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Abstract—The telecommunication (telecom)industry is a highly technological domain has rapidly developed over the previous decades as 

a result of the commercial success in mobile communication and the internet. Due to the strong competition in the telecom industry market, 

companies use a business strategy to better understand their customers’ needs and measure their satisfaction. This helps telecom 

companies to improve their retention power and reduces the probability to churn. Knowing the reasons behind customer churn and the use 

of Machine Learning (ML) approaches for analyzing customers' information can be of great value for churn management. This paper aims 

to study the importance of Customer Churn Prediction (CCP) and recent research in the field of CCP. Challenges and open issues that 

need further research and development to CCP in the telecom sector are explored.  

Index Terms— Customer churn, prediction, machine learning, churn management, telecom 

———————————————————— 

1 INTRODUCTION                                                                     

Customers seek good service quality and competitive pricing 
factors in telecom sector. However, when these factors are 
missing, then they can easily leave to another competitor in 
the market [1].  This has led telecom to offer some incentives 
to customers to encourage them to stay [2].  

 
The movement of customers (i.e., subscribers)  from one 
service provider or carrier to another  is called customer 
churn, It has been recognized that long-standing consumers 
are more lucrative in the long term, as new clients are 
engrossed by persuasive offers and incline to switch to an 
alternative competitor in the market at the moment they 
obtain a better concession [3-7], and therefore it is vital for 
companies to consider churn management as a part of 
Companies use CRM as a strategy to modify their process 
management, to improve their revenues and to find new 
approaches by primarily focusing on customers’ needs to 
avoid losing them rather than a product [13, 14]. These 
specifics have led competitive companies to capitalize on CRM 
to up-hold their customers, and thus helping to increase 
customer strength. Figure 1 shows the main sections of CRM 
[15]. 

 Collaborative CRM: It aims to establish customized 
relationships with customers using several ways such 
as emails, telephone, websites, call centers, face-to-face 
contact, etc. 

 Operative CRM: This type offers services for the 
organizations to increase the efficiency of CRM 
processes  

 Analytical CRM: focuses on data collection and 
analysis to help the management build strategic 

decisions and plan for the future.  

 

Fig 1.CRM areas 
 

The data of customers are stored in such CRM systems which 
can then be transformed into valuable information with the 
help of ML techniques which aid telecom companies to 
formulate new polices, develop campaigns for existing clients 
and figure out the main reasons behind customer churn. In 
this way, companies can easily observe their customer’s 
behavior from time to time and manage them effectively. 
Therefore, ML approaches are needed in telecom sectors 
which remain the corner-stone of customer churn control and 
can play a fundamental role in decreasing the probability of 
churners.  
Due to the increased amount of data collection, organization 
and companies can store vast amount of data and information 
using several types of storage technologies at low cost. 
However, the challenge is to analyze, summarize and discover 
knowledge from these stored data. ML and statistics aiming at 
automatically discovering useful information and identifying 
hidden patterns in large data warehouses. ML involves few 
phases from raw data collection to some of the interesting 
patterns and this process includes data cleaning, 
transformation, selection and evaluation  
It has been reported that attracting new customers’ in the 
telecom sector, costs six times more than retaining existing 
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ones [7], and losing customers leads to a reduction in their 
sales [9]. Therefore, knowing the reasons for the customers to 
move to another service provider and the role of ML 
approaches can facilitate accurate segmentation of the 
customers and can yield significant returns to the telecom 
companies. This paper aims to provide the reader with the 
factors that can play a great effect on customer churn as well 
as the state-of- the- art of ML approaches applied in CCP in 
the telecom sector. Also the challenges and open areas that 
need further research in the application of CCP. 
The rest of the paper is structured as follows: Section 2 
provides the importance of CCP in the telecom sector. Section 
3 presents the background literature from both the business 
domain knowledge and the computer science domain. Section 
4 discusses the challenges and open issues; and finally, section 
5 concludes this paper.  

2 THE IMPORTANCE OF CCP IN TELECOM 

 
Information and Communication Technology (ICT) has grown 
and developed rapidly during the last decades, specifically in 
the mobile industry which represents the largest ICT market 
as a result of the appearance of the internet and the 
commercial success in the mobile communication market. 
Before 1999, the Internet was regarded as a fancy tool that only 
professionals, computer survey users and “nerds” could play 
with [16]. During that time, the number of Internet users was 
less than 5% of the population worldwide globally.  Recently, 
ITU estimates the number of internet subscribers at the end of 
2019 to reach 53.6 percent as shown in figure 2. 

 

Fig 2. Subscribers using the internet 2005- 2019 
 
By the end of 2020, the number of mobile phone users is 
expected to reach 6.918 billion, which is over 84% of the 
population globally [17]. However, the ICT market, 
particularly the telecom industry, has reached market 
saturation and the average annual churn rate reaches between 
10 - 67% monthly due to the strong competition between 
service providers to attract new customers [18, 19].  
Commercial companies in general and telecom companies in 
particular are considered as one of the top sectors that suffer 
from customer churning [20]. This means a company could 
lose approximately half of its customers and could result in a 
drop in its profits. Furthermore, research works from different 
countries such as Nigeria [21], India [22], Kenya [23], 

Indonesia [24] and Ghana [25] acknowledged the existence of 
the problem of churn in telecom companies. 
Churn management is an essential concept in CRM; it 
manages the most fundamental aspects that may change the 
customers' behavior such as price, service quality, company’s 
reputation and effective advertising competition. Offering 
retention incentives is the primary way to reduce customer 
churn [26]. Telecom companies use different strategies for 
churn management and retention: offering incentives to all the 
clients without determining which customers to target [27], or 
utilizing customers’ transactional data to develop predictive 
models to specify the customers who are likely to defect in 
advance [28]. Once specified, the telecom company could 
target these customers with incentives to encourage them to 
stay [29].These incentives can take several forms such as 
promotions, discounts and free calls .etc.  
Price reduction can be considered as the main market method 
in the telecom sector to retain and attract customers who are 
willing to churn [30, 31]. Free calls promotion in which the 
customers pay an equivalent amount of 12 or 15$ monthly and 
get free calls on the same network have become a common 
and result in affordable telecom service. This encouraged the 
existing subscribers to move to their calling plans and join 
their promotion because they have the choice to easily move 
and join another carrier at any time by purchasing a new SIM 
card which may leave the customers to have 3 or 4 different 
phone lines for him to use the one with the best promotion.   
An effective deployment of quality systems in the telecom 
sector is vitally important to enable their companies attract, 
obtain and retain customers. It is certainly cost-effective to 
maintain existing customers than obtaining new ones 
[32].Therefore; the companies save millions of dollars by 
investing in customer churn analysis and prediction [33]. The 
companies through CRM work by ranking the margin of the 
propensity of customers to defect and facilitate their 
marketing team to provide incentives to those highly ranked. 
This saves the companies from losing the reputation and 
image dents of their brands and services. The telecom services 
are now customer-oriented or customer-centered [33].  
The voice of the customer is incorporated in even a bit of 
production and service provisions to enhance satisfaction. 
Therefore, telecom firms should invest in churn prediction to 
maximize their profits, to reduce customer churn, and ensure 
that the needs as well as the behavior of their customers are 
being satisfied. Traditional data analysis techniques that focus 
on mining quantitative and statistical techniques are used for 
churn detection in the telecom industry [34]. The success of 
this model depends on observing the customers’ behavior 
with the help of experience and creating some rules to 
categorize a client as a churner or not. For instance, a telecom 
company could label the client as a churner when several calls 
are made by the client to the customer service. However, all of 
these rules are created using only intuition, experience and 
without the use of a scientific method, so the results may be 
below the expectations. In light of this, a powerful method is 
needed to effectively make reliable predictions and decisions 
than those who are just based on experience.  
ML techniques have been broadly employed to model 
customer churn [35, 36]. This is because a churn is a rare event 
in a dataset and making accurate decisions requires creating 
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models with high predictive performance [37]. Therefore, to 
reduce customer churn probability and developing an 
effective customer retention-program, the utilized predictive 
model should be accurate enough [38], or else, these systems 
will be useless when spending incentives on customers who 
will not churn. The true classification of churners and non-
churners provides telecom companies enough time to build a 
specific campaign to decrease customer churn possibility and 
maximize their profitability from the retention campaign [39]. 
Figure 3 shows the main learning model phases: 

 
i. Preparation phase  

ii. Learning phase 
iii. Performance and evaluation phase  
iv. Decision phase 
 
The customer churn data is prepared and transformed into an 
understandable format to make conceptual labeling in the first 
phase. Therefore, the labeled data contains training and 
testing in this phase. The main rule of the second phase is to 
prepare the input training data for building base classifiers 
with a learning algorithm as a base learner. The third phase 
chooses the most appreciate classifier for customer churn data.  
Finally, the decision-making phase tunes the learning rules to 
improve the accuracy of the prediction or detection of churn 
customers.   

 

Fig 3. Learning system model 

3 LITERATURE REVIEW 

3.1 Business Domain knowledge 

By looking at the market size in the telecom industry, with the 
intent of finding the necessary information to understand how 
large the churn problem is. Key findings include: 

 The number of subscriber milestone in the telecom 
industry is expected to increase and reach more than 9 
billion by the end of 2022 globally [40] 

 62.9% worldwide already owned a mobile phone in 
2016 and it is expected to reach 67.1% in 2019 [41]. 

 35% of the individuals using the Internet are young 
people aged 15-24, Least developed countries 
compared with 13% in developed countries and 23% 
worldwide [42].  

 The following information is the average across the 
telecom industry: 

 Monthly churn rate reaches between 10 - 67% [20] 

 The average monthly revenue per business customer of 
Frontier communications reached 673.72 U.S. dollars in 
2016 [43]. 

 The gross margin in the second quarter of 2017 is 
80.38% [44].  

 The customer lifetime is 52 months [45]. 
 A customer lifetime value is1782 U.S. dollars [45]. 
 The acquisition cost of a new customer in the Telecom 

sector is 315 U.S. dollars [46]. 
 
Customer lifetime value can be defined as a measure of how 
much profit can be generated over the lifetime of the 
customer.  
 
Gross margin is a company’s residual profit after selling a 
service or product and deduction the cost allied with its 
production and sale.  
 
Acquisition cost refers to the cost of gaining new customers 
which involve persuading customers to purchase a company’s 
services or products. It measures how much value customers 
bring to telecom companies and their businesses  
 
Several reasons are presented in the work of [47] for when 
customers decide to stop using the service and why. The 
authors classified the causes of churn into three groups: 
controllable churn, uncontrollable churn and non pay/abuse. 
The controllable includes anything that is under the control of 
the company: Defecting to a competitor, response to poor 
service and the service price. Uncontrollable includes all the 
reasons that are outside the control of the company hands 
such as, death, illness and moving to a different country. The 
last group includes the causes that are related to nonpayment, 
abuse, theft of service or other causes in which the company 
made the churn decision for the customer and it is unclear 
whether any of the non-pay/abuse is controllable or not.  A 
wide variety of factors play a great effect on churn in the 
telecom industry such as; income level, educational 
background, marital status, age, gender, geographical 
location, the effect of family and friends, cultural habits, 
service quality and price.  In [48], the authors decided to 
investigate account length, international plan, voice mail plan, 
number of voice mail messages, total day minutes, total 
evening minutes, total night minutes, total international 
minutes, and number of calls to customer service factors. 
Some other works use income level, educational background, 
marital status and friends factors [49] and economic patterns: 
rate plans, tariffs and the promotion available from different 
service providers [50]. The author in [51] conducted research 
to analyze customer behavioral and demographic 
characteristics. The behavioral factors include rate plan (i.e., 
number of rate plan changes made with the carrier), handset 
changing frequency (i.e., number of handset changes made 
with the carrier), contract (Customer’s service contract), rate 
plan suitability, customer tenure (i.e., number of months the 
customer stays with the service provider since service 
activation) and account status (still active or already churned 
at the end of the study period). The demographic factors 
include age, location (Western Canada or Eastern Canada) and 
language (English or French). The data were extracted from a 
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Canadian wireless carrier and 4896 residential customers were 
selected. The final results indicated that rate-plan suitability 
has an important role in customer churn among all the factors 
used and the customers who changed their call plans more 
than once, churned less. In another recent work, the authors in 
[52] demonstrated the lost customer-first behaviors and 
lifetime experience, the reasons behind defection and the 
nature of the win-back offer made to lost customers are all 
related to the likelihood of their reacquisition, lifetime 
duration, and the lifetime profitability per month in a US 
telecom products and services company. They include six sets 
of variables:  

 First behaviors and lifetime experience (a member of 
referrals, number of complains and service recovery). 

 Defection behavior (price-related reasons, service-
related reasons, or price and service=related dummy 
and time of defection). 

 Win back offer nature (price discount, service upgrade 
and price discount and service upgrade),  

 Interaction between reasons for defection and win back 
offers (price-related defection X price discount offer, 
service-related defection X service upgrade offer). 

 First-lifetime marketing contacts (frequency of phone 
calls, e-mails sent and direct mails). 

 Demographics and first life control variables (age, 
gender, income, household size, education level, 
tenure, revenue, level of service plan and cross-buy).  

 
Their empirical results indicated that referral and complain 
behaviors are important pointers for the quality of the first-
lifetime experience and how the customers who have positive 
first-lifetime experiences were more likely to accept a win-
back offer. There are other factors and their complex 
relationships affect customer churn such as service quality 
which is a combination of features such as network coverage, 
signal strength, voice quality, customer service is that 
provided by the service provider to the customer. This factor 
has a direct influence on encouraging customers to switch to 
another service provider as confirmed in the work of [53, 54]. 
The authors in [55] surveyed 196 respondents in the java west 
area to examine customer value and service quality factors to 
find their impact on controlling customer churn. They 
concluded that   service quality has a positive relationship in 
controlling customer churn and also affect customer value 
positively. Service usage, switching cost, customer 
dissatisfaction and demographic factors play a very important 
role for a customer to switch to another service provider [56], 
when the authors used a dataset contains 1,000,000 records 
and 42 factors collected from a telecom company in the US.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.   
 
 
 
 
 
 

Table 1 summarizes the list of literature works and various 
factors used by researchers in their works. 

 

Works Customer churn factors 

(Braun & Schweidel, 2011, 

[47]) 

Controllable churn, 

uncontrollable churn and non 

pay/abuse 

(Antipov & 

Pokryshevskaya, 2010, [48]) 

Account length, international 

plan, voice mail plan, number 

of voice mail messages, total 

day minutes, total evening 

minutes, total night minutes, 

total international minutes, 

and number of calls to 

customer service 

(Wong, 2011, [49]) 

Income level, educational 

background, marital status and 

friends 

(Ranaweera, 2007, [50]) 

Economic patterns: rate plans, 

tariffs and the promotion 

available from different service 

providers  

(Wong, 2011, [51]) 

Behavioral: Rate plan, handset 

changing frequency, contract, 

rate plan suitability, customer 

tenure and account status, 

Customer demographic 

information: Age, location and 

language 

(Kumar et al., 2015, [52]) 

First behaviors and lifetime 

experience, defection behavior, 

win back offer nature, the 

interaction between reasons for 

defection and win-back offers, 

First-lifetime marketing 

contacts, and customer 

demographics 

(Cronin et al., 2000, [53]) 

(Al-Rousan et al., 2010, 

[54]) 

Service quality 

(Marwanto & Komaladewi, 

2017, [55]) 

Customer value and service 

quality  

(Al-Mashraie et al., 2020, 

[56])  

Customer demographic 

information: age and gender, 

number of dripped calls, 

number of service calls and 

geographical area  
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3.2 Computer Science Domain 

Developing a model that accurately predicts customer churn 
could have several managerial and financial implications for 
telecom companies. The correct classification of a customer as 
churner and non-churner can reduce misclassification costs 
such as cost of incentives and retention rate in real-world 
decision making, the assumption of equal miss classification, 
the default operating mode for many classifiers, is most likely 
violated. Customers’ churn has significant negative 
managerial and financial results on the company retention 
strategies. For example, a company could lose direct contact 
with the client, and therefore it cannot sell its additional 
products to that customer. Also, when an incentive sent to a 
non-churner client rather than a real one, it means that the real 
churner has not received the incentive to encourage him/her  
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

to stay or the incentive has received by a client who was not 
supposed to receive it and thus the marketing budget for the 
company could be negatively affected [57, 58]. A worldwide 
range of studies has applied ML techniques for CCP modeling 
during the last decade. Table 2 provides an overview of 
previous works on the use of ML techniques for modeling 
CCP in the telecom industry. Some main reference papers in 
recent literature, along with their titles, the used modeling 
techniques, the dataset names and their characteristics, the 
number of records and variables and whether the datasets are 
Private (*) or public (#), the applied evaluation measures, the 
validation method and research outcomes are summarized in 
the table.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Overview of previous works on churn prediction using ML approaches in the telecom industry 
 

works Title of paper Used Techniques 

Dataset-#rec. - 
#var. - Private 
(*) or public 

(#) 

Measures- var. 
selection - 
sampling - 
validation 

Outcomes 

(Idris et al., 

2012, [59]) 

Genetic programming 

and adaboosting based 

churn prediction for 

telecom 

Adaboost style boosting 

– Artificial Neural 

Network (ANN) and 

Random Forest (RF) 

Orange telecom 

(KDD Cup 2009 

small) –50,000 rec. 

– 230 var. - (#) and 

Cell2Cell - 

70831sub. - 75 var. 

- (#) 

AUC, sensitivity, 

specificity - Genetic 

Programming (GP) - 

uniform numerical 

format -no validation 

GP- AdaBoost based model 

offers higher accuracy than 

ANN and RF. The GP- 

AdaBoost achieved a 

prediction accuracy of 89% 

for Cell2Cell and 63% for 

the other dataset. 

(Miguéis et 

al., 2013, 

[60]) 

Customer attrition in 

retailing: an application 

of multivariate adaptive 

regression splines 

Logistic Regression 

(LR)) and Multivariate 

Adaptive Regression 

Splines (MARS) 

European retail 

company – 130284 

#rec.  – 7 var. - (*) 

AUC, top-percentile 

lift - stepwise forward 

and stepwise 

backward – no 

sampling – 10- fold 

cross validation  

 

MARS achieved better 

results when the whole set 

of variables are used. 

However, the LR 

outperforms MARS when 

variable selection 

procedures are applied. 

(Brandusoiu

&Toderean, 

2013, [61]) 

Churn prediction in the 

telecommunications 

sector using support 

vector machines (SVM) 

Support Vector 

Machine (SVM) with 

four kernel functions: 

Radial Basis Function 

kernel (RBF), linear 

kernel (LIN), 

Polynomial kernel 

(POLY) and sigmoid 

kernel (SIG) 

 UCI Repository, 

University of 

California - 3333 

rec.   – 21 var. -(#) 

Recall, Specificity, 

Precision, Accuracy, 

Misclassification and 

F-measure – no var. 

selection – no 

sampling – no 

validation  

SVM model using 

polynomial kernel (SVM-

POLY) showed superiority 

over other SVM models. 

(Lemmens & 

Gupta, 2013, 

[32]) 

Managing churn to 

maximize profits 

gain/loss matrix and 

gradient boosting  

Teradata Center at 

Duke University - 

-10,000 rec. – 171 

var. – (*) 

Misclassification - 

PCA –oversampling – 

F scores 

 

The results indicated that 

improvements are achieved 

by using gain/loss matrix 

and gradient boosting 

approach for companies 

with no additional 

implementation cost. 

(Keramati et 

al., 2014, 

[62]) 

Improved churn 

prediction in 

telecommunication 

industry using data 

mining techniques 

 

Decision trees, ANN, K-

Nearest Neighbors and 

SVM 

Iranian mobile 

company – 3150 

rec. – 11 var. - (*) 

Accuracy, precision, 

recall, F –score – 

exhaustive 

recombination of 

variables - training- 

test split  

ANN shown higher 

accuracy than Decision 

trees, K-Nearest Neighbors 

and SVM. 
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Table 2. Overview of previous works on churn prediction using ML approaches in the telecom industry 
 

(Chen et al., 

2015, [63]) 

Predicting customer 

churn from valuable 

B2B 

customers in the 

logistics industry: a case 

study 

LR, Decision tree 

(C4.5), ANN 

(multilayer 

perceptron, 

(MLP)) and SVM 

Logistics company in 

Taiwan - 69,170rec.   - 

18 var. - (*) 

Accuracy, precision, 

recall, F1) - no var. 

selection - random re-

sampling – 10-fold cross 

validation  

 

C 4.5 outperformed the 

other models and. the 

most significant variables 

for customer churn: 

Length, recency and 

monetary. 

(Vafeiadis 

et al.,  2015, 

[64]) 

A comparison of ML 

techniques for 

CCP 

SVM-poly, 

Decision tree, 

ANN, Naïve 

Bayes, Regression 

Analysis,   

UCI Repository, 

University of 

California - 3333 rec. – 

21 var. -(#) 

Precision, Accuracy, 

Recall and F-measure - no 

var. selection – no 

sampling – monte carlo 

based cross validation 

SVM-poly using AdaBoost 

obtained 97% accuracy 

and F-measure over 84%. 

(Zhang et 

al., 2015 

[65]) 

Profit Maximization 

Analysis Based on Data 

Mining and the 

Exponential Retention 

Model Assumption 

with Respect to 

Customer Churn 

Problems 

DT and 

Regression  

Guangxi Mobile 

Communication 

Company in China -

40,000 rec. – 127 var. – 

(*) 

ROC , normalized profit - 

no var. selection – no 

sampling– no validation   

The relationship between 

profit and retention is 

good when the prediction 

algorithm sufficiently 

good, when the capability 

of retention is good 

enough, the relationship of 

profit and retention is 

convex and when both 

prediction algorithm and 

retention capability are not 

effective enough, the 

operators should not take 

any actions. 

(Hassouna 

et al, 2016, 

[66]) 

Customer Churn in 

Mobile Markets A 

Comparison of 

Techniques 

Decision tree 

(CART, C 5.0, 

CHAID) and LR  

 

Two UK mobile 

telecom operator data 

warehouse - 15,519 

and 19, 919 rec.  – 17 

var.- (*) 

AUC, Receiver Operating 

Characteristic (ROC), top 

decile, accuracy - 

choosing the most 

importantvar. -  no 

validation    

C 5.0model is better than 

the LR model for CCP. 

(Umayapar

vathi&Iyak

utti, 2016, 

[67]) 

Attribute selection and 

CCP in telecom 

industry 

Gradient 

Boosting (GB), 

DT, SVM, RF, K-

Nearest 

Neighbour, Ridge 

Regression and 

LR 

Cell2Cell - 70831sub. - 

75 var. - (#) and 

CrowdAnalytix – 

3333 rec.   – 20 var. - 

(#) 

 

Accuracy, Precession and 

Recall, F1-score - Brute 

force - no sampling - 10-

fold cross validation  

 

GB model has a higher 

performance than other 

techniques and six 

attributes: day minutes, 

voice, mail plan, night 

charge, international calls, 

evening calls, and day 

calls minutes have upmost 

importance towards churn 

prediction in the Cell2Cell 

dataset.    

(Brânduşoi

u et al., 

2016, [68]) 

Methods for churn 

prediction in the pre-

paid mobile 

telecommunications 

industry 

Neural networks, 

SVM and 

Bayesian 

networks. 

UCI Repository, 

University of 

California - 3333 rec.   

– 21 var. - (#) 

Confusion matrix, gain 

measure, ROC - Principal 

Component Analysis 

(PCA) –oversampling – 

no validation   

SVM achieved better 

performance compared to 

other techniques 

(Coussemen

t et al, 2017, 

[69]) 

A comparative analysis 

of data preparation 

algorithms for customer 

churn prediction: A 

case study in the 

telecommunication 

industry 

CART, Bayesian 

network, J4.8 

decision tree, 

MLP, Naive 

Bayes, RF, SVM 

with RBF kernel 

function and 

Stochastic 

gradient boosting 

 

Large European 

mobile 

telecommunication 

provider - 30, 104 rec.  

– 956 var. - (*) 

AUC, top decile lift (TDL) 

- correlation-based var.– 

no sampling – no 

validation  

Data preparation 

treatment (DPT) improves 

prediction performance. 

Logistic regression- DPT 

approach outperformed 

the empirical methods 

remarkably. 
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Table 2. Overview of previous works on churn prediction using ML approaches in the telecom industry 
 

(Prashanth et 

al, 2017, [ 

70]) 

High Accuracy 

Predictive Modeling for 

CCP in Telecom 

Industry 

Linear: LR, non-linear: 

RF, Deep Learning: 

Deep Neural 

Network, Deep Belief 

Networks and 

Recurrent Neural 

Networks 

Asian telecom 

service provider 

– 337817 rec. – 36 

var. - (*) 

Accuracy, Sensitivity, 

AUC, Specificity- no var. 

selection - no sampling - 

5-fold cross validation 

Non-linear techniques 

performed better than the 

linear and both RF and 

deep learning gave 

comparable performance, 

(Amin et al,  

2017, [71]) 

CCP in the 

telecommunication 

sector using a rough 

set approach 

Rough Set Theory 

(RST), Exhaustive 

Algorithm (EA), 

Genetic Algorithm 

(GA), Covering 

Algorithm (CA) and 

LEM2 algorithm (LA) 

UCI Repository, 

University of 

California - 3333 

rec. – 21 var. -(#) 

Recall, Specificity, 

Precision, Accuracy, 

Misclassification, F-

measure - Information 

Gain Attribute Evaluation 

- random re-sampling – 

K-fold cross validation  

RST-GA based model 

showed satisfactory 

results for extracting 

implicit knowledge. 

(Azeem et 

al., 2017, 

[72]) 

A churn prediction 

model for prepaid 

customers in telecom 

using fuzzy classifiers 

Neural Network, 

Linear regression, 

C4.5, SVM, AdaBoost, 

Gradient Boosting, RF 

and Fuzzy classifiers: 

Fuzzy NN, VQNN, 

OWANN and Fuzzy 

Rough NN 

telecom company 

in South Asia – 

600,000 rec. – 722 

var. – (*) 

Recall, Precision, ROC, 

AUC - domain 

knowledge – 

oversampling – training-

test split  

Fuzzy classifiers shown 

superior performance 

compared to other used 

models 

(Zhu et al., 

2017, [73])  

Benchmarking 

sampling techniques for 

imbalance learning in 

churn prediction 

LR, Decision Tree 

(C4.5), SVM and RF 

Chile- 5300 rec. – 

41 var. – (*), Duke 

current– 51, 306 

rec. – 41 var. – (*), 

Dukefuture – 100, 

462 rec. – 173 var. 

– (*),  Korean1 K1 

Operator East 

Asia - 2019 rec. – 

10 var. – (*), 

Korean2 K2 

Operator East 

Asia -2941 rec. – 

14 var. – (*), 

Korean3 K3 

Operator East 

Asia -5990 rec. – 

36 var. – (*), 

Korean4 K4 

Operator East 

Asia -2183 rec. – 9 

var. – (*), 

Korean5 K5 

Operator East 

Asia - 26224 rec. – 

11 var. – (*), Tele1 

Operator Europe 

- 4350 rec. – 87 

var. – (*), UCI 

Repository, - 3333 

rec. – 19 var. -(#),  

KDD cup 

KDDcup - 50000 

rec. – 231 var. -(#) 

AUC, Maximum Profit 

(MP), top-decile lift - 

Fisher score - ADASYN, 

Borderline-SMOTE, 

CLUS, MWMOTE, 

SMOTE, SMOTE–ENN, 

SMOTE–Tomek – 5 × 2 

cross-validation 

 

Sampling approaches 

power lies in the used 

evaluation metrics as well 

as the classifiers. 
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Table 2. Overview of previous works on churn prediction using ML approaches in the telecom industry 
 

(Effendy et 

al., 2014, 

[74]) 

Handling Imbalanced 

Data in CCP Using 

Combined Sampling 

and Weighted RF 

 

 Weighted 

RF(WRF) 

telecom company in 

Indonesia – 48,384 rec. – 

24 var. – 

Recall, Precision and F-

measure – no var. 

selection - combination 

of undersampling and 

SMOTE - 10-fold cross 

validation 

The combined sampling 

techniques able to help 

WRF algorithm to achieve 

better performance and 

predict the churn 

effectively 

Gui, 2017, 

[75]  

Analysis of imbalanced 

data set problem: The 

case of churn prediction 

for telecommunication 

RF 
telecom company, 

450.000 rec. -  22var. (*) 

Recall, Precision F-

measure, Cost, and 

Accuracy – RF, Relative 

Weight (RW), 

Scandalized Regression 

Coefficient (SRC) - 

oversampling, under 

sampling, SMOTE - no 

validation 

SRC combined with 

SMOTE method achieved 

the best results  

(De Caigny  

et al., 2018, 

[76]) 

A new hybrid 

classification algorithm 

for customer churn 

prediction based on 

logistic regression and 

decision trees 

Decision trees 

and LR 

Financial services, 117, 

808 rec - 237 var- (*), 

Retail, 32, 371 rec- 47 

var- (*), DIY 3, 827 rec - 

16 var- - (*), Newspaper, 

427, 833 rec- 165 var- (*), 

Telecom, 71, 074 rec- 87 

var - (*), Financial 

services, 102, 279 rec- 

138 var - (*), Telecom, 

47, 761 rec- 43 var-  

(*),,Telecom, 50,000 rec – 

303 var (*), Financial 

services, 631, 627 rec – 

232 var - (*), Financial 

services, 573, 895 rec – 

232 var - (*), Financial 

services, 398, 087rec – 

232 var- (*),  Financial 

services, 316, 578 rec – 

232 var - (*), Financial 

services, 602, 575 rec – 

232 var - (*), Energy, 20, 

000 rec – 33 var -(*)  

AUC, top decile lift 

The hybrid model 

provided more accurate 

model than using its 

building blocks;  decision 

trees and LR; as a 

standalone classification 

models 

(Ullah et al., 

2019, [77]) 

A Churn Prediction 

Model Using Random 

Forest: Analysis of 

Machine Learning 

Techniques for Churn 

Prediction and Factor 

Identification in 

Telecom Sector 

JPK, LR, MLP, 

Naïve Bayes, 

AdaBoostM1, 

attribute 

selected 

classifier, 

decision stump, 

RF, J48,  

random tree 

and LWL 

Call Detail Records 

company in South 

Asian– 64,107 rec  – 29 

var.- (*), UCI Repository, 

- 3333 rec. – 19 var. -(#) 

 

 

Accuracy, Recall, 

Precision and F-measure 

RF performed better in 

terms of prediction of 

churners  

(Jafari-

Marandi  et 

al., 2020, 

[78]) 

Inferring Machine 

Learning-Based 

Parameter Estimation 

for Telecom Churn 

Prediction 

 

ANN, Self-

organizing map 

Telecom company in  

Iran- –3150  – 12 var.- (*), 

Accuracy, Recall, 

Precision, F-measure, 

and misclassification 

error 

The proposed profit-

driven models proved to 

be effective for telecom 

churn prediction 
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4 CHALLENGES AND OPEN ISSUES  

Different researchers have tested different factors and their 
significant effect on churn such examples of these factors 
include age, gender, rate plans, and minutes of use.etc. 
However, Customer often compares their service provider 
with other competitors in the market and churn to whoever 
they feel provides better service Researchers have found 
service quality [53, 54, 55] as the top factor for customer churn. 
Poor of customers care and slow response to their needs and 
complaints are another factor which can also play a vital role 
in increasing the probability of customers to change to another 
service provider [79]. Another factor that needs further 
attention is the customer’s tenure (i.e., churn time) with the 
service provider and its relationship with the prediction of 
customer churn in the telecom sector as confirmed in the work 
of [80, 81]. 
It has been confirmed that a high correlation exists between 
churn risk and customer dissatisfaction and the role in the 
turn of the telecom companies becomes that of preventing 
those dissatisfied customers from chinning [82]. To tackle the 
problem of customer churn, telecom companies use different 
strategies for churn management. These tactics include: 
identifying churners first by using a predictive model, 
followed by targeting those customers with retention 
incentives to encourage them to stay [11]. Another approach 
focused on customers who have the highest probability of 
defection (e.g. top 10%) [34]. A recent approach focused on 
choosing the target customers based on the profit potential of 
each, the likelihood of churning, the number of customers the 
company decides to target and the incentive cost to maximize 
the overall return from the retention campaign [54, 55]. 
Despite intensive efforts, there is no general judgment exists 
on the performance of the predictive techniques for customers 
churn prediction in the telecom sector. Therefore, a review and 
benchmarking experiment need to be done to allow 
comparing the performance of a variety of classification 
techniques.  All kinds of data have different attributes that 
might pose problems for ML techniques to extract the most 
crucial patterns in datasets due to class imbalanced in 
datasets. The classes whose number of instances are below the 
average number of instances per calls are termed as minority 
classes, while the instances that are above the average number 
of instances per class are termed as majority classes. Many 
studies are carried out comparisons on sampling techniques 
for handling class imbalance problem in the preprocessing 
phase. However, none of the literature reached to a final 
conclusion about which sampling technique is suitable for 
customers churn problem in telecom sector. .  
 
Feature selection main goal is to select the most important 
features without changing the original data representation, 
and therefore, selecting a subset of the features relevant for the 
task to achieve the highest classification accuracy. Searching 
for the optimal subsets of features is a necessary preprocessing 
step in ML techniques. Variable or feature selection eliminates 
irrelevant features and obtains the best feature subsets that 
play a vital role in the models’ accuracy and their final results. 
For instance, Migueis et al., 2013, [60], evaluated the 
performance of two techniques: MARS and logistic regression 

to model customer attrition. The results showed that MARS 
performed better than Logistic regression when the whole 
variables in the dataset were used, but when the authors 
applied variable selection, the logistic regression, achieved 
higher accuracy. However, none of the previous works 
confirmed which ML techniques can perform the best for 
feature selection.  
To evaluate the performance of a classifier, it is essential to 
specify at the beginning which evaluation measures should be 
used to fix the optimization objective for the entire analysis. 
Churn prediction problem is considered as a binary 
classification task because the outcome has only two possible 
values (churner or nonchurner), accuracy, recall, and precision 
measures are often used to evaluate the classification quality 
of binary classifiers [83]. Recall measures the proportion of 
positive cases (churners) that are correctly classified. Precision 
measures the proportion of cases classified as churners that 
are correctly churners. In other works, the authors confirmed 
that the use of the confusion matrix represents the primary 
source for accurate estimation of churn prediction in the 
telecom sector [84].  
Despite the intensive research efforts, there is still no 
consensus exists on the validation of results and far from 
agreeing on any standards. Therefore, it is important to verify 
how the model performs.  In ML, validation strategies are 
used to validate a model's performance, and generalized their 
outcomes. One of the useful and popular mechanisms for 
validating a customer churn model performance and its 
accuracy is the cross-validation technique [29].  

 
5 CONCLUSIONS 

 
Creating and delivering superior customer value is considered 
one of the corner-stones in the telecom market. Customer 
churn is a term that is developed in the telecom sector which 
indicates the movement of customers from their service 
provider to another competitor in the market. Knowing the 
reasons for churning and predicting which customers are 
about to churn can yield a significant return in the profitability 
of the telecom companies. This paper gives a complete survey 
on the importance of customer churn, reasons behind 
customers churn and the state-of- the- art of ML approaches 
applied in CCP. This paper briefly describes the previous 
efforts in the field of CCP. This paper briefly discusses 
research challenges and future directions of the CCP in 
telecom sectors.  
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