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ABSTRACT

There are known to be integrable Sutherland models associated to every real root
system – or, which is almost equivalent, to every real reflection group. Real reflection
groups are special cases of complex reflection groups. In this paper we associate
certain integrable Sutherland models to the classical family of complex reflection
groups. Internal degrees of freedom are introduced, defining dynamical spin chains,
and the freezing limit taken to obtain static chains of Haldane-Shastry type. By
considering the relation of these models to the usual BCN case, we are led to systems
with both real and complex reflection groups as symmetries. We demonstrate their
integrability by means of new Dunkl operators, associated to wreath products of
dihedral groups.
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1 Introduction

The Sutherland model [1] is an important and much-studied integrable quantum-mechanical

system. It describes N particles moving on a circle, whose pairwise interactions are determined

by a potential proportional to the inverse square of the chord-length separating the particles (as

in figure 1). The Hamiltonian, in the simplest case of identical spinless bosons, is

H = −1

2

N
∑

i=1

∂2

∂x2i
+ λ

∑

i 6=j

1

sin2
(

1
2 (xi − xj)

) . (1.1)

The model was first introduced in [2]. It, and the wider family of Calogero-Sutherland-Moser

models [3] to which it belongs, have since appeared in areas physics apparently far removed from

the original condensed-matter context: see for example [4]. Operator methods were used to solve

the system in [5, 6]; the Yangian symmetry of the model was derived in [7, 8]. For recent reviews

and references to the extensive literature see [9, 10, 11].

The Hamiltonian (1.1) is closely related to the Coxeter group AN−1, because the potential

can be written as
∑

α∈∆ sin−2(12(x ·ααα)), where ∆ = {ǫǫǫi − ǫǫǫj : i 6= j} is the root system of AN−1.

Similar integrable models exist also for all other finite Coxeter groups [12, 13, 14, 15, 16, 17].

The classical families BCN and DN describe systems with boundaries, via a kind of method of

images: in the case of DN , whose roots are ±ǫǫǫi ± ǫǫǫj, one has

H = −1

2

N
∑

i=1

∂2

∂x2i
+ λ

∑

i 6=j

(

1

sin2
(

1
2 (xi − xj)

) +
1

sin2
(

1
2 (xi + xj)

)

)

, (1.2)

and the second term describes the interaction of particle i with the image of particle j in the

boundary (see figure 1). In the B and C cases, the extra roots ∝ ±ǫǫǫi give an interaction between

the particles and the boundary.

These families, ABCD, of course exhaust the classical irreducible finite Coxeter groups. Finite

Coxeter groups are finite real reflection groups [18]: that is, subgroups of the orthogonal group

generated by a finite number of elements s ∈ O(N) such that

s2 = 1, s has eigenvalue +1 with multiplicity N − 1. (1.3)

But it is possible to weaken the first of these requirements and consider subgroups of U(N)

generated by finitely many s ∈ U(N) obeying

sn(s) = 1, s has eigenvalue +1 with multiplicity N − 1 (1.4)

for some n(s) ∈ N. By doing so one obtains complex reflection groups. The irreducible finite

complex reflection groups were classified in [19]. There is one ‘classical’ three-parameter family
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Figure 1: Interactions between two particles (• and �) in the Sutherland models associated to the
A (left) and D (right) series of real reflection groups. The image of � under reflection is drawn
as ♦.

Figure 2: Interactions between particles • and � for the Sutherland models associated to the
classical complex reflection group G(3, 1, N) (left) and a wreath product of a dihedral group
(right). The images of � are drawn as ♦.
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G(pr, p,N), p, r,N ∈ N, which includes the four classical families of real reflection groups as

special cases, and then 34 exceptional cases.

In this paper our main goal is to construct Sutherland models for classical complex reflection

groups. At first sight it is perhaps not clear that one should expect this to work, because complex

reflection groups lack a great deal of the usual structure that comes with real reflection groups.

The notions of root system, length function and Coxeter graph are either absent or, at best, less

natural in the complex case [20] – and the definition of the BCD Sutherland models sketched

above appears to rely explicitly on the root system data. Nevertheless, it turns out that there

do exist integrable models of Sutherland type associated to complex reflection groups in a very

natural fashion. The basic idea is sketched in figure 2 – each particle has a number of images,

but now these images are generated by rotations.

The plan of this paper is as follows. In section 2 we begin with some algebraic preliminaries

on complex reflection groups, and then introduce a key tool, Dunkl operators [21], from which

we construct integrable Hamiltonians of Sutherland type. These models turn out to be members

of a class of Calogero-Sutherland models first introduced and solved in [22, 23]. In section 4

we introduce models with internal “spin” degrees of freedom, and in section 5 static or “frozen”

chains in which the spins are in fact the only degrees of freedom.

In section 6 we turn to models in which the set of images of each particle is generated by a

dihedral group, as illustrated in figure 2. As we shall see, these models possess both a complex

reflection group and a real reflection group as symmetries, embedded within a larger group which

will turn out to be a wreath product of a dihedral group. An important part of our construction

will be the introduction of new Dunkl operators, associated to such wreath products. We then

go on to introduce spin degrees of freedom and static chains with dihedral symmetry.

We conclude by noting some open questions – primarily of solution and Hamiltonian reduction

– concerning the new models of this paper, and some broader reasons for investigating integrable

systems with complex reflection groups as symmetries.

2 Complex Reflection Algebras

Classical complex reflection groups

The complex reflection group G(m, 1, N) is generated by { a, e1, e2, . . . , eN−1}, subject to the

relations

e2i = 1 ei ei+1 ei = ei+1 ei ei+1 ei ej = ej ei (|i− j| > 2)

am = 1 a e1 a e1 = e1 a e1 a a ej = ej a (j > 1) (2.1)
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The ei generate a copy of the permutation group SN on N objects, a generates a copy of

Zm = Z/mZ, and the full group is a semidirect product G(m, 1, N) = (Zm)N ⋊ SN . This

structure is sometimes referred to as the wreath product of Zm with SN , denoted Zm ≀SN . It will

be convenient to write

Pij = Pji = ei ei+1 . . . ej−1 . . . ei+1 ei (i < j) (2.2)

for the transposition i↔ j (in particular ei = Pii+1) and

Q1 = a (2.3)

Qi = Pi1Q1Pi1 (i > 1). (2.4)

In terms of these elements the defining relations imply, and can be recovered from,

P
2
ij = 1 PijPjk = PikPij = PjkPik PijPkl = PklPij

PijQi = QjPij PijQk = QkPij

Q
m
i = 1 QiQj = QjQi (i, j, k, l all distinct). (2.5)

For any divisor p of m, the complex reflection group G(m, p,N) is the subgroup of G(m, 1, N)

generated by

{ ap, a−1 e1 a, e1, e2, . . . , eN−1}. (2.6)

The classical real reflection groups occur as the special cases AN−1 = SN = G(1, 1, N), BCN =

G(2, 1, N) and DN = G(2, 2, N).3

Extended degenerate affine Hecke algebras

We will overload notation slightly by using G(m, 1, N) also to refer to the group algebra of

G(m, 1, N) over C. Let us define Hλ(m, 1, N), λ ∈ C, to be the algebra generated by

{ a, d, e1, e2, . . . , eN−1}, (2.7)

obeying (2.1) and the further relations

a d = d a d e1 a e1 = e1 a e1 d ej d = d ej (j > 1) (2.8)

d e1 d e1 + λd
∑

s∈Zm

as e1 a
−s = e1 d e1 d+ λ

∑

s∈Zm

as e1 a
−s d . (2.9)

3But note that, in what follows, the models we construct do not reduce, in the BC and D cases, to the standard
Sutherland Hamiltonians, à la (1.2), for these groups. We return to this point in section 6.
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In addition to the Qi and Pij of (2.2–2.4), it is also useful to introduce d1, . . . , dN , defined

recursively by

d1 = d (2.10)

di+1 = Pii+1diPii+1 + λ
∑

s∈Zm

Q
s
i Pii+1Q

−s
i (i = 1, . . . , N − 1). (2.11)

It follows from (2.8–2.9) that

[ di, dj ] = 0, [ di,Qj ] = 0 (2.12)

Hλ(m, 1, N) can be regarded as an affinization of G(m, 1, N), with d in a very loose sense

a “lowest root”. Indeed, when m = 1 the sums above collapse and one recovers the relations

Pii+1di = di+1Pii+1 + λ of the degenerate affine Hecke algebra, first introduced in [25].

We may define also Hλ(pr, p,N), an affinization of G(pr, p,N), to be the subalgebra of

Hλ(pr, 1, N) generated by { ap, d, a−1 e1 a, e1, e2, . . . , eN−1}. Note that the relation (2.9) does

not conflict with closure, because G(pr, p,N) does contain all the elements

a−s e1 a
s = e1

(

e1 a
−1 e1 a

)s
. (2.13)

Extended degenerate affine Hecke algebra associated with the BCN reflection groups appeared

previously in [33, 39]. They differ from definition of Hλ(2, 1, N) here though: in particular, the

relation [di,Qj ] = 0 does not hold there.

3 Dunkl operators and Hamiltonians

Realization of Hλ(m, 1, N)

The next stage is to realize these abstract algebraic relations in a concrete physical model. Con-

sider a quantum-mechanical system of N particles on the unit circle. Let qi = exp(ixi) be the

position operator of the ith particle and write the position-space wavefunction as

ψ(q1, q2, . . . , qN ). (3.1)

Let Pij be the operator which transposes the positions of particles i and j,

Pijψ(. . . , qi, . . . , qj, . . . ) = ψ(. . . , qj, . . . , qi, . . . ) , (3.2)

and Qi the operator which rotates particle i through ( 1
m )th of a revolution,

Qiψ(. . . , qi, . . . ) = ψ(. . . , τqi . . . ), where τ = exp

(

2πi

m

)

(3.3)
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It is easy to see that these Pij and Qi satisfy the defining relations (2.5) of G(m, 1, N). We also

have that

Qi qi = τ qi Qi Qi
∂

∂qi
= τ−1 ∂

∂qi
Qi (3.4)

Pijqi = qjPij Pij
∂

∂qi
=

∂

∂qj
Pij . (3.5)

The crucial step is the introduction of differential operators, called Dunkl operators [26, 27, 5],

that realize the algebraic relations of the di. The problem of finding such operators for complex

reflection groups was solved in [21]. Following that paper, with minor modifications that will

allow us to obtain a slightly more elegant Hamiltonian, we define

di = qi
∂

∂qi
+ λ

∑

j 6=i

∑

s∈Zm

qi
qi − τ sqj

Q
−s
i PijQ

s
i − λ

∑

j>i

∑

s∈Zm

Q
−s
i PijQ

s
i (3.6)

= qi
∂

∂qi
+ λ

∑

j<i

∑

s∈Zm

qi
qi − τ sqj

Q
−s
i PijQ

s
i + λ

∑

j>i

∑

s∈Zm

τ sqj
qi − τ sqj

Q
−s
i PijQ

s
i . (3.7)

Theorem 3.1 These provide a realisation of Hλ(m, 1, N).

This is essentially theorem (3.8) of [21], and the same strategy of proof works here. But when

we come to introduce new Dunkl operators for wreath products of dihedral groups, in section 6,

it will be useful to have noted the following alternative

Proof. It is easy to verify that (2.11) holds: were it not for the final term on the right of (3.6),

the di would obey Pij diPij = dj . The final term involves an ordering of the particles and is

responsible for the extra piece in (2.11).

It remains to show that d1 = d obeys (2.8) and (2.9). The first of these is straightforward to

check by direct computation4. The second is nothing but the statement that the Dunkl operators

commute:

[ d1, d2] = 0, (3.8)

which is really the key property. To prove it, first recall the Dunkl operators of the AN−1 case:

Zi = qi
∂

∂qi
+mλ

∑

j 6=i

qi
qi − qj

Pij −mλ
∑

j>i

Pij (3.9)

where we have chosen the coupling to be mλ. Observe that then

di =
1

m

∑

s∈Zm

Q
−s
i ZiQ

s
i . (3.10)

4We sketch the arguments, for the more involved case of dihedral groups to be considered in section 6, in an
appendix.
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This motivates the definition of a family of projectors: we write

Ad(Q)(X) = Q
−1XQ (3.11)

and define

Πr
i =

1

m

∑

s∈Zm

τ srAd(Qs
i ). (3.12)

These obey

id =
∑

r∈Zm

Πr, ΠrΠt = δr,tΠr. (3.13)

Also, for any A and B,

Q (ΠrA)
(

ΠtB
)

= τ r (ΠrA)Q
(

ΠtB
)

= τ r+t (ΠrA)
(

ΠtB
)

Q, (3.14)

so Πr+t (ΠrA)
(

ΠtB
)

= (ΠrA)
(

ΠtB
)

. It follows that

Π0AB =
∑

r,t∈Zm

Π0 (ΠrA)
(

ΠtB
)

=
∑

r∈Zm

(ΠrA)
(

Π−rB
)

. (3.15)

Armed with these facts we argue as follows. Given the result [26, 27, 5] that

[Zi, Zj ] = 0 (3.16)

we have in particular that

0 = Π0
iΠ

0
j [Zi, Zj ] =

∑

r,t∈Zm

[

Πr
iΠ

t
jZi,Π

−t
j Π−r

i Zj

]

. (3.17)

But one may compute, for all i 6= j,

Πr
iΠ

t
jZi = δr,0δt,0qi

∂

∂qi
+ δt,0λ

∑

s∈Zm

τ rs





∑

h 6∈{i,j}

qi
qi − τ sqh

Q
−s
i PihQ

s
i −

∑

h>i,h 6=j

Q
−s
i PihQ

s
i





+ δr+t,0λ
∑

s∈Zm

τ rs
(

qi
qi − τ sqj

Q
−s
i PijQ

s
i − θj>i

Q
−s
i PijQ

s
i

)

. (3.18)

The only terms in (3.17) which can survive in view of the δ’s here are

0 =
[

Π0
iΠ

0
jZi,Π

0
iΠ

0
jZj

]

+
∑

t∈Zm,t6=0

[

Πt
iΠ

−t
j Zi,Π

t
jΠ

−t
i Zj

]

. (3.19)

The second term (with i > j, without loss of generality) is

∑

t∈Zm,t6=0





∑

s∈Zm

τ ts
qi

qi − τ sqj
Q

−s
i PijQ

s
i ,
∑

s′∈Zm

τ ts
′

(

qj
qj − τ s′qi

− 1

)

Q
−s′

j PjiQ
s′

j





= −
∑

t∈Zm,t6=0





∑

s∈Zm

τ ts
qi

qi − τ sqj
Q

−s
i PijQ

s
i ,
∑

s′∈Zm

τ−ts′ qi
qi − τ s

′
qj

Q
−s′

i PijQ
s′
i



 , (3.20)
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and this vanishes. (In the sum over t, the summands cancel in conjugate pairs, t against −t,
except for the possible τ t = −1 term which is zero by itself.) But now since Π0

iΠ
0
jZi = di by

(3.18), we have that indeed

0 = [di, dj ] , (3.21)

completing the proof.

Hamiltonians

It follows from the discussion above that the quantities

I(k) =

N
∑

i=1

dki (3.22)

form a commuting set. The I(k) are algebraically independent for k = 1, 2, . . . N , and these give

N commuting conserved quantities of the model with Hamiltonian

H = I(2) =

N
∑

i=1

(

qi
∂

∂qi

)2

− 2λ
∑

i<j

∑

s∈Zm

τ sqiqj
(qi − τ sqj)2

(λ+ Q
−s
i PijQ

s
i ) (3.23)

=

N
∑

i=1

(

qi
∂

∂qi

)2

− λ
∑

i 6=j

∑

s∈Zm

τ sqiqj
(qi − τ sqj)2

(λ+ Q
−s
i PijQ

s
i ) (3.24)

which is therefore, by construction, integrable. After the change of coordinates qj = exp(ixj) the

Hamiltonian takes the form

H = −
N
∑

i=1

∂2

∂x2i
+
λ

4

∑

i 6=j

∑

s∈Zm

1

sin2
(

1
2

(

xi − xj +
2πs
m

))

(

λ+ Q
−s
i PijQ

s
i

)

(3.25)

One sees that each particle xi interacts with every other particle xj both directly and via

its images under rotations. A sketch of the case G(3, 1, 2) is shown in figure 3. Note that the

Hamiltonian is not local, because of the final term which exchanges (and moves) particles. To

find local Hamiltonians it is useful to introduce spins, as follows.

4 Particles with spin

We now generalize the models above to particles with internal ‘spin’ degrees of freedom, ~s ∈ C
n.

Let us introduce a map Q ∈ U(n) of order m (Qm = 1) and write Qi for Q acting on the spin

~si of the i
th particle. Let also Pij be the operator which exchanges the spins of the the ith and

jth particles. Pij and Qi then obey the same defining relations of G(m, 1, N) as Pij ,Qi in (2.5).

The two copies of G(m, 1, N) commute.
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2π/m

2π/m

1

1

1

2

2

x1

2sin((          +         )/2)x   −x2

x   −x2

1

2sin((          )/2)1

Figure 3: Partial picture of the model for N = 2. The particles are represented by full circles
whereas their images by rotations of 2π/m are represented by empty circles.

The introduction of spins typically makes the restriction to the case of identical particles

much richer and more interesting. For bosons (fermions) the wavefunction should now be

(anti)symmetric under exchange of positions and spins – that is, under

PijPij . (4.1)

These generate the group SN of exchange symmetries. In the original AN -series Sutherland

models, on wavefunctions with definite exchange statistics it is possible [28, 8] systematically to

eliminate Pij in favour of Pij in the Hamiltonian and higher conserved quantities, and so obtain

a purely local model with spin-spin interactions.

We would like to do something similar in the present case. Here the exchange-symmetry

group is contained in several larger groups of discrete symmetries (involving the Qi and Qi).

It is natural to pick one of these as a group of “generalized exchange symmetries” and demand

definite behaviour of the wavefunction under it. There are a number of possibilities: one could for

example demand that a full copy of G(m, 1, N), generated by e.g. PijPij and QiQi, be promoted

in this sense. But to do so would be overly restrictive on physical wavefunctions; instead, it will

suffice to demand invariance under

Q
−s
i PijQ

s
i Q

−s
i PijQ

s
i (4.2)

for all i 6= j and for all s = 0, 1, . . . ,m− 1. These generate a copy of G(m,m,N).

(We focus for definiteness on +1-eigenstates of (4.2), but the more general case with arbitrary

10



eigenvalues ps ∈ {±1} for each value of s – in particular, p0 = −1, giving fermions – can be treated

very similarly.)

Let Λ be the projector onto such states. To write Λ explicitly, let g 7→ Pg and g 7→ Pg be the

maps representing abstract elements g ∈ G(m,m,N) on, respectively, spins and positions. Then

Λ =
1

N !mN−1

∑

g∈G(m,m,N)

PgPg (4.3)

and we consider wavefunctions such that

ψ = Λψ. (4.4)

Define I
(k)
spin to be the operator obtained by first moving all the Pij , Qi in I(n), as defined in

(3.22), to the right of all positions xi and derivatives ∂
∂xi

, and then replacing them Pij 7→ Pij ,

Qi 7→ Qi.
5 It follows from the property

(

Q
−s
i PijQ

s
i

)

Λ =
(

Q−s
i PijQ

s
i

)

Λ, (4.6)

of Λ that

I
(k)
spinΛ = I(k)Λ (4.7)

so that these operators agree on wavefunctions obeying (4.4).

Note next the following properties of the I(k):
[

I(k),Pij

]

= 0,
[

I(k),Qi

]

= 0 (4.8)

which follow from the definition I(k) =
∑N

i=1 d
k
i and the algebra (2.11–2.12) of the Dunkl opera-

tors. It is also trivially the case that
[

I(k), Pij

]

= 0,
[

I(k), Qi

]

= 0. (4.9)

Consequently, for any monomialM({I(k)}) in the I(k),M({I(k)})Λ obeys the same relations (4.6)

as Λ itself,
(

Q
−s
i PijQ

s
i

)

M({I(k)})Λ =
(

Q−s
i PijQ

s
i

)

M({I(k)})Λ, (4.10)

and thus

I
(k)
spinM({I(p)})Λ = I(k)M({I(p)})Λ. (4.11)

Given now any string of I
(k)
spin’s, not a priori assumed to commute, repeated use of this fact allows

one to replace each I
(k)
spin by I(k), working from the inside out:

(

. . . I
(k)
spinI

(ℓ)
spin

)

Λ =
(

. . . I
(k)
spinI

(ℓ)
)

Λ =
(

. . . I(k)I(ℓ)
)

Λ = . . . . (4.12)

5The replacement map could also be defined, following [8], as the projection

π : G(m, 1, N)〈PP,QQ−1〉 ⋉G(m, 1, N)〈P,Q〉 → G(m, 1, N)〈P,Q〉 ; AB 7→ B. (4.5)

Then indeed πPij = π(PijPij)Pij = Pij and πQi = π(QiQ
−1
i )Qi = Qi.

11



Having done so, the result
[

I(k), I(ℓ)
]

= 0, (4.13)

may be used to reorder the I(k) at will, and the above procedure then reversed to return I(k) →
I
(k)
spin. Thus, in particular, we have that the N independent evolution operators

Uk(t) = eitI
(k)
spin , k = 1, . . . , N (4.14)

commute amongst themselves when acting on physical wavefunctions:

Uk(t)Uℓ(t
′)Λ = Uℓ(t

′)Uk(t)Λ. (4.15)

Therefore the model described by the Hamiltonian

Hspin = I
(2)
spin = −

N
∑

i=1

∂2

∂x2i
+
λ

4

∑

i 6=j

∑

s∈Zm

1

sin2
(

1
2

(

xi − xj +
2πs
m

))

(

λ+Q−s
i PijQ

s
i

)

(4.16)

is integrable.

5 Static spin chain

In this section, we find static integrable spin models from the new integrable models introduced

above. Indeed, it is well-known that from the AN Sutherland model it is possible to find static

spin chains [29, 30], called usually Haldane–Shastry models [31, 32]. Using similar methods, we

will prove that the following Hamiltonian

H =
∑

i 6=j

∑

s∈Zm

τ s qiqj
(qi − τ sqj)2

Q
−s
i PijQ

s
i (5.1)

is integrable for some particular values of the positions qi.

First, we introduce the following operators

di =
∑

j<i

∑

s∈Zm

qi
qi − τ sqj

Q
−s
i PijQ

s
i +

∑

j>i

∑

s∈Zm

τ sqj
qi − τ sqj

Q
−s
i PijQ

s
i (5.2)

Note that di = qi
∂
∂qi

+ λdi. Since the relation [dj , dk] = 0 is valid for any λ, we deduce that

[dj , dk] = 0 . (5.3)

Similarly, from the relation [H, di] = 0, it follows that, for any i,

[H, di] =



qipi ,
∑

j 6=ℓ

∑

s∈Zm

τ s qjqℓ
(ql − τ sqj)2



 (5.4)
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The commutators [H, di] therefore vanish if and only if

∑

j 6=i

∑

s∈Zm

τ s
qiqj(qi + τ sqj)

(qi − τ sqj)3
= 0 ,∀i = 1, 2, . . . , N (5.5)

and these conditions are fulfilled if

qk = exp

(

2ik

mN

)

. (5.6)

Then, the Hamiltonian (5.1) with the particular values of the positions given by (5.6) is integrable

and may be written as follows

H = −1

4

∑

k 6=ℓ

∑

s∈Zm

1

sin2
(

π
mN (k − ℓ−Ns)

) Q
−s
k PkℓQ

s
k . (5.7)

By the same procedure as in the section 4, we can obtain an integrable Hamiltonian acting on

spins

Hspin = −1

4

∑

k 6=ℓ

∑

s∈Zm

1

sin2
(

π
mN (k − ℓ−Ns)

) Q−s
k PkℓQ

s
k (5.8)
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34
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Interaction

Figure 4: Position of the spins on a circle of diameter 1 for N = 5 and m = 3.

6 Models with dihedral symmetry

In the previous sections we introduced Sutherland models based on the complex reflection group

G(m, 1, N). They reduce to the original Sutherland models, as in (1.1), in the special case

G(1, 1, N) = AN−1, but for other values of m they are new. In particular, although there is an

isomorphism of groups

G(2, 1, N) ∼= BCN
∼= (Z2)

N
⋊ SN , (6.1)
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as we noted above, our models certainly do not coincide with the usual BCN Sutherland models

in this case, because the Z2 generator is realized in different ways. In the G(m, 1, N) models,

recall,

Qiψ(. . . , qi, . . . ) = ψ(. . . , τqi, . . . ), (6.2)

where τ = e2πi/m, whereas in the BCDN case the action of the Z2 generator is [30],

Kiψ(. . . , qi, . . . ) = ψ(. . . , q−1
i , . . . ) . (6.3)

In this section we show that it is possible to include both types of symmetry, rotation and

reflection.

Dunkl operators for wreath products of dihedral groups

To take into account the new operators Ki, we must find the group W (m,N) generated by the

Qi, Ki and Pij , which will contain as subgroups both DN and G(m, 1, N). First note that Qi

and Ki satisfy, for each i,

Q
m
i = 1 , K

2
i = 1 and KiQi = (Qi)

−1
Ki , (6.4)

which are the defining relations of the dihedral group of order m, denoted Dihm. We deduce that

the group W (m,N) must be the wreath product

W (m,N) = Dihm ≀ SN = (Dihm)N ⋊ SN . (6.5)

A minimal set of generators for W (m,N) is

{ a, b, e1, e2, . . . , eN−1}, (6.6)

obeying the relations

e2i = 1 ei ei+1 ei = ei+1 ei ei+1 ei ej = ej ei (|i− j| > 2)

am = 1 a e1 a e1 = e1 a e1 a a ej = ej a (j > 1)

b a = a−1 b b2 = 1 b e1 b e1 = e1 b e1 b b ej = ej b (j > 1) (6.7)

and in terms of these Pij and Qi are again defined as in (2.2) and (2.4) while

K1 = b (6.8)

Ki = Pi1K1Pi1 (i > 1). (6.9)

To construct integrable models, we must extend this algebra as explained in the previous sec-

tions. DefineHλ,µ(W (m,N)), λ, µ ∈ C, to be the algebra generated by {D, b, a, e1, e2, . . . , eN−1},
obeying (6.7) and the further relations

bD = −D b+ µ
∑

s∈Zm

a2s , aD = Da (6.10)

14



(

D + λ
∑

s∈Zm

a−s e1 a
s

)

e1 b e1 = e1 b e1

(

D + λ
∑

s∈Zm

a−s e1 a
s

)

, D e1 a e1 = e1 a e1D

(6.11)

D

(

e1D e1 + λ
∑

s∈Zm

as e1 a
−s

)

=

(

e1D e1 + λ
∑

s∈Zm

as e1 a
−s

)

D , ej D = Dej (j > 1).

(6.12)

Defining as before

D1 = D

Di+1 = Pii+1DiPii+1 + λ
∑

s∈Zm

Q
s
i Pii+1Q

−s
i (i = 1, . . . , N − 1) (6.13)

it follows from (6.10-6.12) that

[ Di, Dj] = 0, [ Di,Qj ] = 0. (6.14)

The hard step, just in the case of G(m, 1, N), is to find a concrete realization of the Di

satisfying these abstract relations.

Theorem 6.1 For any ρ ∈ C, the differential operators

Di = qi
∂

∂qi
+ λ

∑

j 6=i

∑

s∈Zm

(

qi
qi − τ sqj

Q
−s
i PijQ

s
i +

qi

qi − τ−sq−1
j

KiQ
−s
i PijQ

s
i Ki

)

+
∑

s∈Zm

µτ sqi − ρ

τ sqi − τ−sq−1
i

Q
2s
i Ki

− λ
∑

j>i

∑

s∈Zm

Q
−s
i PijQ

s
i (6.15)

obey (6.10-6.12) and (6.13).

We have verified this by direct computation, which is conceptually straightforward though

somewhat laborious. It is also possible to adapt the proof we used in the G(m, 1, N) case above,

as follows.

Proof. Some details of the verification of (6.10) are given in an appendix, but as in the G(m, 1, N)

case the important and difficult step is to show that

[Di, Dj ] = 0. (6.16)

The Dunkl operators of the BCN case [33] may be written

Yi = qi
∂

∂qi
+mλ

∑

j 6=i

(

qi
qi − qj

Pij +
qi

qi − q−1
j

KiPijKi

)

+
µqi − ρ

qi − q−1
i

Ki −mλ
∑

j>i

Pij. (6.17)
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It follows from the result

[Yi, Yj ] = 0 (6.18)

that, with the projectors Πr
i as defined in (3.12),

0 = Π0
iΠ

0
j [Yi, Yj ] =

∑

r,t∈Zm

[

Πr
iΠ

t
jYi,Π

−r
i Π−t

j Yj

]

. (6.19)

Now one can compute, for i 6= j,

Πr
iΠ

t
jYi = δr,0δt,0qi

∂

∂qi
+ δt,0λ

∑

s∈Zm

τ rs





∑

h 6∈{i,j}

qi
qi − τ sqh

Q
−s
i PihQ

s
i −

∑

h>i,h 6=j

Q
−s
i PihQ

s
i





+ δt,0λ
∑

s∈Zm

τ−rs





∑

h 6∈{i,j}

qi

qi − τ−sq−1
h

KiQ
−s
i PihQ

s
i Ki +

µτ sqi − ρ

τ sqi − τ−sq−1
i

Q
2s

Ki



 (6.20)

+ δr+t,0λ
∑

s∈Zm

τ rs

(

qi
qi − τ sqj

Q
−s
i PijQ

s
i +

qi

qi − τ−sq−1
j

KiQ
−s
i PijQ

s
i Ki − θj>i

Q
−s
i PijQ

s
i

)

.

The δ’s mean that the only terms that can possibly survive in (6.19) are

0 =
[

Π0
iΠ

0
jYi,Π

0
iΠ

0
jYj
]

+
∑

t∈Zm,t6=0

[

Πt
iΠ

−t
j Yi,Π

−t
i Πt

jYj

]

. (6.21)

As before, the second term vanishes on closer inspection, and since Π0
iΠ

0
jYi = Di by (6.20), we

have established (6.16) as required.

Integrable models

Setting β = (µ+ ρ)/2 and γ = (µ − ρ)/2, we may rewrite the Dunkl operators (6.15) as

Dℓ = dℓ + λ
∑

k 6=ℓ

m−1
∑

s=0

τ sqℓ qk
τ sqℓ qk − 1

KℓQ
−s
ℓ PℓkQ

s
ℓKℓ +

m−1
∑

s=0

(

βτ sqℓ
τ sqℓ + 1

+
γτ sqℓ
τ sqℓ − 1

)

Q
2s
ℓ Kℓ (6.22)

This equivalent form is useful for computing Hamiltonians. As explained in the previous sections,

we know that the model described by the Hamiltonian H =
∑N

ℓ=1D
2
ℓ is integrable because it is

one of a set of N independent mutually-commuting conserved quantities, namely

J (k) =
N
∑

ℓ=1

Dk
ℓ . (6.23)

The explicit form of the Hamiltonian depends on the parity of m: for m odd,

Hodd = H − λ
∑

k 6=ℓ

∑

s∈Zm

τ sqℓqk
(τ sqℓqk − 1)2

(λ+ KℓQ
−s
ℓ PℓkQ

s
ℓKℓ)

+
∑

ℓ

∑

s∈Zm

(

βτ sqℓ
(1 + τ sqℓ)2

(β + Q
2s
ℓ Kℓ)−

γτ sqℓ
(1− τ sqℓ)2

(γ + Q
2s
ℓ Kℓ)

)

(6.24)
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– where H is given by (3.23) – while for m even

Heven = H − λ
∑

k 6=ℓ

∑

s∈Zm

τ sqℓqk
(τ sqℓqk − 1)2

(λ+ KℓQ
−s
ℓ PℓkQ

s
ℓKℓ)

−µ
∑

ℓ

∑

s∈Zm

τ sqℓ
(1− τ sqℓ)2

(µ+ Q
2s
ℓ Kℓ). (6.25)

In the case β = γ (i.e. ρ = 0), the boundary term in the Hamiltonian, for m odd, can be simplified

and becomes

−
∑

ℓ

∑

s∈Z2m

β
√
τ sqℓ

(1−
√
τ sqℓ)2

(β + Q
s
ℓKℓ) (6.26)

After the change of coordinates qℓ = exp(ixℓ), the Hamiltonians are

Hodd = H +
λ

4

∑

k 6=ℓ

∑

s∈Zm

1

sin2
(

1
2

(

xℓ + xk +
2πs
m

))(λ+ KℓQ
−s
ℓ PℓkQ

s
ℓKℓ) (6.27)

+
∑

ℓ

∑

s∈Zm

(

β/4

cos2
(

1
2

(

xℓ +
2πs
m

))(β + Q
2s
ℓ Kℓ) +

γ/4

sin2
(

1
2

(

xℓ +
2πs
m

))(γ + Q
2s
ℓ Kℓ)

)

Heven = H +
λ

4

∑

k 6=ℓ

∑

s∈Zm

1

sin2
(

1
2

(

xℓ + xk +
2πs
m

))(λ+ KℓQ
−s
ℓ PℓkQ

s
ℓKℓ)

+
µ

4

∑

ℓ

∑

s∈Zm

1

sin2
(

1
2

(

xℓ +
2πs
m

))(µ + Q
2s
ℓ Kℓ) (6.28)

where now H is given by (3.25).

Models on spins

As explained in the section 4, it is possible to construct models acting on spins using the suitable

projectors on the wavefunctions. In addition to the map Q introduced at the beginning of the

section 4, we introduce now K ∈ U(n) such that

K2 = 1 KQ = Q−1K . (6.29)

Such matrices certainly exist: for example

Q = diag(τa1 , . . . , τan) with ai = −an+1−i and K = antidiag(1, . . . , 1) . (6.30)

In addition to the condtions (4.2) on the wavefunctions, we demand that the physical wave

functions be invariant under

Q
2s
i Ki Q

2s
i Ki ∀i, s (6.31)

The explicit form of the projector is the product ΛΛb where Λ is defined by (4.3) and

Λb =
1

(2s)N

∏

j

(

∑

s∈Zm

Q
2s
j Q

2s
j

)

(1 + KjKj) . (6.32)
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At this point, a supplementary difficulty appears in comparison to the previous case (the same

problem appears in the usual BCN case in comparison to the AN case) because we get [J (k),Qi] =

0 and [J (k),Pij ] = 0 but

[J (k),Ki] 6= 0. (6.33)

Fortunately, we can show that this commutator vanishes when k is even and, in particular,

for k = 2 which corresponds to the Hamiltonian. Up to this restriction, we can use the same

procedure to the section 4 with the projector ΛΛb and deduce that the dynamical spin model

described by the Hamiltonian, for m even,

Heven
spin = Hspin +

λ

4

∑

k 6=ℓ

∑

s∈Zm

1

sin2
(

1
2

(

xℓ + xk +
2πs
m

))(λ+KℓQ
−s
ℓ PℓkQ

s
ℓKℓ)

+
µ

4

∑

ℓ

∑

s∈Zm

1

sin2
(

1
2

(

xℓ +
2πs
m

))(µ +Q2s
ℓ Kℓ) (6.34)

or, for m odd,

Hodd
spin = Hspin +

λ

4

∑

k 6=ℓ

∑

s∈Zm

1

sin2
(

1
2

(

xℓ + xk +
2πs
m

))(λ+KℓQ
−s
ℓ PℓkQ

s
ℓKℓ) (6.35)

+
∑

ℓ

∑

s∈Zm

(

β/4

cos2
(

1
2

(

xℓ +
2πs
m

))(β +Q2s
ℓ Kℓ) +

γ/4

sin2
(

1
2

(

xℓ +
2πs
m

))(γ +Q2s
ℓ Kℓ)

)

is integrable.

Spin chain

As explained in the section 5, it is possible find an integrable static spin chain from a dynamical

one. Using this procedure6, we can prove that the following Hamiltonian, for m odd,

Hodd
=

∑

k 6=ℓ

∑

s∈Zm

(

τ sqℓqk
(qk − τ sqℓ)2

Q
−s
ℓ PℓkQ

s
ℓ +

τ sqℓqk
(τ sqℓqk − 1)2

KℓQ
−s
ℓ PℓkQ

s
ℓKℓ

)

+
∑

ℓ

∑

s∈Zm

(

γτ sqℓ
(1− τ sqℓ)2

− βτ sqℓ
(1 + τ sqℓ)2

)

Q
2s
ℓ Kℓ (6.36)

is integrable if, for ℓ = 1, . . . , N ,

∑

s∈Zm

τ s



2
∑

j 6=ℓ

(

qj(qℓ + τ sqj)

(qℓ − τ sqj)3
+
qj(τ

sqℓqj + 1)

(τ sqℓqj − 1)3

)

+ β2
1− τ sqℓ

(1 + τ sqℓ)3
− γ2

1 + τ sqℓ
(1− τ sqℓ)3



 = 0 (6.37)

Similarly, for m even, we prove that the Hamiltonian

Heven
=

∑

k 6=ℓ

∑

s∈Zm

(

τ sqℓqk
(qk − τ sqℓ)2

Q
−s
ℓ PℓkQ

s
ℓ +

τ sqℓqk
(τ sqℓqk − 1)2

KℓQ
−s
ℓ PℓkQ

s
ℓKℓ

)

+
∑

ℓ

∑

s∈Zm

µτ sqℓ
(1− τ sqℓ)2

Q
2s
ℓ Kℓ (6.38)

6It is convenient to rescale the coupling constants of the boundary: β → λβ and γ → λγ
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is integrable if, for ℓ = 1, . . . , N ,

∑

s∈Zm

τ s



2
∑

j 6=ℓ

(

qj(qℓ + τ sqj)

(qℓ − τ sqj)3
+
qj(τ

sqℓqj + 1)

(τ sqℓqj − 1)3

)

− µ2
1 + τ sqℓ

(1− τ sqℓ)3



 = 0 (6.39)

As discussed above, we can now replaced in the Hamiltonians Hodd
andHeven

the operators acting

on the positions by the operators acting on spins, while preserved integrability. We finish this

section by discussing the different solutions of relations (6.37) and (6.39) in which the positions

are equidistant. The solutions depend on the value of the coupling constant β and γ (or µ and

ρ). Let us define L to be the number of sites – which may differ from N , the number of spins –

and let ωL = e2iπ/L. Different possible distributions of the coordinates qi, for m odd, are given

in the following table:

L β2 γ2 qk Figure

2Nm
1

4

1

4
ω
k− 1

2
L 5

2Nm+m
9

4

1

4
ω
k− 1

2
L 6

1

4

9

4
ωk
L 7

2(N + 1)m
9

4

9

4
ωk
L 8

The number in the column Figure corresponds to the labels of the figures below where the

particular case m = 3 is taken. In these figures, the black circles represent the positions of the

original spins whereas the white circles represent the images of these spins. The grey circles are

empty sites. Of course, we can recover the usual BCN cases studied in [30] when we put m = 1

in the previous table. The case when m is even seems more complicated: we found no solution

for relation (6.39).

7 Conclusions and outlook

In this paper we considered two families of Sutherland models, in which each particle possesses a

set of images determined by a cyclic or dihedral group. The former we were led to by the desire

to find models in which complex reflection groups act as symmetries; in the latter, the role of the

reflection group is played by a wreath product of a dihedral group. The Dunkl operators were

the key ingredient in demonstrating integrability. In the cyclic case these had been found in [21],

but in the dihedral case they have not appeared previously, to the authors’ knowledge.
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We sought to emphasise the link between the models and complex reflection groups. In the

cyclic cases the models themselves are a special case of systems previously obtained by appropriate

reduction of a matrix model [22] and of rational spin-Calogero models [23]; in the latter case the

equivalence may be seen by re-writing the sin−2 potential as an infinite sum of inverse squares.

(Further generalizations of these models involving a “twisted” symmetry element were found in

[24].) In principle our models with dihedral symmetry could also be obtained by reductions of

rational models involving parity in addition to translation symmetry, though this has not been

done explicitly.

There are a number of interesting open questions concerning these models. First, one should

be able to solve for the energy eigenstates exactly. This could be achieved by simultaneously

diagonalizing the Dunkl operators by means of (suitably generalized) Jack polynomials – see e.g.

[6]. One also strongly expects, looking at figure 2, that it should be possible to obtain all the

models here from the standard A-series Sutherland model via a suitable reduction procedure

[9, 11, 14], just as is true of the BCN case. This is usually related to folding of Dynkin diagrams

(see e.g. [16]); here we expect broader notion of folding will come into play, and the projectors

used in our proof of commutation the Dunkl operators (theorem 3.1) seem rather suggestive.

We stress however that these models are of interest in their own right, regardless of their origin

via reduction. In particular they should possess some extended symmetry algebra, analogous to

the Yangian and reflection-algebra symmetries of, respectively, the A and BC Sutherland models,

but respecting the underlying complex reflection group. It is worth remarking here on intriguing

hints in the mathematics literature that, the lack of root systems and so on notwithstanding,

certain complex reflection groups are actually closely analogous to real crystallographic ones (i.e.

Weyl groups) with – very loosely speaking – the role of Lie algebras being played by objects called

“spetses” [35]. These remain somewhat mysterious, and one can speculate that the machinery of

integrable models (Hopf algebras, R-matrices and so on) might provide a helpful new perspective,

as it has in the past for Lie algebras and their representation theory.

Finally let us note a few more open questions. Do there exist Sutherland models for the

exceptional complex reflection groups, perhaps via reduction as in [36]? The Sutherland model is

the trigonometric member of the Calogero-Moser family: can one generalize to elliptic potentials?

What models, presumably conformal field theories [37], are obtained in the limit of large N?
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A Properties of Dunkl operators

Here we give some details of the argument that D1 = D obeys (6.10-6.12). Consider the relation

in (6.10) involving b = K1. For the terms at order λ, one finds first that

K1

∑

j 6=1

∑

s∈Zm

(

q1
q1 − τ sqj

Q
−s
1 P1jQ

s
1 +

q1

q1 − τ−sq−1
j

K1Q
−s
1 P1jQ

s
1K1

)

(A.1)

+
∑

j 6=1

∑

s∈Zm

(

q1
q1 − τ sqj

Q
−s
1 P1jQ

s
1 +

q1

q1 − τ−sq−1
j

K1Q
−s
1 P1jQ

s
1K1

)

K1

=
∑

j 6=1

∑

s∈Zm

(

q−1
1

q−1
1 − τ sqj

+
q1

q1 − τ−sq−1
j

)

K1Q
−s
1 P1jQ

s
1 +

(

q−1
1

q−1
1 − τ−sq−1

j

+
q1

q1 − τ sqj

)

Q
−s
1 P1jQ

s
1K1

=
∑

j 6=1

∑

s∈Zm

K1Q
−s
1 P1jQ

s
1 + Q

−s
1 P1jQ

s
1K1

which then is precisely cancelled by the contribution from the other order-λ piece in (6.15). Note

of course that the algebra of Ki with qi, implicit the action (6.3) of Ki on wavefunctions, is

Ki qi = q−1
i Ki and Ki

∂
∂qi

= ∂
∂q−1

i

Ki. Since also

K1q1
∂

∂q1
= −q1

∂

∂q1
Ki (A.2)

(because q−1
i = q−1

i ) we have that K1D1 = −D1K1 up to the terms involving µ and ρ. It is

straightforward to verify that these give

K1D1 = −D1K1 + µ
∑

s∈Zm

Q
2s
1 (A.3)

as claimed. The other relation in (6.10), Q1D1 = D1Q1 is almost immediate.

Next consider (6.11): K2 = e1 b e1 commutes term by term with the right hand side of

D1 + λ
∑

s∈Zm

a−s e1 a
s = q1

∂

∂q1
+ λ

∑

j 6=1

∑

s∈Zm

(

q1
q1 − τ sqj

Q
−s
1 P1jQ

s
1 +

q1

q1 − τ−sq−1
j

K1Q
−s
1 P1jQ

s
1K1

)

+
∑

s∈Zm

µτ sqi − ρ

τ sqi − τ−sq−1
i

Q
2s
1 K1

+ λ
∑

j>2

∑

s∈Zm

Q
−s
i PijQ

s
i (A.4)

except when j = 2 in the sum: but there

K2

∑

s∈Zm

(

q1
q1 − τ sq2

Q
−s
1 P12Q

s
1 +

q1

q1 − τ−sq−1
2

K1Q
−s
1 P12Q

s
1K1

)

=
∑

s∈Zm

(

q1

q1 − τ sq−1
2

K2Q
−s
1 P12Q

s
1K2 +

q1
q1 − τ−sq2

K2K1Q
−s
1 P12Q

s
1K1K2

)

K2

=
∑

s∈Zm

(

q1

q1 − τ sq−1
2

K1Q
s
1P12Q

−s
1 K1 +

q1
q1 − τ−sq2

Q
s
1P12Q

−s
1

)

K2
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and, on renaming s → −s, one sees that the two terms are merely exchanged. Thus indeed K2

commutes with D + λ
∑

s∈Zm
a−s e1 a

s. To show that Q2D1 = D1Q2 is straightforward.

References

[1] B. Sutherland, Exact results for a quantum many-body problem in one dimension II, Phys.

Rev. A5 (1972) 1372.

[2] B. Sutherland, Quantum many-body problem in one-dimension: Ground state, J. Math.

Phys. 12 (1971) 246.

[3] F. Calogero, Solution of the three-body problem in one dimension, J. Math. Phys. 10 (1969)

2191; F. Calogero, Ground state of a one-dimensional N -body problem, J. Math. Phys. 10

(1969) 2197; F. Calogero, Solution of the one-dimensional N -body problem with quadratic

and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419.

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations,

Adv. Math. 16 (1975) 197; J. Moser, Integrable systems of non-linear evolution equations,

in Dynamical Systems, Theory and Applications, J. Moser, ed., Lecture Notes in Physics 38

(1975) Springer-Verlag.

[4] A. Gorsky and N. Nekrasov, Hamiltonian systems of Calogero type and two-dimensional

Yang-Mills theory, Nucl. Phys. B414 (1994) 213 and hep-th/9304047.

G. W. Gibbons and P. K. Townsend, Black holes and Calogero models, Phys. Lett. B454

(1999) 187 and hep-th/9812034.

E. D’Hoker and D. H. Phong, Seiberg-Witten theory and Calogero-Moser systems, Prog.

Theor. Phys. Suppl. 135 (1999) 75 and hep-th/9906027.

N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills

theory, JHEP 9907 (1999) 021 and hep-th/9906011.

H. L. Verlinde, Superstrings on AdS(2) and superconformal matrix quantum mechanics,

hep-th/0403024.

A. Agarwal and A. P. Polychronakos, BPS operators in N = 4 SYM: Calogero models and

2D fermions, JHEP 0608 (2006) 034 and hep-th/0602049.

[5] L.Brink, T.H.Hansson and M.A.Vasiliev, Explicit solution to the N-body Calogero problem,

Phys. Letters B286 (1992) 109.

[6] L. Lapointe and L. Vinet, Exact operator solution of the Calogero-Sutherland model, Comm.

Math. Phys. 178 (1996) 425 and q-alg/9509003.

23



[7] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard and V. Pasquier, Yangian symmetry

of integrable quantum chains with long range interactions and a new description of states in

conformal field theory, Phys. Rev. Lett. 69 (1992) 2021.

[8] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, Yang-Baxter equation in spin chains

with long range interactions, J. Phys. A26 (1993) 5219 and hep-th/9301084.

[9] F. Calogero, Classical Many Body Problems Amenable to Exact Treatments, Springer (2001).

J. F. van Diejen and L. Vinet (Eds.), Calogero-Moser-Sutherland Models, Springer (2000).

[10] P. Etingof, Lectures on Calogero-Moser Systems, math.QA/0606233

[11] A. P. Polychronakos, Physics and mathematics of Calogero particles, J. Phys. A 39 (2006)

12793 and hep-th/0607033.

[12] M. A. Olshanetsky and A. M. Perelomov, Quantum completely integrable systems connected

with semi-simple Lie algebras, Lett. Math. Phys. 2 (1977) 7.

[13] D. Kazhdan, B. Kostant and S. Sternberg, Hamiltonian group actions and dynamical systems

of Calogero type, Comm. Pure Appl. Math. 31 (1978) 481.

[14] M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite dimensional systems

related to Lie algebras, Phys. Rep. 71 (1981) 313; M. A. Olshanetsky and A. M. Perelomov,

Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983) 313.

[15] A. J. Bordner, E. Corrigan and R. Sasaki, Generalised Calogero-Moser models and universal

Lax pair operators, Prog. Theor. Phys. 102 (1999) 499 and hep-th/9905011; A. J. Bordner,

E. Corrigan and R. Sasaki, Calogero-Moser models. I: A new formulation, Prog. Theor. Phys.

100 (1998) 1107 and hep-th/9805106.

[16] A. J. Bordner, R. Sasaki and K. Takasaki, Calogero-Moser models. II: Symmetries and

foldings, Prog. Theor. Phys. 101 (1999) 487 and hep-th/9809068.
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