weight wi is obtained from the
corresponding vector Xi by

wi =
1

m

m∑
k=1

[
xi+(k−1)λ − x̄i

]2
(5)

where x̄i is the arithmetic mean of the Xi. Then, the WPE is
obtained as

WPE(m,λ,N) =
m!∑
j=1

Q(πj) log2(Q(πj)) (6)

The value of WPE is also in the interval of [0, log2m!].
The definition of WPE maintains most of PE’s properties.
The most significant difference consists in the definition of
the relative frequency of symbol sequences. The WPE can
distinguish vectors that have the same ordinal patterns but
different amplitude elements based on the weighting factors,
thereby altering the probability distribution of ordinal pat-
terns. Therefore, the WPE is more applicable for measuring
the irregularity of time series and has better performance than
PE in entropy analysis for bearing diagnosis [26].

C. ORIGINAL AND COMPOSITE MULTISCALE
PERMUTATION ENTROPY

Aziz and Arif [20] developed an extension of PE method
by calculating PE values over a range of scales based on the
coarse-graining procedure. The coarse-grained time series
y(τ) are obtained by averaging a successively increasing
number of data points in non-overlapping windows at a given
scale factor [27]. When the scale factor τ = 1, the original
time series is obtained.
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y
(τ)
j =

1

τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N

τ
, τ ≤ N (7)

MPE values are obtained by computing the PE values from
a set of coarse-grained time series as

MPE(x, τ,m, λ) = PE(y(τ),m, λ) (8)

Although the MPE is a refinement of PE, it still lacks
relative consistency in estimating entropy values with an
increasing scale because of the sharply decreased data length
in the coarse-grained time series. For example, the entropy
values on adjacent scales will have a large variance. To
alleviate this problem, Azami [21] proposed the CMPE, an
enhancement of MPE, where a modified procedure is used to
generate composite coarse-grained time series. In the CMPE,
the kth coarse-grained time series for a given scale factor τ ,
y
(τ)
k = {y(τ)k,1, y

(τ)
k,2, y

(τ)
k,3, · · · } is defined as

y
(τ)
k,j =

1

τ

jτ+k−1∑
i=(j−1)τ+k

xi, 1 ≤ j ≤
N

τ
, 1 ≤ k ≤ τ (9)

For a specific scale τ , its CMPE value corresponds to the
average of PE values obtained from τ number of composite
coarse-grained time series accordingly

CMPE(x, τ,m, λ) =
1

τ

τ∑
k=1

PE(y
(τ)
k ,m, λ) (10)

Under the coarse-graining framework, the MPE and
CMPE usually present better performance and extract more
potential information on the time series, compared with
the single-scale PE method. Therefore, many works have
employed MPE and CMPE to the application of feature ex-
traction and health condition recognition to bearing diagno-
sis [28]–[30]. Moreover, under the multiple-scale framework,
WPE applies for analyzing complex signals in entropy anal-
ysis compared to PE. For comparison, when applying WPE
for entropy analysis under the original and modified coarse-
graining framework, we refer to these two corresponding
methods as the Multiscale Weighted Permutation Entropy
(MWPE) and Composite Multiscale Weighted Permutation
Entropy (CMWPE), respectively.

D. FINE-TO-COARSE MULTISCALE PERMUTATION
ENTROPY

The F2CMPE measure is a multiple-scale entropy mea-
sure for complexity analysis, in which an improved scale-
extraction mechanism is proposed [24]. It not only allevi-
ates the shortcoming of data length reduction in traditional
multiple-scale time series but also takes into account high-
frequency information in entropy estimation. Therefore, the
F2CMPE earns higher consistency in entropy analysis and is
more to robust to noise compared with traditional multiple-
scale entropy methods [24].

The calculation of F2CMPE relies on a two-step proce-
dure. First, the F2C scale-extraction procedure is applied to

generate time series with multiple scales based on Wavelet
Packet Decomposition (WPD) analysis. A set of decomposed
wavelet coefficients are generated from the original signal.
Later, these wavelet coefficients are reconstructed to sub-
signals that have the same data length as the original signal.
Then, the F2C signals are constructed based on these sub-
signals. Specifically, given a k-th decomposition level, the
F2C procedure will only generate 2k−1 set of wavelet coeffi-
cients which are produced from the approximate coefficients
in the first decomposition level. Then, reconstructed sub-
signals, {Rk,i, (0 ≤ i ≤ 2k−1 − 1)}, can be generated
from each branch of wavelet coefficients correspondingly.
The scale factor τ thus equals to 2k−1, and the F2C signals
can be constructed by consecutively removing one recon-
structed sub-signal from previously obtained F2C signals,
commencing from the accumulation of all τ reconstructed
sub-signals.

F2C(τ) =

2k−1−τ∑
i=0

Rk,i, 0 ≤ i ≤ 2k−1 − 1, 1 ≤ τ ≤ 2k−1

(11)
where k is the decomposition level and τ is the scale factor.
Finally, the F2CMPE value can be computed by calculating
the PE values over a range of F2C signals.

F2CMPE(x, τ,m, λ) = PE(F2C(τ),m, λ) (12)

Though the F2CMPE measure has improved from the
traditional MPE approaches, the efficiency of the scale-
extraction scheme can be enhanced further. First, in the
course of generating F2C signals, there may exist recon-
structed signals that are not closely related to the character-
istic fault symptoms; thus, the use of all reconstructed sig-
nals inevitably produce redundant information. Moreover, the
WPE algorithm can improve the entropy analysis compared
to the original PE method. Therefore, this study proposes an
AMWPE measure, aiming to offer better feature represen-
tation and computational efficiency, thus improving entropy
analysis for bearing diagnosis.

III. THE PROPOSED BEARING DIAGNOSIS METHOD
BASED ON THE AMWPE MEASURE AND SVM

This section first introduces the proposed AMWPE al-
gorithm. Then, a new bearing fault diagnosis method is
developed based on the AMWPE and SVM techniques.

A. ADAPTIVE MULTISCALE WEIGHTED PERMUTATION
ENTROPY

In the AMWPE algorithm, an improved F2C procedure is
developed to construct adaptive F2C signals. The advent of
failures in the bearing will introduce coupling frequencies
and change amplitude magnitudes in bearing vibration sig-
nals. Crucial components extracted from raw signals should
maintain characteristic symptoms in the waveforms and thus
have a high similarity to raw signals in the time domain.
Considering this, the adaptive F2C procedure in the AMWPE
algorithm selects salient reconstructed sub-signals based on
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FIGURE 2. Procedure of the AMWPE algorithm.

correlation coefficient analysis. These selected sub-signals
are closely related to the raw signals and have a high cor-
relation in the time domain. Then, adaptive F2C signals
are constructed based on these selected sub-signals, and
entropy values are calculated from obtained F2C signals. The
improved F2C procedure has two merits. On the one hand,
these adaptive F2C signals could incorporate more crucial
fault information and less redundancy. On the other hand, the
improved F2C procedure can achieve higher computational
efficiency compared to the F2CMPE in time series complex-
ity analysis.

In this study, correlation coefficients are used to evaluate
the similarity between reconstructed signalsRk,i and the raw
signal x in the time domain. Fig. 2 presents the diagram of
the AMWPE algorithm, and its detailed calculation steps are
described below:

1) Decompose a vibration signal x into the k-th decompo-
sition level using WPD. Select the wavelet coefficients
{Ck,i, (0 ≤ i ≤ 2k−1 − 1)} that are decomposed from
the approximate coefficients at the first decomposition
level in the wavelet tree. Reconstruct these selected
wavelet coefficients to sub-signals that have the same
data length to x. Thus, totally 2k−1 number of recon-
structed signals {Rk,i, (0 ≤ i ≤ 2k−1−1)} are obtained
correspondingly.

2) Compute correlation coefficients between the recon-
structed sub-signal and raw signal in the time domain
ρ(Rk,i, x) as

ρ(Rk,i, x) =
E
[
(Rk,i − µ(Rk,i))(x− µ(x))

]
σ(Rk,i)σ(x)

(13)

where µ(Rk,i), µ(x), σ(Rk,i), σ(x) denote the mean
and standard deviation of the reconstructed sub-signal
and the original signal, respectively.

3) Contribution rates are calculated based on the correla-
tion coefficients by

Si =
ρ(Rk,i, x)∑2k−1−1

i=0 ρ(Rk,i, x)
∗ 100% (14)

where 0 ≤ i ≤ 2k−1 − 1, and a larger Si indicates that
the corresponding sub-signal has higher correlation with
the original signal in the time domain.

4) Rank the contribution rates in descending order. For
each signal, refer to n as the maximum number of its
reconstructed sub-signals, which satisfies that the sum
of the first n largest contribution rates is no less than
90%, namely

∑n
i=1 Si ≥ 90%, (n ≤ 2k−1). Record

the index of the selected n number of sub-signals and
denote them as {Ui, (1 ≤ i ≤ n)}.

5) Apply obtained sub-signals Ui to construct adaptive
F2C signals accordingly, commencing from the accu-
mulation of all n number of selected sub-signals

F2C(τ) =
n−τ∑
i=1

Ui (15)

where 1 ≤ i ≤ n, and 1 ≤ τ ≤ n.
6) Calculate the WPE value over each F2C signal, the

AMWPE values are finally obtained by

AMWPE(x, τ,m, λ) = WPE(F2C(τ),m, λ) (16)

The AMWPE analysis consists in wavelet analysis and
WPE estimation. In wavelet analysis, appropriate parameters
- mother wavelet and resolution of decomposition scale - can
produce time-frequency components containing crucial fault
information. In this study, we select a six-level (k = 6)
wavelet decomposition tree, and therefore 32 wavelet co-
efficients are totally obtained according to the Step 1) in
the AMWPE algorithm. Also, a “db4" wavelet is applied as
the Daubechies family of wavelets is well-known for their
orthogonality and efficiency in filter implementation [31].
Besides, regarding entropy parameter configuration in the
WPE measure, many studies have examined the performance
of embedding dimension m and time delay λ in the cal-
culation of PE values [32]. Researchers recommended that
parameters, m = 4-7 and λ = 1-3, are suitable for analyzing
vibration signals in bearing diagnosis [33].

B. FAULT PATTEN RECOGNITION USING SUPPORT
VECTOR MACHINE

In machine health monitoring, the SVM classifier is a use-
ful technique to distinguish between various bearing health
states [34]. It maps the original pattern space into a high
dimensional feature space and maximizes the margin of
separation between boundaries of data points called support
vectors in the multi-dimensional space. The decision function
is made using f(x) to generate a separating hyperplane. For
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FIGURE 3. Flowchart of the proposed fault diagnosis
method for rolling bearing based on the AMWPE and
SVM.

the nonlinear function, the SVM constrained optimization
problem can be summarized as [34]:

min
w,b

1
2 ||w||

2

subject to yi(w
Tx+ b) ≥ 1

(17)

where w is a weight vector, and b is a bias.
For multi-class classification, the LIBSVM Matlab Tool-

box [35] is used for bearing fault pattern recognition in this
study. A detailed discussion on multi-class SVM approaches
can be found in Ref [36], [37].

C. PROPOSED ROLLING BEARING FAULT DIAGNOSIS
METHOD

Based on the AMWPE and SVM, the proposed fault
diagnosis method for rolling bearing is presented as follows:

1) Collect vibration signals from rolling bearings with
various health conditions. For each condition, split raw
data sets into training and testing data sets, respectively;

2) Calculate the AMWPE values from the training data
samples. In this study, a 6-level decomposition tree
(k = 6) is used and thus τ = 32. For each training
sample, calculate the value of n; thus, a vector of n
values can be obtained from all training samples. Then,
specify the maximum n (herein denoted as nmax) as
the number of features for constructing training feature
vectors as F trainnmax

;
3) Calculate the AMWPE values from the testing data

samples and construct testing feature vectors F testnmax

where nmax is acquired from the training data samples;

4) Apply training feature vectors F trainnmax
to train the SVM-

based multi-class model for classifying bearing fault
types;

5) Input testing feature vectors F testnmax
into the obtained

model to predict the health label. Thus, the fault pattern
of the testing sample can be recognized. The flowchart
of the proposed bearing diagnosis method is described
in Fig. 3.

IV. EXPERIMENTAL ROLLING BEARING DATA
ANALYSIS

In this section, the performance of the proposed method
for bearing fault diagnosis is investigated. For comparison,
the AMWPE and traditional entropy-based methods are used
to analyze bearing data, after which entropy feature vectors
are then inputted into the multi-class SVM for fault type
identification. We start with the analysis of raw vibration
signals. Afterwards, noisy signals with various SNRs are
analyzed to investigate the robustness of different entropy
measures against noise in bearing diagnosis.

A. TEST RIG AND DATA ACQUISITION
The experimental rolling bearing dataset is provided

by Case Western Reserve University (CWRU) [38]. The
schematic of test rig is shown in Fig. 4. Tested bearings
are 6205-2RS JEM SKF deep groove ball bearings with
single-point failures. In this study, bearing signals with ten
conditions are considered and collected from the drive-end
channel, including bearings with normal condition (Norm)
and damages on the inner race (IR), the outer race (OR) at
6 o’clock, and the ball element (BE), respectively. Bearings
with various defect sizes are considered (i.e., 0.1778 mm,
0.3556 mm, and 0.5334 mm) under a speed of 1730 r.p.m
with Load 3 HP and a sampling frequency of 12 kHz.

Torque transducer/encoder 
self-aligning coupling

DynamometerFan-end
bearing

Drive-end
bearing

Induction motor

Base

FIGURE 4. CWRU bearing test rig [38].

For classification purpose, raw vibration signals are split
into training and testing data sets, respectively. In this study,
there are 29 samples with a data length of 4, 096 for each
bearing condition, and they are categorized into 14 training
samples and 15 testing samples. Therefore, for ten bearing
conditions, there are 140 training samples and 150 testing
samples. Table 1 describes the detail specification of each
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TABLE 1. Description of each bearing condition and its
class label.

States Fault
diameter

Class
label

Number of training
samples

Number of
testing samples

IR1 0.1778 1 14 15

IR2 0.3556 2 14 15

IR3 0.5334 3 14 15

OR1 0.1778 4 14 15

OR2 0.3556 5 14 15

OR3 0.5334 6 14 15

BE1 0.1778 7 14 15

BE2 0.3556 8 14 15

BE3 0.5334 9 14 15

Norm 0 10 14 15

bearing condition. Fig. 5 shows the time-domain waveforms
of bearing signals under ten health states.

B. FAULT DIAGNOSIS ANALYSIS BASED ON ORIGINAL
VIBRATION SIGNALS

In this study, raw bearing vibration signals are analyzed
using the proposed bearing fault diagnosis method. The
AMWPE is compared with traditional measures to study their
performance on bearing fault diagnosis, such as the MPE,
MWPE, CMPE, and CMWPE algorithms. Their computa-
tional efficiency in extracting entropy features from time
series is also investigated.

We first evaluate various entropy measures’ computation
time for extracting entropy features from the vibration signal.
A PC is used with the configuration (Intel Core i7-3770 Quad
3.40 GHz with 8G of RAM on a Windows 7 operating system
platform). Table 2 shows the average time cost results of
computing various entropy features under parametersm = 5,
λ = 1, and τ = 32.

The time cost is determined by two main steps in the
calculation of the multiple-scale entropy value. First, the
theoretical differences between the principles of various en-
tropy measures will consume different computing resources
as well as time. From the Table 2, it can be seen that the
traditional MPE and MWPE algorithms consume the least
time. This can be interpreted as the coarse-graining procedure
is a linear smoothing operation and thus saves time in signal
transformation and generation. For improved MPE measures,
such as CMPE, CMWPE, and F2CMPE measures, they can
achieve better performance on fault diagnosis; nevertheless,
they consume more time than that of MPE. Second, as the
data length of the time series increases, the calculation time
for each measure also increases. This is because sorting ele-
ments and matching templates consume most of the time in
the calculation of PE values. Also, an increasing scale factor
produces more multiple-scale time series and thus consumes

FIGURE 5. Time domain waveforms of bearing
vibration signals with ten conditions of rolling bearing.

TABLE 2. Time cost (s) of different entropy measures for
feature extraction with m = 5, λ = 1, and τ = 32 under
different data length.

Data
Length TMPE TMWPE TCMPE TCMWPE TF2CMPE TAMWPE

512 0.1665 0.1592 0.8352 0.9266 1.0103 0.5272

1, 024 0.2520 0.2535 1.7130 1.8098 1.6416 1.0647

2, 048 0.4251 0.4498 3.1223 3.5385 2.9379 2.0959

4, 096 0.7965 0.8568 6.2057 6.9504 5.5404 4.0092

more time to yield PE values. With respect to the proposed
measure, the results verify that the AMWPE measure earns
higher computational efficiency in entropy analysis com-
pared with traditional modoified MPE measures.

Experimental data sets are then analyzed using different
entropy measures under various parameters (m = 4-5, λ = 1-
3, and τ = 32). Fig. 6 shows the fault diagnosis performance
on testing data sets based on entropy extraction, where a
multi-class SVM [35] is adopted for recognizing health con-
ditions. The radial basis kernel function is an effective option
for kernel function and is applied in this study. Also, two
parameters - the optimum cost c and the width parameter
g - have to be appropriately specified. In this study, these
two hyper-parameters in the SVM model are fine-tuned using
the Particle Swarm Optimization (PSO) method based on
the training data sets [39]. The PSO is a population-based
heuristic method that optimizes a problem using swarm in-
telligence. The PSO searches optimized solutions by using
a population of individuals that are updated recursively until
the optimized c and g solutions are located. The specified
optimal hyper-parameters can derive high bearing diagnosis
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FIGURE 6. Diagnosis performance on the testing data
using SVM and (a) MPE (b) MWPE (c) CMPE (d) CMWPE
(e) F2CMPE (f) AMWPE, respectively.

accuracy. The classification accuracy rate is defined as Acc =
(

Nf

Nt+Nf
)×100% whereNt andNf denote the number of true

and false classification samples, respectively.
From Fig. 6, it can be noticed that the diagnosis perfor-

mance of MPE and MWPE measures are around 98%, and
their performances are not relatively stable when m and λ
changes. Comparatively, from Fig. 6 (c) and (d), the CMPE
and CMWPE approaches have better performance and can
obtain over 98% accuracy rate in contrast to traditional MPE
methods. Although they could achieve reasonable results
under specified parameters, their performance lacks rela-
tive flexibility in selecting parameters (i.e., m and λ). For
instance, given m = 4, the performance of the diagno-
sis method using the CMPE decreases when λ increases.
Fig. 6 (e) shows that the F2CMPE-based method presents
a high performance and gives an accuracy rate of 100%
when λ = 1 under all m values. In contrast, the AMWPE-
based method exhibits the best performance on testing data
analysis compared with traditional entropy measures. More
specifically, from Fig. 6 (f), it is noted that the proposed
method can obtain 100% results when m = 5 for all
λ values. Also, the AMWPE shows higher flexibility in
parameter selection. To sum up, experimental results have
demonstrated that the AMWPE algorithm not only owns high
computational efficiency in entropy feature extraction but

FIGURE 7. Waveforms of the original bearing signal
with IR state and its noisy signals with SNR = 6/2/-2,
respectively.

also exhibits better accuracy in bearing fault diagnosis and
flexibility in parameter selection.

C. ROBUSTNESS ANALYSIS BASED ON NOISY
SIGNALS WITH DIFFERENT SNRS

In practical applications, rotating machinery often works
in complex environments with strong noises. Therefore, it has
a necessity to study the robustness of entropy-based analytic
models to external disturbances and noises. For this purpose,
we add additive Gaussian white noise with different Signal-
to-Noise Ratios (SNRs). SNR is defined as the ratio of signal
power to background noise power in decibels (dB):

SNR = 10 log10(
Psignal

Pnoise
) (18)

A comparative study was first performed to evaluate var-
ious entropy measures for feature extraction. Noise signals
are generated with different SNRs ranging from−4 to 14 dB,
respectively. Fig. 7 shows waveforms of the original bearing
signal with IR state and signals under SNR = 6/2/ − 2 dB,
respectively. As is shown, raw signals are contaminated with
stronger noise as the SNR level decreases, and the waveforms
of signals will be more complicated. For comparison, we
consider noisy bearing vibration signals with SNR = 2 dB.
Entropy values are calculated under m = 5, λ = 1, and
τ = 32 for all entropy methods.

Fig. 8 presents a reduced 2-D feature space of extracted
features using different entropy measures using the t-SNE
method. The t-SNE technique visualizes high-dimensional
data by mapping it to a two-dimensional feature space while
still preserving the high dimensional clustering relation-
ship [40]. From Fig. 8, the MPE and MWPE feature values
that represent ten bearing conditions are completely mixed
up, and thus bearing conditions cannot be differentiated.
Although the CMPE and CWMPE feature points spread in
a relatively dispersed space, most of the points are blended
and are difficult to identify. The F2CMPE feature values
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(a) MPE (b) MWPE

(c) CMPE (d) CMWPE

(e) F2CMPE (f) AMWPE

FIGURE 8. Feature visualization of testing noisy signals
with SNR = 2 using entropy measures based on t-SNE.

are relatively scattered; nonetheless, some data points at the
bottom left in the feature space are difficult to distinguish.
Comparatively, it is noted that the AMWPE features display
a clear degree of separation and are easy to differentiate
between bearing conditions by observing the feature space.
Moreover, the data points in the AMWPE feature space in
each cluster are more compact, compared with traditional
approaches. The results verify that the AMWPE algorithm is
more robust to the analysis of noisy signals with small SNRs
compared with traditional measures.

Besides, we compared the diagnosis performance using
different entropy measures for the analysis of bearing signals
with SNR = 2 dB. Fig. 9 shows the confusion matrix
results, which are used to indicate the number of correct
and incorrect predictions in identifying bearing health state.
From the figure, it reveals that diagnosis accuracy results
are in line with the performance of differentiating between
bearing health conditions using the feature space. That is,
the entropy measure that can present a better separation in
feature clusters will obtain a higher classification accuracy.
For example, the accuracy results of diagnosis methods based
on the MPE, CMPE, and MWPE are no greater than 90%.
The methods using the CWMPE and F2CMPE could obtain
higher accuracy rates of 90% and 92.7%, respectively. In

(a) MPE (b) MWPE

(c) CMPE (d) CMWPE

(e) F2CMPE (f) AMWPE

FIGURE 9. Confusion matrix showing diagnosis
accuracy results with different entropy measures.

contrast, the AMWPE-based diagnosis method could obtain
the highest accuracy rate of 99.3%; therefore, it verifies
the superiority of the AMWPE measure in analyzing noisy
signals for bearing fault diagnosis.

Further, more experiments were carried out to study the
robustness of entropy analysis to noise for bearing diagnosis
where entropy values are calculated using different param-
eters (i.e., m and λ). In this study, the SNR value of tested
signals increases from−4 to 14. Three groups of experiments
are considered, and entropy values are calculated under
λ = 1-3 and m = 5, respectively. Fig. 10 compares the
diagnosis accuracy rates resulted from six entropy measures
under different λ values. It can be seen that the traditional
MPE and CMPE give relatively low accuracy rate in three
cases. As the noise level decreases, their diagnosis perfor-
mance increases very slowly. In comparison, the MWPE and
CMWPE present a better performance in three cases, but their
accuracy results are no larger than 80% when SNR ≤ 4. It
indicates that they are not suitable for the cases when signals
have high noise levels.

Comparatively, from Fig. 10, it is observed that even when
the SNR is low, the diagnosis methods using the F2CMPE
and AMWPE measures are superior to the traditional meth-
ods. Also, the proposed AMWPE method improves the di-
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(a) Results using entropy features under m = 5, λ = 1
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(b) Results using entropy features under m = 5, λ = 2
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(c) Results using entropy features under m = 5, λ = 3

FIGURE 10. Diagnosis performance using different entropy
feature values for analyzing noisy signals with various
SNRs.

agnosis performance compared to F2CMPE. For example,
when SNR is −4dB, the AMWPE-based diagnosis method
can still reach a high accuracy of 70%. Further, in this

study, the accuracy rate of the proposed method achieves
over 95% when SNR = 0 dB (the power of the noisy
signal is equal to the original vibration signal) and continues
increasing as SNR increases. To sum up, the experimental
results demonstrate the high effectiveness of the proposed
bearing diagnosis method in bearing fault detection and iden-
tification. The developed AMWPE can offer reliable entropy
analysis with high flexibility in parameter selection. Also,
the proposed method is robust to noisy vibration signals and
can give satisfactory diagnostic accuracy rates compared with
traditional methods.

V. CONCLUSIONS
In this paper, an improved entropy measure named

AMWPE is proposed for time series complexity analysis. A
new method is then developed based on the AMWPE and
SVM for bearing fault diagnosis. Diagnosis performances are
studied and compared between different entropy measures
for feature extraction in terms of feature representation, com-
putational efficiency, and diagnosis accuracy. Experimental
results have verified that the proposed diagnosis method
can present reliable and satisfactory diagnostic results. Also,
through analyzing noisy signals with different SNRs, the
AMWPE method exhibits more robustness in analyzing
noisy signals with low SNRs compared to traditional entropy
measures for bearing diagnosis. For future work, the pro-
posed method will be applied to diagnose compound faults in
industrial-scale machinery in an attempt to study and improve
its diagnosis performance. Furthermore, the development of
further improved permutation entropy measures for fault
diagnosis of rotating machinery can be explored.
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λ Time delay
ρ Correlation coefficient
τ Scale factor
Ck,i Wavelet decomposition coefficient
k Decomposition level
m Embedding dimension
N Data length of time series
Rk,i Reconstructed sub-signal based on wavelet coeffi-

cient
Ui Selected reconstructed sub-signal
AMWPE Adaptive Multiscale Weighted Permutation En-

tropy
CMPE Composite Multiscale Permutation Entropy
CMWPE Composite Multiscale Weighted Permutation En-

tropy
F2C Fine-to-Coarse
F2CMPE Fine-to-Coarse Multiscale Permutation Entropy
MPE Multiscale Permutation Entropy
MSE Multiscale Entropy
MWPE Multiscale Weighted Permutation Entropy
PE Permutation Entropy
PSO Particle Swarm Optimization
SNRs Signal-to-Noise Ratios
SVM Support Vector Machine
WPD Wavelet Packet Decomposition
WPE Weighted Permutation Entropy
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