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Abstract

During the design of embedded real-time systems,
engineers have to consider the temporal behavior of
software running on a particular hardware platform.
Measurement-based timing analysis is a technique that
combines elements from static code analysis with execu-
tion time measurements on real physical hardware. Be-
cause performing exhaustive measurement is generally
not tractable, some kind of abstraction must be used to
deal with the combinatoric complexity of real software.
We propose an adaptable measurement-based analysis
approach that uses the novel flexible abstraction of aseg-
ment graphto model control flow at varying levels of de-
tail. We also present preliminary experimental results pro-
duced by a prototype implementation.

1 Introduction

In real-time systems the term correctness does not only
refer to the functional behavior of calculations. Compli-
ance with temporal requirements is an essential part in
the design process. If transient violations of timing con-
straints are tolerated we speak of soft real-time systems.
Think of a mobile phone for instance where short commu-
nication delays are acceptable. On the other hand, safety-
critical hard real-time systems include at least one tempo-
ral requirement the violation of which would potentially
lead to a catastrophe. An airbag not releasing in time or a
non-reacting aircraft control unit for instance can lead to
a fatal disaster.

Consequently, there is an inherent demand for verifi-
cation techniques that focus on the temporal behavior of
real-time systems. Usually, a design is composed out of
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tasks to handle complexity. A schedule ensures that func-
tional as well as temporal dependencies are adhered to.
Most of the common schedulability analysis techniques
demand the knowledge of a safe upper bound of theworst-
case execution time (WCET)for each single task. For hard
real-time systems those deadlines are strict. However, soft
real-time systems can tolerate violations to some degree.

A comprehensive overview of WCET analysis tech-
niques is given in [22]. In summary, determining the
WCET is hard due to the inherent complexity and the
partly complementary requirements to the analysis:

• Safety is the property that the obtained WCET esti-
mate may not underestimate the real WCET

• Precisionis an indicator of the deviation between the
obtained WCET estimate and the real WCET

• Performance of the WCET analysis denotes the
amount of computational resources needed to per-
form the analysis

• Accessibility of the WCET analysis covers aspects
like available granularity of WCET results, the back-
annotation of WCET results to the source code, and
the necessary effort to perform the WCET analysis
on a new target hardware

There are three categories in which the various WCET
analysis techniques can be classified. Inend-to-end black
box testingthe program is simply executed on a set of in-
put data. The advantage is that the test environment is
easy to set up. However, there is no way to state anything
about precision or safety. In contrast,static analysisex-
amines a software/hardware model of the system under in-
vestigation without executing the program. This approach
allows for deriving safe and sufficiently precise execution
time bounds, which makes it suitable for verifying safety-
critical real-time systems [9]. Still, modeling and analyz-
ing the system adequately takes much effort. It can even
be impossible if the system behavior is too complex or
partly unknown (e.g. the documentation provided by the



processor manufacturer may be incomplete w.r.t. temporal
aspects). A third category encompassesmeasurement-
based techniques, i.e. all approaches that combine ex-
ecution time measurements and static program analysis.
Measurement-based techniques is usually designed with
the explicit goal to provide a trade-off between safety, pre-
cision on the one hand and performance, accessibility on
the other hand.

This article illustrates the overall architecture and seg-
mentation technique for a flexible and easily accessible
measurement-based approach that is supposed to give a
WCET estimate where the precision depends on how
much effort the developer is willing to invest. The overall
goal is to make it applicable in several development stages
of the system under investigation. We focus on soft real-
time systems because we cannot in general avoid underes-
timation of the actual WCET. However, the method is still
appropriate for hard real-time systems in an early stage of
development when preliminary results are needed.

The basic concepts of measurement-based timing anal-
ysis are discussed in Section 2, which is followed by a
discussion of related work on measurement-based WCET
analysis. Program segmentation, as described in Sec-
tion 4, is the key strategy to provide an adjustable cov-
erage metric for the systematic execution time measure-
ments. The details of the algorithm for program segmen-
tation are given in Section 5. In Section 6 we illustrate the
setup of experiments on a prototype implementation of the
Formal Timing Analysis Suite (FORTAS)1, which yields
preliminary results regarding the applicability and con-
sequences of adaptable program segmentation for WCET
analysis.

2 Measurement-based Timing Analysis

Measurement-based Execution Time Analysis (MBTA)
is a hybrid WCET analysis technique, i.e., it combines
static program analysis techniques and execution time
measurements. As shown in Figure 1,measurement-based
timing analysistypically consists of the following three
phases:

Analysis and Decomposition:
For WCET analysis, the maximal end-to-end execution

time of the software is of interest. In general, to ob-
tain a perfectly accurate timing model, we would have to
consider the execution time of all possible operation se-
quences that can be performed by the computer while ex-
ecuting the given computer program. Measuring all these
sequences is in general intractable, as there are simply too
many of them. Therefore, reducing the number of execu-
tion time measurements is crucial for MBTA. One way to
do this is to decompose the program behavior into subsets
and to ensure coverage on each subset.

The control flow graph (CFG)is a common graph-
based program representation in compiler construction,

1http://www.fortastic.net

where nodes represent the operations of the software and
where edges represent possible successive executions2.
We have chosen to operate on the CFG as a good basis
for MBTA, because the execution time depends largely on
which specific instructions are executed.

We use the technique ofsegmentationto decompose
the CFG of ANSI C programs into smaller subgraphs.
Depending on how we decompose the program into seg-
ments, we can adjust the trade-off between safety, preci-
sion on the one hand, and performance, accessibility on
the on the other hand.

Execution Time Measurement:
Once the program is decomposed, the execution time is

determined for eachsegment.
We measure the execution time on the real hardware,

allowing us to take hardware characteristics into account
without modeling them in full detail.

Timing Composition:
Having performed systematic execution time measure-

ments for each segment, the timing results from all seg-
ments have to be composed to obtain a WCET estimate.

As said above, due to hardware features like pipelines,
caches, or out-of-order executions, without additional pre-
cautions our MBTA approach will not provide sufficient
state coverage to guarantee safe WCET bounds.

Analysis and 

Decomposition

Execution Time 

Measurement

Timing 

Composition

WCET Estimate

Source Code

Figure 1: Measurement-based Timing Analysis.

Our design choice of decomposing C programs based
on their CFG and learning a hardware model closely re-
lated to the CFG has two major ramifications:

Accessibility: the derived timing information can be re-
lated to the source code. At least at the granularity
of our segmentations it is directly possible to assign
timing values to source code regions representing a
segment. It is also possible to relate the timing of
individual paths within a segment back to the source

2The traditional definition of a CFG does not allow for linear se-
quences of operations, i.e., the nodes must constitute so-called basic
blocks. We relax this requirement and allow for general graphs, as the
restriction the basic blocks is neither strictly necessary, nor particularly
useful in our context.



code. However, due to compiler optimizations, this
can sometimes lead to timing distributions that may
not be obvious at the source code level. Here the
user would have to investigate the generated code to
fully understand the timing results. Overall, our ap-
proach provides the software developer with a con-
venient representation of the timing information.

Furthermore, since we do not make use of a hardware
model, any systems can be analyzed as long as the
target platform offers the necessary means for mea-
surement.

Safety and Precision: the measurement-based tim-
ing analysis framework is generally used to provide
WCET estimates of reasonable precision instead of
safe WCET bounds. The WCET estimate can be po-
tentially unsafe due to the following reasons:

• Compiler optimizationscan introduce new con-
trol flow paths, which may not be covered
by our test data generation based on the pro-
gram source code. This is a given fact with
today’s compilers which can only be avoided
by deactivating code optimizations. However,
we are also working on a more intelligent ap-
proach where the goal is to let the compiler ac-
tivate only those code optimizations that do not
threaten the preservation of a selected code cov-
erage [13]. The advantage of this approach is
that it will be relatively easy to integrate it into
existing compilers.

• State coverage of hardware componentsis usu-
ally very hard to achieve by measurement-
based timing analysis methods [14]. Thus,
on hardware where the instruction timing de-
pends on the current state of the processor,
the WCET estimate provided by our method
may miss the worst-case initial hardware state
for an execution-time measurement. A work-
around to this problem would be the explicit
enforcement of a predictable state at well-
known program points [20]. Measurement-
based WCET analysis can potentially out-
perform static WCET analysis in precision.
However, due to the statistical operation of
measurement-based WCET analysis, this can-
not be guaranteed.

The discussions so far leads to the following main
requirement for our measurement-based WCET analysis:

The degree of precision and safety of the analysis has
to beadaptable to the resources (e.g. analysis time) the
developer is willing to invest. All involved means have
to be conveniently accessible and capable of being in-
tegrated smoothly into a design process at multiple stages.

One way to achieve this goal is to make use of tech-
niques where the level of abstraction is adaptable. We use
program segmentationfor splitting the CFG into overlap-
ping subgraphs called segments. Each segment is small
enough to be measured exhaustively w.r.t. path coverage
(also referred to as predicate coverage [16]).

The implicit premise of path coverage is that there is
only a finite number of paths that need to be considered.
Practically, this amounts to ruling out infinite loops and in-
finite recursion, which is a reasonable assumption for the
kind software components we consider. Concretely we as-
sume each task to be analyzed to be a so-called transfor-
mative system, i.e., a subsystem that takes its input data
and transforms them into output data [2].

Following common practice, we assume the availabil-
ity of iteration bounds for all cycles in the CFG. In many
cases, such bounds can be derived automatically via static
analysis techniques [7, 6]. Otherwise they must be pro-
vided by a human expert.

The input data for the measurements is produced by
FSHELL [10, 11], a database engine dispatching queries
about a C program to program analysis tools. The version
at hand utilizes the bounded model checker CBMC [5],
which supports full ANSI-C, including function-pointers,
bit-operations, and floating-point arithmetic. As a re-
sult, FSHELL is able to cope with full ANSI-C, but—due
to the nature of bounded model checking—requires loop
bounds to be given for all loops or recursive calls with
non-constant bounds.

For deriving a global WCET estimate we use theIm-
plicit Path Enumeration Technique (IPET)[17, 15], for
which the segment graph forms the input, i.e., the linear
equations model the flow between segments and the cost
for a segment is the worst case observed execution time
thereof.

As we will show, the segment size inherently affects
analysis complexity and precision and must therefore be
adaptable to satisfy our main requirement of having the
precision and safety adaptable. Moreover, we will see that
segments can be formed out of any graph-like structure
such that hardware effects can potentially be incorporated.
This enables our measurement-based WCET analysis to
increase the level of precision and safety.

3 Related Work

A means for control flow segmentation is discussed
in [12] where the program is decomposed into a hierar-
chical tree ofRegions. Each region has a single entry and
a single exit (SESE) like our segments. We do not make
use of any hierarchical structure, though. Furthermore, the
presented algorithm to form the regions does not specifi-
cally target the reduction of possible control flow paths.

Bernat et al. [3] and Ernst et al. [8] use program seg-
mentation explicitly to target WCET analysis. Because
they do not address the problem of systematic generation
of input data and the implicit goal of reducing control flow



paths, both the structures and the segmentation algorithms
differ from ours.

Our work is largely motivated by Wenzel et al. [21].
The idea of CFG partitioning to reduce the amount of lo-
cal paths for exhaustive measurements and the successive
compositions of timing information for WCET calculation
is first discussed in their work. We extend the segmenta-
tion to deal with loops and unstructured code. Further-
more, our approach is more flexible in the sense that we
extend the degree of freedom for decomposition.

The idea for an adaptable abstraction by using seg-
ments is discussed in [1]. However, while we decompose
the CFG, their segmentation splits the IPET equation sys-
tem for reducing complexity.

4 Segmentation

To obtain a perfectly accurate timing model, we gen-
erally have to consider the execution time of all possible
operation sequences that can be performed by the com-
puter while executing the given computer program.

In compiler construction, the traditional program rep-
resentation that makes all statically possible operation se-
quences explicit is thecontrol flow graph (CFG), a graph
where nodes represent the operations of the software, and
where edges represent possible successive execution.

There are richer graph-likesystem representationsfor
the set of possible operation sequences, like, e.g., the
kripke structuresused in formal methods, which can en-
code detailed information on the system state (the CFG
merely distinguishes different code locations). Also, it is
possible to enrich a CFG with additional state informa-
tion, e.g., by using preconditions. In this paper we will
only consider plain CFGs, but it should be noted that the
concepts presented here can be adapted to other graph-like
representations on different levels of abstraction.

A CFG does not include information about the dynam-
ics of the software. It therefore overapproximates the(dy-
namically) feasibleoperation sequences, a subset of all
statically possibleoperation sequences.

More precisely, each path through the CFG (from a dis-
tinguished start node to a distinguished end node) repre-
sents a (statically) possible operation sequence. By con-
sidering all these paths, we can conclude about the timing
behavior of the complete program, from the timing be-
havior of the individual paths. For example, if we know
the Worst Case Execution Time (WCET) of each path, we
could, in principle, derive the WCET of the complete pro-
gram.

Consider the C source code in Listing 1. We can see
that thefalsebranch of the second conditional statement
cannot be taken, if thefalsebranch of the first conditional
statement has been taken before. As a consequence, only
three of the four statically possible paths through the cor-
responding CFG (Figure 2) are feasible.

The infeasible pathe7, e6, e3, e2 does not contribute to
the timing behavior of the program, because it can never

Figure 2:Maxsegsegment graph induced by the program
in Listing 1, an equivalent of the programs CFG. There are
four statically possible paths. Assuming that edges 5 and 2
correspond to a successful test of the conditionsx != 0
andx % 2 == 0, respectively, the pathe7, e6, e3, e2 is
dynamically infeasible.

i f ( x != 0)
f l a g s = 1 ;

e l s e
f l a g s = 0 ;

i f ( x % 2 == 0)
f l a g s = f l a g s | 2 ;

e l s e
f l a g s = f l a g s | 4 ;

Listing 1: Source code of a program with two consecutive
tests, where the second test can only fail after the first test
has succeeded.

be executed. It should therefore be excluded from timing
analysis.

The CFG alone cannot represent this information.
What we would like to have is a representation that is ex-
pressive enough to represent individual paths. However,
considering the prohibitively large number of paths in
most real software, the representation must also be capa-
ble of representing collections of paths concisely. Lastly,
our representation should be similar to a CFG, so that tim-
ing analysis methods like IPET, which operate on a CFG,
can be used with minimal adaption.

Definition 1 (Segment Graph) A segment graphΣ of a
CFGG is a tuple

〈G, S, I, nodes, edges, entry, exit〉,

where
G = 〈N, E, init, final〉

is a CFG with nodesN , edgesE ⊆ N × N , an unique
initial nodeinit ∈ N , and an unique final nodefinal ∈
N . Moreover,S is a set ofsegmentnames,I ⊆ S×S is a
set ofinter edges(edges between segments),nodes : S →
P(N) is a function designating the nodes in each segment,
edges : S → P(E) is a function designating the edges in
each segment,entry : S → N is function designating



theentry nodeof each segment, andexit : S → N is a
function designating theexit nodeof each segment.

For any inter edge 〈s, t〉, we require that
〈exit(s), entry(t)〉 ∈ E.

An intra edge in a segments is an edge〈v, w〉 with
〈v, w〉 ∈ edges(s).

Each node and each intra edge must be in at least one
segment, i.e.,

⋃

s∈S

nodes(s) = N and
⋃

s∈S

edges(s) = E.

Furthermore, entry and exit nodes must be in their corre-
sponding segments, i.e.,

{entry(s), exit(s)} ⊆ nodes(s).

Moreover, the source and target nodes of all intra edges
must also be in the corresponding segment, i.e.,

〈v, w〉 ∈ edges(s)⇒ v ∈ nodes(s) ∧ w ∈ nodes(s).

An initial segment is a segments with init ∈
nodes(s). Likewise, afinal segmentis a segments with
final ∈ nodes(s).

A segment pathπ(s) through a segments is a sequence

π(s) = 〈v1, v2〉〈v2, v3〉 . . . 〈vn−2, vn−1〉〈vn−1, vn〉

of intra edges〈vi, vi+1〉 that are all in the segments, i.e.,
〈vi, vi+1〉 ∈ edges(s), for somes ∈ S.

Moreover, the path must start in the segment’s en-
try node and end in the segment’s exit node, i.e.,v1 =
entry(s) and vn = exit(s).

Figure 3 visualizes a segmentation of the CFG from
Figure 2 with three segments. We can seen that segments
s1 ands3 are initial segments, because they contain the
CFG’s initial node, whereas segmentss2 ands3 are final
segments, because they contain the CFG’s final node. En-
try and exit of each segment indicated by dashed or dot-
ted borders, respectively. We can see that nodes and in-
tra edges can be shared between segments. Although not
shown in this figure, it is also possible that an inter edge
can at the same time be an intra edge for some segments.

Semantically, a segment graph of a CFGG is a descrip-
tion of a subset of the paths inG. A segment graph can
therefore be seen as a restriction of a CFG to a certain set
of paths.

Definition 2 (Paths in a Segment Graph)Let Σ be a
segment graph

〈G, S, nodes, edges, entry, exit〉.

Theset of paths inΣ is the set of all CFG paths

π = π1(s1)e1π2(s2)e2 . . . en−1πn(sn),

where theπisi are segment paths that constitute dy-
namically feasible subpaths inG, and whereei =
〈exit(si), entry(si+1)〉, i.e., the segment paths are con-
nected via inter edges.

It can be shown that the set of paths in a segment graph
of a CFGG is a subset of the paths inG.

There are two interesting special cases of segment
graphs:

minseg: Theminsegsegment graph is the segment graph
where each node is contained in its own segment,
and where no segment contains any edge, i.e.,
nodes(sv) = {v}, for anyv ∈ N , edges(sv) = ∅,
entry(sv) = v, andexit(sv) = v. The paths in a
minseg segment graph of a CFGG are the statically
possible paths described byG.

maxseg: There is a single segments, which contains all
nodes and edges of the CFG, i.e.,nodes(s) = N ,
edges(s) = E, entry(s) = init, andexit(s) =
final. The paths in amaxsegsegment graph of a
CFGG are the dynamically feasible paths ofG.

Applying the semantic definitions on the segment
graph visualized in Figure 3, we obtain the following seg-
ment paths:

s1 :{e5}

s2 :{e1e0, e3e2}

s3 :{e7e6e1e0, e7e6e3e2}.

Because the pathe7e6e3e2 is a dynamically infeasible
path, the set of paths in the segment graph is

{e5e1e0, e5e3e2, e7e6e1e0}.

Figure 3: A segment graph that was obtain from the one
in Figure 2 by splitting at edgee4. In this example the
segment split into three smaller segments. Segments1

now holds all paths that went from the original entry node
of the prevision segment to the source node of the split
edge, without passing the split edge itself. Segments2

contains all paths that went from the target node of the
split edge to the exit node, without passing the split edge
itself. Segments3 contains all paths that went from the
entry node to the exit node, without passing the split edge.
Edgee4 has become an inter edge.

The segment graph framework as presented here does
not include any special construct for handling function



calls. However, function calls are easily supported via
inlining the body of called functions at their respective
call sites. This approach allows for unrestricted segments
across calling borders. On the other hand, function calls
that have not been inlined are handled transparently, as
atomic operations. This black-box view can be particu-
larly useful in the case of closed-source third-party code.

5 Segmentation Algorithm

For a given CFG, many different segment graphs are
possible, so which one should we choose for our purpose
of measurement-based timing analysis? The two corner
cases areminsegandmaxseg. The minseg segment graph
is only interesting for comparison purposes, as it describes
the same set of paths as the plain CFG. On the other hand,
performing an analysis on amaxsegsegment graph would
mean that all statically possible paths have to be checked
for feasibility and, in case they are found feasible, be sub-
ject to measuring and analysis.

In this paper, we consider a segmentation algorithm
that is based on the following idea: in order to exclude
from the analysis as many infeasible paths as possible, we
would like to have segments that are as large as possible
in terms of the total number of segment paths. However,
the total number of segment paths must not become too
large, because we can only check, measure, and analyze a
limited number of paths.

Our algorithm starts out with amaxsegsegment graph
and iteratively splits segments into smaller segments un-
til the number of segment paths3 is small enough in each
segment.

Because we have ruled out infinite loops, the number of
paths in a segment is always finite and can be calculated as
exact or approximate solution of a combinatorial problem
that incorporates the given iteration bounds.

Segments are always split at some intra edge and are
thereby reduced to up to four smaller segments–details
follow below. The new segments are put into a priority
queue that is ordered by the number of segment paths.
Multiple copies of the same segment are merged into a sin-
gle segment, as soon as they occur. The algorithm keeps
on splitting the largest segment (unless it is already small
enough) until the queue is empty. As split edge, the algo-
rithm chooses an edge with a maximal edge betweenness
centrality measure.

Edge betweenness is a centrality measure for graphs
that indicates the relative importance of an edge as a pas-
sageway for shortest paths. It is defined as

Σv,w∈N

σv,w(e)

σv,w

, (1)

whereσv,w designates the number of different shortest
paths4 from nodev to nodew, and whereσv,w(e) desig-

3An alternative measure is the total number of paths over all seg-
ments.

4I.e., shortest statically possible CFG paths, in our case.

nates the number of shortest paths from nodev to nodew
that pass through edgee.

The rationale for choosing an edge with maximal edge
betweenness for splitting is that cutting such an edge will
produce new segments of considerably smaller size than
the original segment, i.e., the algorithm will converge to a
solution quickly. Moreover, the solution will feature rela-
tively few, but large segments, which can be advantageous
during further analysis, e.g., to keep the constraint system
in an IPET analysis small.

Edge betweenness can be computed very efficiently.
Brandes [4] presents a method for computing betweenness
and related shortest-path based centrality measures. The
algorithm has an asymptotic worst-case time complexity
ofO(n·m), and an asymptotic worst-case space complex-
ity of O(n + m), wheren andm are the number of nodes
and edges in the graph, respectively. Our current imple-
mentation of segmentation makes use of the BGL [18, 19]
implementation of Brandes’ algorithm.

Algorithm 1 illustrates our implementation.

Algorithm 1 Pseudo code of the maximum betweenness
segmentation algorithm.

1: procedure SEGMENTATE MAXBET (cfg, limit)
2: g ← maxseg segment graph ofcfg

3: s← the segment ofg
4: inserts into priority queueq
5: while q is not emptydo
6: pop segmentations from q

7: if number of paths ins > limit then
8: e← intra edge ofs w/max. betweenness
9: new segments← split s at edgee

10: replaces with new segments in g

11: insertnew segments into q

12: merge equivalent segments inq

13: end if
14: end while
15: return g

16: end procedure

Splitting
Splitting a segments at an intra edge(v, w) means re-

moving(v, w) from s and turning it into one or more inter
edgese1, . . . , en that connect the segments in the segment
graph in such a way that, semantically, no dynamically
feasible path is lost.

When the split edge is removed, the previous segment
breaks into up to four new segments:

tosplit segment: A segment capturing all paths in the
previous segments from nodeentry(s) to nodev

that do not pass through edge(v, w).

fromsplit segment: A segment capturing all paths in the
previous segments from nodew to nodeexit(s) that
do not pass through edge(v, w).



bypass segment:A segment capturing all paths in the
previous segments from node entry(s) to node
exit(s) that do not pass through edge(v, w).

loop segment: A segment capturing all paths in the pre-
vious segments from nodew to nodev that do not
pass through edge(v, w).

Figure 4 shows how these segments are connected by
inter edges. Figures 5 and 6 show a concrete example of
splitting at a back edge.

Figure 4: Connection scheme of new segments after split-
ting. The left hand side shows segments together with
two predecessor segments,s1 and s2, and two succes-
sor segments,s3 and s4. On the right hand sides has
been replaced by the new segmentstosplit, fromsplit,

bypass, and loop. These segments have been connected
among each other as well as to their environment.

Figure 5: Amaxsegsegment graph of a CFG that contains
a loop.

Complexity Considerations
In the course of repeated splitting, it may happen that

some of the produced segments are very similar. In par-
ticular, our experimental evaluation showed that the plain

Figure 6: A segment graph that was obtained from the
one in Figure 5 by splitting at the back edgee8. Because
the previous segment contained a loop,loop segments3

was produced. This segment can be reached directly from
thetosplit segment, and directly reaches thefromsplit seg-
ment, as well as itself, via a self loop.

maximum betweenness segmentation algorithm, as pre-
sented above, can produce a large number of identical seg-
ments. Mostly, this happens when overlapping segments
with a common entry or exit node are found to have their
maximum betweenness in a shared edge. Our implemen-
tation of the maximum betweenness segmentation algo-
rithm can optionally be configured to merge identical seg-
ments after each splitting step, which can reduce the size
of the intermediate and final segment graphs significantly.

During our experimental evaluation, our optimized
segmentation algorithm was seen to work fine in prac-
tice. For a formal worst case complexity analysis of the
algorithm, one would have to consider the combination
of two diametrically opposed tendencies. On the one
hand, each splitting step will replace a segment with up
to four smaller segments. Even though many of these seg-
ments are immediately collapsed by the subsequent merg-
ing step, this can lead to exponential space complexity in
the number of splitting steps. On the other hand, however,
thebypasssegment yielded by splitting is linearly smaller
(in terms of paths) than the original segment. Moreover,
the size of theto split, from split, and loop segments
yielded by splitting at the edge with maximum between-
ness is typically a fractional power of the size of the orig-
inal segment. We have not performed a formal analysis of
the overall space and time complexity of our algorithm.

6 Experiments

To highlight the adaptable character of the segmenta-
tion techniques we will compare two segmentations of the
same input program. They represent two extreme cases
where the first includes segments as large as possible (at
most 100 paths per segment, i.e. test case generation is
barely feasible for the number of contained paths) and the
second one forms a single segment for each CFG node
(i.e. one path per segment), respectively. This way we il-
lustrate the dependency between analysis complexity and
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Figure 7: The FORTAS architecture.

the WCET estimate’s precision.
We utilize the FORTAS framework to perform our ex-

periments by which means we have access to all basic
functions we need. Figure 7 illustrates the FORTAS ar-
chitecture that combines a collection of modules/plug-
ins. Thecoremanages the communication between these
plug-ins by distributing XML-RPC protocol messages. It
potentially allows for running plug-ins on different hosts
for instance to parallelize the measurement and the test
case generation processes. The presented algorithm is
implemented in thesegmentor. It gets the CFG from
C modeler, an extension of LLVM and the Clang fron-
tend. The derived segment graphs are added to therepos-
itory plug-in which provides a consistent and persistent
way to access both intermediate and final analysis re-
sults. For each segment, we automatically derive a query
for FSHELL [10, 11] which in turn generates a test data
set yielding path coverage for the according segment. A
query to FSHELL is formed by a sequence of program lo-
cations such that the generated input data result in an exe-
cution sequence including those locations. The input lan-
guage also includes negations to exclude code locations
for a test case and commands to target coverage metrics.
By these means, each path in a segment can be expressed
by the sequence of its CFG nodes. Query generation is
therefore straightforward and convenient.

Once all test data are generated, the consecutivemea-
surementprocess takes the input data set and performs
execution time measurements on the target platform. In
a next step the longest observed execution time for each
segment is filtered out from all measurements. TheIPET
plug-in assembles those values and the segment graph to
apply the implicit path enumeration technique, yielding
a global WCET estimate. The so far unmentionedcon-
troller implements the demonstrated work flow as well as
means of logging, monitoring and verification. All plug-
ins and the core run on a 2.66 GHz Intel Core2 Quad host
with 8 GB of RAM.

Target Platform and Measurement
We perform measurements on an Infineon TriCore

TC1796 microcontroller. It includes an instruction cache

and a processor pipeline which leads to potential underes-
timations of the global WCET since we do not incorporate
execution histories at segment entries on the one hand. We
also cannot capture all data-dependent execution time jit-
ter on the other hand, as the CFG is a too coarse abstrac-
tion. However, for less complex hardware, e.g. the HCS12
microcontroller, the introduced timing analysis producesa
safe WCET bound. We have chosen the TriCore for our
measurements, because we plan to tackle the shortcom-
ings of the approach w.r.t. complex hardware in the near
future. Furthermore, the TC1796 includesOn-Chip De-
bug Support (OCDS)level 2, providing means for cycle-
accurate execution tracing. We utilize the Lauterbach
LA-7690 Powertrace device to document both timing and
flow of control, rendering code instrumentation obsolete:
not only measurements have a higher resolution, also the
source code can remain unchanged. A measurement starts
with test data injection right before the call of themain
function where all relevant registers (e.g. function argu-
ments) and global variables are set. Note, that the hard-
ware state (cache, pipeline, etc.) is unknown at this point.
However, due to a previous initialization script this stateis
identical for every measurement. The measured execution
(or trace) then includes not only the execution ofmainbut
also of all its children in the function call graph. In a post-
processing phase the resulting trace is related to the source
code, its CFG and segments by the Measurement plug-in
using debug information from the binary.
OCDS Level 2 provides traces of temporally high resolu-
tion, i.e. every executed machine instruction gets a time
stamp. Consequently, the duration of a measured segment
path can be derived precisely as the machine instructions
can be related to all CFG nodes in the corresponding seg-
ment. If measurements are too coarse, not every CFG
node of a path through a segment will get a time stamp.
This happens for instance when software instrumentation
is used to raise hardware signals at certain program points
to externally assign timestamps. In this case we choose
the splitting edges during segmentation such that they are
near to CFG nodes that can be mapped to a time stamp.
Consequently, the level of freedom in choosing segment
borders is an important feature for guaranteeing portabil-
ity of our approach.
One problem that comes along with OCDS is that the trace
buffer might overflow if too many control flow changing
instructions follow in succession. A lack of timing infor-
mation in the trace influences measurement precision if it
occurs at segment borders in which case the first/last avail-
able time stamp after/before the gap is taken as a reference
for calculating the duration of a segment path. Although
this potentially introduces a source of pessimism, we did
not observe any trace gaps so far for any benchmark.

Benchmark
The input program on which we carried out the analy-

sis is an engine control unit implemented in ANSI C. The
reason for choosing the benchmark is manifold: (a) it rep-



resents a practical application from the automotive indus-
try (provided by Magna Steyer Fahrzeugtechnik), (b) the
code is generated by Matlab/Simulink and demonstrates
that the analysis can potentially be integrated into a mod-
ern design process, (c) with 2952 source code lines and a
size of 201430 bytes, it is considerably large and (d) it in-
volves a complex control flow structure (1632 CFG nodes,
2164 transitions) with more than1045 statically possible
paths. The target function has one subfunction which is
called at most three times per execution. The benchmark
includes 230 integer variables that potentially affect con-
trol flow. Unfortunately, we cannot make the benchmark
publicly available due to a non-disclosure agreement.

1 Paths per Segment 1 ≤ 100

2 Number of segments 1287 73
3 Sum of statically possible segment paths 1287 2139
4 Sum of feasible segment paths 1201 1403
5 Analyzed and/or measured paths 387 2139
6 Segmentation time [s] 166 81
7 Test case generation time [s] 6025 177464
8 Measurement [s] 4447 10706
9 IPET time [s] 1423 0.005

10 Overall analysis time [s] 12061 188251
11 Analysis time / path [s] 20 83
12 WCET estimate [µs] 20789 1975
13 WCOET [µs] 728 728
14 Pessimism [%] 2756 171

Table 1: Summarized results.

Preliminary Results
The relation between maximal number of paths per

segment, analysis complexity and precision is illustrated
in Table 1. We see the results for two segmentations with
a maximum of 1 and 100 paths per segment, respectively.
The most important effects of these parameters, i.e. anal-
ysis complexity and precision are emphasized in rows 10
and 14: the more time is spent the less pessimistic the
WCET estimate gets. Here, pessimism is defined as the
difference between WCET estimate and theworst-case
observed execution time (WCOET), divided by the WCET
estimate. There were no manual efforts to maximize the
WCOET, i.e. the WCOET is the execution time of max-
imal observed length. Note, that this metric is only an
approximation for this target hardware. However, com-
paring WCOET and WCET estimate is the best metric
available.

The overall analysis time comprises applying the seg-
mentation algorithm (6), test case generation via FSHELL

(7), measuring the feasible segment paths (8) and timing
composition via IPET (9) to get a WCET estimate. Test
case generation uses up most of the analysis time: it has
to generate input data or prove infeasibility for each stati-
cally possible segment path in each segment.

The difference in analysis time per path is due to an
optimization technique. In the experiment with one path
per segment, we instructed FSHELL to generate input

data yielding basic block coverage for the whole program
which implies path coverage for each segment in this spe-
cial case. This also causes the reduced set of 387 out of
1287 paths that had to be analyzed and measured. In con-
trast, using a path bound of 100, all 2139 statically feasible
paths have to be analyzed individually.

A critical point that we observe is the too pessimistic
estimate for a path bound of 1. Our major concern is now
to find better segmentation parameters and to improve the
overall performance such that useful results can be derived
over night.

Potential for Optimization
So far, measurement and test case generation are pro-

cessed sequentially although they can be pipelined. Ta-
ble 1 shows that measurements are too time consuming.
This is due to a bottleneck in our prototypical measure-
ments device and will be improved in the future.

All measurements are performed end-to-end such that a
program execution causes the control flow to pass multiple
segments sequentially. However, we do not test whether
there is already a measurement in the repository for the
segment path that we want to cover. We expect a dras-
tic performance enhancement for this optimization tech-
nique.

Another option which is not accounted for so far is to
initially apply heuristic test case generation prior to model
checking. This technique proved to boost performance
considerably in [21].

7 Conclusion and Outlook

In this paper we presented a measurement-based timing
analysis approach that incorporates an abstraction tech-
nique to express a real-time system’s temporal behavior a
varying levels of detail. This enables the analysis to be
adaptable in terms of complexity, precision and safety.

We have introduced thesegment graphas a novel, flex-
ible control flow abstraction that can be used to exclude
dynamically infeasible paths from further analysis. As a
basic operation on a segment graph, we have presented the
splitting of individual segments at a given intra edge. This
operation forms the foundation of the maximum between-
ness segmentation algorithm, which tries to heuristically
find a good segmentation.

Although we have only considered CFG-like program
representations in this paper, the concept of a segmenta-
tion graph is not restricted to this representation. Segmen-
tation graphs can be constructed over other graph-based
representations, like, e.g., kripke structures.

Lastly, we have presented preliminary results of exper-
iments that were performed using a prototype implemen-
tation of our approach.

Immediate next steps are the further improvement of
our prototype implementation which is still in an early
stage of development, and performing further experi-
ments. Our more ambitious plans include the develop-



ment of an adaptive analysis approach that employs an
incremental refinement strategy to improve the analysis
results.
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