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Abstract

Due to instability being induced easily by parameter disturbances of network systems, this paper investigates the
multistability of memristive Cohen-Grossberg neural networks (MCGNNs) under stochastic parameter perturbations.
It is demonstrated that stable equilibrium points of MCGNNs can be flexibly located in the odd-sequence or even-
sequence regions. Some sufficient conditions are derived to ensure the exponential multistability of MCGNNs under
parameter perturbations. It is found that there exist at least (w + 2)l (or (w + 1)l) exponentially stable equilibrium
points in the odd-sequence (or the even-sequence) regions. In the paper, two numerical examples are given to verify
the correctness and effectiveness of the obtained results.
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1. Introduction

In the past few decades, complex system including neural network (NN) has been widely investigated due to its
widespread application [1-14]. In [4], a set of new sufficient criteria were presented to ensure the stability and the
appearance of Hopf bifurcation of fractional-order neural network with multiple delays. Xu and Zhang investigated
exponential stability of antiperiodic solutions of a class of Cohen-Grossberg shunting inhibitory neural networks with
time-varying delays and impulses [6]. In [7], H-infinity filtering for discrete-time uncertain systems with quantized
measurements and packet dropouts was discussed. A state feedback controller was provided to render stochastic
feedforward nonlinear systems globally asymptotically stable [9]. Switching laws were designed to maintain the
stability of delayed switched nonlinear systems with both stable and unstable modes [11]. In [12], a novel second-
order sliding mode controller was designed subject to an output constraint. Finite-time stabilization in probability
was addressed for a class of high-order stochastic nonlinear systems with output constraints [13]. Because of the
nonvolatility of memristor, memristor-based circuits and applications have attracted increasing attention [15-19]. By
using memristor to emulate synapse, memristive neural network (MNN) can be built [20-22]. Currently, MNN has
been extensively applied in some fields such as logical operations and image processing [21, 22].

Multistability, an important dynamical characteristic of neural networks, has been extensively investigated in
recent years [23-41]. For example, Kaslik and Sivasundaram researched multistability of discrete-time Hopfield NNs
with distributed delays and impulses [25]. In [26], Chen et al. studied multistability of stochastic delayed Hopfield
NNs by applying geometrical configuration of activation function. Wang et al. [27] investigated multistability of
almost-periodic solutions of delayed NNs considering two classes of activation function: one class of function is
piecewise linear with two corner points and the other class of function is continuously nondecreasing. In [28], Cheng
et al. analysed multistability of delayed NNs considering a typical class of activation function and piecewise linear
activation function. In [29], Yang et al. researched multistability of discrete-time delayed Cohen-Grossberg NNs
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with activation function possessing 2 and 2r corner points. In [30], Zeng et al. addressed multistability of recurrent
NNs with time-varying delays and piecewise linear activation function. The activation function in [30] is divided
into 4k − 1 intervals by 4k corner points, and (2k)n stable equilibrium points can be obtained. In [31], the activation
function is divided into 2m + 1 intervals by 2m corner points, and (m + 1)n stable equilibrium points can be acquired
by investigating multistability of recurrent NNs. It is worth noting that the activation function is symmetrical about
the origin [31]. In [32], local stability of multiple equilibria of NNs was addressed. The piecewise linear activation
function with 2r corner points is nondecreasing and (r + 1)n stable equilibria can be acquired [32]. Global stability of
MNNs with monotone nondecreasing activation function was discussed in [33]. Wu and Zhang analyzed multistability
of delayed MNNs with piecewise linear activation function possessing two corner points in [34]. In [35], Nie et al.
researched stable equilibria of MNNs with time-varying delay and piecewise linear activation function having 4 corner
points. In [41], dynamical and static multisynchronization of coupled multistable neural networks was investigated,
and every subnetwork of coupled neural networks can acquire (r + 1)n locally exponentially stable periodic orbits or
equilibrium points. In 1984, Hopfield proposed a new class of neural network and pointed out that convergent flow
to stable states is the essential feature of this content-addressable memory operation [42]. Moreover, if location of a
stable point in state space is viewed as the information of a particular memory, states near to the stable point contain
partial information about that memory [42]. Therefore, as many stable equilibrium states as possible and flexible
regions of stable equilibrium points are very necessary for neural network systems in some applications [23-30, 39,
40, 42], such as associative memory storage and image processing. Generally, stable equilibrium points of MNNs
locate in the odd-sequence regions in the existing results [27-32, 34]. Thus, it is very challenging and meaningful to
generate a mass of stable equilibrium points and change flexibly their ranges.

Cohen-Grossberg neural network which takes some famous neural networks and systems such as Hopfield neural
networks and Lotka-Volterra system as its special cases, was first proposed by Cohen and Grossberg [43, 44]. In
the past few years, memristive Cohen-Grossberg neural network (MCGNNs) and its dynamical characteristics have
been widely investigated [45-50]. In [45, 46], the exponential synchronization issue of MCGNNs with delays was
discussed. Using the fixed point theorem, Nie et al. addressed the multistability topic of MCGNNs and obtained 3n

exponentially stable equilibrium points for n-dimensional MCGNNs with piecewise linear activation functions [47].
Multistability of MCGNNs with mixed delays was discussed and multiple almost periodic solutions were obtained in
[49]. In [50], global exponential stability of MCGNNs with mixed delays and impulse perturbations was investigated.
Due to dependence on state for parameters of MCGNNs and environment disturbances, parameter perturbations exist
inevitably in the systems in reality. Parameter perturbations may lead to instability and some unpredictable influence
for the systems. Therefore, the effect of parameter perturbations cannot be ignored. In addition, time delays especially
time-varying delays will inevitably occur in the signal transmission of neurons because of the finite switching speed
of amplifiers and neurons. In recent years, there are some researches on dynamical characteristics of MNNs under
parameter perturbations [51-54]. However, there is no work on multistability of delayed MCGNNs with parameter
perturbations. Achieving the multistability of memristive Cohen-Grossberg neural networks means that multistability
of multiple classes of neural networks can be obtained. When multistability is exponential, systems can acquire fast
convergence speed and good performance.

Inspired by the discussion above, this paper investigates the exponential multistability of MCGNNs with time-
varying delays and parameter perturbations. We summarize the main contributions as follows.

1) Considering some unpredictable factors of environment, this paper investigates the multistability of MCGNNs
with stochastic parameter perturbations for the first time.

2) Some sufficient conditions are presented to guarantee exponential multistability of MCGNNs with time-varying
delays and parameter perturbations.

3) The exponentially stable equilibrium points of MCGNN system can be flexibly located in the odd-sequence
or the even-sequence regions. And there exist at least (w + 2)l (or (w + 1)l) exponentially stable equilibrium points
in the odd-sequence (or the even-sequence) regions. This means that the perturbed MCGNN system has potential
application value in associative memory storage and secure communication. Therefore, the obtained result can enlarge
and strengthen the existing results.

The rest of the paper is organized as follows. In Section 2, MCGNNs with time-varying delays and parameter per-
turbations are introduced. Some sufficient conditions are obtained to achieve exponential multistability of MCGNNs
in Section 3. Section 4 presents numerical simulations to verify the effectiveness of the obtained results. Finally,
conclusions are given in Section 5.
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2. Preliminaries

We consider memristive Cohen-Grossberg neural networks (MCGNNs) with time-varying delays as follows.

ṗm(t) = am(pm(t))
{
−bm pm(t) +

l∑
z=1

cmz(pm(t)) fz(pz(t))

+
l∑

z=1
dmz(pm(t)) fz(pz(t − τmz(t))) + Im

}
, m = 1, 2, . . . , l,

(1)

where pm(t) denotes the state of the mth neuron; am(.) is amplification function; cmz(.) and dmz(.) represent memristive
connection weights; fz(.) is the activation function; τmz(t) denotes time-varying delay and satisfies 0 ≤ τmz(t) ≤ τ,
where τ is a positive constant; Im is external input. We denote memristive connection weights as

cmz(pm(t)) =

{
c(1)

mz , |pm(t)| ≤ χm,

c(2)
mz , |pm(t)| > χm,

dmz(pm(t)) =

{
d(1)

mz , |pm(t)| ≤ χm,

d(2)
mz , |pm(t)| > χm,

where c(1)
mz , c(2)

mz , d(1)
mz and d(2)

mz are constants, χm > 0 is the switching jump.
We denote ĉmz = max{|c(1)

mz |, |c
(2)
mz |}, c̄mz = max{c(1)

mz , c(2)
mz}, c̃mz = min{c(1)

mz , c
(2)
mz}, d̂mz = max{|d(1)

mz |, |d
(2)
mz |}, d̄mz = max{d(1)

mz , d
(2)
mz }

and d̃mz = min{d(1)
mz , d

(2)
mz }.

Because of dependence on state for parameters of MCGNNs and environment disturbances, there unavoidably
exist parameter perturbations in the systems in reality. Due to some unpredictable factors, parameter perturbations may
randomly change along with time, which is called stochastic parameter perturbations. In this paper, we consider the
multistability of MCGNNs with stochastic parameter perturbations. Accordingly, the MCGNN system with stochastic
parameter perturbations can be written as

ṗm(t) = am(pm(t))
{
−bm pm(t) +

l∑
z=1

[cmz(pm(t)) + ∆cmz(t)] fz(pz(t))

+
l∑

z=1
[dmz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) + Im

}
, m = 1, 2, . . . , l,

(2)

where ∆cmz(t) and ∆dmz(t) are stochastic parameters.
For a given set γ ⊂ <, co[γ] represents the closure of the convex hull for set γ. Thus, we can have

co[cmz(pm(t))] =


c(1)

mz , |pm(t)| < χm,

[c̃mz, c̄mz], |pm(t)| = χm

c(2)
mz , |pm(t)| > χm,

co[dmz(pm(t))] =


d(1)

mz , |pm(t)| < χm,

[d̃mz, d̄mz], |pm(t)| = χm

d(2)
mz , |pm(t)| > χm,

According to the theory of differential inclusion [55], the MCGNN system (2) can be rewritten as

ṗm(t) ∈ am(pm(t))
{
−bm pm(t) +

l∑
z=1

[co[cmz(pm(t))] + ∆cmz(t)] fz(pz(t))

+
l∑

z=1
[co[dmz(pm(t))] + ∆dmz(t)] fz(pz(t − τmz(t))) + Im

}
, m = 1, 2, . . . , l,

(3)

or equivalently, by the measurable selection theorem in [55], there exist measurable functions c∗mz(pm(t)) ∈ co[cmz(pm(t))],
d∗mz(pm(t)) ∈ co[dmz(pm(t))], such that

ṗm(t) = am(pm(t))
{
−bm pm(t) +

l∑
z=1

[c∗mz(pm(t)) + ∆cmz(t)] fz(pz(t))

+
l∑

z=1
[d∗mz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) + Im

}
, m = 1, 2, . . . , l,

(4)
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We consider the initial condition of system (2) as

pm(s) = Υ(1)
m (s), s ∈ [−τ, 0].

We set constants Q j
m, U j

m, j = 0, 1, . . . ,w, which satisfy the following condition

−∞ < Q0
m < U0

m < Q1
m < · · · < Qw

m < Uw
m < +∞.

Denote
(−∞,Q0

m] = (−∞,Q0
m]1 × (Q0

m,U
0
m)0 × · · · × [Uw

m,+∞)0,

(Q0
m,U

0
m) = (−∞,Q0

m]0 × (Q0
m,U

0
m)1 × · · · × [Uw

m,+∞)0,

. . .

[Uw
m,+∞) = (−∞,Q0

m]0 × (Q0
m,U

0
m)0 × · · · × [Uw

m,+∞)1,

Then<l is divided into (2w + 3)l parts, namely,

Θ =

{
l∏

m=1
(−∞,Q0

m]ε
1
m × (Q0

m,U
0
m)ε

2
m × · · · × [Uw

m,+∞)ε
2w+3
m |(ε1

m, ε
2
m, . . . , ε

2w+3
m )

= (1, 0, . . . , 0)or(0, 1, . . . , 0)or . . . or(0, 0, . . . , 1)} .

We choose two subsets Θ1 and Θ2 given by

Θ1 =

{
l∏

m=1
(−∞,Q0

m]ε
1
m × (Q0

m,U
0
m)0
× [U0

m,Q
1
m]ε

2
m × · · · × (Qw

m,U
w
m)0 × [Uw

m,+∞)ε
w+2
m |

(ε1
m, ε

2
m, . . . , ε

w+2
m ) = (1, 0, . . . , 0)or(0, 1, . . . , 0)or . . . or(0, 0, . . . , 1)

}
,

and

Θ2 =

{
l∏

m=1
(−∞,Q0

m]0
× (Q0

m,U
0
m)ε

1
m × [U0

m,Q
1
m]0
× · · · × (Qw

m,U
w
m)ε

w+1
m × [Uw

m,+∞)0|

(ε1
m, ε

2
m, . . . , ε

w+1
m ) = (1, 0, . . . , 0)or(0, 1, . . . , 0)or . . . or(0, 0, . . . , 1)

}
.

The following assumptions will be used in this paper.
Assumption 1: Amplification function am(pm(t)) is continuous and bounded, namely, there exist two positive

constants a(1)
m and a(2)

m , such that 0 < a(1)
m ≤ am(x) ≤ a(2)

m for ∀x ∈ <.
Assumption 2: Parameter bm satisfies am(x)bm > 0, for ∀x ∈ <, m = 1, 2, . . . , l.
Assumption 3: Activation function fz(.) is bounded and satisfies Lipschitz condition, which means there exist

constants M(1)
z , M(2)

z , L(1)
z , L(2)

z such that min{ fz(s)} = M(1)
z and max{ fz(s)} = M(2)

z for ∀s ∈ <, where M(1)
z < M(2)

z , and
| fz(π1) − fz(π2)| ≤ L(1)

z |π1 − π2| for any π1, π2 ∈ Θ1, and | fz(π3) − fz(π4)| ≤ L(2)
z |π3 − π4| for any π3, π4 ∈ Θ2.

Assumption 4: Stochastic parameter perturbations ∆cmz(t) and ∆dmz(t) are continuous and bounded, that is α(1)
mz ≤

∆cmz(t) ≤ α
(2)
mz and β(1)

mz ≤ ∆dmz(t) ≤ β
(2)
mz , where α(1)

mz , α(2)
mz , β(1)

mz and β(2)
mz are constants. Moreover, there exists a constant

t∗mz > 0, such that ∆cmz(t) = αmz, ∆dmz(t) = βmz, for ∀t ∈ [t∗mz,+∞), where constants αmz ∈ [α(1)
mz , α

(2)
mz] and βmz

∈ [β(1)
mz , β

(2)
mz].

We denote α̂mz = max{|α(1)
mz |, |α

(2)
mz |} and β̂mz = max{|β(1)

mz |, |β
(2)
mz |}.

Definition 1: There exists a constant vector p# = (p#
1, p#

2, . . . , p#
l )T , such that

am(p#
m)

−bm p#
m +

l∑
z=1

cmz(p#
m) fz(p#

z ) +

l∑
z=1

dmz(p#
m) fz(p#

z ) + Im

 = 0,

then p# = (p#
1, p#

2, . . . , p#
l )T is an equilibrium point of MCGNN system (1), where Im is constant.
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Remark 1: According to the assumption 1, we can obtain that p# = (p#
1, p#

2, . . . , p#
l )T is an equilibrium point of the

MCGNN system (1) if the following condition

−bm p#
m +

l∑
z=1

cmz(p#
m) fz(p#

z ) +

l∑
z=1

dmz(p#
m) fz(p#

z ) + Im = 0

holds.
From assumption 1, there exists antiderivative of 1

am(pm) . Choose such an antiderivative rm(pm) which satisfies
rm(0) = 0. Then d

dpm
rm(pm) = 1

am(pm) . Using the derivative theorem for inverse function, the inverse function r−1
m (xm)

of rm(pm) is differentiable and d
dxm

r−1
m (xm) = am(pm), where xm = rm(pm). Setting qm(t) = rm(pm(t)), then we can get

q̇m(t) =
ṗm(t)

am(pm(t)) , where pm(t) = r−1
m (qm(t)). Substituting these equalities into system (3), we can obtain the MCGNN

system with stochastic parameter perturbations as follows

q̇m(t) ∈ −bmr−1
m (qm(t)) +

l∑
z=1

[co[cmz(r−1
m (qm(t)))] + ∆cmz(t)] fz(r−1

z (qz(t)))

+
l∑

z=1
[co[dmz(r−1

m (qm(t)))] + ∆dmz(t)] fz(r−1
z (qz(t − τmz(t)))) + Im, m = 1, 2, . . . , l.

(5)

Lemma 1 [56]: If fz(±χz) = 0, z = 1, 2, . . . , l, we have∣∣∣co[cmz(pm(t))] fz(pz(t)) − co[cmz(p#
m)] fz(p#

z )
∣∣∣

≤ ĉmzLz

∣∣∣pz(t) − p#
z

∣∣∣ , m, z = 1, 2, . . . , l,

and ∣∣∣co[dmz(pm(t))] fz(pz(t − τmz(t))) − co[cmz(p#
m)] fz(p#

z )
∣∣∣

≤ d̂mzLz

∣∣∣pz(t − τmz(t)) − p#
z

∣∣∣ , m, z = 1, 2, . . . , l.

where Lz = max{L(1)
z , L(2)

z }.
Definition 2: The equilibrium point p# = (p#

1, p#
2, . . . , p#

l )T of MCGNN (2) is exponentially stable, if there exist
positive constants α, β, such that

||p(t) − p#|| ≤ α||Υ(1) − p#||e−βt

holds for any t ≥ 0, where p(t) = (p1(t), p2(t), . . . , pl(t))T is the solution of the disturbed MCGNN system (2) with
initial value Υ(1) = (Υ(1)

1 (s),Υ(1)
2 (s), . . ., Υ

(1)
l (s))T , s ∈ [−τ, 0].

Definition 3: If there exist at least two different equilibrium points p# = (p#
1, p#

2, . . . , p#
l )T and p∗ = (p∗1, p∗2, . . . , p∗l )T

for MCGNN (2) which satisfy definition 2 with the corresponding different initial conditions Υ(1) = (Υ(1)
1 (s),Υ(1)

2 (s),
. . . ,Υ(1)

l (s))T and Υ(2) = (Υ(2)
1 (s),Υ(2)

2 (s), . . . ,Υ(2)
l (s))T , then exponential multistability of MCGNN (2) can be achieved,

i.e., the multistability of MCGNN (2) is exponential.

3. Multistability of perturbed memristive Cohen-Grossberg neural networks

In this section, we will discuss the exponential multistability problem of the perturbed MCGNN systems (2).
Theorem 1: The perturbed MCGNN system (2) has at least (w + 2)l exponentially stable equilibrium points in<l

and Θ1 is a positive invariant set, if fm(±χm) = 0 and assumptions 1-4 and the following conditions

K1 = −bmQ j
m + max{c̃mm fm(Q j

m), c̄mm fm(Q j
m)}

+ max{α(1)
mm fm(Q j

m), α(2)
mm fm(Q j

m)} + Φ1
m + Φ2

m + Im < 0,
(6)

K2 = −bmU j
m + min{c̃mm fm(U j

m), c̄mm fm(U j
m)}

+ min{α(1)
mm fm(U j

m), α(2)
mm fm(U j

m)} + Γ1
m + Γ2

m + Im > 0,
(7)

bma(1)
m −

l∑
z=1

(ĉmz + α̂mz)L(1)
z a(2)

z −

l∑
z=1

(
d̂mz + β̂mz

)
L(1)

z a(2)
z > 0 (8)
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hold, where

Φ1
m =

l∑
z=1,z,m

max
{
(c̃mz + α(1)

mz)M(1)
z , (c̄mz + α(2)

mz)M(1)
z ,

(c̃mz + α(1)
mz)M(2)

z , (c̄mz + α(2)
mz)M(2)

z

}
,

Φ2
m =

l∑
z=1

max
{
(d̃mz + β(1)

mz)M(1)
z , (d̄mz + β(2)

mz)M(1)
z ,

(d̃mz + β(1)
mz)M(2)

z , (d̄mz + β(2)
mz)M(2)

z

}
,

Γ1
m =

l∑
z=1,z,m

min
{
(c̃mz + α(1)

mz)M(1)
z , (c̄mz + α(2)

mz)M(1)
z ,

(c̃mz + α(1)
mz)M(2)

z , (c̄mz + α(2)
mz)M(2)

z

}
,

Γ2
m =

l∑
z=1

min
{
(d̃mz + β(1)

mz)M(1)
z , (d̄mz + β(2)

mz)M(1)
z ,

(d̃mz + β(1)
mz)M(2)

z , (d̄mz + β(2)
mz)M(2)

z

}
.

Proof :
1) First, we take an arbitrary region Θ̄1 from Θ1 and define the following function.

hm(pm(t)) = −bm pm(t) + [c∗mm(pm(t)) + ∆cmm(t)] fm(pm(t)) +
l∑

z=1,z,m
[c∗mz(pm(t))

+∆cmz(t)] fz(pz(t)) +
l∑

z=1
[d∗mz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) + Im, m = 1, 2, . . . , l,

Denote t(0) = max
1≤m,z≤l

{t∗mz}. Then for t ∈ [t(0),+∞), we can rewrite the function hm(pm(t)) as follows.

hm(pm(t)) = −bm pm(t) + [c∗mm(pm(t)) + αmm] fm(pm(t)) +
l∑

z=1,z,m
[c∗mz(pm(t))

+αmz] fz(pz(t)) +
l∑

z=1
[d∗mz(pm(t)) + βmz] fz(pz(t − τmz(t))) + Im, m = 1, 2, . . . , l,

When pm(t) = Q j
m or pm(t) = U j

m, we have

hm(Q j
m) = −bmQ j

m + [c∗mm(Q j
m) + αmm] fm(Q j

m) +
l∑

z=1,z,m
[c∗mz(Q

j
m) + αmz] fz(pz(t))

+
l∑

z=1
[d∗mz(Q

j
m) + βmz] fz(pz(t − τmz(t))) + Im

≤ −bmQ j
m + max{c̃mm fm(Q j

m), c̄mm fm(Q j
m)}

+ max{α(1)
mm fm(Q j

m), α(2)
mm fm(Q j

m)} + Φ1
m + Φ2

m + Im < 0,

and

hm(U j
m) = −bmU j

m + [c∗mm(U j
m) + αmm] fm(U j

m) +
l∑

z=1,z,m
[c∗mz(U

j
m) + αmz] fz(pz(t))

+
l∑

z=1
[d∗mz(U

j
m) + βmz] fz(pz(t − τmz(t))) + Im

≥ −bmU j
m + min{c̃mm fm(U j

m), c̄mm fm(U j
m)}

+ min{α(1)
mm fm(U j

m), α(2)
mm fm(U j

m)} + Γ1
m + Γ2

m + Im > 0,

j = 0, 1, . . . ,w. Because of the continuity of hm(z), there exists at least a point p̃m ∈ [U j
m,Q

j+1
m ], such that hm( p̃m) = 0,

where j = 0, 1, . . . ,w − 1. Moreover, combining with assumptions 1 and 2, we can obtain lim
z→−∞

hm(z) = +∞ and

lim
z→+∞

hm(z) = −∞. Thus, there exists at least a point p̃m ∈ (−∞,Q0
m], such that hm( p̃m) = 0. And there exists at least a
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point p̃m ∈ [Uw
m,+∞), such that hm( p̃m) = 0. As the subset Θ1 consists of (w + 2)l parts, we can get that there exist at

least (w + 2)l equilibrium points for the perturbed MCGNN system (2) in<l.
2) We set that pm(t) is the solution of the perturbed MCGNN system (2) with initial condition Υ

(1)
m (s) ∈ Θ̄1,

s ∈ [−τ, 0], then we assert pm(t) ∈ Θ̄1 for any t ≥ 0. If it is false, there exists t0 > 0 so that pm(t0) = Q j
m, ṗm(t)|t=t0 > 0

or pm(t0) = U j
m, ṗm(t)|t=t0 < 0. In fact, when pm(t0) = Q j

m, we have ṗm(t)|t=t0 ≤ am(Q j
m)K1 < 0. Moreover, we can

obtain ṗm(t)|t=t0 ≥ am(U j
m)K2 > 0 when pm(t0) = U j

m. So, it is contradictory. Therefore, Θ1 is a positive invariant set.
3) Denote a function as follows

κk(v) = bka(1)
k − v −

l∑
z=1

(ĉkz + α̂kz)L(1)
z a(2)

z − evτ
l∑

z=1

(
d̂kz + β̂kz

)
L(1)

z a(2)
z

it is clear that κk(0) > 0, and there exists a sufficiently small positive constant β, such that κk(β) > 0, k = 1, 2, . . . , l.
Let p(t) = (p1(t), p2(t), . . . , pl(t))T be the solution of the disturbed MCGNN system (2) with initial condition

Υ
(1)
m (s) ∈ Θ̄1 and gm(t) = qm(t) − q#

m, where qm(t) = rm(pm(t)), q#
m = rm(p#

m). By the set-valued maps theory, we can
have

ġm(t) ∈ −bm[r−1
m (qm(t)) − r−1

m (q#
m)] +

l∑
z=1

[co[cmz(r−1
m (qm(t)))] + ∆cmz(t)] fz(r−1

z (qz(t)))

−
l∑

z=1
[co[cmz(r−1

m (q#
m))] + ∆cmz(t)] fz(r−1

z (q#
z )) +

l∑
z=1

[co[dmz(r−1
m (qm(t)))] + ∆dmz(t)]

× fz(r−1
z (qz(t − τmz(t)))) −

l∑
z=1

[co[dmz(r−1
m (q#

m))] + ∆dmz(t)] fz(r−1
z (q#

z )), m = 1, 2, . . . , l.

From Lemma 1, we can obtain∣∣∣co[cmz(r−1
m (qm(t)))] fz(r−1

z (qz(t))) − co[cmz(r−1
m (q#

m))] fz(r−1
z (q#

z ))
∣∣∣

≤ ĉmzL
(1)
z

∣∣∣r−1
z (qz(t)) − r−1

z (q#
z )
∣∣∣ ≤ ĉmzL

(1)
z a(2)

m |gm(t)| ,

and ∣∣∣co[dmz(r−1
m (qm(t)))] fz(r−1

m (qm(t − τmz(t)))) − co[cmz(r−1
m (q#

m))] fz(r−1
z (q#

z ))
∣∣∣

≤ d̂mzL
(1)
z

∣∣∣r−1
m (qm(t − τmz(t))) − r−1

z (q#
z )
∣∣∣ ≤ d̂mzL

(1)
z a(2)

m |gm(t − τmz(t)))| .

Let xm(t) = eβt |gm(t)| and ` = max
1≤m≤l

{∣∣∣qm(0) − q#
m

∣∣∣}. We can obtain xm(0) ≤ ` for any m = 1, 2, . . . , l. Then we will

prove the following inequality
xm(t) ≤ `, t > 0,m = 1, 2, . . . , l. (9)

Supposing (9) is invalid, then we can find a k ∈ {1, 2, . . . , l} and t1 for the first time xk(t1) = `, ẋk(t1) > 0, xk(t) ≤ `,
t ∈ [0, t1); x j(t) ≤ `, t ∈ [0, t1], j = 1, 2, . . . , l, j , k.

dxk(t)
dt

∣∣∣∣∣
t=t1

= βxk(t1) + eβt1 sign(gk(t1))
dgk(t)

dt

∣∣∣∣∣
t=t1

Because d
dqm(t) r

−1
m (qm(t)) = am(pm(t)) > 0, we can obtain that

sign(gm(t1))[bmr−1
m (qm(t1)) − bmr−1

m (q#
m)]

= bm

∣∣∣r−1
m (qm(t1)) − r−1

m (q#
m)

∣∣∣ .
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Then,

dxk(t)
dt

∣∣∣
t=t1
≤ βxk(t1) + eβt1

{
−bk

∣∣∣r−1
k (qk(t1)) − r−1

k (q#
k)
∣∣∣ +

l∑
z=1

ĉkzL
(1)
z a(2)

z |gz(t1)|

+
l∑

z=1
α̂kzL

(1)
z a(2)

z |gz(t1)| +
l∑

z=1
d̂kzL

(1)
z a(2)

z |gz(t1 − τkz(t1))| +
l∑

z=1
β̂kzL

(1)
z a(2)

z |gz(t1 − τkz(t1))|
}

≤ βxk(t1) + eβt1

{(
−bka(1)

k +
l∑

z=1
(ĉkz + α̂kz)L

(1)
z a(2)

z

)
|gz(t1)| +

l∑
z=1

(
d̂kz + β̂kz

)
L(1)

z a(2)
z |gz(t1 − τkz(t1))|

}
≤

(
β − bka(1)

k +
l∑

z=1
(ĉkz + α̂kz)L

(1)
z a(2)

z

)
xk(t1) + eβτ

l∑
z=1

(
d̂kz + β̂kz

)
L(1)

z a(2)
z xk(t1 − τkz(t1))

≤

(
β − bka(1)

k +
l∑

z=1
(ĉkz + α̂kz)L

(1)
z a(2)

z + eβτ
l∑

z=1

(
d̂kz + β̂kz

)
L(1)

z a(2)
z

)
×max1≤m≤l

{∣∣∣qm(0) − q#
m

∣∣∣} < 0

So, we can have
xm(t) = eβt |qm(t) − q#

m| ≤
∣∣∣qm(0) − q#

m

∣∣∣ ,
then

eβt

a(2)
m

|pm(t) − p#
m| ≤

1

a(1)
m

∣∣∣pm(0) − p#
m

∣∣∣ .
Accordingly, we obtain

|pm(t) − p#
m| ≤

a(2)
m

a(1)
m

∣∣∣pm(0) − p#
m

∣∣∣ e−βt.

So, ∥∥∥p(t) − p#
∥∥∥ ≤ α ∥∥∥Υ(1) − p#

∥∥∥ e−βt

where α = max
1≤m≤l

{
a(2)

m

a(1)
m

}
.

Therefore, the equilibrium point p# = (p#
1, p#

2, . . . , p#
l )T of MCGNN (2) is exponentially stable. Further, the

perturbed MCGNN system (2) can have at least (w + 2)l exponentially stable equilibrium points in <l. The proof is
finished.

Remark 2: Multistability of system means that the system possesses multiple stable states, such as multiple stable
equilibrium points [34-37] and multiple stable periodic orbits [38, 41]. This paper mainly investigates multiple stable
equilibrium points of MCGNNs and further achieves that these equilibrium points are exponentially stable. The
process of proof of Theorem 1 (and Theorem 2) can be simplified as follows. Firstly, this MCGNN system acquires
multiple equilibrium points using fixed point theorem, which is represented in the step 1) of the proof for Theorem
1 (and Theorem 2). Then applying contradictory method, a positive invariant set can be obtained, namely, these
equilibrium points will locate in the positive invariant set all the while. This is shown in the step 2) of the proof for
Theorem 1 (and Theorem 2). Finally, we use set-valued maps theory and differential inequality method to prove that
these equilibrium points are exponentially stable, which is provided in the step 3) of the proof for Theorem 1 (and
Theorem 2).

Remark 3: From the conditions of Theorem 1, assumptions 1-4 are needed, which seems conservative. However,
these assumptions are necessary and laconic. Firstly, amplification function am(pm(t)) of assumption 1 is used to
decide which region stable equilibrium points locate in. When am(pm(t)) is positive (or negative), stable equilibrium
points locate in odd-sequence (or even-sequence) regions. Moreover, to achieve that equilibrium points are exponen-
tial stable, namely, to achieve the step 3) of the proof for Theorem 1, assumption 2 is applied. In addition, assumption
3 on activation function is essential of Lemma 1. Finally, due to instability being induced easily by parameter per-
turbations of network systems, assumption 4 gives some constraint conditions of stochastic parameter perturbations
to achieve the multistability of MCGNNs. The similar analysis for the assumptions of Theorem 2 and corollaries 1-2
can be obtained. Therefore, these assumptions in theorems and corollaries are very necessary.
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Remark 4: In [30-32, 34, 35, 47], the multistability of system was realized under the strict condition that the
activation function is piecewise linear. In this paper, this strict condition is discarded in the Theorem 1. Our analyt-
ical derivations in the above and the first example to be presented in the following demonstrate the validity of our
conditions. Therefore, compared with these existing results, our result is less conservative.

We assume that activation function is piecewise linear which is represented as

fm(s) =



M(1)
m , s ∈ (−∞,Q0

m]
γ0

ms + u0
m, s ∈ (Q0

m,U
0
m)

υ0
ms + n0

m, s ∈ [U0
m,Q

1
m]

...
...

γw
ms + uw

m, s ∈ (Qw
m,U

w
m)

M(2)
m , s ∈ [Uw

m,+∞)

, (10)

where γ j
m, u j

m for j = 0, 1, . . . ,w, υ j
m, n j

m for j = 0, 1, . . . ,w − 1, are constants; γ j
m > 0, υ j

m < 0; min{ fm(s)} = M(1)
m and

max{ fm(s)} = M(2)
m . Then, we can have the following corollary.

Corollary 1: The perturbed MCGNN system (2) has at least (w + 2)l exponentially stable equilibrium points in<l

and Θ1 is a positive invariant set, if fm(±χm) = 0, assumptions 1, 2, 4 and the conditions (6), (7), and

bma(1)
m −

l∑
z=1

(ĉmz + α̂mz)Lmax
z a(2)

z −

l∑
z=1

(
d̂mz + β̂mz

)
Lmax

z a(2)
z > 0, (11)

hold, where Lmax
z = max

{∣∣∣υ0
z

∣∣∣ , ∣∣∣υ1
z

∣∣∣ , . . . , ∣∣∣υw−1
z

∣∣∣}.
If amplification function am(pm(t)) is negative, namely, it satisfies the condition of assumption 5, we can obtain

Theorem 2.
Assumption 5: Amplification function am(pm(t)) is continuous, and there exist two negative constants a(3)

m and a(4)
m ,

such that a(3)
m ≤ am(x) ≤ a(4)

m < 0 for ∀x ∈ <.
Theorem 2: The perturbed MCGNN system (2) has at least (w + 1)l exponentially stable equilibrium points in<l

and Θ2 is a positive invariant set, if fm(±χm) = 0, assumptions 2-5, the conditions (6), (7), and

−|bm|a(4)
m +

l∑
z=1

(ĉmz + α̂mz)L(2)
z a(3)

z +

l∑
z=1

(
d̂mz + β̂mz

)
L(2)

z a(3)
z > 0 (12)

hold.
Proof :
1) First, we take an arbitrary region Θ̄2 from Θ2.
Amplification function am(pm(t)) is negative in the light of the assumption 5, so we can rewrite the perturbed

MCGNN system (2) as follows.

ṗm(t) = −am(pm(t))
{

bm pm(t) −
l∑

z=1
[c∗mz(pm(t)) + ∆cmz(t)] fz(pz(t))

−
l∑

z=1
[d∗mz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) − Im

}
, m = 1, 2, . . . , l,

(13)

We define the following function.

Gm(pm(t)) = −hm(pm(t))
= bm pm(t) − [c∗mm(pm(t)) + ∆cmm(t)] fm(pm(t))

−
l∑

z=1,z,m
[c∗mz(pm(t)) + ∆cmz(t)] fz(pz(t))

−
l∑

z=1
[d∗mz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) − Im, m = 1, 2, . . . , l,

(14)
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Combining with −am(pm(t)) > 0, systems (14) and (2) have the same number of equilibrium points.
Denote t(0) = max

1≤m,z≤l
{t∗mz}. Then for t ∈ [t(0),+∞), we can rewrite the function Gm(pm(t)) as follows.

Gm(pm(t)) = −hm(pm(t)) = bm pm(t) − [c∗mm(pm(t))

+αmm] fm(pm(t)) −
l∑

z=1,z,m
[c∗mz(pm(t)) + αmz] fz(pz(t))

−
l∑

z=1
[d∗mz(pm(t)) + βmz] fz(pz(t − τmz(t))) − Im,

When pm(t) = Q j
m or pm(t) = U j

m, we have

Gm(Q j
m) = −hm(Q j

m) = bmQ j
m − [c∗mm(Q j

m) + αmm]

× fm(Q j
m) −

l∑
z=1,z,m

[c∗mz(Q
j
m) + αmz] fz(pz(t))

−
l∑

z=1
[d∗mz(Q

j
m) + βmz] fz(pz(t − τmz(t))) − Im

≥ bmQ j
m −max{c̃mm fm(Q j

m), c̄mm fm(Q j
m)}

−max{α(1)
mm fm(Q j

m), α(2)
mm fm(Q j

m)}
−Φ1

m − Φ2
m − Im > 0,

and
Gm(U j

m) = −hm(U j
m) = bmU j

m − [c∗mm(U j
m) + αmm]

× fm(U j
m) −

l∑
z=1,z,m

[c∗mz(U
j
m) + αmz] fz(pz(t))

−
l∑

z=1
[d∗mz(U

j
m) + βmz] fz(pz(t − τmz(t))) − Im

≤ bmU j
m −min{c̃mm fm(U j

m), c̄mm fm(U j
m)}

−min{α(1)
mm fm(U j

m), α(2)
mm fm(U j

m)}
−Γ1

m − Γ2
m − Im < 0,

j = 0, 1, . . . ,w. Using the continuity of Gm(z), there exists at least a point p̃m ∈ [Q j
m,U

j
m], such that Gm( p̃m) = 0,

where j = 0, 1, . . . ,w. As the subset Θ2 consists of (w + 1)l parts, we can obtain that there exist at least (w + 1)l

equilibrium points for the perturbed MCGNN system (2) in<l.
2) If pm(t) is the solution of the perturbed MCGNN system (2) with the corresponding initial condition Υ

(1)
m (s) ∈

Θ̄2, s ∈ [−τ, 0], we can assert pm(t) ∈ Θ̄2 for any t ≥ 0. If it is false, there exists t0 > 0 so that pm(t0) = Q j
m, ṗm(t)|t=t0 <

0 or pm(t0) = U j
m, ṗm(t)|t=t0 > 0, j ∈ {0, 1, . . . ,w}. However, when pm(t0) = Q j

m, we have ṗm(t)|t=t0 ≥ −am(Q j
m)(−K1) >

0. Similarly, we can obtain ṗm(t)|t=t0 ≤ −am(U j
m)(−K2) < 0 when pm(t0) = U j

m. So, it is contradictory. Thus, Θ2 is a
positive invariant set.

3) Denote a function as follows

κk(v) = −|bk |a
(4)
k − v +

l∑
z=1

(ĉkz + α̂kz)Lza(3)
z + evτ

l∑
z=1

(
d̂kz + β̂kz

)
Lza(3)

z ,

it is clear that κk(0) > 0, and there exists a sufficiently small positive constant β, such that κk(β) > 0, k = 1, 2, . . . , l.
Let p(t) = (p1(t), p2(t), . . . , pl(t))T be the solution of the disturbed MCGNN system (2) with initial condition

Υ(1) = (Υ(1)
1 (s),Υ(1)

2 (s), . . . ,Υ(1)
l (s))T and gm(t) = qm(t) − q#

m, where qm(t) = rm(pm(t)), q#
m = rm(p#

m).
From Lemma 1, we can obtain∣∣∣co[cmz(r−1

m (qm(t)))] fz(r−1
z (qz(t))) − co[cmz(r−1

m (q#
m))] fz(r−1

z (q#
z ))

∣∣∣
≤ ĉmzL

(2)
z

∣∣∣r−1
z (qz(t)) − r−1

z (q#
z )
∣∣∣ ≤ −ĉmzL

(2)
z a(3)

m |gm(t)| ,

and ∣∣∣co[dmz(r−1
m (qm(t)))] fz(r−1

m (qm(t − τmz(t)))) − co[cmz(r−1
m (q#

m))] fz(r−1
z (q#

z ))
∣∣∣

≤ d̂mzL
(2)
z

∣∣∣r−1
m (qm(t − τmz(t))) − r−1

z (q#
z )
∣∣∣ ≤ −d̂mzL

(2)
z a(3)

m |gm(t − τmz(t)))| .
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Let xm(t) = eβt |gm(t)| and ` = max
1≤m≤l

{∣∣∣qm(0) − q#
m

∣∣∣}. We can have xm(0) ≤ ` for any m = 1, 2, . . . , l. Then we will

prove the following inequality
xm(t) ≤ `, t > 0,m = 1, 2, . . . , l. (15)

Supposing (15) is invalid, then we can find a k ∈ {1, 2, . . . , l} and t1 for the first time xk(t1) = `, ẋk(t1) > 0, xk(t) ≤ `,
t ∈ [0, t1); x j(t) ≤ `, t ∈ [0, t1], j = 1, 2, . . . , l, j , k.

dxk(t)
dt

∣∣∣∣∣
t=t1

= βxk(t1) + eβt1 sign(gk(t1))
dgk(t)

dt

∣∣∣∣∣
t=t1

Because d
dqm(t) r

−1
m (qm(t)) = am(pm(t)) < 0, we have

−sign(gm(t1))[bmr−1
m (qm(t1)) − bmr−1

m (q#
m)]

= bmsign(r−1
m (qm(t1)) − r−1

m (q#
m))[r−1

m (qm(t1)) − r−1
m (q#

m)]
= −|bm|

∣∣∣r−1
m (qm(t1))) − r−1

m (q#
m)

∣∣∣
≤ |bm|a

(4)
m

∣∣∣qm(t1) − q#
m

∣∣∣ .
Then,

dxk(t)
dt

∣∣∣
t=t1
≤ βxk(t1) + eβt1

{
−bksign(gk(t1))(

r−1
k (qk(t1)) − r−1

k (q#
k)
)
−

l∑
z=1

ĉkzL
(2)
z a(3)

z |gz(t1)|

−
l∑

z=1
α̂kzL

(2)
z a(3)

z |gz(t1)| −
l∑

z=1
d̂kzL

(2)
z a(3)

z

× |gz(t1 − τkz(t1))| −
l∑

z=1
β̂kzL

(2)
z a(3)

z |gz(t1 − τkz(t1))|
}

≤

(
β + |bk |a

(4)
k −

l∑
z=1

(ĉkz + α̂kz)L
(2)
z a(3)

z

)
xk(t1)

−eβτ
l∑

z=1

(
d̂kz + β̂kz

)
L(2)

z a(3)
z xk(t1 − τkz(t1))

≤

(
β + |bk |a

(4)
k −

l∑
z=1

(ĉkz + α̂kz)L
(2)
z a(3)

z

−eβτ
l∑

z=1

(
d̂kz + β̂kz

)
L(2)

z a(3)
z

)
×max1≤m≤l

{∣∣∣qm(0) − q#
m

∣∣∣} < 0

So,
xm(t) = eβt |gm(t)| ≤

∣∣∣qm(0) − q#
m

∣∣∣ ,
that is

−
eβt

a(3)
m

|pm(t) − p#
m| ≤ −

1

a(4)
m

∣∣∣pm(0) − p#
m

∣∣∣
Accordingly, we obtain

|pm(t) − p#
m| ≤

a(3)
m

a(4)
m

∣∣∣pm(0) − p#
m

∣∣∣ e−βt.

Thus, ∥∥∥p(t) − p#
∥∥∥ ≤ α ∥∥∥Υ(1) − p#

∥∥∥ e−βt

where α = max
1≤m≤l

{
a(3)

m

a(4)
m

}
.

Therefore, the equilibrium point p# = (p#
1, p#

2, . . ., p#
l )T of MCGNN (2) is exponentially stable. Further, the

perturbed MCGNN system (2) can have at least (w + 1)l exponentially stable equilibrium points in <l. The proof is
finished.
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If activation function is piecewise linear as in (10), we can have the following corollary.
Corollary 2: The perturbed MCGNN system (2) has at least (w + 1)l exponentially stable equilibrium points in<l

and Θ2 is a positive invariant set, if fm(±χm) = 0, assumptions 2, 4, 5 and the conditions (6), (7), and

−|bm|a(4)
m +

l∑
z=1

(ĉmz + α̂mz)lmax
z a(3)

z +

l∑
z=1

(
d̂mz + β̂mz

)
lmax
z a(3)

z > 0 (16)

hold, where lmax
z = max

{
γ0

z , γ
1
z , . . . , γ

w
z

}
.

Remark 5: In the past few years, the multistability problem of MNNs has been widely investigated. However,
the ranges in which stable equilibrium points of MNNs locate are limited to the odd-sequence regions (i.e. odd-
sequence positive invariant regions) [27-32, 34]. In this paper, we investigate that these stable equilibrium points
can locate in the even-sequence regions (i.e. even-sequence positive invariant regions). Take a MCGNN system with
p(t) = (p1(t), p2(t))T as an example. The existing results showed that the ranges in which stable equilibrium points
of MNNs locate are the odd-sequence rectangular regions marked with yellow color in Fig. 1. In this paper, we have
found that these stable equilibrium points can locate in the even-sequence rectangular regions marked with red color
in Fig. 1. More specifically, the odd-sequence rectangular regions and even-sequence rectangular regions shown in
Fig. 1 are represented as Θ1 and Θ2, respectively.

Θ1 =

{
2∏

m=1
(−∞,Q0

m]ε
1
m × (Q0

m,U
0
m)0
× [U0

m,Q
1
m]ε

2
m

× · · · × (Qw
m,U

w
m)0 × [Uw

m,+∞)ε
w+2
m |

(ε1
m, ε

2
m, . . . , ε

w+2
m ) = (1, 0, . . . , 0)or

(0, 1, . . . , 0)or . . . or(0, 0, . . . , 1)} ,

and

Θ2 =

{
2∏

m=1
(−∞,Q0

m]0
× (Q0

m,U
0
m)ε

1
m × [U0

m,Q
1
m]0

× · · · × (Qw
m,U

w
m)ε

w+1
m × [Uw

m,+∞)0|

(ε1
m, ε

2
m, . . . , ε

w+1
m ) = (1, 0, . . . , 0)or

(0, 1, . . . , 0)or . . . or(0, 0, . . . , 1)} .

Therefore, the obtained result is an important supplement to the previous research results, and extends the existing
results [27-32, 34].
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Figure 1: The rectangular regions in which stable equilibrium points of p(t) = (p1(t), p2(t))T locate. The odd-sequence rectangular regions are
marked with yellow color, and the even-sequence rectangular regions are marked with red color.

Remark 6: In this paper, some comparisons with the previous works [34-37] are given in Table 1. We make
comparisons from four aspects: activation function; the number of stable equilibrium points; regions of stable equilib-
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Table 1: Some comparisons with the previous works [34-37].

Paper AF Number Region Anti-interference

[34] piecewise linear 2l odd-sequence No
[35] piecewise linear 3l odd-sequence No
[36] piecewise linear 3l odd-sequence No
[37] piecewise nonlinear 34l odd-sequence No

This paper piecewise nonlinear (w + 2)l or (w + 1)l odd-sequence or even-sequence Yes

rium points and anti-interference performance. For convenience, activation function, the number of stable equilibrium
points, regions of stable equilibrium points and anti-interference performance are simplified as AF, Number, Region
and Anti-interference, respectively. Then we can obtain the following advantages of multistability of MCGNNs with
stochastic parameter perturbations: 1) The conditions for activation function of this paper are more flexible; 2) The
MCGNN system possesses more equilibrium points; 3) The stable equilibrium points of MCGNNs can be flexibly
located in the odd-sequence or the even-sequence regions; 4) The obtained results are robust against perturbations.

Remark 7: Currently, some works on multistability of NNs including MCGNNs without the effects of parameter
perturbations have been investigated [23-40]. However, some unpredictable factors may lead to parameter perturba-
tions randomly changing along with time. What is more, parameter perturbations of NNs may lead to instability and
some unpredictable influence for the systems. Therefore, the aim of this paper is to derive some sufficient conditions
to guarantee the exponential multistability of MCGNNs under stochastic parameter perturbations.

Remark 8: There exist three main technical difficulties to investigate the exponential multistability of MCGNNs
with stochastic parameter perturbations, which are presented as follows.

1. It is complicated and inconvenient to analyze MCGNN system (3) due to the amplification function am(pm(t)).
Moreover, it is difficult to simplify system (3) into system (5). This paper uses derivative theorem of inverse function
to eliminate the amplification function am(pm(t)), such that MCGNN system (3) can be simplified into system (5).

2. It is very hard to give sufficient conditions of theorems and corollaries to achieve the exponential multistability
of MCGNNs. Firstly, fixed point theorem is used to acquire multiple equilibrium points, for example, the steps 1)
and 2) of the proof of the Theorem 1. Then, set-valued maps theory and differential inequality method are applied to
prove that these equilibrium points are exponentially stable, for example, the step 3) of the proof of Theorem 1.

3. Stochastic parameter perturbations easily lead to instability of system and increase difficulty in giving sufficient
conditions for exponential multistability of MCGNNs. Therefore, we present assumption 4 to solve the difficulty in
Theorem 1 and Theorem 2.

4. Numerical simulation

In this section, we provide two examples to verify the validity of the obtained results.
Example 1. Consider a MCGNN system with stochastic parameter perturbations as

ṗm(t) = am(pm(t))
{
−bm pm(t) +

2∑
z=1

[cmz(pm(t)) + ∆cmz(t)] fz(pz(t))

+
2∑

z=1
[dmz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) + Im

}
, m = 1, 2,

(17)

where a1(p1(t)) = 1 + 0.03 tanh(p1(t)), a2(p2(t)) = 1.01 + 0.01 tanh(p2(t)),

c11(p1(t)) =

{
4.42, |p1(t)| ≤ 3.6,
4.58, |p1(t)| > 3.6,

c22(p2(t)) =

{
4.65, |p2(t)| ≤ 3.6,
3.96, |p2(t)| > 3.6,

d11(p1(t)) =

{
0.02, |p1(t)| ≤ 3.6,
0.15, |p1(t)| > 3.6,
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d22(p2(t)) =

{
0.16, |p2(t)| ≤ 3.6,
0.21, |p2(t)| > 3.6,

cmz = 0, dmz = 0, m , z; input I1 = I2 = 2, τmz(t) = 0.1, ∆c12(p1(t)) = ∆c21(p2(t)) = 0,

∆c11(t) =

{
−0.1 + 0.02t, t ∈ [0, 8);

0.06, t ∈ [8,+∞);

∆c22(p2(t)) =

{
0.04 + 0.015 tanh(t − 6.6), t ∈ [0, 6.6);

0.04, t ∈ [6.6,+∞);

∆dmz(pm(t)) = 0, bm = 2, m, z = 1, 2.
The activation function fz(r), z = 1, 2, is denoted by

fz(r) =


−4 + 0.02 sin(r + 4), r ∈ (−∞,−4],
10(r + 3.6), r ∈ (−4,−3.6),
− 2

7 r − 36
35 , r ∈ [−3.6, 3.4],

10(r − 3.6), r ∈ (3.4, 4),
4, r ∈ [4,+∞).

We can find fz(±3.6) = 0, and L(1)
z = 2

7 , z = 1, 2. Through simple calculation, we can obtain that the conditions
of Theorem 1 are satisfied. Therefore, there exist at least 9 exponentially stable equilibrium points for the perturbed
MCGNN (17) in the Θ∗1 and Θ∗1 is a positive invariant set, where

Θ∗1 =

{
2∏

m=1
(−∞,−4]ε

1
m × (−4,−3.6)0 × [−3.6, 3.4]ε

2
m × (3.4, 4)0 × [4,+∞)ε

3
m |

(ε1
m, ε

2
m, ε

3
m) = (1, 0, 0)or(0, 1, 0)or(0, 0, 1)

}
.

The state trajectories of p1(t) and p2(t) of the perturbed MCGNN (17) are traced with 270 initial values located
in the Θ∗1, and the simulation results are shown in Fig. 2. From Fig. 2, there exist at least 9 exponentially stable
equilibrium points in the Θ∗1, that is odd-sequence rectangular regions marked with yellow color. Figs. 3-5 shows the
trajectories of p1(t) and p2(t) along with time t.
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Figure 2: The trajectories of p1(t) and p2(t) with positive am(pm(t)). There exist at least 9 exponentially stable equilibrium points in the odd-
sequence rectangular regions marked with yellow color.

Example 2. Consider another MCGNN system with stochastic parameter perturbations as

ṗm(t) = am(pm(t))
{
−bm(pm(t)) +

2∑
z=1

[cmz(pm(t)) + ∆cmz(t)] fz(pz(t))

+
2∑

z=1
[dmz(pm(t)) + ∆dmz(t)] fz(pz(t − τmz(t))) + Im

}
, m = 1, 2,

(18)
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Figure 3: The trajectories of p1(t) and p2(t) along with time t in Example 1. There exist at least 9 trajectories of p1(t) and p2(t) that converge to 9
stable equilibrium points along with time t.
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Figure 4: The trajectories of p1(t) along with time t in Example 1. There exist at least 3 trajectories of p1(t) that converge to 3 stable equilibrium
states along with time t.
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Figure 5: The trajectories of p2(t) along with time t in Example 1. There exist at least 3 trajectories of p2(t) that converge to 3 stable equilibrium
states along with time t.
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where a1(p1(t)) = −1 + 0.03 tanh(p1(t)), a2(p2(t)) = −1.02 − 0.01 tanh(p2(t)),

c11(p1(t)) =

{
9.85, |p1(t)| ≤ 0.7,
10.2, |p1(t)| > 0.7,

c22(p2(t)) =

{
9.96, |p2(t)| ≤ 0.7,
10.12, |p2(t)| > 0.7,

d11(p1(t)) =

{
0.01, |p1(t)| ≤ 0.7,
0.05, |p1(t)| > 0.7,

d22(p2(t)) =

{
0.09, |p2(t)| ≤ 0.7,
0.18, |p2(t)| > 0.7,

input I1 = I2 = 0.5, τmz(t) = 0.1, ∆c12(p1(t)) = ∆c21(p2(t)) = 0,

∆c11(t) =

{
0.05 + 0.02 sin(t − 6), t ∈ [0, 6);

0.05, t ∈ [6,+∞);

∆c22(p2(t)) =

{
0.02 + 0.03 exp(t − 5.8), t ∈ [0, 5.8);

0.05, t ∈ [5.8,+∞);

∆dmz(pm(t)) = 0, bm = −10, m, z = 1, 2. The activation function fz(r), z = 1, 2, is denoted by

fz(r) =


−0.1 + 0.01 sin(r + 1), r ∈ (−∞,−1],
1
3 r + 0.7

3 , r ∈ (−1,−0.1),
−9r − 0.7, r ∈ [−0.1,−0.05],
1
3 r − 0.7

3 , r ∈ (−0.05, 1),
0.1 + 0.01 tanh(r − 1), r ∈ [1,+∞).

We can find fz(±0.7) = 0, and L(2)
z = 1

3 , z = 1, 2. Then the conditions of Theorem 2 are satisfied by simple
calculation. Therefore, there exist at least 4 exponentially stable equilibrium points for the perturbed MCGNN (18)
in the Θ∗2 and Θ∗2 is a positive invariant set, where

Θ∗2 =

{
2∏

m=1
(−∞,−1]0 × (−1,−0.1)ε

1
m × [−0.1,−0.05]0

×(−0.05, 1)ε
2
m × [1,+∞)0| (ε1

m, ε
2
m) = (1, 0)or(0, 1)

}
.

The state trajectories of p1(t) and p2(t) of the perturbed MCGNN (18) with 120 initial values located in the Θ∗2
are shown in Fig. 6. From Fig. 6, there exist at least 4 exponentially stable equilibrium points in the Θ∗2, that is
even-sequence rectangular regions marked with red color. Figs. 7-9 show the trajectories of p1(t) and p2(t) along with
time t.

5. Conclusions

This paper has investigated the multistability issue of MCGNNs with parameter perturbations. Since some unpre-
dictable factors of environment may result in stochastic parameter perturbations for MCGNNs, we have considered
the multistability of MCGNNs with stochastic parameter perturbations. We have derived some sufficient conditions to
achieve the exponential multistability of MCGNNs under the stochastic parameter perturbations. It has been shown in
this paper that the stable equilibrium points of system can be flexibly located in the odd-sequence or the even-sequence
regions. Therefore, the obtained result has extended the existing results in [23-40].

There usually exist some perturbations or disturbances in the circuit implementation of memristive neural network-
s. In this paper, multistability of MCGNN under stochastic parameter perturbations has been addressed. Actually, in
the future works, it is very challenge and meaningful to investigate stability or multistability of memristive neural
networks under some disturbances such as impulsive disturbance, uncertain disturbance. In addition, it would also
be a very interesting topic to study finite-time stability (or finite-time multistability) of MCGNNs with stochastic
parameter perturbations in the future.
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Figure 6: The trajectories of p1(t) and p2(t) with negative am(pm(t)). There exist at least 4 exponentially stable equilibrium points in the even-
sequence rectangular regions marked with red color.
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