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The elastic scattering cross section of 92Mo(α,α)92Mo has been measured at energies of Ec.m. ≈

13, 16, and 19MeV in a wide angular range. The real and imaginary parts of the optical potential
for the system 92Mo - α have been derived at energies around and below the Coulomb barrier. The
result fits into the systematic behavior of α-nucleus folding potentials. The astrophysically relevant
96Ru(γ,α)92Mo reaction rates at T9 = 2.0 and T9 = 3.0 could be determined to an accuracy of about
16 % and are compared to previously published theoretical rates.

PACS numbers: 24.10.Ht, 25.55.-e, 25.55.Ci, 26.30.+k

I. INTRODUCTION

The nucleosynthesis of nuclei above the iron peak (A ≈
60) proceeds mainly by neutron capture in the so-called
s- and r-processes. In principle, neutron-deficient nuclei
in this mass region (the so-called p nuclei, see Ref. [1] for
a complete list) can be produced from more neutron-rich
seed nuclei either by the removal of neutrons or by the
addition of protons. However, due to the Coulomb bar-
rier proton capture is strongly suppressed. There is gen-
eral agreement that heavy neutron-deficient nuclei with
masses above A ≈ 100 have been synthesized by pho-
todisintegration of previously produced nuclides at suffi-
ciently high temperatures of (2− 3)× 109 K (T9 = 2− 3,
with T9 being the temperature in billion degrees). This
so-called γ-process or p-process is discussed in detail in
[1–12]. Several astrophysical sites for the γ-process have
been proposed, whereby the oxygen- and neon-rich lay-
ers of type II supernovae seem to be good candidates
[7,10], but also exploding carbon-oxygen white dwarfs
have been suggested [11]. However, no definite conclu-
sions have been reached yet.

Nucleosynthesis calculations for the γ-process require
a huge number of reaction rates. Up to about 1000 nuclei

and 10000 reaction rates have been included in previous
reaction networks [8]. Recently, the complete network of
the first self-consistent study of the γ-process including
all relevant nuclei up to Bi amounted to about 3000 nuclei
and all their respective reactions [13,14]. Unfortunately,
almost none of these reaction rates have been measured
and the astrophysical calculations have to rely completely
on statistical model calculations (e.g. Refs. [15–17]). Of
special importance are (γ,α)/(γ,n) branchings which de-
termine abundance ratios of certain nuclides which, in
turn, can in some cases be compared to abundances
found in meteoritic inclusions [18–20]. It has been stated
that the uncertainties for (γ,α) reaction rates are huge
[16,18,21]. The determination of the α-nucleus poten-
tial at astrophysically relevant energies helps to reduce
the uncertainties of the calculations significantly [22,23].
(γ,n) reaction rates have been measured in a recent work
using a quasi-thermal photon spectrum, and rough agree-
ment between theoretical predictions and the measured
rates was found [24,25].

The overall agreement between the calculated and the
observed abundance patterns of the p nuclei is relatively
good. However, the mass region 70 ≤ A ≤ 100 is
generally underproduced in the nucleosynthesis calcula-
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tions [7,12,13]. The production among others depends
on the neutron-producing 22Ne(α,n)25Mg reaction rate
(which may enhance the s-process seed nuclei for the γ-
process [12]) and on the photodisintegration rates in the
γ-process but it remains unclear whether the underpro-
duction can be cured by a change in those rates [26].
Other explanations for this discrepancy include addi-
tional production mechanisms like neutrino-induced nu-
cleosynthesis [27] and additional production sites like the
rapid proton capture (rp) process on accreting neutron
stars (e.g. [28,29]). However, it is still an open question
whether rp-material can be ejected into the interstellar
medium in sufficient quantities from these X-ray bursters
[30].

The motivation of the experimental determination of
the α-nucleus potential for 92Mo is twofold. The de-
termination of the α-nucleus potential at energies be-
low the Coulomb barrier is limited in general because (i)
the experimental data show only small deviations from
the Rutherford cross section, and (ii) the optical poten-
tials have ambiguities. An experiment on 92Mo allows
to extend the systematic study of α-nucleus potentials
[22,23,31,32] to lower energies. The second motivation
refers directly to the production of the p nuclei 92Mo and
94Mo. A possible reaction path leading to the produc-
tion of 92Mo and 94Mo is shown in Fig. 1. Photodisin-
tegration reactions of the nucleus 96Ru can lead to the
production of (i) 92Mo by 96Ru(γ,α)92Mo and (ii) 94Mo
by 96Ru(γ,n)95Ru(γ,n)94Ru(2× β+)94Mo. If this reac-
tion path were the only production mechanism for 92Mo
and 94Mo, the abundance ratio between 92Mo and 94Mo
would be directly related to the ratio of (γ,α) and (γ,n)
reaction rates of 96Ru. In this case the ratio 94Mo/92Mo
could be a thermometer for the γ-process because of the
temperature dependence of the (γ,n)/(γ,α) branching ra-
tio. However, for a quantitative analysis contributions of
the rp-process to 92Mo and 94Mo and the weak s-process
contribution to 94Mo have to be known.

The choice of the measured energies at about 13,
16, and 19MeV has the following reasons. The astro-
physically relevant energy window for (γ,α) reactions at
T9 ≈ 2−3 is of the order of Eγ ≈ 8−10MeV correspond-
ing to 6−8MeV for the reverse reaction 92Mo(α,γ)96Ru.
Scattering experiments at these low energies are possible;
however, a reliable determination of optical potentials is
impossible because of the dominating Coulomb interac-
tion. The height of the Coulomb barrier is about 15 MeV.
We decided to measure at several energies above and be-
low the Coulomb barrier to extract the optical potential
and its energy dependence at energies as close as possible
to the astrophysically relevant energy range.

In the following paper we first present our experimental
setup (Sect. II). The experimental results are analyzed
using systematic folding potentials, and discrete and con-
tinuous ambiguities are discussed in detail (Sect. III).
The optical potential at astrophysically relevant energies
is determined by extrapolation using the systematic be-
havior of α-nucleus potentials [31,32], and the (γ,α) re-

action rates are calculated (Sect. IV). Finally, some con-
clusions are given (Sect. V). A preliminary analysis of
this experiment was presented already in [33].

II. EXPERIMENTAL SETUP AND PROCEDURE

The experiment was performed at the cyclotron lab-
oratory at ATOMKI, Debrecen. We used the 78.8 cm
diameter scattering chamber which is described in de-
tail in Ref. [34]. Here we discuss only those properties
which are important for the present experiment. A simi-
lar setup has been used in our previous 144Sm(α,α)144Sm
experiment [22].

A. Targets

The 92Mo targets were produced by evaporation of
97.33% enriched 92MoO3 on a thin (20 µg/cm2) carbon
backing directly before the beamtime at the target labo-
ratory of ATOMKI. The target was mounted on the tar-
get holder in the center of the scattering chamber. The
surface of the evaporated 92MoO3 turned out to be not
very flat leading to relatively broad low-energy tails in
the spectra of the elastically scattered α particles (see
Fig. 2). The target which was used during the whole
experiment had a thickness of about 200µg/cm2. The
target stability was monitored during the whole experi-
ment to avoid systematic uncertainties from changes in
the target foil.

B. Scattering Chamber

A remote-controlled target ladder was placed in the
center of the scattering chamber. Additionally, two aper-
tures were mounted on the target holder to check the
beam position and the size of the beam spot directly at
the position of the target. The two apertures had a width
and height of 2x6 mm2 and 6x6 mm2, respectively. The
apertures were placed at the target position instead of
the 92MoO3 target before and after each variation of the
beam energy and beam current. The beam was opti-
mized until no current could be measured on the larger
aperture, and the current on the smaller aperture was
minimized (typically less than 1 nA compared to about
300nA beam current). The width of the beam spot was
smaller than 2 mm during the whole experiment, which
is very important for the precise determination of the
scattering angle. Note that the relatively poor determi-
nation of the height of the beam spot does not disturb the
claimed precision of the scattering angle (see Sect. II D).
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C. Detectors and Data Acquisition

For the measurement of the angular distribution we
used four silicon surface-barrier detectors with an active
area A = 50 mm2 and thicknesses between D = 300 µm
and D = 1500 µm. The detectors were mounted on
an upper and a lower turntable, which can be moved
independently. On each turntable two detectors were
mounted at an angular distance of 10◦. Directly in front
of the detectors apertures were placed with the dimen-
sions 1.25mm × 5.0mm (lower detectors) and 1.0mm
× 6.0mm (upper detectors). Together with the distance
from the center of the scattering chamber d = 195.6 mm
(lower detectors) and d = 196.7 mm (upper detectors)
this results in solid angles from ∆Ω = 1.63 × 10−4 to
∆Ω = 1.55 × 10−4. The ratios of the solid angles of the
different detectors were determined by overlap measure-
ments with an accuracy better than 1%.

Additionally, two detectors were mounted at the wall
of the scattering chamber at a distance of d = 351.3mm
and at a fixed angle of ϑ = 15◦ (left and right side rel-
ative to the beam direction). These detectors were used
as monitor detectors to normalize the measured angular
distribution and to determine the precise position of the
beam spot on the target. The solid angle of both monitor
detectors is ∆Ω = 8.10 × 10−6.

The signals from all detectors were processed using
charge-sensitive preamplifiers (PA), which were mounted
directly at the scattering chamber. The output signal
was further amplified by a main amplifier (MA) and fed
into ADCs. The data were collected using the commer-
cially available system WinTMCA which provides an au-
tomatic deadtime control which was found to be reliable
in a previous experiment [35]. For the coincidence mea-
surements (Sect. II D) additionally the bipolar signals of
the MAs were fed into Timing Single Channel Analyz-
ers (TSCA), and the unipolar outputs of the MAs were
gated using Linear Gate Stretchers (LGS).

The energy resolution of the detectors was tested be-
fore the experiment using a mixed α source and values
better than 20 keV were measured. During the experi-
ment the achieved energy resolution is determined mainly
by the energy spread of the primary beam and by the
thickness and flatness of the target. Depending on the
measured angle, the achieved energy resolution was be-
tween 0.5% and 2 % corresponding to ∆E ≈ 200 keV at
Eα ≈ 20 MeV. Two typical spectra are shown in Fig. 2.
The relevant peaks from elastic 92Mo-α scattering are
well separated from inelastic and from background peaks.

D. Angular Calibration

The angular calibration of the setup is of crucial impor-
tance for the precision of a scattering experiment at en-
ergies close to the Coulomb barrier because the Ruther-
ford cross section depends sensitively on the angle with

sin−4 (ϑ/2). A small uncertainty of 0.1◦ in the determi-
nation of ϑ leads to a cross section uncertainty of 2.0%
(1.0%; 0.6%) at an angle ϑ = 20◦ (40◦; 60◦). The fol-
lowing methods were applied to measure the precise scat-
tering angle ϑ.

The position of the beam on the target was continu-
ously controlled by two monitor detectors. The precise
position of the beam spot was derived from the ratio of
the count rates in both monitor detectors. Typical cor-
rections were smaller than one millimeter, leading to cor-
rections in ϑ of the order of 0.1◦. However, because of the
minor beam quality at the 16MeV measurement, larger
corrections had to be applied to this angular distribution
leading to larger uncertainties in the determination of the
optical potential.

The position of the four detectors was calibrated using
the steep kinematics of 1H(α,α)1H scattering at forward
angles (10◦ < ϑlab < 15◦) [22]. The results of our previ-
ous experiment could be confirmed within the uncertain-
ties [22].

Finally, we measured a kinematic coincidence between
elastically scattered α particles and the corresponding
12C recoil nuclei using a carbon backing without molyb-
denum as target. One detector was placed at ϑlab,α = 70◦

(left side relative to the beam axis), and the signals from
elastically scattered α particles on 12C were selected by
a TSCA. This TSCA output was used as gate for the sig-
nals from another detector which was moved around the
corresponding 12C recoil angle ϑlab,recoil = 45.5◦ (right
side). The maximum recoil count rate was found almost
exactly at the expected angle (see Fig. 3).

In summary, the overall uncertainty of the angles ϑ in
this experiment is about 0.1◦ for the measurements at 13
and 19MeV and about 0.2◦ for the 16MeV measurement.

E. Experimental Procedure and Data Analysis

Three angular distributions have been measured at en-
ergies of Eα = 19.50, 16.42, and 13.83MeV. The beam
current was between 80 nA and 320nA. The experiment
covers the full angular range from forward angles of
ϑ = 20◦ to backward angles of ϑ = 170◦ in steps of about
1◦ at all three energies. The statistical uncertainties of
each data point vary from ≤ 0.1 % at forward angles to
about 1 % − 2 % at backward angles.

The count rates N(ϑ) in the four detectors have been
normalized to the number of counts in the monitor de-
tectors NMon(ϑ = 15◦):

( dσ

dΩ

)

(ϑ) =
( dσ

dΩ

)

Mon
(ϑ = 15◦) ·

N(ϑ)

NMon(ϑ = 15◦)
·
∆ΩMon

∆Ω

(2.1)

with ∆Ω being the solid angles of the detectors. These
measured cross sections have been transferred to the
center-of-mass system. The cross section at the moni-
tor position ϑMon = 15◦ is given by the Rutherford cross
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section. The relative measurement eliminates the typi-
cal uncertainties of absolute measurements which come
mainly from changes in the target and from the beam
current integration. Nevertheless, the beam current was
measured by standard current integration in the Fara-
day cup, and the absolute value of the cross section was
consistent with the measured relative cross sections.

The three angular distributions are shown in Fig. 4.
The lines are the result of optical model calculations (see
Sect. III). The measured cross sections cover five or-
ders of magnitude between the highest (forward angles at
E = 13MeV) and the smallest cross section (backward
angles at E = 19MeV) with almost the same accuracy.
Further details of the experimental set-up and the data
analysis can be found in Ref. [36].

III. OPTICAL MODEL ANALYSIS

The theoretical analysis of the scattering data was per-
formed in the framework of the optical model (OM). The
complex optical potential is given by

U(r) = VC(r) + V (r) + iW (r) (3.1)

where VC(r) is the Coulomb potential, and V (r) and
W (r) are the real and the imaginary part of the nuclear
potential, respectively.

A. The Folding Potential

The real part of the optical potential was calculated
by a double–folding procedure:

Vf(r) =

∫ ∫

ρP(rP) ρT(rT) veff(E, ρ = ρP + ρT, s = |~r + ~rP − ~rT|) d3rP d3rT

(3.2)

where ρP, ρT are the densities of projectile and tar-
get, respectively, and veff is the effective nucleon-
nucleon interaction taken in the well-established DDM3Y
parametrization [37,38]. Details about the folding proce-
dure can be found in Refs. [39,31]. The folding integral
in Eq. (3.2) was calculated using the code DFOLD [40].

The resulting real part of the optical potential V (r)
is derived from the folding potential Vf(r) by two minor
modifications:

V (r) = λ · Vf(r/w) (3.3)

Firstly, the strength of the folding potential is adjusted
by the usual strength parameter λ with λ ≈ 1.1 − 1.3.
This leads to volume integrals of the real potential [see
Eq. (3.4)] of about JR ≈ 320 − 350MeV fm3 in the ana-
lyzed energy range [22,31,32]. Secondly, the densities of
the α particle and the 92Mo nucleus were derived from the
experimentally known charge density distributions [41],

assuming identical proton and neutron distributions. For
N ≈ Z nuclei up to 90Zr (Z = 40, N = 50) this assump-
tion worked well [31]. However, to take the possibility
into account that the proton and neutron distributions
are not identical in the nucleus 92Mo (Z = 42, N = 50)
a scaling parameter w for the width of the potential has
been introduced, which remains very close to unity.

For a comparison of different potentials we use the inte-
gral parameters volume integral per interacting nucleon
pair JR and the root-mean-square (rms) radius rrms,R,
which are given by:

JR =
1

APAT

∫

V (r) d3r (3.4)

rrms,R =

[
∫

V (r) r2 d3r
∫

V (r) d3r

]1/2

(3.5)

for the real part of the potential V (r), and correspond-
ing equations hold for W (r). AP and AT are the nu-
cleon numbers of projectile and target. Note that in
the discussion of volume integrals J usually the nega-
tive sign is neglected; also in this paper all J values are
actually negative. The values for the folding potential
Vf (with λ = w = 1) are JR = 267.88 MeVfm3 and
rrms,R = 4.989 fm.

The Coulomb potential is taken in the usual form of
a homogeneously charged sphere where the Coulomb ra-
dius RC is chosen identically with the rms radius of the
folding potential Vf : RC = rrms,R = 4.989 fm.

B. The Imaginary Potential

Different parametrizations of the imaginary part of
the optical potential were chosen. Volume and surface
Woods-Saxon (WS) potentials are defined by the follow-
ing equations

WV(r) = W0 · f(x) (3.6)

WS(r) = W0 ·
d

dx
f(x) (3.7)

with

f(x) = (1 + ex)−1 with x = (r − R)/a (3.8)

The depth W0, the radius parameter R, and the diffuse-
ness a have been adjusted to the experimental elastic
scattering data.

Fourier-Bessel (FB) potentials are given by

WFB(r) =

n
∑

k=1

ak sin (kπr/RFB)/(kπr/RFB) (3.9)

with the cutoff radius RFB. Again, the Fourier-Bessel
coefficients ak are adjusted to the experimental data.
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C. Results and Continuous and Discrete Ambiguities

1. The 19MeV Data

The elastic scattering cross sections were calculated
from optical potentials with the computer code A0 [42].
The code allows a variation of the potential parameters
and determines the best-fit values from a χ2 test.

In the first analysis the potential parameters λ and w
of the real part were kept close to the expected values
from the systematic study [22,31,32]: λ ≈ 1.1 − 1.3 and
w ≈ 1.0. Several parametrizations of the imaginary po-
tential were tested. It was found that different imaginary
potentials reproduced the experimental data with simi-
lar quality. Five different fits are shown in Fig. 5 and
the potential parameters are given in Tables I, II and III.
It turns out that the real potential is practically identi-
cal in all these fits, but the shape of the imaginary part
shows strong variations. The five imaginary potentials
are shown in Fig. 6.

Since we want to determine the optical potential at
astrophysically relevant energies we have to extrapolate
from the present measurements. Because of the oscillat-
ing behavior of the Fourier-Bessel potentials we decided
to use the combination of a volume and surface Woods-
Saxon potential as basis for the extrapolation. The χ2

obtained with this potential is practically identical to the
χ2 obtained from the Fourier-Bessel potentials. The cal-
culations with a pure volume Woods-Saxon or a pure
surface Woods-Saxon show significantly worse χ2 values.

In a second analysis the strength parameter λ and the
width w of the real potential were varied in a wider range.
It was found that it is not possible to get a good fit to the
data when the w parameter deviates from 1.0 by more
than a few per cent. However, a variation of λ leads
to the known so-called “family problem”. It is possible
to obtain comparable fits to the experimental data with
various λ parameters. This phenomenon was discussed
in detail for a similar experiment in [22]. In Fig. 7 we
present the χ2 values which were obtained from the fol-
lowing procedure: (i) the parameter λ was varied from
about 0.5 to 3.5; (ii) the width parameter w and the
imaginary part of the potential (consisting of a combina-
tion of volume and surface Woods-Saxon potentials) were
adjusted to the experimental data for each value of the
strength parameter λ. One can clearly see the families 2,
3, 4, and 5 as minima in χ2, corresponding to λ values of
0.81− 1.52. Note that the minima are more pronounced
than in the previous 144Sm(α,α)144Sm experiment [22]
because the ratio E/VC between the energy E and the
Coulomb barrier VC is much higher in this 92Mo experi-
ment.

It is not possible to extract the correct family from
these experimental data only. But together with the
systematic behavior of the volume integrals found in
[22,31,32] we can decide that “family no. 4” (λ = 1.256)
should be used for the description of the experimental

scattering data and for the extrapolation to astrophys-
ically relevant energies (see Sect. IV). As mentioned
above, family no. 4 with JR ≈ 340MeV fm3 corresponds
to the values of about JR ≈ 320 − 350MeV fm3 which
are expected from the systematics of α-nucleus poten-
tials and also from other systems [43–45]. Neither fam-
ily no. 3 with JR ≈ 280MeV fm3 nor family no. 5 with
JR ≈ 400MeV fm3 fit into the systematics. Numerical
problems in the fitting routine showed up for very shallow
and very deep real potentials, and a clear determination
of families 1 and 6 − 10 was not possible.

One further interesting fact has to be mentioned. The
real potentials corresponding to the families 1 − 10 are
shown in Fig. 8. The potentials from families 2−5 which
are well-defined as minima in χ2 (see Fig. 7) have the
same depth V (r) = −2.66MeV at the radius r = 8.52 fm.
However, not all potentials which have this depth do
describe the data equally well; additionally, one has to
find a minimum in χ2 in Fig. 7. This behavior of a so-
called “one-point potential” has been observed in sev-
eral experiments, and the relevant radius has also been
called “sensitivity radius” (see e.g. [46]); however, to our
knowledge the additional restriction of a significant min-
imum in χ2 has only been observed in the analysis of the
144Sm(α,α)144Sm data so far [22] which has been per-
formed at a similar energy.

2. The 13 and 16MeV Data

The procedure described in the previous Sect. III C 1
was repeated for the lower energies of 13 and 16MeV,
and similar results were obtained. The imaginary part of
the potential for all energies is taken as a combination of
volume and surface Woods-Saxon potentials. The poten-
tial parameters are listed in Table I, and the calculations
have been compared to the experimental data already in
Fig. 4. However, the 16MeV data do not fit very well into
the systematic behavior shown in Fig. 9. The potential
extracted from the 16MeV data has larger uncertainties
than at the other energies because of experimental prob-
lems (see Sect. II D).

3. 30 MeV Data from Literature

Two angular distributions at energies of about 30MeV
are available in literature [47,48]. Unfortunately, both
angular distributions show systematic deviations between
each other, and both distributions have not been mea-
sured in the full angular range, but in the ranges 15◦ ≤
ϑc.m. ≤ 75◦ [47] and 15◦ ≤ ϑc.m. ≤ 95◦ [48]. If one ad-
justs the potential parameters to these discrepant angular
distributions, discrepant optical potentials are obtained.
The potential parameters are labeled in Table IV. How-
ever, the potentials extracted from the data of [47] fit into
the systematics, whereas the data of [48] do not fit. In
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both cases the limited angular range restricts the sensi-
tivity of the potential parameters significantly. In Fig. 9
only the volume integrals derived from [47] are shown.

4. Backward Angle Excitation Function

The excitation function for 92Mo(α,α)92Mo has been
measured by Eisen et al. [49] at ϑlab = 170◦ from 7 to
16MeV. We have calculated this excitation function from
our best-fit potentials at 13, 16, and 19MeV, and we find
excellent agreement between the experimental and the
calculated excitation function. The measured and the
calculated excitation function at ϑlab = 170◦ are shown
in Fig. 10. The calculation with the 13MeV potential un-
derestimates the deviation from the Rutherford cross sec-
tion at higher energies. Such a behavior can be expected
because of the smaller volume integral of the imaginary
part in the 13MeV data corresponding to weaker absorp-
tion. However, the measured scattering cross sections at
one special backward angle do not contain enough infor-
mation to fix the optical potential and its energy depen-
dence.

5. (α,n)-induced reactions

A set of experimental data corresponding to the re-
action 92Mo(α,n)95Ru is available in [50] (Sect.IV B,
Fig.6a). We have calculated the cross section from our
model in the measured energy range, and found very good
conformity between our calculations and the existing ex-
perimental data. However, the available data from the
different experiments show discrepancies, which make it
difficult to fix the energy dependence of the optical po-
tential. Also the existing reaction data do not cover the
astrophysically interesting energy range (between 7 and
9MeV, see Tab. VII), which would be helpful in order to
confirm our predictions (see Sect. IV).

D. Discussion

Volume integrals for various α-nucleus potentials in a
broad range of masses and energies are shown in Fig. 9
for the real (9A) and the imaginary part (9B and 9C) of
the optical potential. The systematic behavior of volume
integrals is also confirmed for lighter target nuclei [39,51]
and in various other systems which have been analyzed
recently [43–45]. For the extrapolation of the optical
potential to astrophysically relevant energies (Sect. IV)
parametrizations of the real and imaginary volume inte-
grals are needed.

As can be seen from Fig. 9A, there is only a weak
energy dependence of the real volume integral JR at en-
ergies below the Coulomb barrier. As well as in Ref. [32],
a Gaussian parametrization is adjusted to the new data

JR(Ec.m.) = JR,0 × exp[−(Ec.m. − E0)
2/∆2] (3.10)

with JR,0 =337MeV fm3, E0 = 21.55MeV and
∆=147.01MeV, leading to a curve (full line) which
is somewhat flatter than the one proposed in Ref. [32]
(dotted line). The uncertainties for extrapolations to
lower energies are of the order of less than 5 % corre-
sponding to about 10 − 20MeV fm3. Furthermore, the
shape of the real potential is given by the folding pro-
cedure (Sect. III A). This means that the real part of
the α-nucleus optical potential can be determined at en-
ergies below the Coulomb barrier with relatively small
uncertainties because (i) continuous ambiguities can be
avoided using the folding potential and (ii) discrete am-
biguities can be resolved from the systematic behavior of
α-nucleus potentials.

The situation for the imaginary part of the potential
is much worse. The volume integral JI of the imagi-
nary part depends strongly on the energy because many
reaction channels open at energies around the Coulomb
barrier. Different parametrizations have been proposed
[20,52,53]. As an example we present the so-called
Brown-Rho (BR) parametrization [52]

JI(Ec.m.) =

{

0 for Ec.m. ≤ E0

J0 ·
(Ec.m.

−E0)
2

(Ec.m.

−E0)2+∆2 for Ec.m. > E0

(3.11)

with the excitation energy E0 of the first excited state.
The saturation parameter J0 and the rise parameter ∆
are adjusted to the experimentally derived values. An-
other Fermi-like parametrization of the imaginary volume
integral, first introduced in Ref. [20], reads

JI(Ec.m.) =
J0

1 + exp [(E∗ − Ec.m.)/a∗]
(3.12)

with a similar saturation value J0 and the parameters E∗

and a∗. The latter shape was also used for an attempt to
derive a global α-potential [53], with E∗ and a∗ depend-
ing on E0. However, the line derived with the parameters
given in [53] shows clear deviations from the new 92Mo
data. Therefore, we have adjusted this Fermi-like func-
tion to the experimental data. Both parametrizations
utilizing our fit parameters are shown in Fig. 9B (Brown-
Rho) and 9C (Fermi-like) for our new 92Mo data. The
parameters are listed in Table VI. In the following, we
will always use the parameters given in that table for the
two descriptions unless specified otherwise.

In general, the shapes of the BR and the Fermi
parametrizations are quite similar: there is a saturation
value J0 and a parameter that describes the steep rise
of JI : ∆ for BR and a∗ for the Fermi shape. How-
ever, there are also important differences because the
BR parametrization leads to a somewhat flatter rise of
JI than that of the Fermi function, and consequently,
the extrapolation to lower energies is lower for the Fermi
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parametrization than for BR. Consequences of these
small differences will be given in Sect. IVC. Nevertheless,
it should be noted that the BR parametrization only con-
tains two free parameters, because E0 is fixed, whereas
the Fermi shape has three free parameters, in principle.

The shown ambiguities do not allow to determine the
shape of the imaginary part. These ambiguities reduce
the reliability of extrapolations to lower energies. A more
stringent determination of the shape of the imaginary
part requires extremely precise scattering data over a
wide range of energies. A scattering experiment at about
50MeV might help to reduce these uncertainties and to
find the best parametrization of the imaginary volume
integrals.

IV. EXTRAPOLATION TO ASTROPHYSICALLY
RELEVANT ENERGIES

A. The Astrophysically Relevant Energy for (γ,α)
reactions

The astrophysical decay rate τ−1 is given by

τ−1(T ) =

∫

∞

0

c nγ(E, T ) σ(γ,α)(E) dE (4.1)

with the speed of light c, the cross section σ(γ,α)(E) of
the (γ,α) reaction, and the photon density nγ(E, T ) of a
thermal photon bath at temperature T

nγ(E, T ) =

(

1

π

)2 (

1

h̄c

)3
E2

exp (E/kT ) − 1
(4.2)

The integrand of Eq. (4.1) can be analyzed under the
assumption that the astrophysical S-factor of the reverse
(α,γ) reaction is constant: S(α,γ)(E) = const. Then the
maximum of the integrand in Eq. (4.1) is found at the
energy

E0(γ, α) = Ethr + E
1/3
G

(

kT

2

)2/3

(4.3)

with EG = 2µ(πZP ZT e2/h̄)2 and the threshold energy
Ethr for the (γ,α) reaction. The most effective energy
E0(γ, α) for (γ,α) reactions is given by the energy of the
well-known Gamow window E0(α, γ) for the inverse (α,γ)
reaction plus the separation energy Ethr of the α particle.
Note that the energy E0(γ, α) is the energy of the pho-
ton, whereas the energy E0(α, γ) is the center-of-mass
energy in the system 92Mo - α. The astrophysically rele-
vant energies for the system 92Mo - α are listed in Table
VII.

In all astrophysical applications reaction rates are in-
put only for reactions with positive Q value and the in-
verse rate is then computed by applying detailed balance
(see e.g. [15]). That way, numerical stability of the re-
action network is guaranteed and the proper equilibria

of forward and reverse rates can be attained for a given
channel. The rates in the two directions depend linearly
on each other and thus the change of, say, the α potential
equally influences both, in our case the α capture as well
as the photodisintegration with α emission. This relation
is valid provided that stellar rates are used in both direc-
tions, accounting for thermal excitation of the respective
targets. Because of that fact, in the following sections we
make use of rate ratios so that the conclusions apply to
the forward and inverse rates as well.

B. Extrapolation of the Optical Potential

As stated in Sect. III D, the extrapolation of the real
potential can be performed reliably leading to JR ≈
325MeV fm3 at astrophysically relevant energies with an
uncertainty of about 5%. The corresponding strength
parameter is λ ≈ 1.2. The width parameter was fixed at
w = 1.0.

The extrapolation of the imaginary part was per-
formed as follows. In a first step the volume integral
JI was determined from the BR and Fermi parametriza-
tions leading to JI = 23.9MeV fm3 (BR) and JI =
15.4MeV fm3 (Fermi) at Ec.m. = 5.81MeV (correspond-
ing to T9 = 2.0). The average of these values is JI =
19.6± 4.2MeV fm3 which was used for the following cal-
culations.

The shape of the potential was taken as sum of volume
and surface Woods-Saxon potentials where the radius pa-
rameter R and the diffuseness a were estimated from the
experimental data. The contribution of the volume term
to JI is assumed to be 30%, and the surface term con-
tributes to 70%. This ratio is determined from the ex-
perimental scattering data at E = 13, 19, and 30MeV.
The effect of a variation of the relative contributions of
volume and surface term to JI will be discussed below.
These and other variations of the potentials allow an es-
timation of the uncertainties of the calculated reaction
rates.

C. The 96Ru(γ,α)92Mo reaction rate

The variation of the reaction rates when using various
potentials is shown in Tables VIII and IX. In Table VIII
the ratios of rates obtained with the different potentials
in respect to a standard rate (taken from Refs. [15,17] and
using an α potential from Ref. [54]) are shown. As can
be seen, the rate calculated with the global potential of
Ref. [53] is lower by about two orders of magnitude than
the standard rate. However, it was already stated above
that this potential does not describe the 92Mo data at
higher energies. A simple equivalent square well poten-
tial [55] also yields a factor of 8 lower cross sections but
neither does it describe the data nor is it considered to
be reliable for this application [26]. When using the two
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potentials with the extrapolated parameters for T9 = 2.0
and T9 = 3.0 from Table V, a reduction of the rate of
about 40 − 50% is found.

Case AB explores the dependence on the geometry of
the potential. A change in the geometry parameters of
only 0.1−0.7% leads to a variation in the ratio of 7−10%
in the rate ratios which underlines the importance of ad-
ditional scattering experiments to determine the shape
of the imaginary optical potential. However, it should
be mentioned that case AB is not fully consistent within
our approach because it has a slightly different volume
integral JI and rms radius due to the unchanged depths
of the volume and surface terms, but the differences are
only of the same order of magnitude as those in the ge-
ometry parameters.

The sensitivity of the rates to variations in the extrap-
olated volume integral JI and the relative contributions
of volume and surface term are studied in Table IX. Here
the varied rates are compared to the rate obtained in case
A of Table VIII. The ratios are given in the temperature
range 0.5 ≤ T9 ≤ 10.0 in order to show the temperature
dependence of those effects although strictly speaking the
potential was derived assuming T9 = 2.0.

The contribution of the surface term to JI was varied
within a reasonable range of 70±20%. This resulted in a
variation of the rate of about ±6%. Another uncertainty
is introduced by the fact that we assumed the extrapo-
lated JI to be the mean between the value obtained by
the BR and Fermi parametrizations. Using the higher
BR value of JI = 23.9 MeV fm3 increases the rate by
8% while using the lower value of JI = 15.4 MeV fm3 a
suppression by about 10% is obtained. Thus, the error
introduced by the different shapes of the parametriza-
tions used for the extrapolation of JI to low energies is
dominating but still within satisfactory accuracy.

Closing this section we conclude that the recommended
rates are case A for T9 = 2.0 and case B for T9 = 3.0 from
Table VIII with an error of 16%, mainly introduced by
the ambiguities of the extrapolation of the imaginary part
down to the relevant energies. The recommended rate is
roughly a factor of two lower than the standard rate given
in previous tabulations [15,17].

V. SUMMARY

We measured the elastic scattering cross section of
92Mo(α,α)92Mo in a wide angular range at energies of
Ec.m. ≈ 13, 16, and 19MeV. Additionally, data from lit-
erature have been analyzed [47–50]. The real and imag-
inary parts of the optical potential for the system 92Mo
- α have been extracted from the data and extrapolated
down to the astrophysically relevant energies around and
below the Coulomb barrier. The result fits well into the
known systematic behavior of α-nucleus folding poten-
tials. The extrapolation of the imaginary part is not
unique but our study shows that the use of two different

energy dependencies introduces an error in the obtained
rate of not more than 15%.

The derived stellar rates (for 92Mo(α,γ)96Ru as well as
96Ru(γ,α)92Mo) are 50− 60% of the rates given in Refs.
[15,17] at stellar temperatures T9 = 2.0 − 3.0. Assuming
the 96Ru(γ,n)95Ru rate to remain unchanged, this would
lead to a corresponding decrease in the abundance ratio
Y92Mo/Y94Mo with respect to an abundance ratio calcu-
lated with the previous rate in the γ-process (as e.g. in
[13,14]). It is interesting to note that many network cal-
culations for the γ-process [7–11] show an overproduction
of 92Mo relative to 94Mo which may be reduced by the
results of this work. However, as mentioned in the intro-
duction, a complete analysis has not only to follow the
γ-process consistently but also to account for the possi-
ble rp- and s-process contributions. This is beyond the
scope of this paper.
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TABLE I. Potential parameters of the imaginary part of
the optical potential (combination of volume and surface WS
parametrizations), derived from the angular distribution of
92Mo(α,α)92Mo at E =13, 16 and 19 MeV, and its integral
potential parameters J and rrms of their real and imaginary
parts.

fit E WV (MeV) RV (fm) aV (fm) WO (MeV) RO (fm) aO (fm)

1 19 -1.584 1.7667 0.2659 334.25 1.2605 0.2073
- 16 -9.558 1.668 0.248 308.20 1.348 0.099
- 13 -5.128 1.656 0.002 467.06 1.369 0.071

fit E λ w JR rrms,R JI rrms,I χ2/F
(MeV) (MeVfm3) (fm) (MeVfm3) (fm)

1 19 1.257 1.003 337.2 4.991 86.2 5.806 2.15
- 16 1.346 0.9974 357.8 4.976 85.9 5.992 4.84
- 13 1.352 0.9758 336.7 4.869 67.3 6.043 1.26

TABLE II. Potential parameters of the imaginary
part of the optical potential (volume and surface WS
parametrization), derived from the angular distribution of
92Mo(α,α)92Mo at E =19 MeV, and its integral potential pa-
rameters J and rrms of their real and imaginary parts.

fit WV (MeV) RV (fm) aV (fm) WO (MeV) RO (fm) aO (fm)

2 -10.806 1.7116 0.3601
3 121.76 1.4947 0.4206

fit λ w JR rrms,R JI rrms,I χ2/F
No. (MeVfm3) (fm) (MeVfm3) (fm)

2 1.237 1.010 341.1 5.037 57.9 6.131 3.67
3 1.188 1.021 338.9 5.095 80.6 6.957 4.28

TABLE III. Potential parameters of the imaginary part of
the optical potential (FB para- metrization), derived from the
angular distribution of 92Mo(α,α)92Mo at E =19MeV, and
its integral potential parameters J and rrms of their real and
imaginary parts.

fit RFB (fm) a1 a2 a3 a4 a5 a6 a7

4 12.8 154.94 -311.98 839.41 -325.97 880.41 - -
5 12.0 167.94 -329.11 1103.43 -592.10 1666.61 -346.79 1118.06

fit λ w JR rrms,R JI rrms,I χ2/F
No. (MeVfm3) (fm) (MeVfm3) (fm)

4 1.272 0.998 338.8 4.979 68.2 4.524 2.23
5 1.287 0.991 336.0 4.947 53.9 4.319 2.14
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TABLE IV. Potential parameters of the imaginary part
of the optical potential (combination of volume and surface
WS parametrizations), derived from the angular distribution
of 92Mo(α,α)92Mo from Refs. [47] and [48], and its integral
potential parameters J and rrms of their real and imaginary
parts.

Ref. WV (MeV) RV (fm) aV (fm) WO (MeV) RO (fm) aO (fm)

[47] -4.91 1.78 0.40 183.13 1.13 0.36
[48] -3.51 1.72 0.95 337.06 1.26 0.23

Ref. λ w JR rrms,R JI rrms,I

No. (MeVfm3) (fm) (MeVfm3) (fm)

[47] 1.19 1.022 334.76 5.098 90.95 5.704
[48] 1.15 1.014 315.49 5.056 107.91 6.014

TABLE V. Extrapolated values of the potential paramters
of the imaginary part of the optical potential at the astro-
physically relevant energies E0 = 5.8 MeV (T9 = 2.0) and
E0 = 7.6 MeV (T9 = 3.0), and its integral potential parame-
ters J and rrms of their real and imaginary parts.

E WV (MeV) RV (fm) aV (fm) WO (MeV) RO (fm) aO (fm)

7.6 -1.466 1.717 0.268 36.86 1.295 0.419
5.8 -1.091 1.720 0.270 27.44 1.297 0.420

E λ w JR rrms,R JI rrms,I χ2/F
(MeV) (MeVfm3) (fm) (MeVfm3) (fm)

7.6 1.219 1.000 327.1 4.991 26.2 6.085 -
5.8 1.209 1.000 324.3 4.991 19.6 6.095 -

TABLE VI. Parameters of the BR and Fermi parametriza-
tions of the imaginary volume integral JI for 92Mo(α,α)92Mo.

parametrization saturation value rise parameter other parameters

BR J0 = 99.8 MeV fm3 ∆ = 7.68 MeV E0 = 1.51 MeV
Fermi J0 = 91.0 MeV fm3 a∗ = 2.78 MeV E∗ = 10.24 MeV

TABLE VII. Most effective energies E0 for the
92Mo(α,γ)96Ru and the 96Ru(γ,α)92Mo reactions.

T9 E0(α, γ) E0(γ, α)

2.0 5.81 7.51
2.5 6.75 8.44
3.0 7.62 9.31
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TABLE VIII. Ratio ξ = rx/r0 of the astrophysical reac-
tion rates rx obtained with different imaginary potentials to
a standard rate r0 [15,17].

T9 GGa ESWb A c (T9 = 2) B d (T9 = 3) AB e

2.0 0.014 0.121 0.453 0.497 0.503
3.0 0.012 0.140 0.546 0.579 0.585

aPotential from Ref. [53]
bEquivalent square well potential, e.g. as in Ref. [55]
cImaginary part from the extrapolated values at E = 5.8 MeV
in Tab. V.
dImaginary part from the extrapolated values at E = 7.6 MeV
in Tab. V.
ePotential depths are from A, the geometry parameters from
B.

TABLE IX. Variation of the imaginary part of the poten-
tial derived for T9 = 2.0. Rate ratios are shown in respect
to the rate obtained with the parameters for E = 5.8 MeV
(JI = 19.6 MeV fm3, 70% surface contribution) from Tab. V.

Variation of JI Surface Contribution
T JI = JI = JI = 19.6 MeV fm3

109 K 15.4 MeV fm3 23.9 MeV fm3 90% 80% 60% 50%

0.5 0.942 1.077 0.952 0.976 1.019 1.043
1.0 0.949 1.070 0.949 0.975 1.032 1.057
1.5 0.913 1.078 0.937 0.968 1.029 1.057

2.0 0.902 1.077 0.937 0.969 1.029 1.056

2.5 0.918 1.062 0.945 0.974 1.026 1.049
3.0 0.945 1.050 0.958 0.981 1.020 1.040
3.5 0.968 1.027 0.966 0.984 1.016 1.030
4.0 0.991 1.013 0.977 0.988 1.010 1.021
4.5 1.007 1.001 0.983 0.992 1.006 1.014
5.0 1.019 0.995 0.989 0.995 1.005 1.009
6.0 1.028 0.991 1.000 1.000 1.000 1.009
7.0 1.031 0.985 0.999 0.999 1.000 1.000
8.0 1.026 0.987 1.000 1.000 1.000 0.996
9.0 1.020 0.990 1.004 1.002 0.998 0.996
10.0 1.011 0.994 1.005 1.002 0.998 0.994
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