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Abstract  

This paper presents an optimal control scheme for a Permanent Magnet Synchronous Generator (PMSG) coupled 

to a wind turbine operating without a position sensor. This sensorless scheme includes two observers: The first 

observer uses the flux to estimate the speed. However, an increase in the temperature or a degradation of the 

permanent magnet characteristics will result in a demagnetization of the machine causing a drop in the flux. The 

second observer is therefore used to estimate these changes in the flux from the speed and guaranties the stability 

of the system. This structure leads to a better exchange of information between the two observers, eliminates the 

problem of encoder and compensates for the demagnetization problem. To improve the precision of the speed 

estimator, the gain of the non-linear observer is optimized using Genetic Algorithm (GA) and the speed is obtained 

from a modified Phase Locked Loop (PLL) method using an optimized Sliding Mode Controller (SMC). 

Furthermore, to enhance the convergence speed of this observer scheme and improve the performance of the 

system a Fast Super Twisting Sliding Mode Control (FSTSMC) is introduced to reinforce the SMC strategy. A 

series of simulations are presented to show the effectiveness and robustness of proposed observer scheme.  

Keywords: Wind turbine, Non-salient pole PMSG, sensorless control, PLL, genetic algorithm, fast super twisting 

sliding mode control. 

Introduction 

Electric power generation from wind has grown rapidly in the past decade to become the mainstream renewable 

energy source worldwide. Today, there are several wind turbine technologies in the market with different generator 

configurations. Permanent Magnet Synchronous Generators are becoming very attractive for full-power 

conversion and variable-speed wind power applications due to their several advantages including high efficiency 

and reliability. However, PMSGs are still high cost due to the permanent magnet materials. 

Several works have focused on the design of sensorless control of PMSGs to reduce the global cost of a wind 

energy system and its size [1]. Sensorless control requires an accurate information on the position in order to 

achieve optimal performance. Several sensorless control methods have been developed and applied. Among these, 

the Sliding Mode Observer (SMO) has been widely used [2]. This observer is robust but its main drawback is the 

chattering phenomenon which causes energy losses. The Higher-Order Sliding Mode Observer (HOSMO) has 

been proposed as an effective approach to reduce chattering [3]. However, HOSMO requires an accurate gain 

value to achieve a good compromise between chattering, stability, and robustness. Other robust sensorless schemes 



 

 

based on nonlinear observer have been proposed [4]. A great deal of work addressing the implementation of these 

types of observers in Permanent Magnet Synchronous Machines (PMSM) can be found in [5-8].  The results have 

shown that these observers lead to a slow transient response. These types of observers are based on permanent 

magnet flux and several methods exist to determine this parameter [9]. The simultaneous estimation of the flux 

and the position simultaneously is a complex task, therefore, an appropriate arrangement of two observers is 

generally adopted to provide an accurate estimation [10, 11, 12]. In [10], the authors used the Model Reference 

Adaptive System (MRAS) strategy to estimate the speed and the Extended Kalman Filter (EKF) to extract the flux 

of the Interior Permanent Magnet Synchronous Motor (IPMSM) and solve the demagnetization problem. However, 

the long computation time of the EKF and the lack of stability of the MRAS scheme are the major drawbacks of 

this approach. The authors in [11] proposed a stator flux soft sensor with sensorless speed and applied it to 

reluctance machines. A formulation of EKF is proposed to extract the flux with speed of PMSM in [12].  

To reduce the impact of uncertainties in the system an optimal sensorless control scheme should be designed. 

Optimization techniques have been extensively used in control system design. Optimization is the task of searching 

for the parameter value(s) that minimize or maximize a given objective function. The most popular optimization 

techniques include stochastic or deterministic algorithms [13], the conjugate gradient algorithm [14], and heuristic 

approaches such as Genetic Algorithm (GA) [15] and Particle Swarm Optimization (PSO) [16].  

Evolutionary algorithms (EA) are stochastic methods of global optimization based on the Darwinian theory of the 

evolution of biological species [17]. The evolution is modeled independently in different ways. Primarily, the GA 

is developed in [18], which formalizes genetic algorithms in the context of mathematical optimization. In [19], the 

authors established the Evolutionary Strategies (ESs). An alternative description of evolution programming (EP) 

has been introduced by Fogel [20]. 

Several works have used GA to optimize the parameters of controllers such as the gains of the Proportional Integral 

Derivative (PID) controller [21].  An optimization method is applied to Sliding Mode Control (SMC) [22, 23]. In 

[22], GA is used to optimize the sliding mode of the variable structure system. In [23], an optimal SMC is used to 

accurately control the position of an exoskeleton,  

The study in [24] proposes the application of an optimized SMC with a nonlinear disturbance observer to stabilize 

an inverted pendulum. In [25], Genetic Adaptive Observer (GAO) is proposed. The authors in [26], proposed a 

new adaptive observer scheme to improve global optimality of estimation. In [27], the authors used GA to optimize 

the observer’s parameters for an induction motor drive [27]. The authors in [28] uses GA to select the gains of a 

sliding mode observer for a Brushless DC (BLDC) motor. These works, despite the important results obtained, 

were always lacking in the optimal values for the observer and controller which provide more stability to the 

system. 

Based on these works and in order to enhance the stability of the overall system and eliminate the demagnetization 

problem due to a temperature increase or the permanent magnet flux degradation in the PMSG driven by the wind 

turbine, the present study aims to design an accurate sensorless control scheme using a two-observer configuration. 

These dual observers operate simultaneously and exchange information on the speed and flux. The speed observer 

provides the rotor position, while the speed is obtained through the proposed Phase Locked Loop (PLL) based on 

the estimated rotor position. The PLL is controlled using SMC the gain of which is optimized using GA to reduce 

the well-known chattering phenomenon while maintaining a good compromise between precision and speed of 

response. Furthermore, to obtain an accurate estimate of the position, GA is used to determine the optimal gain of 



 

 

the speed observer providing a good compromise between steady-state error and response time. The flux observer 

then uses this speed to identify the permanent magnet flux and passes it on to speed observer thus to FSTSMC. 

The FSTSMC has been selected first to improve the convergence using field-oriented control theory and second, 

since it belongs to the family of super twisting SMCs, it will reduce the chattering. The simulation results have 

shown that the proposed sensorless scheme provides an improved transient response of the speed and flux. 

The remaining of the paper is organized as follows. Section 2 presents the mathematical model of the wind turbine 

and the PMSG. In Section 3, the stator-side control is derived. The proposed sensorless scheme is presented in 

Section 4. In Section 5, the simulation results are presented and discussed in detail. Finally, the conclusions of this 

work are summarized in Section 6. 

2. Modeling of the Wind Energy Conversion System 

The structure of the Wind Energy Conversion System (WECS) considered in this work consists of a three-blade 

wind turbine coupled to the PMSG. The WECS is integrated to the grid through back-to-back converters connected 

via a DC link [29].  

2.1 Wind turbine model 

The mechanical power of the wind turbine is given by: 

P୫ =
1

2
C୮(λ)ρπRଶV୵

ଷ                                                                                                                              (1) 

Where V୵ is the wind speed (m/s), R is the blade radius (m), ρ is the air density (kg/m3), 𝐶௣ is the power coefficient 

and λ is the tip speed ratio which is given by:  

λ =
ωR

V୵

                                                                                                                                                     (2) 

The mechanical torque 𝒯୫ is written as follows: 

𝒯୫ =
P୫

𝜔
=

1

2
C୮(λ, β)ρπRଶV୵

ଷ
1

ω
                                                                                                         (3) 

The value of C୮ is a function of the tip speed ratio (λ) and the blades pitch angle (β) [30]. 

C୮ = cଵ ൬
cଶ

λ୧

− cଷβ − cସ൰ e
ିୡఱ
஛౟ + c଺λ                                                                                                  (4) 

1

λ୧

=
1

λ + 0.08β
−

0.035

βଷ + 1
                                                                                                                     (5) 

Where  cଵ = 0.22, cଶ = 116, cଷ = 0.4, cସ = 5, cହ = 12.5, c଺ = 0. When β = 0  and  λ୭୮୲ = 6.1 then C୮ = 0.38. 

The gearbox mounted between the wind turbine and the generator is represented by the following equations [31]:  

൞
ω୲ =

1

G
ω

𝒯୥ =
1

G
𝒯୲

                                                                                                                                               (6) 

Where G is the gear ratio, 𝒯୥ and  𝒯୲ are the generator and wind turbine torques respectively. 

2.2 PMSG model  

The PMSG voltage equation in the phasor notation is expressed as: 

L
diୱ

dt
= −൫Rୱℐ + n୮ω୰Lୱ𝔍൯iୱ − n୮ω୰ψ୮୫𝔍ξୱ + uୱ                                                                        (7) 



 

 

Where uୱ is the stator voltage, Rୱ is the stator resistance, Lୱ denotes the stator inductance, iୱ is the stator current,  

n୮ is the number of pole pairs, ω୰, ϑ୰ and ψ୮୫ are the rotor speed, rotor position and permanent magnet flux 

linkage respectively [32].  

Where e𝔍஬౨ = ൤
cosϑ୰ −sinϑ୰

sinϑ୰ cosϑ୰
൨, and ξୱ = eି𝔍஬౨ ൤

cosϑ୰

sinϑ୰
൨ = ቂ

1
0

ቃ . 

Where 𝔍  is the matrix equivalent to 𝔍ଶ = −1 , 𝔍  is defined as:  𝔍 = ቂ
0 −1
1 0

ቃ, where eି𝔍஬   : is the (d, q) 

transformation matrix [33]. 

The current can be determined from the flux as follows: 

iୱ = Lୱ
ିଵ൫ψୱ − ψ୮୫൯ = ൤

iୢ

i୯
൨                                                                                                                   (8) 

The inductance matrix is defined as: 

Lୱ = eି஬౨𝔍 ൤
Lୢ 0
0 L୯

൨ e஬౨𝔍                                                                                                                       (9) 

The stator flux is given by: 

ψୱ = ൤
ψୢ

ψ୯
൨ = ൤

Lୢiୢ + ψ୮୫

L୯i୯
൨                                                                                                                 (10) 

The permanent magnet flux is:  

ψ୮୫ = eି஬౨𝔍 ൤
ψ୮୫

0
൨                                                                                                                               (11) 

The mechanical equation of the wind turbine is given by :  

J
dω୰

dt
= n୮ψ୮୫i஑ஒ

୘ 𝔍 ൤
cosϑ୰

sinϑ୰
൨ − Γ୐ − fω୰                                                                                           (12) 

Where J  is the inertia, Γ୐ , f are the mechanical torque and the viscous friction respectively [34]. 

The electromagnetic torque can be written as [33, 34]: 

Γୣ ୫ = n୮ψ୮୫i஑ஒ
୘ 𝔍 ൤

cosϑ୰

sinϑ୰
൨                                                                                                                   (13) 

3. Stator Side Control System  

Vector control of the PMSG is implemented as shown in Fig. 1. This includes both the control part and the observer 

part. The speed is determined from the sensorless block. The d-axis current component must follow the zero 

reference, while the reference current of the q-axis is obtained from the speed control loop [3, 35]. 



 

 

 

Fig. 1: Block diagram of the stator side control.  

3.1 Fast-super-twisting sliding mode control 

WECSs have highly nonlinear dynamics with variable parameters and are continuously subjected to stochastic 

wind speeds, which makes conventional PI controllers inappropriate and usually fail to provide satisfactory 

performance. In this work, a robust non-linear controller based on the Super Twisting Algorithm (STA) is proposed 

instead of the PI controllers. The author in [37] used the conventional STA in another form for the control of the 

PMSM. To enhance the tracking of the desired reference and achieve a rapid convergence with better stability, the 

authors in [38] used the second-order fast terminal SMC to replace the conventional STA applied in [37] while 

keeping the same structure. This controller is developed in two steps: (i) determine the sliding surface reached by 

the trajectory of the system and (ii) use the second-order concept to ensure that the control law stays in this surface 

[38]. 

The sliding surface is selected as [37]:  

Sன,୧ୱ = cଵ න eன,୧ୱ dt + eன,୧ୱ                                                                                                                  (14) 

With  

eன = ω୰ୣ୤ − ω୰                                                                                                                                      (15) 

e୧ୱ = iୱ ୰ୣ୤ − iୱ                                                                                                                                        (16) 

Using equations (7) and (12) with the derivative of equation (14) gives:   

deன

dt
=

1

J
[Γୣ ୫ − Γ୐ − fω୰] + cଵeன                                                                                                     (17) 

de୧ୱ

dt
=

1

L
[−൫Rୱℐ + n୮ω୰Lୱ𝔍൯iୱ − n୮ω୰ψ୮୫𝔍ξୱ+uୱ] + cଶe୧ୱ                                                    (18) 

The conventional form of super-twisting algorithm is defined as: 

ėன,୧ୱ = u(t) + ζ                                                                                                                                       (19)  

Where ζ denotes the uncertain disturbance [37].  

Since the surface is linear, then the trajectory of the system may take time to reach the equilibrium point, so to 

accelerate the convergence time, the fast super-twisting control law proposed in [38] is used and is given by: 
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 u(t) = uଵ + uଶ                                                                                                                                       (20)  

Where 

uଵ(t) = −ℱටหeன,୧ୱหsign൫eன,୧ୱ൯ + ℱ𝒟eன,୧ୱ                                                                                       (21) 

uଶ(t) = න −1.5ℋ𝒟ටหeன,୧ୱหsign൫eன,୧ୱ൯ + 0.5ℋsign൫eன,୧ୱ൯ + ℋ𝒟ଶeன,୧ୱ                                 (22) 

Where ℱ, 𝒟, ℋ are positive constants. If this condition (Ṡ = S = 0) is verified then the system reaches the sliding 

surface, therefore, using (17) and (18), the electromagnetic torque and stator voltage can be defined as:    

Γୣ ୫ = −J[u(t) + ζன] + Γ୐ + fω୰                                                                                                         (23) 

uୱ = L[u(t) + ζ୧ୱ] − ൫Rୱℐ + n୮ω୰Lୱ𝔍൯iୱ − n୮ω୰ψ୮୫𝔍ξୱ                                                           (24) 

The stability of this controller can be assessed by the following quadratic Lyapunov function [38]: 

v = Υ୘𝒲Υ                                                                                                                                                (25) 

Where  Υ୘ = [u(t)ଵ/ℱ    u(t)ଶ] and 𝒲 = 𝒲୘ > 0 is a positive definite matrix, which is defined as: 

𝒲 =
1

2
ቂℱଶ + 4ℋ −ℱ

−ℱ 2
ቃ                                                                                                                     (26) 

The derivative of the Lyapunov function is written as:  

v̇ = Υ̇୘𝒲Υ + Υ୘𝒲Υ̇                                                                                                                             (27) 

Substituting equation (26) into equation (27) gives: 

v̇ =
1

ඥ|e|
 ൣ2γ୘Μ୘ + 2ζ̇Ε୘൧𝒲Υ                                                                                                           (28) 

Where Ε୘ = [0 1] , Μ୘ = ቂ
−ℱ −ℋ

1 0
ቃ. The perturbation is assumed bounded such as หζ̇ห ≤ 𝒬, then from (28):  

v̇ ≤
1

ඥ|e|
 ൣ2γ୘Μ୘𝒲Υ + 2ζ̇Ε୘𝒲Υ + 𝒬ଶ|ω| − ζ̇ଶ൧                                                                        (29) 

Let 𝒢 =  [1 0], therefore the inequality (29) can be written as: 

v̇ =
1

ඥ|e|
 ൣ2γ୘Μ୘𝒲Υ + 2ζ̇Ε୘𝒲Υ + 𝒬ଶγ୘𝒢୘𝒢Υ − ζ̇ଶ൧                                                               (30) 

v̇ ≤
1

ඥ|e|
 [γ୘Μ୘𝒲Υ + γ୘𝒲ΜΥ + 𝒬ଶγ୘𝒢୘𝒢Υ + γ୘𝒲ΕΕ୘𝒲Υ]                                              (31) 

The inequality (31) can be simplified as: 

v̇ =
1

ඥ|e|
 γ୘[Μ୘𝒲 + 𝒲Μ + 𝒬ଶ𝒢୘𝒢 + 𝒲ΕΕ୘𝒲]Υ                                                                     (32) 

Where 𝒮 = −(Μ୘𝒲 + 𝒲Μ + 𝒬ଶ𝒢୘𝒢 + 𝒲ΕΕ୘𝒲), so the Lyapunov function derivative is defined as: 

v̇ ≤ −
1

ඥ|e|
 γ୘𝒮Υ                                                                                                                                   (33) 

𝒮 can be rewritten as: 

𝒮 = ൦
3ℱℋ + ℱଷ −

ℱଶ

4
− 𝒬ଶ

ℱ

2
− ℋ − ℱଶ

ℱ

2
− ℋ − ℱଶ ℱ − 1

൪                                                                                (34) 



 

 

The Lyapunov function derivative is negative and the stability is verified if  𝒮 is positive, this condition is proved 

if  ℱ > 2, ℋ >
ℱయା𝒬మ(ସℱି଼)

ℱ(ସℱି଼)
 and 𝒟 > 0 

An approximation of the convergence time of the system (20) to the origin is defined as:   

𝓉 = 2√v/σ(𝒮, 𝒲),   where σ(𝒮, 𝒲) = λ୫୧୬(𝒮)/ඥλ୫ୟ୶(𝒲). 

Where λ୫୧୬(𝒮) and λ୫ୟ୶(𝒲) are the minimum and maximum eigenvalues of 𝒮 and 𝒲 respectively. 

4. Design of the Sensorless Scheme 

The sensorless control scheme is based on the combination of two types of observers, one complementing the other 

to provide accurate information on the speed and rotor flux. Fig. 2 illustrates the structure of the proposed observer. 

The first observer generates the speed and has i஑ஒ, u஑ஒ as inputs, while the second observer estimate the flux and 

has iୢ୯, uୢ୯ as inputs. 

4.1. Speed observer  

The nonlinear observer proposed in [4] has several advantages such as a robustness, simplicity, and ease of 

implementation. Since the observer depends on the permanent magnet flux, therefore it is important to have an 

accurate flux value to estimate the position correctly. The permanent magnet flux is determined from the flux 

observer. Lyapunov theory is used to assess the stability of this observer. 

Equation (7) describing the model of the NSP-PMSG can be take the following form: 

L
diୗ

dt
= −Rୱiୗ + ωෝ୰ψ୮୫൫−sin ϑ෠୰ + j cos ϑ෠୰൯ − uୗ                                                                        (35) 

Where 

൜
iୱ = i஑ + jiஒ   

uୱ = u஑ + juஒ
                                                                                                                                       (36) 

The design of this observer requires the introduction of a new variable x, which is given by: 

x = Liୗ + ψ෡୮୫e୨஬෡౨                                                                                                                                 ( 37) 

Where ψ෡୮୫ is the estimated flux delivered by the flux observer, which is detailed in the next section, and the 

vector is defined as: 

e୨஬෡౨ = cos ϑ෠୰ + j sin ϑ෠୰                                                                                                                         (38) 

Where j denotes the complex number (jଶ = −1). 

The measurement vector expressed in the frame linked to the stator is written as follows: 

y = −Rୱiୗ −  uୗ                                                                                                                                      (39) 

This vector relies on the current and voltage measurements. From (35), (37) and (39), it can be shown that: 

ẋ = Lୱ

diୗ

dt
− ψ෡୮୫

de୨஬෡౨

dt
= y                                                                                                                (40) 

dx

dt
= L

diୗ

dt
− ωෝ ୰ψ෡୮୫൫−sin ϑ෠୰ + j cos ϑ෠୰൯ = y                                                                               (41) 

An additional vector η(x) is introduced into the system, and is expressed in the following form: 

η(x) = x − Liୗ                                                                                                                                        (42) 

Comparing (42) with (37), the Euclidean norm of η(x) can be expressed as:  

‖η(x)‖ଶ = ψ෡୮୫
ଶ                                                                                                                                        (43) 

Thus, the dynamic model can be described as:  



 

 

൜
ẋ = y          

z = h(x, y)
                                                                                                                                             (44) 

With  

h(x, y) = ‖η(x)‖ଶ                                                                                                                                  (45) 

So, the equation of the nonlinear observer is written as [4, 6]: 

 xො̇ = y +
κ୭ୠ

4
∇୶h(xො, t)[z − h(xො, t)]                                                                                                   (46) 

Where  κ୭ୠ 4⁄ > 0  is the observer gain and  ∇ denotes the gradient operator. 

Equation (37) can be determined from (45) as: 

∇୶ොh(x,ෝ t) = 2η(xො)                                                                                                                                  (47) 

In addition, we can write: 

z − h( xො, t) = ‖η(x)‖ଶ − ‖η(xො)‖ଶ                                                                                                     (48) 

Substituting equations (47) and (48) into (46), the derivative of vector x can be obtained as: 

xො̇ = y +
K୭ୠ

2
η(xො)[ψ෡୮୫

ଶ − ‖η(xො)‖ଶ]                                                                                                   (49) 

Integrating (49) yields the estimated variable xො: 

xො = න ൬y +
K୭ୠ

2
η(xො)ൣψ෡୮୫

ଶ − ‖η(xො)‖ଶ൧൰
୲

଴

dt + xො଴                                                                         (50) 

Using equation (37), the rotor position estimate is obtained as [39]: 

e୨஬෡౨ =
1

ψ෡୮୫

(x ෝ − Liୗ)                                                                                                                           (51) 

The observer gain will be determined using GA optimization as discussed in the next section.  

4.1.1 Principle of genetic algorithms (GA) optimization 

GA provides solutions to optimization problems that cannot be solved analytically in reasonable time. GA is 

generally based on three main steps: reproduction, crossover, and mutation. A population of more or less good 

solutions (genotypes) are randomly created and is then subjected to a process to assess the relevance of the 

solutions simulating the evolution of species. The most "suitable" solutions to the problem are those which are 

most likely to survive as the population evolves through successive generations by crossing the best solutions 

between them and by mutating them [25]. This process is iterated a certain number of times until the final optimal 

solution is reached [40, 41]. Fig. 2 illustrates a basic flow-chart of GA optimization.  



 

 

 

Fig. 2 : Block diagram of the GA-optimised sensorless scheme. 
 

Fitness evaluation is an important step in GA. It determines the survival ability of chromosome. In this work, the 

fitness function is defined as the minimization of the squared speed error, and is given by the following objective 

function:  

J = ∑ ‖eன
ଶ‖                                                                                                                                             (52) 

GA selects the best value of the observer gain which minimizes the cost function J [23].   

4.1.2 Proposed speed estimation method 

Some authors used a PI regulator to reconstruct the speed from the error between the speed integrator and the 

observer position [4-8]. This paper proposes an effective method to estimate the speed as illustrated in Fig. 3. The 

speed is extracted from a modified Phase Locked Loop (PLL) introduced in [42].  

 

 

 
Fig. 3 : Block diagram of the proposed speed estimation.  
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There are typically three equilibrium points in the phase trajectory of a conventional PLL namely (0,0), (π, 0) and 

(-π, 0).  For positive speeds the point (0,0) is stable and (π, 0) and (-π, 0) are saddle points. However, for negative 

speeds, the saddle points become stable points and the stable point becomes a saddle point. In which case the 

system generates a position estimation error of 180° [43]. In the case of a PMSG, this problem is avoided because 

the generator spins in one direction only, so the stable point does not change. Therefore, the PLL is introduced 

without causing any stability problem which is an advantage for the proposed system. 

Since the speed observer gives the real and imaginary parts as shown in Fig. 2, therefore, using the proposed PLL 

circuit, the speed can be extracted from these two parts and the position error can be determined as: 

Im e୨∆஬෡ = ቆ
Im(e୨஬෡౨)

Re(e୨஬෡౨)
−

Im e୨஬෡

Re e୨஬෡
ቇ ∗ Re(e୨஬෡౨) ∗ Re e୨஬෡                                                                 (53) 

Since ∆ϑ is very small, the following approximation holds: 

Im e୨∆஬෡ ≅ ∆ϑ෠                                                                                                                                          (54) 

The closed-loop transfer function of the PLL circuit is given by: 

H =
k୮s + k୧

sଶ + 0.5k୮s + 0.5k୧

                                                                                                                    (55) 

Where k୮, k୧ are the proportional and integral gains of the PI regulator. From (55), it is clear that this PLL is 

similar to a low pass filter. Therefore, the harmonics can be filtered [43]. 

The proposed PLL scheme can be expressed as follows: 

se஬ = eன                                                                                                                                                   (56) 

seன = −K୮Re(e஬)eன − K୧Im(e஬)                                                                                                     (57) 

 

Fig. 4 shows the phase plan of the proposed PLL. From this plot it can be observed that the error of the estimated 

position converges to the equilibrium point (0, 0), which satisfies the desired performance of the system. 

 

Fig.4: Phase plane of the proposed PLL. 

An accurate estimate of the speed requires a robust regulator such as the SMC which is insensitive to parameter 

variations and is easy to implement. 
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The proposed SMC is adapted from [44] and its structure is depicted in Fig. 5. The state variable 𝔛ଵ, 𝔛ଶ represent 

the position error and its derivative: 

𝔛ଵ = ∆ϑ෠୰                                                                                                                                                   (58)  

𝔛ଶ = 𝔛̇ଵ                                                                                                                                                     (59) 

The switching terms are given by: 

𝒴ଵ = sign((𝒞ଵ𝔛ଵ + 𝒞ଶ𝔛ଶ)𝒞ଵ𝔛ଵ)                                                                                                       (60) 

𝒴ଶ = sign((𝒞ଵ𝔛ଵ + 𝒞ଶ𝔛ଶ)𝒞ଶ𝔛ଶ)                                                                                                       (61) 

Where (𝒞ଵ, 𝒞ଶ) are positive constants. The control law can be written as: 

u୬ = 𝒴ଵ ∗ 𝒞ଵ𝔛ଵ + 𝒴ଶ ∗ 𝒞ଶ𝔛ଶ                                                                                                               (62) 

Finally, the speed is obtained as: 

ωෝ ୰ = sqr(u୬) ∗ sign(u୬)                                                                                                                    (63) 

To reduce the impact of system uncertainties while still satisfying the robustness condition, the gains (𝒞ଵ, 𝒞ଶ) of 

the SMC must be optimized using the GA technique presented in the previous section. The minimization of the 

error is the main objective of the fitness function.  

The fitness function is defined as follows [23]: 

𝔧 =  ∑‖sqr(𝔵1)‖                                                                                                                                     (64) 

4.1.3. Stability analysis of the speed observer 

The observation error is defined as x෤  =  xො –  x, so the derivative of this error is given by:  

x෤̇ = −K୭ୠa(x෤, t) ቆx෤ + ψ෡୮୫ ቈ
cos ϑ෠୰  (t)

sin ϑ෠୰    (t)
቉ቇ                                                                                      (65) 

With: 

a(x෤, t) =
ଵ

ଶ
‖x෤‖ଶ + ψ෡୮୫ൣx෤ଵ cos ϑ෠୰  (t) + x෤ଶ cos ϑ෠୰  (t)൧                                                               (66)                   

Three cases of stability can be considered [5, 34], which are confirmed by the previous equation (66) and detailed 

as follows: 

(i) Global stability: for random speed, all trajectories converge inside the disk given by: 

‖x෤‖ ≤ 2ψ෡୮୫                                                                                                                                             (67) 

Therefore, this disk is globally attractive. 

(ii) Local exponential stability: if there exist constants T and ∆ > 0 such that: 

𝑢௡
ଶ  

sign(.)  sign(.) 
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Fig. 5: Block diagram of the SMC. 
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(s)ds ≥ ∆                                                                                                                            (68) 

The equilibrium point x෤ = 0 of (66) is exponentially stable. 

(iii) Stability in regulation  

The origin x෤ = 0 is the unique equilibrium point of (66) and is asymptotically stable if there is a constant, non-

zero velocity, which verifies the following condition: 

|ωෝ ୰| >
1

4
K୭ୠψ෡୮୫

ଶ                                                                                                                                     (69) 

The accuracy of this observer gain is very important; therefore GA is used to determine the optimal gain.   

4.2. Flux observer  

High temperatures and parameter degradation of permanent magnet can cause demagnetization of the machine. 

This problem can compromise the accurate estimation of the position and may cause instability of the overall 

control system. For this reason, it is necessary to know the value of flux during operation. 

An effective way to identify the flux is the sensorless method. The design of this flux observer is simple, does not 

require a great deal of computation time and does not need any steady-state requirement. Moreover, it can be used 

both in salient and non-salient pole PMSG [45]. The mathematic model of non –salient pole PMSG can be 

formulated as follows: 

uୱ = −Rୱiୱ + (sℐ + ωෝ ୰𝔍)ψୱ                                                                                                               (70) 

 The flux is divided in two terms:  

ψୱ = ψ୧ + ψ୮୫                                                                                                                                       (71) 

With  

ψୱ = [Lୱℐ]iୱ                                                                                                                                             (72) 

Where ℐ is a 2 × 2 unity matrix ℐ = ቂ
1 1
1 1

ቃ.  

The derivative of the permanent flux is written as: 

d

dt
ψ୮୫ = ωෝ୰𝔍ψ୮୫                                                                                                                                 (73) 

Substituting (71) and (73) into (70) gives: 

uୱ + Rୱiୱ −
ୢ

ୢ୲
ψ୧ = ωෝ୰𝔍ψ୮୫                                                                                                              (74)   

The final equations of this observer can be written as:  

d

dt
ψ෩ୱ = γ(uୱ + Rୱiୱ) + ωෝ୰[ℐ − γ]𝔍ψ෡୮୫                                                                                          (75) 

ψ෡୮୫ = ψ෩ୱ − γψ୧                                                                                                                                     (76) 

Where γ = (𝔎ଵℐ − sign (ωෝ ୰)𝔎ଶ𝔍), 𝔎ଵ, 𝔎ଶ are positive constants and represent the gain of the observer.  

To analyze the convergence of the observer, equation (76) is substituted into (75): 

sψ෡୮୫ =  γൣsψ୧ +  uୱ + Rୱiୱ − ωෝ ୰𝔍ψ୮୫൧ +  ωෝ୰ℐ𝔍ψ෡୮୫                                                                (77) 

Using (73) and (74), equation (77) becomes: 

s(ψ෡୮୫ − ψ୮୫) = −ωෝ ୰ γ𝔍 (ψ෡୮୫ − ψ୮୫) + ωෝ ୰𝔍(ψ෡୮୫ − ψ୮୫)                                                  (78) 

Equation (78) can be simplified as: 

s(ψ෡୮୫ − ψ୮୫) = (1 − γ)ωෝ୰𝔍(ψ෡୮୫ − ψ୮୫)                                                                                   (79) 



 

 

Then, substituting γ with its values yields: 

s(ψ෡୮୫ − ψ୮୫) = [(1 − 𝔎ଵℐ) + sign (ωෝ୰)𝔎ଶ𝔍]ωෝ୰𝔍(ψ෡୮୫ − ψ୮୫)                                          (80) 

Equation (80) can be further simplified into the following form: 

s(ψ෡୮୫ − ψ୮୫) = [−ωෝ ୰(−1 + 𝔎ଵℐ) − |ωෝ୰|𝔎ଶ𝔍](ψ෡୮୫ − ψ୮୫)                                                 (81) 

The eigenvalues can be represented as: 

൤
ℒଵ

ℒଶ

൨ = ቈ
−jωෝ ୰(−1 + 𝔎ଵℐ) − |ωෝ୰|𝔎ଶ

+jωෝ ୰(−1 + 𝔎ଵℐ) − |ωෝ୰|𝔎ଶ

቉                                                                                               (82) 

Where ℒଵ,   ଶ are the conjugate eigenvalues of (81). 

From (82) it can be noticed that the real part of the eigenvalues is negative which implies that the estimation error 

converges to zero [45]. 

5. Simulation results and discussion 

The machine parameters used in this simulation study are given in Table 1. To assess the performance and 

robustness of the proposed observer and control scheme of the WECS, six simulation scenarios are considered.  

Table 1 – Machine parameters used in the simulations. 

Parameters  Values Units 

Stator Resistance Rs  0.57 [Ω] 

Stator Inductance L  0.004 [H] 

Back EMF constant Kୣ 

viscous friction f୴ 

Rotor flux ϕ୫ 

Moment of Inertie 𝒥 

Number of pole paires np 

 0.078 

0.004 

0.064 

0.002 

2 

[Vs rad⁄ ] 

[Nm ∙ s rad⁄ ] 

[wb] 

[Kg. mିଶ] 

 

 

5.1. Scenario 1: Speed observer with classical PI regulator  

Fig. 6 shows the response of the speed and position with their error using PI regulator. It can be observed that the 

estimated speed matches perfectly the measured value in steady state after 0.1 s. Also, a large error between the 

measured and estimated position can be noticed from Fig. 6d. Fig.6e shows a poor performance of the flux observer 

which reaches its nominal value after 1 s and exhibits an overshoot. 



 

 

 

 

Fig. 6: Responses of the a) speed, b) position, c) error of speed, d) error of position, e) flux, using PI with FOC 
and using PI and speed observer without GA and with flux estimation. 

 

5.1. Scenario 2: Speed observer with SMC and FSTSMC regulators   

This scenario aims to assess the performance of the proposed controller which includes the FSTSMC applied to 

the conventional FOC and where SMC is employed in the speed observer. This simulation is performed without 

optimization and without flux estimation.  

𝑎 𝑏 

𝑐 𝑑 
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From Fig. 7. it can be observed that the estimated and measured speeds match perfectly. Similar results have been 

obtained for the position with a transient response time of 0.05 s. During speed transients the speed error reaches 

12 rad/s and the steady-state speed error is in the range [-0.2- 0.2 rad/s].  In addition, the estimated position error 

is even smaller in the range [0.04- 0.15 rad].  

 

Fig. 7: Responses of the a) speed, b) position, c) error of speed, d) error of position using FSTSMC with FOC 
and using SMC and speed observer without GA and without flux estimation. 

 

5.2. Scenario 3: Speed and flux observers with robust SMC and FSTSMC regulators   

A similar performance is obtained when flux estimation is introduced in the previous scenario, as shown in Fig.8. 

During the first 0.025 s period, the speed steady-state error is 13 rad/s, then the error is reduced and assumes values 

between -0.2 and 0.2 rad/s. The position error is around 0.12 rad. The speed response time is 0.05 s, which is like 

that obtained in the previous scenario. The estimated flux is much acceptable and does not affect the position 

estimates. These results show an accurate estimation of the parameters, which demonstrate the effectiveness of the 

proposed combination of observers.    

(𝑎) (𝑏) 

(𝑐) (𝑑) 



 

 

 

Fig. 8: Responses of the a) speed, b) position, c) error of speed, d) error of position,  e) flux estimation using 

FSTSMC with FOC and using SMC and speed observer without GA and with estimation flux. 

5.3. Scenario 4: Speed observer with robust regulator and optimization algorithm 

As shown in Fig. 9, the speed observer based on GA optimization with the measured flux leads to an improved 

performance with the smallest errors in position (around 0.01 rad) and in speed (varying between -0.1 and 0.1 

rad/s). The response time is reduced to 𝑡௥ = 0.012 𝑠. The GA parameters are summarized in Table 2.  
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 Table 2: GA parameters. 

Parameters Values 

Generations number 50 

Population size 100 

Mutation rate 0.8 

Crossover rate 0.7 

 

As illustrated in Fig. 9 above, by using ITAE as the objective function, the best solution in SMC mode is 36.32, 

where the optimal gains are 𝒞ଵ = 4.989 and 𝒞ଶ = 2.388. For the observer objective function, a better solution of 

4.883e+03 is achieved which gives an optimal gain of 4.795. 



 

 

 

Fig. 9: Responses of the a) speed, b) position, c) error of speed, d) error of position,  e) gains of SMC, f) gain of 

observer using FSTSMC with FOC and using SMC and speed observer with GA and without estimation  flux. 

 

5.4. Scenario 5: Speed and flux observer with robust SMC and GA optimization. 

The simulation results of Fig. 10 show a better dynamic performance with GA. The predicted speed is in a good 

agreement with its measured value. Similar results are achieved for the position. The response time of the speed 

has reduced to 𝑡௥ = 0.012𝑠 and the steady-state error of the position decreased to 0.04 rad. The GA improves the 

performance of flux estimation as demonstrated by the flux waveform depicted in Fig. 10e. Any change exists 

(𝑎) (𝑏) 

(𝑐) (𝑑) 

(𝑒) (𝑓) 



 

 

between performance of observer with and without flux estimation. In addition, it can be concluded that the SMC 

with GA has a better response time and good convergence as compared to SMC without GA. 

The best solution in SMC mode is 37.21, the new gains of SMC are respectively 𝒞ଵ = 4.9986 and   𝒞ଶ = 2.401. 

The best solution for the observer is 4900 which generates an optimal gain 3.0318.  

In the two methods (Scenarios 3 and 4), 10 generations are enough to ensure the convergence of GA. A very small 

change of the gain is observed in the presence of estimated flux.  

Comparing these results with those obtained in [5, 46] using PI controllers, it can be concluded that the speed and 

position errors are reduced, therefore the speed of response is improved. In addition, the performance of the PI 

controllers employed in [5, 46] have not been tested under parameter variations and perturbations.  
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Scenario 6: Robustness study  

The robustness of the proposed control is examined in this scenario. It can be shown from Fig. 11, that the two 

trajectories in the two-dimensional plane matched by S and Ṡ converge to the origin in a finite time. Furthermore, 

FSTSMC converges more rapidly than the conventional super twisting sliding mode control (CSTSMC).  

 

Fig. 12 illustrates the performance of the controllers under variations of the stator resistance. Three values of the 

resistance are simulated with PI and FSTSMC. The response of the speed with PI controller for 100% variation of 

resistance value exhibits a large overshoot. For a variation of 20% and 50% in the stator resistance, the speed is 

Fig. 10: Responses of the a) speed, b) position, c) error of speed, d) error of position, e) estimated 

flux, f) gains of SMC, g) gain of observer using FSTSMC with FOC and using SMC and speed 

observer with GA and with flux estimation. 

(𝑓) (𝑔) 

Fig. 11: Phase plane trajectory of the controllers a) STSMC, b) FSTSMC. 

𝑎 𝑏 



 

 

like the speed obtained under nominal conditions, with a very small overshoot and a small oscillation. As can be 

observed from Fig. 12, the speed with FSTSMC is not affected by this variation. 

 

Fig. 12: Response of the speed under resistance variations. 

 

The performance of proposed control system under inductance variations is assessed in Fig. 13. The speed is not 

affected by the inductance variation with both controllers. However, for the PI controller, some oscillations of the 

speed around its nominal value can be observed in the case of 100% of inductance variation.  

 

 

One of the most important features of FSTSMC is its robustness against parameter variation.  

In Fig. 14, the problem of demagnetization is simulated as a reduction in the flux. It can be observed that the 

estimated flux coincides with its reference which demonstrates the effectiveness of the proposed scheme under 

demagnetization.  

Fig. 13: Speed with inductance variation. 



 

 

 

  

In the simulation of Fig. 15, a perturbation is applied to the speed between t = 2 s and t = 4 s. The perturbation 

consists of adding a white noise with sample time 0.01 s and noise power 0.001. With the proposed control scheme, 

this perturbation did not affect the overall system and the speed perfectly follows its reference as compared to 

classical PI regulator. The PI controller leads to a larger response time and exhibits a poor tracking performance 

at the onset of the perturbation.     

 

The SMC used in the PLL is of order one which suffers from chattering phenomena. Applying GA leads to optimal 

value of the controller gains, which offers an adaptation between chattering (error) and response time. If the 

response time increases this will increase the chattering and decrease the precision (i.e. larger error) and vice versa. 

These results are illustrated in Fig. 16.  However, reducing the chattering also leads to a reduction in the transient 

speed response (i.e. slower response). The FSTSMC is introduced to reduce the response time without affecting 

the error because it is an SMC of order two, which is known to reduce chattering. The optimal gain obtained by 

GA gives a very good performance (red signal) and leads to a better compromise between accuracy and speed of 

response.  

Fig. 14: Test of flux demagnetization. 

 

Fig. 15: Test of speed perturbation. 

 



 

 

 

 

6. Conclusion  

The proposed sensorless control scheme combining two-observers one for the flux and one for the speed has proved 

very effective. The flux observer gave an excellent estimation of the Permanent Magnet Synchronous Generator 

(PMSG) flux where its gain is based on the estimation of the speed. The speed observer estimates the position and 

speed, and its gain is optimized using Genetic Algorithm (GA). The optimized gain leads to a greater precision 

and a faster transient response. The Sliding Mode Control (SMC) based on GA optimization is used to determine 

the speed from the proposed modified PLL using the estimated position and provides an accurate trajectory 

tracking, which is very well-adapted to the studied system. The ability of the two observers to exchange 

information has eliminated the demagnetization problem and improved the accuracy of the estimation. The Fast 

Super Twisting SMC (FSTSMC) was introduced to improve the convergence speed, robustness, and performance 

of the wind energy conversion system (WECS). To conclude the proposed sensorless control scheme combining 

the two observers provides greater robustness and stability to the overall Wind Energy Conversion System 

(WECS).  

As future work, we plan to incorporate other optimization algorithms such as Ant Colony optimization for flux 

observer gain. Even more, the FTSMC coefficients will not be fixed but varied according to the perturbation.  
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