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In brief

Demichev, Tober-Lau et al., present a

time-resolved molecular map of the

COVID-19, measuring plasma proteomes

of patients with COVID-19 along with an

extensive panel of clinical diagnostic

parameters at 687-time points. They

describe the specificity and dynamics, as

well as the predictive and prognostic

power of the molecular signatures in

COVID-19.
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SUMMARY
COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ
damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpa-
tients bymeasuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as
well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflam-
matory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair,
metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising
risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that
the machine learning models based on the proteome are transferable to an independent cohort. Our study
presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dy-
namics in an infectious disease.
INTRODUCTION

The coronavirus disease 2019 (COVID-19) has created unprece-

dented societal challenges, particularly for public health and the

global economy (Alwan et al., 2020; Blumenthal et al., 2020;

Rosenbaum, 2020). Efficient management of these challenges

is hampered by the variability of clinical manifestations, ranging
Cell Systems 12, 1–
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from asymptomatic infection with severe acute respiratory syn-

drome coronavirus-2 (SARS-CoV-2) to death, despite maximum

intensive care. Biomarkers and molecular signatures enabling

accurate prognosis of future disease courses are needed to opti-

mize resource allocation and personalize treatment strategies.

Patients likely to progress to severe disease and organ failure

and those likely to remain stable could be identified early, which
15, July 21, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1
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Judith Löffler-Ragg,19 Markus A. Keller,21 Ivan Tancevski,19 John F. Timms,11 Alexey Zaikin,8,11,14 Stefan Hippenstiel,4,24

Michael Ramharter,7 Martin Witzenrath,4,24 Norbert Suttorp,4,24 Kathryn Lilley,3 Michael M€ulleder,23 Leif Erik Sander,4,24

PA-COVID-19 Study group, Markus Ralser,1,2,28,* and Florian Kurth4,7

19Medical University of Innsbruck, Department of Internal Medicine II, 6020 Innsbruck, Austria
20Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, 6020

Innsbruck, Austria
21Medical University of Innsbruck, Institute of Human Genetics, 6020 Innsbruck, Austria
22Berlin Institute of Health, 10178 Berlin, Germany
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is particularly valuable in scenarios where health care systems

reach capacity limits. Prognostic panels would also optimize

the monitoring of novel treatments, thereby accelerating clinical

trials (Phua et al., 2020; Saxena, 2020; Wu et al., 2020). Knowl-

edge of factors that differentiate recovery from deterioration

throughout the disease will further enhance our understanding

of the inflammatory host response aswell as the underlying path-

ophysiology and provide new therapeutic targets.

A number of biomarkers that classify COVID-19 severity have

recently been described. These are based on clinical chemistry,

enzyme activities, immune profiling, single-cell sequencing, pro-

teomics, and metabolomics (D’Alessandro et al., 2020; Laing

et al., 2020; Liu et al., 2020b; Messner et al., 2020; Overmyer

et al., 2020; Schulte-Schrepping et al., 2020; Shen et al., 2020;

Shu et al., 2020; Wynants et al., 2020). As severity classifiers,

the molecular signatures recorded in blood, serum, plasma, or

immune cells characterize the COVID-19 pathology and host re-

sponses. Furthermore, markers of dysregulated coagulation,

inflammation, and other organ dysfunction have been estab-

lished as risk factors for severe illness, including low platelet

count, elevated levels of D-dimer, C-reactive protein (CRP),

interleukin 6 (IL-6), ferritin, troponin, and markers of kidney injury

(Danwang et al., 2020; Henry et al., 2020). Proteomic investiga-

tions that characterize the comprehensive host response have

revealed the activation of the complement cascade and acute

phase response, both of which center around IL-6-driven path-

ways. In turn, these systematic studies have revealed that other

common antiviral pathways, such as type I interferons (IFN), do

not dominate the early response to COVID-19, probably reflect-

ing evasion of the IFN system by SARS-CoV-2 and the subse-

quent activation of inflammatory cascades (Hadjadj et al.,

2020; Yang et al., 2020). Furthermore, proteomic data and diag-

nostic parameters have pointed to underlying pathological

mechanisms and possible therapeutic targets. For instance, us-

ing high-throughput proteomics, we reported a decline in plasma

levels of gelsolin (GSN) in patients with severe COVID-19 in a

previous study (Messner et al., 2020), and recombinant human
2 Cell Systems 12, 1–15, July 21, 2021
GSN is currently undergoing clinical testing for COVID-19 pneu-

monia in a phase II trial (ClinicalTrials.gov identifier:

NCT04358406).

The severity of the disease, and the biomarker signatures that

indicate severity, correlate with the outcome, but the highest

diagnostic need is to stratify within therapeutically homoge-

neous patients. For instance, to identify those among the mildly

affected individuals with the highest risk for deterioration, or

among themost severely affected, thosewith the highest chance

to respond positively to an augmentation of therapy. Predicting

future trajectories on an individualized basis would also help

accelerate therapeutic developments to judge the impact of

the treatment on an individual disease course. To obtain a

comprehensive picture of how the molecular COVID-19 pheno-

type develops over time, we deeply phenotyped a group of

139 COVID-19 inpatients at 687 sampling points. On the one

hand, we measured a compendium of 86 clinical parameters,

routine diagnostic markers, and clinically established risk scores

using gold standard accredited clinical tests. On the other hand,

we captured the patient’s molecular phenotype by measuring

plasma proteomes in an untargeted fashion. For this, we made

use of liquid chromatography coupled with tandem mass spec-

trometry, using a recently developed platform technology that

utilizes analytical flow rate chromatography, data-independent

acquisition mass spectrometry (SWATH-MS), and deep-neural

network-based data processing (Demichev et al., 2020;Messner

et al., 2020) (Figure S1). By combining the compendium of diag-

nostic parameters with the proteomes in a time- and patient-

resolved fashion, we obtained a comprehensive molecular pic-

ture that captures changes in the patient’s molecular phenotype

as they depend on the severity, age, and disease progression.

We identify prognostic biomarkers and depict their distinct tra-

jectories. We exemplify the power of our resource by showing

that the biomarker profiles and diagnostic parameters classify

treatment requirements, in particular, the need for mechanical

ventilation. Furthermore, we report the future prediction of re-

covery time in mildly ill patients as well as the individual risk of

http://ClinicalTrials.gov
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clinical deterioration. Our study demonstrates the predictability

of COVID-19 disease trajectories based on themolecular pheno-

type of the early disease stage.

RESULTS

Covariation of clinical diagnostic parameters and the
plasma proteome characterizes the host response to
COVID-19
We longitudinally phenotyped 139 patients admitted to Charité

University Hospital, Berlin, Germany, between March 01, 2020,

and June 30, 2020, due to PCR-confirmed SARS-CoV-2 infec-

tion (Figure S2). The patients exhibited highly variable disease

courses, graded according to the World Health Organization

(WHO) ordinal scale for clinical improvement (Table S1), which

reflects the treatment that the patient is receiving as a measure

of disease severity. The patients included in our study range

from WHO grade 3, which includes patients who require inpa-

tient care without supplemental oxygen therapy, to WHO grade

7, which includes patients with severe COVID-19 who require

invasive mechanical ventilation and additional organ support

therapies such as renal replacement therapy (RRT) and extracor-

poreal membrane oxygenation (ECMO) (WHO, 2020). In total, 23

out of 139 (17%) patients in theWHO grade 3 category were sta-

ble, without requiring supplemental oxygen therapy and could

be discharged after a median of 7 days of inpatient care (Table

S2 and Figure S2); 47 (34%) patients required either low-flow

or high-flow supplemental oxygen therapy; 69 (50%) patients

either presented with severe COVID-19 (WHO grade 6 or 7,

i.e., requiring invasive mechanical ventilation) or deteriorated

and required invasive mechanical ventilation during their hospi-

talization; 46 patients (33%) required RRT; and 22 (16%) were

treated with ECMO. A total of 20 (13%) patients died, including

three patients with do not intubate/do not resuscitate (DNI/

DNR) orders in place and one patient who died due to a non-

COVID-19-related cause. Common risk factors for severe

COVID-19 were reflected in the outcomes: patients with a severe

course of disease were older than those with mild disease (49

years [IQR 35–70] for WHO grade 3 versus 62 years [IQR 53–

72] for WHO grade 7, p = 0.02), and an age of 65 years or older

was associated with a higher risk of death -(OR 4.1 [95% CI 1.5–

11.5]). Our cohort further reflected that men and individuals with

a high BMI have an increased likelihood to be hospitalized upon

a COVID-19 infection; 68% of the patients were men, and the

median BMI was 27.8 (IQR 24.7–31.9). However, we noted that

within the group of patients hospitalized with COVID-19, sex

and BMI were not further associated with disease severity or

an increased risk of death. The median duration of hospitaliza-

tion was 20 days (IQR 9–48) and correlated with severity

(7 days for WHO grade 3 versus 46 days for WHO grade 7).

The median time from admission to death despite receiving

maximum treatment was 28 days (IQR 16–46).

To capture the diverse disease trajectories on a molecular and

biochemical level, we systematically collected 86 clinical and ac-

credited diagnostic parameters as measured with certified tests.

Moreover, we monitored the development of risk scores such as

the ‘‘sequential organ failure assessment’’ (SOFA) score, blood

gas analyses, blood cell counts, enzyme activities, and inflam-

mation biomarkers (Table S3). To complement these parameters
with an untargeted analysis, we employed a recently developed

high-throughput proteomics platform (Messner et al., 2020). This

platform makes use of the data-independent acquisition tech-

nique SWATH-MS (Gillet et al., 2012), a sample preparation pipe-

line designed to ISO13485 reporting standards, which is opti-

mized for reducing batch effects, high-flow rate

chromatography to provide highly consistent peptide separation

in large sample series, and uses DIA-NN (Data-Independent

Acquisition by Neural Networks) to analyze proteomics data re-

corded with 5-min chromatography (Messner et al., 2020; Demi-

chev et al., 2020) (Figure S1 for a detailed overview of the prote-

omic workflow). In total, we measured 1,169 plasma proteome

samples to determine 687 human proteomes, in which we quan-

tified 321 plasma protein groups. Owing to the nature of the high-

flow proteomics platform, data completeness was high; thus, we

decided against the use of imputation strategies in the analysis

of differential protein abundance. Total data completeness was

75%, with 200 proteins consistently quantified with 98%

completeness, and 189 proteins with 99% completeness

(Figure S1).

To identify interdependencies of the diagnostic parameters

that are routinely used in clinical decisionmaking and the plasma

proteomes, we characterized their covariation and present a

direct correlation map (Figures 1B and S3–S4; Tables S4, S5,

and S6). We report a robust positive or negative correlation of

IL-6 levels and other inflammatory markers (CRP, procalcitonin)

with acute phase proteins (APPs) (APOA2, APOE, CD14, CRP,

GSN, ITIH3, ITIH4, LYZ, SAA1, SAA2, SERPINA1, SERPINA3,

and AHSG; the protein names corresponding to the gene identi-

fiers are provided in Table S3), coagulation factors and related

proteins (FGA, FGB, FGG, F2, F12, KLKB1, PLG, and SER-

PINC1), and the complement system (C1R, C1S, C8A, C9,

CFB, CFD, and CFHR5). Our data, therefore, link the prominent

role of the IL-6 response in COVID-19 (D’Alessandro et al.,

2020) to coagulation and the complement cascade. Consis-

tently, in our data, markers of cardiac (troponin T, NT-proBNP)

and renal (creatinine, urea) function, as well as anemia and dys-

erythropoiesis (hemoglobin, hematocrit, erythrocytes, and red

blood cell distribution width) correlate with various APPs

(APOA2, APOE, CD14, GSN, LYZ, SAA1, SAA2, and SERPINA3;

Figure 1B and Table S4) supporting the role of inflammation in

COVID-19-related organ damage and its impact on

erythropoiesis.

Increased levels of neutrophils and the occurrence of imma-

ture granulocyte precursors as markers of emergency myelopoi-

esis have been linked to severe COVID-19 (Schulte-Schrepping

et al., 2020). Our data reveal covariation between neutrophil

counts and the levels of two inhibitors of neutrophil serine prote-

ases, SERPINA1 and SERPINA3 (Figure 1C). These two proteins

show the highest correlation (0.72 and 0.79 Spearman R,

respectively) with the neutrophil-to-lymphocyte ratio (NLR), a

prognostic marker for COVID-19 (Lian et al., 2020; Liu et al.,

2020a). We further report a strong correlation (Figure 1C) of alka-

line phosphatase and gamma-glutamyl transferase activities,

both characteristic of biliary disorders (Poynard and Imbert-Bis-

mut, 2012), with plasma levels of the polymeric immunoglobulin

receptor (PIGR). We notice that cholangiocytes (bile duct epithe-

lium cells) express ACE-2 and can be directly infected with

SARS-CoV-2 (Zhao et al., 2020), potentially leading to host viral
Cell Systems 12, 1–15, July 21, 2021 3



clinical parameters

cell counts
ELISA
enzyme activity assays

plasma samples +

Spearman R

−1 −0.5 0 0.5 1

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

● ● ● ● ● ●

●

● ●

● ●

●

● ● ●

● ●

● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ●

● ●

● ● ●

● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

PIGR
SERPINF1
CST3
CFD
B2M
LYZ
AGT
AMBP
SERPINA3
CD14
SAA1
SAA1;SAA2
C1S
C1R
ITIH4
ITIH3
S100A8
CRP
LBP
LRG1
SERPINA1
AZGP1
APOH
CD44
RBP4
CPB2
APOA4
SERPINA10
SAA2
CPN2
CPN1
CFHR5
FGG
FGA
FGB
APOE
APOB
APOC2
APOC3
KNG1
JCHAIN
ACTB;ACTG1
F10
LGALS3BP
TGFBI
MBL2
CP
MST1
C7
FCGBP
IGHAs
CFHR1
C1QA
C1QB
C1QC
IGLVs
VWF
LUM
ACTA2;ACTB;ACTG1;ACTG2
ACTBL2
C1RL
CFHR2
F9
MASP2
C9
S100A9
SERPING1
ORM1
ORM1;ORM2
CFB
C8G
C8B
C8A
F13B
IGLCs
IGHVs
IGKVs
C2
IGHD
F5
MASP1
FCGR3A
F11
BTD
IGHM
CD5L
APOC4
HABP2
IGHGs
IGLLs
IGKC
SERPINF2
SERPINA7
SERPINA6
CFH;CFHR1
CFI
C5
HP
HP;HPR
FBLN1
TFRC
SHBG
A1BG
A2M;PZP
A2M
ORM2
GC
FCN3
SERPINA4
CLU
FN1
FETUB
GPLD1
F12
LPA
AFM
HRG
ITIH2
ITIH1
TTR
APOC1
PRG4
CFH
C3
C6
VTN
THBS1
C4BPB
C4BPA
PROS1
ECM1
CFHR4
APCS
C4A;C4B
C4A
C4B
F13A1
SAA4
HGFAC
ALB
ATRN
PZP
HBD
HBA1
HBB
HBB;HBD
CA1
GPX3
PPBP
PF4
APOD
SERPINC1
TF
APOM
AHSG
PGLYRP2
HPR
APOL1
HPX
CLEC3B
GSN
APOA2
SERPIND1
PLG
PON1
CNDP1
SELL
CFP
F2
KLKB1
IGFALS
LCAT
APOA1

Pr
oc

al
cit

on
in

, μ
g/

l

N−
te

rm
in

al
 p

ro
 b

−t
yp

e 
Na

tri
ur

et
ic 

Pe
pt

id
e 

(N
T−

pr
oB

NP
), 

ng
/l

Cr
ea

tin
in

e,
 m

g/
dl

Im
m

at
ur

e 
gr

an
ul

oc
yt

es
, %

 o
f l

eu
ko

cy
te

s

Im
m

at
ur

e 
gr

an
ul

oc
yt

es
 p

er
 n

l

Re
d 

bl
oo

d 
ce

ll d
ist

rib
ut

io
n 

wi
dt

h 
(R

DW
−C

V)
, %

So
di

um
, m

m
ol

/l

Tr
op

on
in

 T
 H

S,
 n

g/
l

CR
P 

(c
lin

ica
l),

 m
g/

l

In
te

rle
uk

in
−6

, n
g/

l

Ne
ut

ro
ph

il−
to

−l
ym

ph
oc

yt
e 

ra
tio

Ne
ut

ro
ph

ils
, %

 o
f l

eu
ko

cy
te

s
pC

O
2,

 m
m

Hg
Ne

ut
ro

ph
il a

ct
ivi

ty

Bi
lir

ub
in

 (d
ire

ct
), 

m
g/

dl
Ch

lo
rid

e,
 m

m
ol

/l

Ca
rb

ox
yh

em
og

lo
bi

n 
(C

O
HB

), 
%

 o
f H

b

As
pa

rta
te

 a
m

in
ot

ra
ns

fe
ra

se
 (A

ST
), 

U/
l

Cr
ea

tin
e 

kin
as

e,
 U

/l

Al
an

in
e 

am
in

ot
ra

ns
fe

ra
se

 (A
LT

), 
U/

l
Ba

so
ph

ile
s 

pe
r n

l
M

on
oc

yt
es

 p
er

 n
l

Eo
sin

op
hi

le
s 

pe
r n

l

Al
ka

lin
e 

ph
os

ph
at

as
e,

 U
/l

D−
Di

m
er

, m
g/

l

La
ct

at
e 

de
hy

dr
og

en
as

e 
(L

DH
), 

U/
l

Fe
rri

tin
, u

g/
l

Bi
lir

ub
in

 (t
ot

al
), 

m
g/

dl
G

lu
co

se
, m

g/
dl

Ne
ut

ro
ph

ils
 p

er
 n

l
Le

uk
oc

yt
es

 p
er

 n
l

Po
ta

ss
iu

m
, m

m
ol

/l

M
ea

n 
co

rp
us

cu
la

r v
ol

um
e 

(M
CV

), 
fl

aP
TT

, s IN
R

Re
tic

ul
oc

yt
es

, %
 o

f e
ry

th
ro

cy
te

s

Re
tic

ul
oc

yt
es

 p
er

 n
l

M
ea

n 
pl

at
el

et
 v

ol
um

e,
 fl

Ur
ea

, m
g/

dl

G
am

m
a−

gl
ut

am
yl 

tra
ns

fe
ra

se
, U

/l

Tr
ig

lyc
er

id
es

, m
g/

dl
M

yo
gl

ob
in

, u
g/

l

Fi
br

in
og

en
 (c

lin
ica

l),
 g

/l

Ha
pt

og
lo

bi
n 

(c
lin

ica
l),

 g
/l

CD
16

9/
Si

gl
ec

−1
 a

nt
ig

en
s 

pe
r m

on
oc

yt
e

CD
16

9+
 m

on
oc

yt
es

, %
 o

f m
on

oc
yt

es

Er
yt

hr
oc

yt
es

 p
er

 p
l

He
m

at
oc

rit
 l/

l
He

m
og

lo
bi

n,
 g

/d
l

M
ea

n 
co

rp
us

cu
la

r h
em

og
lo

bi
n 

co
nc

en
tra

tio
n 

(M
CH

C)
, g

/d
l

Es
tim

at
ed

 g
lo

m
er

ul
ar

 fi
ltr

at
io

n 
ra

te
 (C

KD
−E

PI
), 

m
l/m

in

Ly
m

ph
oc

yt
es

, %
 o

f l
eu

ko
cy

te
s

HH
b 

(d
eo

xy
he

m
og

lo
bi

n)
, %

 o
f H

b
La

ct
at

e,
 m

g/
dl

M
et

he
m

og
lo

bi
n,

 %
 o

f H
b

Er
yt

hr
ob

la
st

s 
pe

r n
l

Re
tic

ul
oc

yt
e 

he
m

og
lo

bi
n 

eq
ui

va
le

nt
, p

g

Fr
ee

 h
em

og
lo

bi
n,

 m
g/

dl

An
tit

hr
om

bi
n 

ac
tiv

ity
 %

Se
gm

en
t c

or
e 

gr
an

ul
oc

yt
es

, %
 o

f l
eu

ko
cy

te
s

Cr
ea

tin
e 

Ki
na

se
 M

B,
 U

/l
Li

pa
se

, U
/l

St
an

da
rd

 b
ica

rb
on

at
e 

(S
BC

), 
m

m
ol

/l

Ac
tu

al
 b

as
e 

ex
ce

ss
, m

m
ol

/l

St
an

da
rd

 b
as

e 
ex

ce
ss

 (S
BE

), 
m

m
ol

/l

Bi
ca

rb
on

at
e,

 m
m

ol
/l

Re
tic

ul
oc

yt
e 

pr
od

uc
tio

n 
in

de
x 

(R
PI

)

Eo
sin

op
hi

le
s,

 %
 o

f l
eu

co
cy

te
s

O
xy

he
m

og
lo

bi
n 

(O
2H

b)
, %

 o
f H

b

M
ea

n 
co

rp
us

cu
la

r h
em

og
lo

bi
n 

(M
CH

), 
pg

M
ag

ne
siu

m
, m

m
ol

/l
Pa

O
2,

 m
m

Hg
sO

2,
 %

Ne
ut

ro
ph

il g
ra

nu
la

rit
y 

in
te

ns
ity

Cr
ea

tin
e 

Ki
na

se
 M

B,
 %

 o
f C

re
at

in
e 

Ki
na

se

An
or

ga
ni

c 
ph

os
ph

at
e,

 m
m

ol
/l

Ba
so

ph
ile

s,
 %

 o
f l

eu
ko

cy
te

s
Ca

lci
um

, m
m

ol
/l

Th
ro

m
bo

cy
te

s 
pe

r n
l

Al
bu

m
in

 (c
lin

ica
l),

 g
/l

Ly
m

ph
oc

yt
es

 p
er

 n
l

M
on

oc
yt

es
, %

 o
f l

eu
ko

cy
te

s
pH

Ba
sa

l T
SH

, m
U/

l

Ps
eu

do
ch

ol
in

es
te

ra
se

, k
U/

l
in

fla
m

m
at

io
n

im
m

un
e 

re
sp

on
se

co
m

pl
em

en
t

co
ag

ul
at

io
n

tis
su

e 
re

m
od

el
in

g/
re

pa
ir

lip
id

 m
et

ab
ol

is
m

In
te

rle
uk

in
− 6

, n
g/

l

R = 0.74

CRP
6 8 10 12

2
6

10

In
te

rle
uk

in
− 6

, n
g/

l

R = 0.66

CD14
9.0 9.5 10.5

2
6

10

Al
ka

lin
e 

ph
os

ph
at

as
e,

U
/l

R = 0.57

PIGR
5 6 7 8 9

6
7

8
9

G
am

m
a−

gl
ut

am
yl

tra
ns

fe
ra

se
, U

/l

R = 0.65

PIGR
5 6 7 8 9

4
6

8
10

N
eu

tro
ph

il−
to

−l
ym

ph
oc

yt
e

ra
tio

R = 0.79

SERPINA3
11.0 12.5 14.0

0
1

2
3

4
5

N
eu

tro
ph

il −
to

−l
ym

ph
oc

yt
e

ra
tio

R = 0.72

SERPINA1
14.0 15.0 16.0

0
1

2
3

4
5

N
eu

tro
ph

ils
, %

 o
f

le
uk

oc
yt

es

R = 0.68

SERPINA3
11.0 12.5 14.0

5.
4

5.
8

6.
2

6.
6

N
eu

tro
ph

ils
, %

 o
f

le
uk

oc
yt

es

R = 0.59

SERPINA1
14.0 15.0 16.0

5.
4

5.
8

6.
2

6.
6

C

A B Figure 1. Interdependence of clinical, diag-

nostic, physiological and proteomic param-

eters during the clinical progression of

COVID-19

(A) Study design. Schematic of the cohort of 139

patients with PCR-confirmed SARS-CoV-2 infec-

tion treated at Charité University Hospital Berlin.

Plasma proteomics and accredited diagnostic

tests were applied at 687 sampling points to

generate high-resolution time series data for 86

routine diagnostic parameters and 321 protein

quantities (see also Figures S1 and S2).

(B) Covariation map for plasma proteins and

routine diagnostic and physiological parameters.

Statistically significant correlations (Spearman;

p < 0.05) are colored. Dots indicate statistical

significance after row-wise multiple-testing

correction (false discovery rate [FDR] < 0.05),

black rectangles—column-wise. The panel on the

right of the heatmap provides manual functional

annotation for the proteins (see also Figures S3

and S4, and Tables S4, S5, and S6).

(C) Covariation of key diagnostic parameters and

plasma protein markers (log2-transformed) in

COVID-19 (see also Tables S4, S5, and S6). Dots

colors correspond to the WHO grade of the pa-

tient, see Figure 2B.

ll
OPEN ACCESS Article

Please cite this article in press as: Demichev et al., A time-resolved proteomic and prognostic map of COVID-19, Cell Systems (2021), https://doi.org/
10.1016/j.cels.2021.05.005
response-induced expression of PIGR and cell destruction

(Schneeman et al., 2005; Turula and Wobus, 2018).

A map of plasma proteins and diagnostic parameters
that depend on age and disease severity
113 proteins and 55 accredited diagnostic parameters re-

sponded in accordance to an increase in the WHO score as

a measure of progressing COVID-19 severity (Figures 2, S5,

and S6; STAR methods). To the best of our knowledge, more

than 30 of these proteins have not been associated with

COVID-19 severity previously (Table S3). The proteins that

change dependent on disease severity include mediators of

inflammation and immune response (CD44, B2M, PIGR, and

A2M), components of the complement cascade (CFD, and

CFHRs), and apolipoproteins (APOA2, APOC3, APOD, APOE,

and APOL1). Furthermore, numerous markers of organ

dysfunction (cardiac: NT-proBNP, troponin T; renal: creatinine,
4 Cell Systems 12, 1–15, July 21, 2021
urea; liver: aspartate aminotransferase,

alanine aminotransferase, gamma-glu-

tamyl transferase, and total bilirubin)

and, inversely, markers of anemia (he-

moglobin, erythrocytes, and hematocrit)

were correlated with the WHO grade of

the patient. In order to further dissect

the proteomic signatures of the most

severely ill patients requiring maximum

treatment (WHO grade 7), we specif-

ically characterized the impact of organ

support treatments (RRT and ECMO)

on the patients’ molecular phenotype

(Figures S7 and S8). We showed, for

instance, that HP and HPX are reduced
in patients on RRT and ECMO as a sign of hemolysis in the

extracorporeal circuit, whereas elevated SERPINC1 levels

mirror substitution of antithrombin during ECMO. We discuss

these findings in Note S1.

A total of 61 proteins and 18 diagnostic parameters varied with

patients’ age (Figure S9). Out of these, 37 proteins do not change

with age in a pre-COVID-19 general population baseline (Gener-

ation Scotland cohort [Smith et al., 2006]), for which proteomes

have been measured with the same proteomic technology

(Messner et al., 2020) (Figure S10). We observed that a number

of markers that increase with age in COVID-19 patients also

correlated with a high WHO grade (Figures S6 and S9). To iden-

tify markers that are upregulated or downregulated in older pa-

tients in comparison with younger patients with a comparable

therapy need, i.e. WHO grade, we tested the relationship be-

tween omics feature levels and age by accounting for

WHO severity grade as a covariate using linear modeling
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Figure 2. The molecular phenotype of patients with COVID-19 and its dependency on severity and age

(A) Plasma proteome and clinical diagnostic parameters in dependency of COVID-19 severity irrespective of age. The patients are grouped according to the

maximum clinical treatment received (WHO ordinal scale), used as an indicator of disease severity (Table S1). 113 proteins and 55 routine diagnostic parameters

vary significantly (FDR < 0.05) between patients of the different WHO groups upon accounting for age as a covariate using linear modeling (Ritchie et al., 2015). A

fully annotated heatmap is provided in Figure S5 (see also Figure S6 and Table S3).

(B) Selected protein markers and routine diagnostic parameters (log2-transformed) plotted against the WHO ordinal scale.

(C) Selected proteins differentially abundant depending on age (FDR < 0.05). Left, colored: this data set (log2-transformed levels; statistical testing was performed

by accounting for the WHO grade as a covariate Ritchie et al., 2015 and STARmethods; for visualization only, the data were corrected for the WHO grade); right,

black: general population (log2-transformed levels; Generation Scotland cohort).

ll
OPEN ACCESSArticle

Please cite this article in press as: Demichev et al., A time-resolved proteomic and prognostic map of COVID-19, Cell Systems (2021), https://doi.org/
10.1016/j.cels.2021.05.005
(Ritchie et al., 2015) (STAR methods). This analysis identified 36

proteins and 12 clinical laboratory markers that are up- or are

downregulated with age in COVID-19 patients within the same

level of care, i.e., one WHO grade (Figures 2C and S11, summa-

rized in Figure 5). Out of these, 20 proteins do not change with

age in the pre-COVID-19 population baseline (Generation Scot-

land cohort proteome data, Messner et al., 2020; Figure S10), or

show the opposite correlation with age in the general population

(e.g., APOC2, Figure 2C). These proteins that only show an age-

dependency in COVID-19 patients but not in the general popula-

tion point toward age-dependent differences in host response

patterns to SARS-CoV-2, and includemarkers involved in inflam-

mation (SERPINA3, ITIH4, SAA1, SAA1, SAA2, ITIH3, CFB, C7,

and AHSG), lipid metabolism (APOC1, APOC2, APOC3, APOB,

and APOD), and coagulation (KLKB1, and FBLN1). We consider

the implications of these findings in Note S2.

Time-dependent alleviation of severity indicators
highlights the role of the early host response in COVID-
19 progression
The time-resolved nature of our study facilitated a covariation

analysis of protein levels and accredited diagnostic parameters

along the patient trajectory over time (Figure S12; Table S7).

Correlating the dynamics of omics features during the peak
period of the disease (STAR methods), we noted covariation of

inflammatory markers, APPs, fibrinogen precursor proteins,

and the NLR. The correlation between APPs and the markers

of cardiac and renal impairment observed across different pa-

tients at the earliest time points (Figure 1B; Table S4) was not re-

flected as a trend over time (Figure S13).

To further dissect the dynamics of the patients’ molecular

phenotype during the course of COVID-19, wedetermined the lon-

gitudinal trend for all protein and diagnostic parameters during the

peak period of the disease (i.e., while receiving maximum treat-

ment; STAR methods). In total, 89 proteins and 37 clinical param-

eters significantly changed over time (Figure 3B, trends across all

time points at the maximum WHO grade are provided in Fig-

ure S14; STAR methods). In general, we found that most proteins

and diagnostic parameters that correlate with disease severity re-

turn toward baseline during the peak period of the disease. Many

of theseweremost prominently changed in the early samples (Fig-

ure S6) but alleviated with time, irrespective of the outcome (Fig-

ure S14; summarized in Figure 5). For example, components of

the coagulation cascade with known acute phase activity, such

as fibrinogen, and many complement factors, significantly

decreased over time. Proteins indicative of inflammatory response

(e.g., ORM1, SERPINA1 and SERPINA3, SAA1, SAA2 [Luo et al.,

2015; Sack, 2018; Wu et al., 2015]) and markers of inflammation,
Cell Systems 12, 1–15, July 21, 2021 5
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Figure 3. The progression of the COVID-19 molecular patient phenotype over time

(A) Schematic: each patient is followed during inpatient care by repetitive sampling, and the ‘‘trajectory’’ of each of the proteins and the routine diagnostic features

is analyzed (points of different colors at each time point) (see also Figure S2).

(B) Protein levels and routine diagnostic parameters that change significantly (FDR < 0.05) over time during the peak of the disease, shown for individual patients

stratified by their maximum treatment received (WHO grade): 89 proteins, 37 clinical diagnostic markers show time dependency during the disease course

(illustrated as log2-fold changes or absolute value changes, as indicated). The panel to the right of the heatmap provides manual functional annotation for the

proteins. Known associations with COVID-19 severity are indicated (blue - downregulated in severe COVID-19, and red - upregulated) (D’Alessandro et al., 2020;

Laing et al., 2020; Messner et al., 2020; Shen et al., 2020). Below the heatmap, the time span between the first and the last sampling time point at the peak of the

disease is indicated as well as the remaining time until the discharge (see also Figures S14 and S15, and Table S3).

(C) Trajectories (change of log2-transformed levels with time) for selected proteins. Sampling points during the peak period of the disease (STAR methods) are

considered. x axis: 0 – first timepointmeasuredat the peakof the disease, 1 – last. The y axis reflects the change relative to the first validmeasurement during the peak

of the disease. Loess approximations are shown for patients, which did (blue), and did not (orange), require invasive mechanical ventilation. See also Figure S16.
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such asCRPor IL-6, alsodeclinedover time.Conversely, extracel-

lularmatrix (ECM) proteins, such as ECM1, LUM, and immunoreg-

ulatory factors (e.g. AHSG, A2M Rehman et al., 2013, and HRG

Wakabayashi, 2013) and proteins involved in lipid metabolism

(e.g., APOC1, APOD, APOM, GPLD1, and PON1), and negative

APPs (e.g., ITIH1, Figure 3C), which are downregulated in severe

COVID-19 (Figure S6, summarized in Figure 5), increased over

time, approaching the baseline. This general alleviation of the initial

molecular phenotype of COVID-19 was consistently detected in

both mildly and severely ill patients (outlier trajectories discussed

in Note S3). Indeed, only 13 proteins showed differences in trend

depending on the WHO score (Figure S15). We provide visualiza-

tion of individual trajectories for all omics features measured be-

tween the first and the last time points sampled at the peak of

the disease (Figures 3C and S16).

Overall, the molecular patient phenotype reflected an initial

spike in the systemic inflammatory response, which alleviated

gradually, followed by a protein signature indicative of tissue

repair, metabolic reconstitution, and immunomodulation. This

was observed in both mildly and severely ill patients, highlighting

the early disease phase as a major molecular determinant of the

COVID-19 phenotype.

Proteomes and diagnostic clinical markers allow for
prediction of disease severity by machine learning
Using a machine learning algorithm based on gradient boosted

trees (STAR methods), we first evaluated the extent to which

diagnostic parameters and proteomes characterize treatment

requirements, as reflected by the WHO grade. Both proteomes

and clinical diagnostic parameters were highly discriminative of

the patient receiving invasive mechanical ventilation (WHO

grade 6 or 7, clinical laboratory values AUROC = 0.97, proteo-

mic data AUROC = 0.98, combined data AUROC = 0.99; Fig-

ure 4C). The machine learning models significantly outper-

formed the predictive scores derived from established

COVID-19 risk factors such as age, BMI, Charlson comorbidity

index (CCI), or molecular predictors such as CRP or IL-6 levels

(Figure 4C). In order to assess the transferability of the proteo-

mic predictors, we tested our model in an independent cohort

of 99 hospitalized patients with COVID-19 from another hospi-

tal in a different healthcare system (Innsbruck cohort, STAR

methods). The proteomic model trained on the main Charité

cohort demonstrated a comparably high patient stratification

performance when applied to this validation cohort (Figure 4D;

AUROC = 0.97). Scores reflecting the contribution of individual

proteins and clinical parameters to the machine learning model

are provided in Table S3. Of note, we were able to establish

machine learning models that not merely classified patients

based on severity but were able to predict the current WHO

severity grade from the proteome, from clinical measurements,

and both (Figure 4E). Again, combined proteomic and clinical

laboratory data performed best.

Having observed clear time trajectories for many proteins and

diagnostic parameters, wehypothesized that themolecular signa-

ture of the initial host response can be exploited for the prediction

of the future disease course. We started by investigating the po-

tential of using the levels of proteins and diagnostic parameters

for prediction of future clinical worsening, defined as progression

to a higher severity grade on theWHOscale, i.e., a requirement for
supplemental low-flow oxygen therapy, high-flow oxygen ther-

apy, or invasivemechanical ventilation. Upon using a linearmodel

to account for current therapy (WHO grade) and age as covari-

ates, 11 proteins and 9 clinical laboratory markers were identified

as predictors of future worsening of the clinical condition, across

all treatment groups (STARmethods) (Figures 4A and S17; Box 1).

Increased or decreased plasma levels of these proteins func-

tioning in inflammation (CRP, ITIH2, SERPINA3, AHSG, and

B2M), coagulation (HRG, and PLG), and complement activation

(C1R, and CFD), as well as levels of AGT and CST3, were predic-

tive of future clinical deterioration.

Next, we investigated the predictability of the remaining time

needed in the hospital for mildly ill patients with maximum WHO

grade 3. We identified 26 protein biomarkers and 14 routine diag-

nosticmarkers (Figures 4BandS18) that correlatewith the time be-

tween the first sampling point and discharge from inpatient care.

The proteomic signature associated with a longer need for inpa-

tient treatment is characterized by proteins of the complement sys-

tem (C1QA, C1QB, and C1QC) and reflects altered coagulation

(KLKB1, PLG, and SERPIND1) and inflammation (CD14, B2M,

SERPINA3, CRP,GPLD1, PGLYRP2, andAHSG). Asmost of these

proteins are also predictors of the required treatment (Figure S6;

Table S3), we hypothesized that the time of inpatient care for

mild (WHO grade 3) cases correlates with the severity of the dis-

ease in these patients. To test this hypothesis, we generated ma-

chine learning models for WHO grade prediction, similar to those

shown in Figure 4E, but trained the model only on the first time

point data measured for each patient (to avoid using any future in-

formation with respect to that time point). We observed that the

predictions derived from the first time point data correlated with

the remaining time in the hospital (Figure 4F).Weconclude thatma-

chine learning allowsus to finely distinguish betweenmore and less

severe patients within a single treatment group, i.e. WHO grade.

DISCUSSION

Upfront clinical decision making is essential for optimum treat-

ment allocation to patients as well as for efficient resource man-

agement within the hospital. For instance, early referral to inten-

sive care treatment units has been shown to improve prognosis

and outcome for patients with severe COVID-19 (Sun et al.,

2020). One of the peculiarities of COVID-19 is that the examin-

able clinical conditions of patients often do not reflect the true

severity of the disease, e.g., with respect to respiratory insuffi-

ciency. In contrast to patients with severe bacterial pneumonia,

patients with COVID-19 often clinically appear to be only slightly

affected, despite being in severe respiratory failure, a phenome-

non termed ‘‘happy hypoxemia’’ (Stawicki et al., 2020). Clinical

decisions therefore need to be supported by objective, molecu-

lar diagnostics. These diagnostic analyses help further in the

monitoring of therapies and clinical trials as they allow for deter-

mining the extent to which a given patient has deviated from the

disease trajectory that would be achieved without therapy.

Several recent investigations have identified protein bio-

markers and clinical parameters that classify patients with

COVID-19 according to disease severity and/or received treat-

ment (D’Alessandro et al., 2020; Laing et al., 2020; Liu et al.,

2020b; Messner et al., 2020; Overmyer et al., 2020; Schulte-

Schrepping et al., 2020; Shen et al., 2020; Shu et al., 2020;
Cell Systems 12, 1–15, July 21, 2021 7
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Figure 4. Predicting COVID-19 treatment requirement and future disease progression from the early molecular phenotype by using machine

learning.

(A) Selected proteins that are predictive (FDR < 0.05) of the future clinical deterioration of the disease (that is progression to a higher WHO grade in the future;

STAR methods). Illustrated are the log2-transformed levels of the proteins at the first sampling point upon correction (for visualization only) for the impact of the

WHO grade and age as covariates (Ritchie et al., 2015) (see also Figure S17).

(B) Selected proteins and routine diagnostic parameters predictive (FDR < 0.05) of the remaining time in hospital for patients receivingmild treatment (WHO grade

3). Statistical testing was performed by including patient’s age as a covariate (STAR methods). Illustrated are the log2-transformed levels of the proteins (upon

correction for age as a covariate, for visualization only) at the first sampling point, plotted against the remaining time in hospital (days) (see also Figure S18).

(C) Left: performance of a machine learning model characterizing the need for invasive mechanical ventilation, based on either the proteomic data, accredited

diagnostic parameters, or both. Right: comparison of the performance of a machine learning model characterising the need for invasive mechanical ventilation

based on proteomic data to established prognostic parameters.

(D) Prediction performance, based on the proteome, visualized as boxplots. Cross-validation predictions on the Charité cohort are shown in black, predictions of

a model trained on the Charité data and then applied to an independent cohort from another hospital (Innsbruck cohort) are shown in red.

(E) Prediction of the WHO grade itself using machine learning (cross-validated, first time point at the maximum treatment level for each patient is used, STAR

methods), based on either the proteome, clinical diagnostic parameters, or both. The performance of the proteomic model trained on the Charité cohort and

applied to the Innsbruck cohort is also shown.

(F) A machine learning model was trained to predict the level of necessary treatment (WHO grade) using the data (proteomics, clinical, or both) from the first time

point measured for each patient. Derived predictions for patients who did not receive supplemental oxygen at this time point (WHO = 3) were plotted against the

remaining time (days) in hospital for these patients.
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Wynants et al., 2020). In other studies, the potential prognostic

value of several established and newly discovered markers for

predicting the future course of the disease was investigated,

e.g., for IL-6, ferritin, or resistin (Grifoni et al., 2020; Meizlish

et al., 2020). Yet, it remained challenging so far, to put their prog-

nostic value in relation to patient age and current level of care,

the two most important apparent characteristics for prognosis

in COVID-19. For instance, a patient at WHO grade 5 who re-

quires high-flow oxygen therapy is significantly more likely to

progress to mechanical ventilation and subsequently die than

an inpatient at WHO grade 3 that does not require oxygen sup-

port. Likewise, a 90-year-old patient at WHO grade 3 is signifi-

cantly more likely to progress to more severe disease and to

stay in the hospital for a longer period of time than a 20-year-

old patient at the same WHO grade.
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To identify (1) which proteomicmarkers and laboratory param-

eters correlate with each other by being attributed to a common

biological or physiological response, and (2) which markers

reflect disease trajectories, we longitudinally phenotyped 139 in-

dividuals admitted at Charité University Hospital, Berlin, Ger-

many, between March 01, 2020, and June 30, 2020, due to

PCR-confirmed SARS-CoV-2 infection (Figure S2). We recorded

a large panel of 86 parameters with accredited diagnostic tests.

These tests capture the compendium of analytical parameters

that are available for the clinical routine. In parallel, we record

plasma proteomes using a recently developed mass spectrom-

etry platform. This platform introduced the use of analytical

(high-flow rate) chromatography to routine proteomics in order

to increase throughput and measurement precision to the scale

of clinical trials (Messner et al., 2020). The platform reaches a



Box 1. Proteins predictive of future worsening, i.e., disease progression to higher WHO grade

HIGH LEVELS INDICATIVE OF POOR PROGNOSIS

AGT: Angiotensinogen:Conversion via angiotensin-converting enzymes ACE and ACE2 produces AngI/AngII (pro-inflammatory,

vasoconstrictive, pro-fibrotic) and Ang1-7/Ang1-9 (anti-inflammatory, vasodilative, anti-fibrotic), respectively (Turner, 2015; Zhang

et al., 2020). Increased AGT likely reflects increased AngI/AngII due to SARS-CoV-2 mediated inactivation of ACE2 (Tay et al.,

2020) and subsequently predominant conversion of AGT to AngII. AngII correlates with viral load (Liu et al., 2020c) and has tissue

damaging effects (Zhang et al., 2020).

B2M: Beta-2-microglobulin: Component of major histocompatibility complex (MHC I) on all nucleated cells and platelets.

Released abundantly by activated platelets leading to pro-inflammatory M1-like macrophage polarization (Hilt et al., 2019). In-

crease of B2M has been associated with death in patients with chronic kidney disease (Makridakis et al., 2020).

C1R: Complement C1r: Initiator of the classical complement pathway (Hajishengallis et al., 2017).

CFD: Complement Factor D: Initiator of the alternative complement pathway by cleaving Factor B (CFB) to form the C3bBb alter-

native pathway convertase (Volanakis and Narayana, 1996).

CRP: C-reactive protein: Acute phase protein, strongly upregulated in inflammation and infection, including COVID-19.

CST3: Cystatin C: Biomarker of kidney function (Peralta et al., 2011).

SERPINA3: Alpha-1-antichymotrypsin: Protease inhibitor of neutrophil cathepsin G (Benarafa, 2015). When cleaved at reactive

site loop, it becomes stable to degradation and becomes a strong neutrophil chemoattractant (Banda et al., 1988; Potempa

et al., 1991)

LOW LEVELS INDICATIVE OF POOR PROGNOSIS

AHSG: Alpha-2-HS glycoprotein (Fetuin-A): Negative acute phase protein attenuating macrophage activation and neutrophil

degranulation (Ombrellino et al., 2001).

HRG: Histidine-rich glycoprotein: Negative acute phase protein, regulator of inflammation and immune response, clearance of

pathogens and cell detritus as well as coagulation and fibrinolysis through a variety of interactions (Poon et al., 2011; Wakabaya-

shi, 2013).

ITIH2: Inter-alpha-trypsin inhibitor heavy chain H2: Covalently linked to bikunin (AMBP), the complex binds to hyalarunan (HA)

to form serum-derived hyaluronan-associated protein (SHAP) which has matrix-stabilizing and immunomodulatory effects (Fries

and Blom, 2000; Zhuo et al., 2004).

PLG: Plasminogen, Plasmin: Mediator of fibrinolysis (Chapin and Hajjar, 2015). More recently, immunological functions including

neutrophil attenuation as well as macrophage efferocytosis and polarization from pro-inflammatory M1 to tissue-repairing M2

phenotype have been identified (Heissig et al., 2020).
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similar proteomic depth as other contemporary mass spectrom-

etry technologies that address undepleted human plasma that is

constrained by its huge dynamic range (Anderson and Anderson,

2002) (Box 2 for the resources generated).

The comprehensive and time-resolvedmolecular phenotyping

of this patient cohort is complemented by a comparison with a

healthy population baseline (Generation Scotland [Smith et al.,

2006]) measured with the same proteomic platform (Messner

et al., 2020), and the characterization of an independent cohort

from an unrelated health care system (Innsbruck cohort, Austria)

for validating the created predictors. The measurements were

performed on samples collected during the early period of

COVID-19, i.e., before immunomodulatory treatments such as

dexamethasone became standard of care for severe COVID-

19 (RECOVERYCollaborative Group, 2020). Our data thus reflect

treatment-naive trajectories, which are of major value as base-

line data for future studies.

We report an initial spike in the early inflammatory host

response as a determinant for the future course of the disease.

As our results indicate, the patients in our cohort showed molec-

ular marker signatures of higher basal inflammation with

increasing age, which might be partially responsible for the

higher risk of severe COVID-19 in older individuals. While several
approaches of targeted anti-inflammatory treatment have not

been successful in preventing clinical deterioration in COVID-

19 so far (Stone et al., 2020), our study indicates that this special

population of older patients might benefit particularly from treat-

ments that mitigate the inflammatory host response. We report

numerous interdependencies between clinical laboratory

markers and alterations in proteomes, linking, for example, clin-

ical inflammatory markers to components of the complement

cascade and the coagulation system. Using machine learning,

we show that both plasma proteomes and the compendium of

established diagnostic parameters can be used for accurate

characterization of disease severity, significantly outperforming

established individual risk markers, such as CRP or IL-6 levels.

Of note, the combination of proteomic features and clinical lab-

oratory markers repeatedly showed the best performance in the

machine learning models. Furthermore, the models generated

could be transferred for prediction in an independent cohort

from another hospital and healthcare system, highlighting the

robustness of this approach and its translational potential.

We observed a considerable overlap between prognostic

markers and those that classify treatment according to COVID-

19 severity (Figure 5). Out of 49 prognostic markers, 41 corre-

lated with the WHO severity score. As an example, SERPINA3
Cell Systems 12, 1–15, July 21, 2021 9



Box 2. Overview of resources generated

We provide deep and time-resolved resources that characterize COVID-19 at the level of plasma proteomes and established diag-

nostic parameters. We demonstrate the extent to which proteomes and diagnostic parameters interdepend, in initial response to the

disease and in dynamics during the disease course. We show how they change with age, differ depending on the disease severity,

reflect the therapy received and evolve over time. Our data have been acquired for COVID-19 patients’ samples and analyzed in the

context of general population proteomics (Generation Scotland) for which samples have been measured with the same proteomic

technology (Messner et al., 2020), but we also expect it to be of high value as a reference for studies of other types of viral pneumonia

as well as any investigations involving both routine clinical phenotyping and plasma proteomics.

Summary of the resource data generated in the study.

1. Covariation maps. We provide a covariation map between plasma proteins measured with at least 3 peptides and clinical lab-

oratory measurements (Figure 1B; Table S4). In addition, we provide a full covariation map between all features measured in

the study (Figure S3; Table S5) as well as a COVID-19 specific protein-protein covariation map (Figure S4; Table S6). Finally,

we also provide a correlation map for the changes of different omics features with time (Figure S12; Table S7).

2. A map of plasma protein levels and clinical laboratory measurements depending on disease severity

(Figures S5 and S6; Table S3).

3. Characterization of age-dependency of plasma protein levels and clinical laboratory measurements in COVID-19, and in

comparison with the general population (Figures 2C and S9–S11; Table S3).

4. Characterization of the dynamics of plasma protein levels and clinical laboratory measurements during the course of COVID-19

(Figures 3B, S14, and S15; Table S3).

5. Characterization of the predictive power of plasma protein levels and clinical laboratory measurements in COVID-19 (Figures 4,

S17, and S18; Table S3).

6. Proteomic and clinical signatures observed in severe COVID-19 patients undergoing RRT and ECMO (Figures S7 and S8;

Table S3).
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(Alpha-1 antichymotrypsin) can be used for both the classifica-

tion of severity and prediction of future disease course. Both

SERPINA3 and SERPINA1, another classifier of severity,

possess anti-inflammatory properties and are involved in the

protection of tissues from neutrophil elastase- and cathepsin

G-mediated tissue damage (Benarafa, 2015). Our data show a

strong correlation of both serpins with levels of neutrophils and

NLR in peripheral blood. SERPINA1 is mainly produced by the

liver but it is also produced in epithelial cells, pulmonary alveolar

cells, tissue macrophages, blood monocytes, and granulocytes.

Hence, this finding presumably reflects a systemic response to

the increased NLR. After binding to effector enzymes, SERPIN-

proteinase complexes are normally rapidly cleared from the

blood but become resistant to degradation when cleaved

at the reactive site loop (Gettins and Olson, 2016). Cleaved

SERPINA1 and SERPINA3 have been shown to act as strong

neutrophil chemoattractants (Banda et al., 1988; Potempa

et al., 1991). The observed increase in levels of SERPINA1 and

SERPINA3might therefore partly reflect themore stable, chemo-

attractant, pro-inflammatory cleaved forms, rather than the

short-lived tissue-protective proteins in severe COVID-19. Given

the prominent role of neutrophil activation in severe COVID-19

(Schulte-Schrepping et al., 2020), this finding merits further

investigation.

Our data also highlight angiotensinogen (AGT) as a marker for

future worsening. Activation of angiotensinogen occurs via the

protease renin and the endogenous angiotensin-converting en-

zymes ACE or ACE2. ACE converts angiotensin I (AngI) to pro-in-

flammatory, vasoconstrictive, and pro-fibrotic angiotensin II (An-

gII) (Zhang et al., 2020). ACE2, in contrast, mediates conversion

of angiotensins I and II to anti-inflammatory, vasodilative, anti-

fibrotic, and anti-oxidant angiotensins 1–9 (Ang1-9) and 1–7

(Ang1-7) (Turner, 2015). SARS-CoV-2 invades host cells of the
10 Cell Systems 12, 1–15, July 21, 2021
lung, heart, kidneys, and other organs via ACE2, resulting in

the internalization and downregulation of ACE2 (Hoffmann

et al., 2020; Tay et al., 2020; Zhang et al., 2020). Subsequently,

angiotensinogen is converted predominantly via ACE to AngII

and is less degraded by ACE2, resulting in AngII accumulation

(Batlle et al., 2012; Silhol et al., 2020). We can thus assume

that the higher plasma levels of AGT gene products in severely

ill patients, as measured in our study, mainly reflect the higher

levels of AngII. Importantly, we observed a strong correlation

of AGT with markers of acute kidney injury (AKI; creatinine,

urea; Figures S3 and S13; Table S5), a frequent complication

of COVID-19 and a risk factor for poor prognosis and fatal

outcome (Fu et al., 2020). Aggravated by the absence of tis-

sue-protective Ang1-7, elevated levels of AngII lead to activation

of the renin-angiotensin-system (RAS) and contribute to hypoxic

kidney injury (Kasal et al., 2020). Of note, apart from tissue

damaging effects, AngII has been shown to linearly correlate

with viral load and lung injury in SARS-CoV-2 infection (Liu

et al., 2020c).

Overall, many of the markers that are both classifiers and pre-

dictors of the future disease course are initiators of the inflamma-

tory response. This group includes some of the key initiators of

the complement cascade: C1QA, C1QB, C1QC, C1R, and

CFD. In contrast, severity markers without prognostic value

largely include downstream effectors of inflammation-associ-

ated damage, such as GSN and the circulating actins ACTBL2

and ACTB, ACTG1, and ECM1. Thus, this high-precision, high-

throughput approach can help us understand mechanisms of

immune-mediated organ damage on a molecular basis.

Despite the high resolution and high throughput of the mass

spectrometry platform deployed in our study, the direct transla-

tion of our results into clinical practice will require the develop-

ment of a clinical assay according to FDA or EMA standards.
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Figure 5. Summary: association of individual plasma proteins, routine diagnostic and physiological parameters with severity, necessary

therapy, and progression of COVID-19.

For each statistical test considered (association with WHO grade, prediction of the remaining time in hospital for patients at WHO grade 3, prediction of

worsening, i.e., progression to a higher WHO grade in the future, the trend during the peak period of the disease, association with RRT, association with ECMO

and association with higher patient age), measurements, which show significant differences are highlighted, with the color indicating the trend, e.g., red for CST3

in the ‘‘Association with COVID-19 severity’’ test indicates higher levels of CST3 in severely ill patients. Proteins for which MRMAssayDB (Bhowmick et al., 2018)

lists that a targeted proteomic assay has been developed are indicated with a black bar at the top. Proteins which change significantly with age in the Charité

COVID-19 cohort (FDR < 0.05) but do not change significantly (p < 0.05) with age in the general population (Generation Scotland cohort), are highlighted with a

white circle in the 7th row (‘‘Association with age’’). See also Figures S6–S8, S10, S11, S14, S17, and S18, and Table S3.
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We further note that the use of machine learning is currently not a

certified method to inform clinical decisions. However, in addi-

tion to multiple works that have successfully used machine

learning for clinical prognosis previously (see recent reviews

[Kelly et al., 2019; Lee and Lee, 2020; Nagendran et al., 2020;

Shah et al., 2019; Vollmer et al., 2020]), our results bear a strong

implication of the future potential of machine learning for clinical

applications, including personalized medicine. This calls for a

worldwide effort aimed at developing procedures, which would

allow reliable clinical validation of machine learning predictors,

their approval, and their routine deployment in the clinic.

In summary, by following a deeply phenotyped COVID-19 pa-

tient cohort over time at the level of the proteome and estab-
lished diagnostic biomarkers and physiological parameters, we

have created a rich data resource for understanding the extent

and progression of COVID-19. We have shown that an early

spike in the inflammatory response is a key determinant of

COVID-19, and that future disease progression is predictable

by using panels of accredited diagnostic parameters as well as

proteomic measurements from early time point samples. By us-

ingmachine learning, we demonstrated that the proteome allows

to precisely characterize the patients’ phenotype and that the re-

sulting machine learning models are robust and perform accu-

rately when applied to samples from a different hospital and

healthcare system. Our study provides comprehensive informa-

tion about the key determinants of the varying COVID-19
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trajectories as well as marker panels for early prognosis that can

be exploited for clinical decision making, to devise personalized

therapies, as well as for monitoring the development of much

needed COVID-19 treatments.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human Serum Sigma-Aldrich Cat# S7023-50MB

Human Plasma (EDTA, Pooled Donor) Genetex Cat# GTX73265

Chemicals, peptides, and recombinant proteins

Water for chromatography (LC-MS Grade)

LiChrosolv�
Merck Cat# 115333

Acetonitrile (Acetonitrile, Optima� LC/MS

Grade, Fisher Chemical� )

Fisher Scientific Cat# A955-212

Methanol (Optima LC-MS Grade, Fisher

Chemical)

Fisher Scientific Cat# A456-212

DL-Dithiothreitol (BioUltra) Sigma-Aldrich Cat# 43815

Iodoacetamide (BioUltra) Sigma-Aldrich Cat# I1149

Ammonium Bicarbonate (Eluent additive for

LC-MS)

Sigma-Aldrich Cat# 40867

Urea (puriss. P.a., reag. Ph. Eur.) Honeywell Research Chemicals Cat# 33247H

Formic Acid, LC-MS Grade (Eluent additive

for LC-MS)

Thermo Scientific�
Pierce�

Cat# 85178

Trypsin (Sequence grade) Promega Cat# V511X

Mass Spec-Compatible Human Extract Promega Cat# V6951

Retention time peptides Biognosys iRT kit Biognosys Cat# Ki-30002-b

MS synthetic peptide calibration kit SCIEX Cat# 5045759

Deposited Data

Raw mass spectrometry proteomics data

(commercial plasma and serum control

samples)

This study PXD025752

Software and algorithms

Proteomics data analysis via Deep Neural

Networks, DIA-NN

Demichev et al., 2020 https://github.com/vdemichev/DiaNN

DIA-NN R package Demichev et al., 2020 https://github.com/vdemichev/

diann-rpackage

ComplexHeatmap R package (Gu et al., 2016) https://github.com/jokergoo/

ComplexHeatmap

EnvStats R package (Millard, 2014) https://CRAN.R-project.org/

package=EnvStats

Limma R package (Ritchie et al., 2015) https://bioconductor.org/packages/limma/

eBayes R package (Smyth, 2004) https://github.com/cran/limma/blob/

master/R/ebayes.R

XGBoost 1.2.0 Python package (Chen and Guestrin, 2016) https://pypi.org/project/xgboost/1.2.0/

scikit-learn 0.23.2 Python package (Pedregosa et al., 2011) https://scikit-learn.org/0.23/

scipy 1.5.2 Python package (Virtanen et al., 2020) https://pypi.org/project/scipy/1.5.2/

Other

Zorbax RRHD Eclipse Plus 95A C18, 2.1 x

50mm, 1.8 um, 1200 bar

Agilent Cat# 959757-902

Infinitylab Poroshell 120 EC-C18,

2.1x50mm 1.9um

Agilent Cat# 699675-902

BioPureSPE Macro 96-Well,

100mg PROTO 300 C18

The Nest Group, Inc. HNS S18V-L
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Markus

Ralser (markus.ralser@charite.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The processed proteomic and clinical source data is available in this paper’s supplemental information.

d The rawmass spectrometry proteomics source data for the quality control plasma and serum acquisitions has been deposited

to the ProteomeXchange Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019) with the dataset identifier

PXD025752.

d This paper does not report original code.

d The machine learning scripts used to generate the figures reported in this paper are available in this paper’s supplemental in-

formation.

d Any additional information required to reproduce this work is available from the Lead Contact.
Experimental model and subject details
Charité patient cohort and clinical data

Patients were recruited within the Pa-COVID-19 study conducted at Charité - Universit€atsmedizin Berlin, a prospective observational

cohort study on the pathophysiology of COVID-19. The study protocol has been described in detail before (Kurth et al., 2020). All

patients with PCR-confirmed SARS-CoV-2 infection were eligible for inclusion. Refusal to provide informed consent by the patient

or a legal representative and any condition prohibiting supplemental blood collection for serial biosampling were exclusion criteria.

Patients were treated according to current national and international guidelines. Three patients had Do Not Intubate and Do Not

Resuscitate (DNI/DNR) orders in place, declining mechanical ventilation and other organ support or cardiopulmonary resuscitation.

In 4 further cases, limitation of therapy was decided at a later time point according to the patient’s presumedwish (‘‘secondary DNR’’)

and predictably unfavorable outcome. All other patients received maximum intensive care treatment including organ replacement

therapies at the discretion of the responsible physicians.

Biosampling for proteome measurement was performed 3 times per week after inclusion. The WHO ordinal scale for clinical

improvement (Table S1) was used to assess disease severity. ARDS was defined according to the Berlin ARDS criteria (ARDS Defi-

nition Task Force et al., 2012). Sepsis was defined according to sepsis-3 criteria (Singer et al., 2016). The study was approved by the

ethics committee of Charité - Universit€atsmedizin Berlin (EA2/066/20) and conducted in accordance with the Declaration of Helsinki

and guidelines of Good Clinical Practice (ICH 1996). The study is registered in the German and the WHO international registry for

clinical studies (DRKS00021688). Clinical data was captured in a purpose built electronic case report form data using the capture

system SecuTrial�. All routine laboratory parameters were analyzed in accredited laboratories at Charité - Universit€atsmedizin Ber-

lin. Pseudonymized data exported from SecuTrial� were processed using JMP Pro 14 (SAS Institute Inc., Cary, NC, USA). If a lab-

oratory value was missing for a given day, values from up to two preceding days were used for the analysis.

Innsbruck Patient cohort and clinical data
Serum samples from 99 patients admitted to the intensive care unit at the Department of Medicine, University Hospital of Innsbruck

for the treatment of respiratory failure due to severe COVID-19 were collected within the first days (median 7.5, IQR 5-12) after admis-

sion. Written informed consent was either obtained before sampling or retrospectively after recovery, if patients were mechanically

ventilated at the time of sampling. COVID-19 was diagnosed on the basis of a (i) positive SARS-CoV2 PCRwithin the last 7 days prior

to study inclusion, (ii) respiratory failure defined as a partial pressure of oxygen < 60 mmHg on arterial blood gas analysis or a pe-

ripheral oxygen saturation of < 90% and (iii) typical infiltrates on computed tomography scanning of the chest. Patients were treated

according to national guidelines. The study was approved by the local ethics research committee EK-Nr. 1107/2020, and EK-Nr.

1103/2020 for follow-up.

METHOD DETAILS

Materials
Water for chromatography (LC-MS Grade, LiChrosolv�, Merck; 115333), Acetonitrile (LC-MS Grade Optima; A955-212) and Meth-

anol (LC-MS Grade, Optima; A456-212) were purchased from Fisher Chemicals. DL-Dithiothreitol (BioUltra, 43815), Iodoacetamide

(BioUltra, I1149) and Ammonium Bicarbonate (Eluent additive for LC-MS, 40867) were purchased from Sigma Aldrich. Urea (puriss.

P.a., reag. Ph. Eur., 33247H) and Formic Acid (Eluent additive for LC-MS, 85178) were purchased from Thermo Scientific. Trypsin
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(Sequence grade, V511X) was purchased fromPromega. Control sampleswere prepared fromHuman Serum (Sigma Aldrich, S7023-

50MB) and Human Plasma (EDTA, Pooled Donor, Genetex GTX73265).

Mass spectrometry
Mass spectrometry-based proteomics analysis was performed as described previously (Messner et al., 2020) with minor adjust-

ments to the workflow (Figure S1). Semi-automated sample preparation was performed in 96-well format, using in advance prepared

stock solution plates stored at -80�C. Briefly, 5ml of thawed plasma samples were transferred to the pre-made denaturation/reduction

stock solution plates (55ml 8MUrea, 100mMammonium bicarbonate (ABC), 50mMdithiothreitol) resuspended and incubated at 30�C
for 60 minutes. 5ml was then transferred from the iodoacetamide stock solution plate (100mM) to the sample plate and incubated in

the dark at 23�C for 30 minutes before dilution with 100mMABC buffer (340ml). 220ml of this solution was transferred to the pre-made

trypsin stock solution plate (12.5ml, 0.1mg/ml) and incubated at 37�C for 17 h (Benchmark Scientific Incu-Mixer MP4). The digestion

was quenched by addition of formic acid (10% v/v, 25ml). The digestion mixture was cleaned-up using C18 96-well plates (Bio-

PureSPEMacro 96-Well, 100mg PROTOC18, The Nest Group) and redissolved in 60ml 0.1% formic acid with shaking. Insoluble par-

ticles were removed by centrifugation and the samples transferred to a new plate.

Each 96-well plate contained 8 plasma and 4 serum sample preparation controls, and the acquisition workflow included a pooled

quality control sample every ~10 injections. Liquid chromatography was performed using the Agilent 1290 Infinity II system coupled

to a TripleTOF 6600 mass spectrometer (SCIEX) equipped with IonDrive Turbo V Source (Sciex). A total of 5ml was injected, and the

peptides were separated in reversed phase mode using a C18 ZORBAX Rapid Resolution High Definition (RRHD) column 2.1mm x

50mm, 1.8mm particles or Infinitylab Poroshell 120 EC-C18, 2.1 x 50mm 1.9 mm particles. A linear gradient was applied which ramps

from 1%B to 40%B in 5 minutes (Buffer A: 0.1% FA; Buffer B: ACN/0.1% FA) with a flow rate of 800ml/min. For washing the column,

the organic solvent was increased to 80%B in 0.5 minutes and was kept for 0.2 minutes at this composition before going back to 1%

B in 0.1 min. The mass spectrometer was operated in the high sensitivity mode. The DIA/SWATH method consisted of an MS1 scan

from m/z 100 to m/z 1500 (20 ms accumulation time) and 25 MS2 scans (25ms accumulation time) with variable precursor isolation

width covering the mass range fromm/z 450 to m/z 850 (Messner et al., 2020). An IonDrive Turbo V Source (Sciex) was used with ion

source gas 1 (nebulizer gas), ion source gas 2 (heater gas) and curtain gas set to 50, 40 and 25, respectively. The source temperature

was set to 450 and the ion spray voltage to 5500V. System suitability was evaluated using synthetic peptides (Sciex 5045759, Bio-

gnosys Ki-30002-b) and human protein extracts (Promega V6951).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
The data were processed with DIA-NN (Demichev et al., 2020), an open-source software suite for DIA / SWATH data processing

(https://github.com/vdemichev/DiaNN, commit 4498bd7) using a two-step spectral library refinement procedure as described pre-

viously (Messner et al., 2020), with filtering at precursor level q-value (1%), library q-value (0.5%) and gene group q-value (1%). Highly

hydrophobic peptides (reference retention time > 110 on the iRT scale) were discarded. Batch correction was performed at the pre-

cursor level as described previously (Messner et al., 2020), using linear regression for intra-batch correction (for each MS batch) and

control samples for inter-plate correction. Protein quantification was subsequently carried out using the MaxLFQ algorithm (Cox

et al., 2014; Pham et al., 2020) as implemented in the DIA-NN R package (https://github.com/vdemichev/diann-rpackage). One of

the 96-well plates (#12) featured technical replicates of a number of samples that were also analysed on other plates: in an extra batch

correction step, themedian log2-protein levels across these replicates on plate 12werematched to the respectivemedian log2-levels

(across the same biological samples) throughout other plates, to correct protein levels on plate 12. Further batch correction was per-

formed for Innsbruck data, to match the mean log2-transformed protein levels in the respective control samples to log2-transformed

protein levels in control samples acquired for the Charité cohort. The Generation Scotland cohort proteomics raw data, which we

described previously (Messner et al., 2020), have been reanalyzed using the updated software pipeline, to ensure comparability.

Exclusion of precursors or proteins based on the data completeness was not performed.

Statistical testing was performed in the R environment for statistical computing, version 3.6.0 (R core team, www.R-project.org). All

protein and clinical laboratory measurements (except for standard and actual base excess, oxyhemoglobin and sO2) were first log2-

transformed, to ensure optimal performance of linear models assuming Gaussian errors, as well as to reduce the impact of outliers.

Imputation of the data was not performed, as all the statistical tests applied can accommodate missing values. Likewise, no data

filtering based on missing value rates was applied. For differential abundance testing, only protein groups matched to at least three

different unmodified peptide sequences were considered. Significance testing for a zeromedian (for analysing trajectories) or against

binary variables (worsening, death) was performed using theWilcoxonW test or Mann-Whitney U test, respectively, as implemented

in the ‘‘wilcox.test’’ function of the ‘‘stats’’ R package. Testing against a continuous variable (e.g. when determining significance of

pairwise correlations) was performed using the Kendall Tau test, with the slope estimated using the Theil-Sen method, as imple-

mented in the ‘‘kendallTrendTest’’ function of the ‘‘EnvStats’’ (Millard, 2014) package. When covariates had to be taken into account,

we used linear modelling with the ‘‘limma’’ (Ritchie et al., 2015) R package, with P-values obtained using ‘‘eBayes’’ (Smyth, 2004).

Modelling with ‘‘limma’’ was likewise used to correct for these covariates for visualisation purposes. WHO grade was considered

as a ‘‘factor-type’’ covariate (resulting in a ‘‘limma’’ design matrix with one-hot encoding for different WHO grades). Multiple-testing

correction was performed using the Benjamini-Hochberg false discovery rate controlling procedure (Benjamini and Hochberg, 1995)
e3 Cell Systems 12, 1–15.e1–e7, July 21, 2021
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as implemented in the ‘‘p.adjust’’ function of the ‘‘stats’’ R package. The adjusted p-values below 0.05 were considered significant.

Multiple-testing correction for differential abundance analysis was performed separately for proteins, for which MRMAssayDB lists a

targeted assay (Bhowmick et al., 2018), the rest of proteins measured, the clinical laboratory measurements and the clinical factors

(age, Charlson score, BMI, Horowitz index and FiO2, SOFA score), to ensure that the false discovery rate stayed below 0.05 for each

of these categories of features. Likewise, when determining the significance of correlations in correlation matrices, correction was

performed for each row or each column separately, to ensure less than 5% false discoveries in each row or column, respectively.

For correlation map visualisations, black points were used to indicate row-wise significant correlations, and black rectangles at

the border of the respective cell - column-wise significant correlations.

Quantities of gene products corresponding to open reading frames named IGxx (i.e. different types of immunoglobulin chains) were

summed together to generate quantities representative of the overall levels of immunoglobulin classes (IGHVs, IGLVs, etc). This does

not affect any conclusions of this work and was done purely to improve visualization and simplify the interpretation of the heatmaps

and correlation maps. Full protein level tables, including levels of individual immunoglobulin gene products, are provided in supple-

mentary materials. For visualisation, different WHO grades were color-coded throughout the manuscript (see Figure S2).

Markers of the disease severity
The first time point measured at themaximumWHOgradewas chosen for each patient. For each omics feature, its values (log2-trans-

formed when necessary, as described above) were tested for a trend depending on theWHO grade. Age was included as a covariate

in the linear model as described above.

Markers varying with age in COVID-19
The first sampling time pointmeasuredwas chosen per patient. For each omics feature, its values (log2-transformedwhen necessary,

as described above) were tested for a trend depending on age. The test was performed either using the Kendall Tau test (as described

above; Figures S9 and S10), or by accounting for WHO grade as a covariate in the linear model (as described above; Figures S11

and 5).

Markers of RRT and ECMO
For each omics feature, the P-value was calculated using the Mann-Whitney test, comparing between the median levels (log2-trans-

formed when necessary, as described above) across all sampling time points at WHO grade 7 in patients who did not receive the

therapy and themedian levels (log2-transformedwhen necessary, as described above) across all sampling time points atWHOgrade

7 after initiation of the respective therapy in patients who did.

Markers predictive of time in hospital
Patients, for which the first sampling time point before the outcome corresponded to the WHO = 3 severity grade (that is the patient

did not require supplemental oxygen on that day), were considered. Thus, no correction for disease severity was necessary. Testing

of levels (log2-transformedwhen necessary, as described above) of each omics feature (measured for the first sampling time point) vs

the remaining time in hospital (days) was performed by including age as a covariate in the linear model as described above.

Markers predictive of disease worsening
The first sampling time point measured was chosen per patient. Future disease worsening was defined as a future increase in the

WHO grade (for patients at WHO grade < 7) or death (for patients at WHO grade 7). For each omics feature, its levels (log2-trans-

formed when necessary, as described above) were compared between patients who did not worsen and patients who did, with

age and current WHO grade (as factor) included as covariates in the linear model as described above.

Peak period of the disease definition
When studying the dynamic changes in omics values during the disease course, we focused on the time points sampled when the

disease was the most severe for a particular patient. This allowed us to look at molecular changes over time without the need to take

into account the potential impact of changes in disease severity and the level of treatment. For each patient, we thus defined the

‘‘peak period of the disease’’ as the time when the patient was receiving the most intensive treatment during their stay in hospital,

that is the time when the patient was at WHO grade 6 or 7, for patients who received invasive mechanical ventilation at some point,

or otherwise at their maximum WHO grade (3, 4 or 5).

Markers changing during the peak of disease
Only patients with at least two days between the first and last sampling time points at the peak of the disease (as defined above) were

considered. For each omics feature, a linear regression model was fitted for its levels (log2-transformed when necessary, as

described above) vs the day number (with the slope estimated using the nonparametric Theil-Sen method, as implemented in the

‘‘kendallTrendTest’’ function of the ‘‘EnvStats’’ (Millard, 2014) R package), and the quantity slopeadj = (regression slope) * (number

of days between first and last time points) was calculated. A non-parametric approach was chosen because of its superior robust-

ness to outliers. AWilcoxonW test was then applied to compare themedian of slopeadj to zero. The values of slopeadj for each feature

are visualised in Figure S14. The non-parametric approach was chosen here due to its robustness with respect to outliers.
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Correlation maps
General correlation maps were generated using the values (log2-transformed when necessary, as described above) of features at the

first time pointmeasured at themaximumWHOgrade for each patient. The correlationmap between feature changes during the peak

of the disease (as defined above) was generated by correlating the slopeadj values (as defined above). The map of significant protein

correlations not detected in the general population was generated by excluding all correlations which were either significant (P <=

0.05, without multiple-testing correction) with the same trend in the Generation Scotland cohort, or could not be calculated reliably

therein (less than 20 valid points).

Prediction of current mechanical ventilation
To reflect the power of omics measurements in characterising the phenotype, a classifier was constructed to predict mechanical

ventilation (WHO grade > 5) at the present time point using the proteomic and/or accredited diagnostic data. For the proteomic

data only proteins characterized by at least 3 peptides were taken into account. The first time point measured at the maximum

WHO grade was selected per patient. We used a gradient boosted tree algorithm implemented in the XGBoost 1.2.0 (Chen and

Guestrin, 2016) under Python 3.8.1. The classifier was constructed using leave-one-out cross-validation. To circumvent overfitting

a subsampling of 0.5 of the training data per boosting step and an L2 regularization term ‘‘lambda’’ of 20 were applied.

For the assessment of classifier performance, the leave-one-outmethodwas applied in the followingway: the predictionwasmade

for each sample separately, by excluding (withholding) this sample from the dataset, training the classifier on the remaining (indepen-

dent) samples and then predicting the withheld sample using the trained model. The source code is provided in supplementary ma-

terials. For the determination of the feature importances, one classifier was trained on all data points using the same setup as

described above. The feature importances were then extracted directly from the trained classifier.

For the validation of the trained models, samples from an independent cohort (Innsbruck) were used. A model was trained on the

data collected at the Charité using the same setup and parameters as described above and the proteins that were characterized in

both cohorts. The evaluation was performed on the Innsbruck cohort that was not used for training. ROC-curves and AUC were

calculated using scikit-learn 0.23.2 (Pedregosa et al., 2011). The machine learning scripts are provided in Data S1.

WHO grade prediction
For the prediction of the WHO grade an elastic net was applied as implemented in scikit-learn 0.23.2. TheWHO grade was predicted

for the first time point at maximum WHO grade per patient using a leave-one-out cross-validation procedure. A training/prediction

based on proteomic (proteins with at least 3 peptides) and/or accredited diagnostic data from the Charité cohort was performed.

Additionally, the proteomic model was validated using proteomic data set from the Innsbruck cohort that was not included in the

training. Features with more than 10%missing values were removed. All data were log2-transformed when necessary (as described

above), standardized and kNN-imputed (5 neighbors). The latter two steps were fitted on the training data only. For the elastic net an

‘‘l1_ratio’’ of 0.05 was used coupled to a 5-fold cross-validated recursive feature-elimination algorithm (‘‘step’’ = 10, ‘‘min_features’’ =

20). Calculations of metrics were performed using scikit-learn 0.23.2 and scipy 1.5.2 (Virtanen et al., 2020). The machine learning

scripts are provided in Data S1.

Prediction of the remaining time in hospital
For the prediction of the remaining time in hospital a WHO grade predictor as described above was trained on the first data points for

every patient. The predictedWHO grades for every patient at WHO grade 3 who stayed in hospital for at least 1 day after sample time

were correlated to the remaining time in hospital. The Spearman correlation was calculated using scipy 1.5.2. The machine learning

scripts are provided in Data S1.

Supplementary Note 1. Diagnostic parameters and Proteome signatures that indicate therapeutic interventions
We investigated to what extent specific organ replacement therapies in severely ill patients, (renal replacement therapy (RRT) and

extracorporeal membrane oxygenation (ECMO)) were reflected in the proteome and at the level of accredited diagnostic parameters.

HP and HPX were reduced in patients on RRT and ECMO, reflecting hemolysis in the extracorporeal circuits (Figures S7 and S8).

Elevated SERPINC1 (Antithrombin III) levels mirror substitution of antithrombin during ECMO. The reason for elevated levels of

APOE in patients with ECMO is unclear, but is in line with reports on increased levels of APOE in pediatric patients after cardiopul-

monary bypass (Aĝirbaşli et al., 2015). The proteins increased in patients receiving RRT mainly reflect impaired kidney function and

have been associated with RRT before (AMBP, B2M, CST3, LYZ, RBP4, Figure S7) (Shao et al., 2015). Of note, increased levels of

AMBP, B2M and LYZ have been associated with death in chronic kidney disease (Makridakis et al., 2020). Levels of CFD and APOH,

both involved in the complement system, were also increased (McDonnell et al., 2020; Volanakis and Narayana, 1996). CFD is elim-

inated renally and accumulates in end stage renal disease, possibly leading to enhanced complement activation via the alternative

pathway (Pascual et al., 1988). In contrast, levels of APOH have even been reported to be slightly lower following high-flux hemodi-

alysis (Han et al., 2018).

We note that the analysis of the effect of treatments on the proteome has two limitations. First, some of themarkers identifiedmight

be prognostic for the treatment rather than reflect its effect. Age and the Charlson comorbidity index belong to this category: patients

receiving ECMO were significantly younger and had a lower number of pre-existing chronic conditions than those who did not.
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Second, the results might be partially confounded by the time elapsed from the onset of the disease, as we have shown (Figure 3) that

omics signature changes with time in COVID-19 patients while on invasive mechanical ventilation.

Supplementary Note 2. Age-specific response to COVID-19 in the context of severity markers
Older age is one of the most significant risk factors for severe disease and adverse outcome in COVID-19. Enhanced understanding

of underlying mechanisms for the age-specific response to SARS-CoV-2 infection is therefore important and needed for the devel-

opment of effective age-specific strategies for prevention and treatment. Furthermore, dissecting the age-specific components of

the host response will improve our knowledge of the pathogenicity of similar viruses, making the world better prepared for future

pandemics. Current theories characterizing the link between the higher age and risk for severe disease include immunosenescence,

elevated baseline inflammation, or altered protein glycosylation landscape leading to impaired antiviral response or reduced immune

tolerance (Franceschi et al., 2018; Goronzy and Weyand, 2013; Rea et al., 2018; Tay et al., 2020). However, a detailed and mecha-

nistic understanding of the relation betweenCOVID-19 and aging is lacking. In this work, we leverage the large size and high precision

of the proteomic data acquired tomap the age-related response to COVID-19, to provide a reference dataset (Figures 2C, 5, and S11)

for future studies addressing this problem.

We report elevation of several inflammatory and acute phase proteins such as SERPINA3, ITIH4, SAA1, and ITIH3 in older patients

with COVID-19. SAA1 has been shown to inducemacrophage polarization to theM2-type which promotes tissue repair but also pos-

sesses pro-fibrotic properties involved in the pathogenesis of pulmonary fibrosis (Liu et al., 2014; Page et al., 2012; Wermuth and

Jimenez, 2015). Moreover, SAA1mediates displacement of APOA1 from HDL leading to loss of the cardio- and vasoprotective prop-

erties of high density lipoprotein (HDL) (Gordon, 2014). SERPINA3, as discussed above, has an ambivalent role as a neutrophil pro-

teinase inhibitor but also a powerful neutrophil chemoattractant. Upregulation of SERPINA3 with age in COVID-19, along with the

higher neutrophil-to-lymphocyte ratio, suggests that excessive neutrophil response is one of the aggravating factors in older

COVID-19 patients. Taken together, our findings point toward a disproportionately dysregulated inflammatory response to SARS-

CoV-2 with age, which may be explained by an increased baseline inflammation and immunosenescence in older patients (Chung

et al., 2019; Ferrucci et al., 2005; Soysal et al., 2016). Age-dependent increase of FBLN1 and decrease of KLKB1 reflect alterations

in blood coagulation whichmay aggravate this effect by predisposing older patients to thromboembolic events, one of the key clinical

characteristics of severe COVID-19.

Interestingly, a number of apolipoproteins displayed a strong age-specific signature in COVID-19. For instance, APOC2, a compo-

nent of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL), and activator of lipoprotein lipase

involved in triglyceride metabolism (Ramasamy, 2014), was downregulated with age in COVID-19, but upregulated with age in the

general population (Harris et al., 2017; Peters et al., 2015) (Figure 2C). Dysregulation of apolipoproteins has been observed in com-

munity acquired pneumonia and associated with unfavourable outcome (Sharma et al., 2017). Remarkably, contrary to the general

trend, APOD, APOC3 and APOE show opposite trends in older COVID-19 patients and in severe disease (Figure 5). APOD is ex-

pressed by many tissues, including the brain (Dassati et al., 2014). An increase in APOD has been previously observed in ischemic

stroke and CNS inflammation andmay reflect (subclinical) involvement of the central nervous system especially in older patients with

more severe inflammation and more comorbidities (Muffat and Walker, 2010). Conversely, high levels of APOD have been shown to

temper coronavirus-mediated encephalitis in mice, indicating its role as a marker of CNS damage as well as tissue protection and

repair (Carmo et al., 2008). APOE, involved in inflammation, immune response and lipid metabolism, is upregulated in severe

COVID-19 but downregulated with age in this cohort. APOE typically mediates anti-inflammatory effects by downregulation of

NFkB and inhibition of macrophage response to IFNy and TLR3, both mediators of viral immune response. Moreover, it neutralizes

bacterial LPS and enhances the adaptive immune response by facilitating antigen presentation (Figueroa et al., 2019). Downregula-

tion with agemay reflect a compromised immune response leading to over-activation of NFkB and insufficient pathogen clearance in

older patients. Finally, APOE has been described to reduce proliferation of myeloid progenitor cells (Murphy et al., 2011) and to

reduce myeloid derived suppressor cell (MDSC) survival in mice (Tavazoie et al., 2018). Thus, lower levels of APOE in the elderly

may favor expansion of immature and dysfunctional neutrophils that have been described as a hallmark in severe COVID-19

(Schulte-Schrepping et al., 2020). This broad involvement of APOE merits further investigation in future studies.

Supplementary Note 3. Diverging trends at the proteome level during the disease peak in individual patients
Some patients (59, 90, 96, 123) who died exhibited protein concentration trajectories distinctly similar to ‘‘typical’’ survivors (Fig-

ure 3B). Two of them (59, 90) had a prolonged ICU stay with repeated septic episodes and finally defined limitations of therapy ac-

cording to presumed patients’ wishes (‘‘secondary DNR’’). Their protein signatures probably reflect the phenomenon of immune pa-

ralysis that can follow bacterial sepsis associatedwith a prolonged ICU treatment (Patricio et al., 2019). One patient (96) was receiving

ongoing immunosuppressive therapy for an autoimmune disorder, and a fourth patient (123) had a history of kidney transplantation,

both died of septic shock. Whether the particular group of solid organ recipients shows a distinct protein signature associated with

the outcome requires further investigation.
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We also note that some surviving patients do not show a trajectory characteristic of the typical ‘alleviation’ of the proteomic pheno-

type (WHO = 4: 58, 106, 153; WHO = 6 or 7: 43, 80). Specifically, the proteomic response in patients 106, 153 and 141 was indicative

of overall ‘worsening’ of the proteome (Figure 3B). In contrast, patients 43 and 80 exhibited the overall ‘alleviation’ of the proteome,

except for the spike in the levels of CRP and serum amyloid (Figure 3B). Shorter time spans between sampling days may explain

these observations in four of these patients (43, 58, 80, 106), indicating that the host inflammatory response requires a certain

time to resolve, especially in more severely ill patients, and some of the markers of systemic inflammation might linger, whereas a

typical alleviation of the proteomic signature can be observed even within a few days in moderate disease courses. The unusual

pattern of patient 153 was likely confounded by a skin infection that subsequently required antibiotic treatment.
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