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Abstract- The classical approach to using utility func-
tions suffers from the drawback of having to design and
tweak the functions on a case by case basis. Inspired
by examples from the animal kingdom, social sciences
and games we propose empowerment, a rather universal
function, defined as the information-theoretic capacity
of an agent's actuation channel. The concept applies to
any sensorimotor apparatus. Empowerment as a mea-
sure reflects the properties of the apparatus as long as
they are observable due to the coupling of sensors and
actuators via the environment. Using two simple ex-
periments we also demonstrate how empowerment in-
fluences sensor-actuator evolution.

1 Introduction

A common approach to designing adaptive systems is to use
utility functions which tell the system which situations to
prefer and how to behave in general. Fitness functions used
in evolutionary algorithms are similar in spirit. They specify
directly or indirectly which genotypes are better.

Most utility functions and fitness functions are quite spe-
cific and a priori. They are designed for the particular sys-
tem and task at hand and are thus not easily applicable in
other situations. The task and the properties of the system
have to be translated into the "language" of the utility or fit-
ness function. How does Nature address this problem? Is
there a more general principle?

One common solution found in living organisms is
homeostasis [1]. Organisms may be seen to maintain "es-
sential variables", like body temperature, sugar levels, toxin
levels. Homeostasis provides organisms with a local gra-
dient telling which actions to make or which states to seek.
The mechanism itself is universal and quite simple, however
the choice of variables and the methods of regulation is not.
They are evolved and are specific to different phyla.

2 Empowerment

The world is a hostile place. One single wrong action can
have disastrous consequences. It can even lead to death.
Animals and humans not only survive but also adapt under
these circumstances. They all face the classical dilemma
of exploration versus exploitation. How do they manage it
when errors may be fatal? A standard argument is that evo-

lution biases species towards trying or avoiding certain be-
haviors in certain situations. However, the population avail-
able to evolution is finite and often remarkably small. Evo-
lutionary feedback via death seems to be hardly sufficient.

Our central hypothesis is that there exist a local and uni-
versal utility function which may help individuals survive
and hence speed up evolution by making the fitness land-
scape smoother. The function is local in the sense that it
doesn't rely on infinitely long history of past experience,
does not require global knowledge about the world, and that
it provides localized feedback to the individual. The util-
ity function is applicable to all species, hence, it should be
universal though should adapt to morphology and ecolog-
ical niche. The utility function should be related to other
biologically relevant quantities.

Here are some examples of candidate functions, which,
however, are not universal because they are quite specific:
sugar concentration around a bacterium, social status of a
chimpanzee in a group, money in a bank account of a per-
son. Can these functions be unified?

In his work on ecological approach to visual percep-
tion [5] Gibson proposed that animals and humans do not
normally view the world in terms of a geometrical space,
independent arrow of time, and Newtonian mechanics. In-
stead, he argued, the natural description is in terms of what
one can perceive and do. Thus, different places in the world
are characterized by what they afford one to perceive and
do.

In some board games utility may be approximated by
what one can afford to do. For example, a breakthrough
in strategy occurred in Othello/Reversi when the concept of
"mobility" had been discovered. Mobility is the number of
moves a player can make in a given situation. The more
moves the player can make the better off on the average he
is. Everything else being equal players should seek higher
mobility.

If we look from this perspective on the previously given
examples of specific utility functions, they seem to be more
related than they appeared at first. To a sugar-feeding
bacterium, high sugar concentration means longer survival
time and hence more possibilities of moving to different
places for reproduction, to a chimpanzee higher social sta-
tus means more mating choice and interaction, to a person
more money means more opportunities and more options.

The common feature of the above examples is the striv-
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ing for situations with more options, with more potential
for control or influence. To capture this notion quantita-
tively, as a proper utility function, we need to quantify how
much control or influence an animal or human (an agent
from now on) has. A fairly straightforward way is to esti-
mate how many actions an agent can perform. However, not
all of the actions lead to different results, not to mention the
cases when the same action can lead to different results.

Information Theory, originally developed for transmis-
sion of information over communication channels by Shan-
non [11], can be applied to the problem of control and yields
quantitative statements [1, 13]. Control can be success-
fully treated in terms of Shannon information. Recently
we demonstrated [6] that information flow optimization can
structure systems and, despite the universality of Informa-
tion Theory, can capture properties of an agent's morphol-
ogy and the environment.

However, even with Information Theory there is the
problem of defining what to look at to determine whether
results of actions are different or not. Is turning a page of
a book using the left hand different from turning the very
same page using the right hand? If one looks only at what
page of the book is visible in the end, then the two actions
have the same result. If, however, one also takes into the
account what one perceives while turning the page, then the
results of the two actions are different: when one turns the
page using the left hand, one feels and sees that the left hand
is moving, similarly, the right hand is perceived to move
when turning the page using the right hand. What is the
natural way to look at what actions do?

You can move your hand left or right, up or down. Con-
sequently, you may assume you have control over your
hand. However, from someone else's perspective you may
have other control that you do not suspect. For example,
a neurosurgeon may notice that you can make a particular
neuron in your brain spike. However, if you never directly
or indirectly perceive the result, your will never know that
you have control over the neuron.

To make things simpler, similar to Gibson's ecological
approach to visual perception [5], we define what an agent
does solely in terms of what it perceives. This way it does
not matter what other agents perceive about these actions;
it does not matter how much control or influence the agent
appears to have from a "god's eye view" of the world. The
concept of "the environment" becomes a by-product of the
interplay between the agent's sensors and actuators. This
enables us to base our utility function solely on the sensors
and actuators, without the need to refer to the "outside" of
the agent.
We build on Gibson's view of perception-action as being

central to agents and go even further by: (1) making actu-
ators as important as sensors, and (2) providing an agent-
centric quantification of the amount of control or influence
the agent has and perceives.

In Sec. 2.2 we will provide the quantification using In-
formation Theory. The key concept employed is the channel
capacity. We will now briefly provide the necessary back-
ground from the Information Theory.

2.1 The Communication Problem

Here we provide a brief overview of the classical communi-
cation problem from Information Theory and define channel
capacity for a discrete memoryless channel. For an in depth
treatment we refer the reader to [11, 3].

There is a sender and a receiver. The sender transmits
a signal, denoted by a random variable X, to the receiver,
who receives a potentially different signal, denoted by a ran-

dom variable Y. The communication channel between the
sender and the receiver defines how transmitted signals cor-

respond to received signals. In the case of discrete signals
the channel can be described by a conditional probability
distribution p(ylx).

Given a probability distribution over the transmitted sig-
nal, mutual information is defined as the amount of infor-
mation, measured in bits, the received signal on the average

contains about the transmitted signal. Mutual information
can be expressed as a function of the probability distribution
over the transmitted signal p(x) and the distribution charac-
terizing the channel p(ylx):

I(X;Y) = EP(YIX)P(X)log2 E P(ylx)p(x) (1)

Channel capacity is defined as the maximum mutual in-
formation for the channel over all possible distributions of
the transmitted signal:

C(p(ylx)) = maxI(X;Y). (2)

Channel capacity is the maximum amount of informa-
tion the received signal can contain about the transmitted
signal. Thus, mutual information is a function of p(x) and
p(ylx), whereas channel capacity is a function of just the
conditional probability distribution p(ylx) describing the
channel. Another important difference is that mutual in-
formation is symmetric in X and Y and is thus acausal,
whereas channel capacity requires complete control over X
and is thus asymmetric and causal (cf. [8]).

There exist efficient algorithms to calculate the capacity
of an arbitrary discrete channel, for example, the iterative
algorithm by Blahut [2].

2.2 Definition of Empowerment

Consider an agent in an environment. The agent has a sen-
sor and an actuator. The actions of the agent may reflect the
sensoric input, and the sensoric input, in turn, may reflect
past actions. The sensor and the actuator are coupled in a
perception-action loop [9].

The agent's empowerment is a property of its perception-
action loop. Thus, we first model the loop. Its constituent
parts are treated as random variables. These are the sensor
S, the actuator A, and R - the rest of the system including
the environment. We need R to account for the effects of ac-
tuation, the agent's morphology and the environment on the
sensors. Although we treat the agent as having just one sen-
sor and actuator, S and A can also represent the combined
state of some or all of its sensors and actuators.
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As in [13, 6, 7] we interpret the perception-action loop
in terms of a communication channel-like model. From this
perspective actions may "inject" Shannon information into
the environment and into the sensors. In order to model the
temporal aspects we unroll the loop in time by introducing
discrete time t. The random variables St, At, and Rt be-
come the states of the sensor, the actuator, and the rest of
the system respectively at different times t. To account for
the complete loop we model the dynamics of arbitrary num-
ber of time steps, as opposed to [13] where only one time
step is modeled.
We model the relations between the variables as a causal

Bayesian network [8] which is a directed acyclic graph
where any node, given its parents, is conditionally indepen-
dent from any other node which is not its parent or successor
(any node directly or indirectly reachable from the node). In
our model this property results in conditional independence
from the past.

The pattern of relations between variables at two con-
secutive time steps is shown in Fig. 1. We assume that the
pattern of relations is time-invariant and thus holds for any
t. Thus, the graph in Fig. 1 is just a section of the network.
The diagram can be read as follows: action At is picked
given sensor state St, sensor state St is obtained from the
state of the rest of the agent-environment system Rt, Rt+1
depends only on Rt and At.

Rt >Rt+1 >

/ x/ \

St At St+, At+

Figure 1: The perception-action loop as a Bayesian net-
work. S - sensor, A - actuator, R - rest of the system. R is
included to formally account for the effects of the actuation
on the future sensoric input. R is the state of the actuation
channel.

So far, we have informally introduced empowerment in
terms of the amount of control or influence the agent has
over the world and is able to perceive. The only way the
agent can impose its influence over the world is via its actu-
ator by performing a sequence of actions.

To illustrate the idea, imagine an agent with "free will",
which at some point t in time can perform an arbitrary se-
quence of actions of length n. How much information can
the agent "inject" via the sequence of action into its sensor
at time step t + n? The more of the information about the
sequence of actions can be made to appear in the sensor,
the more control or influence the agent has over its sensor.
We redraw the Bayesian network to reflect the fact that the
agent is "free" to choose any sequence of actions. The new
network is shown in Fig. 2.
We view the situation as the classical problem of com-

munication from Information Theory [11] as described in
Sec. 2.1. We need to measure the maximum amount of in-
formation the agent could "inject" or transmit into its sensor
by performing a sequence of actions of length n. This is pre-
cisely the capacity of the channel between the sequence of

At At+, At+2

ERt+1 > Rt+2 Rt+3'.

St+ i St+2 St+3

Figure 2: 3-step empowerment. Actions are independent of
system's state (agent with "free will"). The communication
channel goes from (At, At+i, At+2) to St+3.

actions and sensoric input n time steps later.
Let us denote the sequence of n actions taken starting at

time t by a random variable A' = (At, At+, . .. At+n),
and its instantiation by an. Let us denote the state of the sen-
sor n time steps later by a random variable St+n, and its in-
stantiation by st+,. We now view An as the transmitted sig-
nal and St+n as the received signal. The system's dynamics
induce a conditional probability distribution p(st+n Ian) be-
tween the sequence of actions A' and the state of sensor
after n time steps St+n. This conditional distribution de-
scribes the communication channel we need.
We can now define empowerment as the channel capacity

of the agent's actuation channel terminating at the sensor
(see Eq. 1 and Eq. 2):

-l'=C (P(St+nl at) = max I(A'; St+n). (3)

Empowerment is measured in bits. It is zero when the
agent has no control over what it is sensing, and it is higher
the more perceivable control or influence the agent has. Em-
powerment can also be interpreted as the amount of infor-
mation the agent could potentially "inject" [7] into the en-
vironment via its actuator and later capture via its sensor.

The definition of n-step empowerment above uses only
a momentary reading of the sensor at time t + n to see how
much of the "injected" information is captured. In general,
the momentary reading of the sensor can be replaced by
an arbitrary function of the variables downstream of At.
For example, the function could be the sequence of sen-
soric states St = (St+I, St+2, .. ., St+,). If the agent has
memory, the function could also include the agent's mem-
ory downstream from At.

The maximizing distributions over the sequences of ac-
tions p(a') can be interpreted as the distributions of ac-
tions the agent should follow in order to inject the maximum
amount of information into its sensor after n time steps.

The actuation channel will in general have state due to
the specifics of the environment or the agent's morphol-
ogy. According to our model (see Fig. 1), the state is R,
the rest of the system. For the information-theoretic prob-
lem of channel with side information it is established [3]
that knowing the state of the channel may increase its ca-
pacity. Hence, knowing R could increase empowerment.
Accordingly, it is useful to define context, a random vari-
able approximating the state of the actuation channel R
in a compact form (cf. Information Bottleneck [12], e-
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machines [4, 10]). Knowing the context could increase the
agent's empowerment. The context could be interpreted as
the "environment" relevant to the agent. Moreover, the con-
text can be deduced or constructed from the agent-centric
perspective, from the data available "on-board", without the
need to resort to global knowledge. However, we omit this
more general treatment from the present discussion.

2.3 Maximizing Empowerment

Consider an agent that tries to maximize its empowerment.
From the perspective of Information Theory, there are two
different ways of doing that: (1) strive to reach the parts
of the world where empowerment is highest, that is, where
p(st+nIan) is less noisy, (2) modify one's sensors and ac-
tuators to improve empowerment, that is, modify the sets
for which p(St+n Ian) is used. In this paper we concentrate
only on the latter case which is sensor-actuator adaptation
or evolution.

If the agent's actuator is fixed (not allowed to adapt or
evolve) the sensor may be modified so that the agent "sees"
more of the results of its own actions. In other words, the
agent's sensor is adapted to better differentiate between out-
comes of various actions the agent can take.

If the agent's sensor is fixed, the actuator may be modi-
fied so that it can better influence the future sensoric states.
In other words, the actuator is adapted to support actions
which can be differentiated by the sensor better.

Maximizing empowerment adapts the agent's sensors
and actuators to each other. Moreover, it adapts them to
the niche in which the agent exists in the world (cf. [5]).

For example, let us assume that there is a cost to sensoric
bandwidth. It may be due to energy constraints or due to
information-processing constraints. If the agent initially has
eyes, but lives in a part of the world where there is no light at
all, empowerment, used as a fitness function, will create an
evolutionary gradient towards removing the eyes. If, on the
other hand, an agent can produce a flash visible to its eyes,
empowerment will keep the eyes and the flash-producing
action, no matter whether having the capability of producing
a flash in the dark is "useful" in the common sense of the
word.

The sets of sensoric states and actions available to the
agent can be seen as the physical level of its perception-
action system. Empowerment builds a logical level on top
of that. Actions can be defined through their effects on the
sensors (cf. Gibson's approach [5]). For instance, actions
with the same effect (as described by p(st+n a')) on the
sensor may be seen as just one logical action and need not
be differentiated, unless other criteria, such as costs of ac-
tions, are taken into account. Similarly, sensors may also be
seen in terms ofhow they react to actions. This logical level
of description built on top of the physical level may be dif-
ferent in different places in the world. For instance, if one
is in a completely dark room, one can disregard one's eyes
as a sensor because they capture no effects of one's actions.
We formulate the following hypothesis: evolution adapts

the physical level of sensors and actuators to the logical
level induced by empowerment for the niche of the species.

Moreover, empowerment maximization will push evolution
forward to exploit all existing and newly appearing commu-
nication channels.

2.4 Summary

We view the perception-action loop of an agent in terms
of random variables describing the state of the agent-
environment system. The main parts of the loop are the state
of the sensor and the state the actuator. All the variables are
linked into a causal Bayesian network. The network allows
us to unroll the loop in time.

The agent's actuation channel is a combined probabilis-
tic description of "embodiment", the agent's morphology
and environment, in terms of the effects of the agent's
actions on its sensors. Empowerment is defined as the
information-theoretic capacity of the actuation channel and
is measured in bits. Empowerment is zero when the agent
has no control over its sensors, and it grows when the con-
trol or influence the agent has over its perceptions grows.

The actuation channel in general has state due to the
specifics of the environment and the agent's morphology.
Knowing certain features of the channel's state may in-
crease the agent's empowerment. These features could be
viewed as the context or the "environment" relevant to the
agent and can be deduced or constructed from the data avail-
able to the agent without the need to resort to global knowl-
edge. Interestingly, these features are projections from the
state of the rest of the system and thus capture information
about the rest of the system, the "outside" of the agent.

The conditional distribution describing the actuation
channel induces a logical structure of the sensor and actua-
tor on top of their physical structure. The logical structure
is a potentially more compact description of the agent's ac-
tuator in terms of its effects on the sensor, and of the sensor
in terms of how it "sees" the actions. For example, actions
having the same effect on the sensor may be seen as just one
logical action. We hypothesize that natural evolution makes
the logical structure and the physical structure adjusted to
each other.

3 Sensor and Actuator Evolution Experiments

3.1 The Testbed

Consider an infinite two-dimensional square grid world. A
source is located at the center of the grid. The source emits
a signal, the strength P of which in any cell of the grid is
P(d) = d-2, P(O) = 2, where d is the Cartesian distance
from the source.

An agent moves in the world occupying one cell at a
time. Let us assume that the agent has a sensor which sam-
ples the strength of the signal in nearby cells and picks the
one with highest strength. If there are several such cells,
one is picked at random with uniform probability. Let us
also assume that at each time step the agent can stay put
or jump into one of the nearby cells. We shall now present
two scenarios: evolving a sensor for a given actuator, and
evolving an actuator for a given sensor.
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3.2 Sensor Evolution

Let us assume that the agent's actuator allows it to either
stay in the current cell or move into one of the four adjacent
cells (von Neumann neighborhood). What is the best lay-
out of the sensor so that the agent's n-step empowerment is
maximal?

Let us limit the set of sensors to those finding the cell
with highest signal strength near the agent. Each sensor
can be thought of as a set of sampling points relative to
the agent. For example, a sensor measuring the local gra-
dient using von Neumann neighborhood has four sampling
points: {(O, -1), (1, 0), (0, 1), (-1, 0)}.

3.2.1 Evolutionary Search

To find a good enough sensor we can search in the set of sen-
sors using an evolutionary algorithm. The algorithm treats
sensor layout as an individual. The sampling points of any
sensor are constrained to lie within a fixed square with side b
around the agent. The maximum number of sampling points
a sensor can have is fixed. At any point in time, the state of a
sensor identifies the sampling point that measures the high-
est signal strength. Hence, the number of sampling points is
also the number of states of the sensor ISI.

The fitness F of a sensor is the 4-step empowerment of
the agent equipped with the sensor. The fitness also includes
a small penalty for the number of sampling points used IS :

F =Q -4 S . (4)

The penalty e = i0-' is there to prefer more economical
sensors with less sampling points. The exact value of the
penalty used here is arbitrary, though small.

To evaluate the fitness of a sensor the agent is placed in
the world at a predefined position (for instance, in the cen-
ter which is at (0, 0) in Cartesian coordinates). The condi-
tional probability distribution p(S4 a4) is exactly calculated
from the Bayesian network [8]. The 4-step empowerment
is the capacity of the channel described by the conditional
probability distribution. The capacity is found with 10-4 bit
precision using the iterative algorithm proposed by Blahut
in [2].

We initialize the population with five randomly gener-
ated sensors. In every generation, five best sensors produce
five offspring each. Thus the size of the population is be-
tween 5 and 30. Five best individuals from the parents and
offspring are selected into the next generation.

An offspring is produced from its parent by mutation.
The mutation operator supports two operations: (1) addition
of a sampling point, and (2) deletion of an existing sampling
point. If the sensor has no sampling points, the mutation
operator always adds a point. If the sensor has the maximum
number of sampling points, the mutation operator always
deletes a point. Otherwise, either a new point is added or an
existing one is deleted with equal probability.

To speed up the search and make it more efficient we
have incorporated ideas from simulated annealing and tabu
search: (1) the number of mutations performed is uniformly
distributed between 1 and 1 + (G mod 10), where G is the

generation number; and (2) we do not add offspring which
have been evaluated before or are already present in the pop-
ulation.

To sample the solution space thoroughly we run the evo-
lutionary algorithm at least 10 times for 1000 generations
each. The best individuals are selected across these runs.

3.2.2 Results

We have evolved the sensor for different positions in the
world to illustrate the idea that empowerment makes sensors
and actuators adapt to the niche in which the agent exists.
We have constrained the sensor to a maximum of 20 sam-
pling points which lie inside the square with side 21 around
the agent.

Sensors below are evolved for the corresponding places above[-Lt-+-r'l_i_4_F_l-s_L-XA Lg_-l_i * l
H 1l F
tl $t-4$<,th t tfttt t, t +1
i--e +-tt-t-p-i-t-v E tt 1 t
-- -t t, t jttF-fri-t -,-^,-t, tte-f,
E '-tXl-Xt'-i t-t--i-4-+tHH

f 0 t j jo, t; t 1t 1 1 t: nr i 4
t4-T-t't-+'l++-F4-+++ 4-F+ Ji

L_

t0 0 4 322
\, } (10,0) 4.322

(10,10) 3.907

(20,0) 3.248

il,t4 ---- i lo f-,- H-'--,

A

At! t t t,4

(20,10) 2.858

(20,20) 2.807

Figure 3: Best sensors evolved for six different places in the
world. Maximum number of sampling points max ISI =
20. All of the points lie inside a square with side b = 21
centered the agent. The layout is relative to the agent (cen-
ter, marked with a cross). Sample points are shown in black.
The text under each layout contains the position in the world
for which the sensor was evolved and the agent's empower-
ment with the sensor measured in bits.

Fig. 3 shows the best evolved sensors. Evolution has
found two types of sensors. For the areas near the signal

132



133

source (Fig. 3 left and middle columns) the sensors capture
more or less the absolute displacement from the source. For
the areas farther away from the source (Fig. 3 right column)
the sensors capture the bearing to the source.

The best sensor layouts for starting positions (20, 0),
(10, 10), (20, 10), and (20,20) are stable in the sense that
they stay almost exactly the same if the evolutionary exper-
iment is repeated. The other two layouts, (0, 0) and (10, 0),
are much more prone to change while retaining exactly the
same empowerment and hence fitness. This suggests that
they might belong to a plateau of the fitness landscape.
Qualitatively though these layouts still comprise a cluster
of sampling points as seen in Fig. 3. The cluster is centered
at the agent for the (0, 0) starting position, and on the far
left for the (10, 0).

3.3 Actuator Evolution

In this section we show what actuators are optimal in terms
of empowerment for a given sensor. The experiment is simi-
lar to the sensor evolution experiment described above. The
same world is used. The same fitness function is used. The
same evolutionary algorithm is used. However, in this ex-
periment the agent has a 16-state sensor shown in Fig. 4.
The sensor captures a coarse bearing to the signal source.
The actuator is evolved to maximize empowerment.

Figure 4: The layout of the fixed sensor used for actuator
evolution.

We have constrained the actuator to a maximum of 10
actions which move the agent no further than 4 cells hori-
zontally and 4 cells vertically. The best actuators evolved
in 10 runs of 1000 generations each are shown in Fig. 5.
When we rerun the experiment evolution settles on differ-
ent sets of best actuators. However, they retain identical
empowerment and fitness. The variety in best evolved actu-
ators is much larger compared to best evolved sensors from
the previous section. Apparently, many more actuator lay-
outs are optimal. There is thus less evolutionary pressure on
the actuators in this experiment.

Near the center of the world (Fig. 5 left and center
columns) it suffices to have just four actions to completely
control the sensor after four time steps. When the agent
starts farther away it has to cover much longer distances in
order to significantly change the bearing to the source and,
hence, the sensoric reading. As the step length is limited to
4, there is not enough time to cover the necessary distance.
The agent thus has less control over its sensor. For example,
it cannot move to the area left from the center. The evo-
lutionary algorithm guided by empowerment "recognizes"
this situation (due to nonzero e in Eq. 4) and prunes the set
of actions down to just two or three, which are enough to
move in the right half of the world.

Actuators below are evolved for the corresponding places above

(0,0) 4.000 (10,0) 4.000 (20,0) 2.807

(10, 10) 4.000 (20,10) 2.807

(20, 20) 2.807

Figure 5: Best actuators evolved for six different places
in the world. Maximum number of action max JAI = 10.
The displacement generated by any action is constrained to
lie inside a square with side b = 9 centered at the agent.
The layout is relative to the agent (center, marked with a
cross). Places the actuator can move the agent to are shown
in black. The text under each layout contains the position in
the world for which the actuator was evolved and the agent's
empowerment with the actuator measured in bits.

We have also tried allowing the agent to jump farther in
one go. In this case, empowerment for all of the tested six
places in the world reaches the maximum of 4 bits, which
is constrained by the capacity of the sensor. With longer
jumps only four actions are sufficient to reach the maximum
empowerment in each of the six places tried.

3.4 Summary of the Experiments

We have presented a simple testbed to demonstrate how em-
powerment could be used for sensor and actuator evolution.
We have used an an evolutionary algorithm to maximize
empowerment by evolving a sensor for a given actuator, and
by evolving an actuator for a given sensor. We have demon-
strated that: (1) using empowerment as a fitness function
is possible, and (2) empowerment may allow evolution to
switch from one representation of information to another
one (absolute displacement vs. coarse bearing in the sensor
evolution experiment).
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4 Discussion & Conclusions

In search for a general principle for adaptive behavior
we have introduced empowerment, a natural and universal
quantity based on an agent's "embodiment", the relation be-
tween its sensors and actuators induced by the environment
and the agent's morphology.

Empowerment is defined for any agent, regardless of its
particular sensorimotor apparatus and the environment, as
the information-theoretic capacity of the actuation channel
terminating at the sensors. Empowerment is zero when the
agent has no control over what it is sensing, and it is higher
the more perceivable control or influence the agent has. Em-
powerment can also be interpreted as the amount of infor-
mation the agent could potentially "inject" into the envi-
ronment via its actuators and later capture via its sensors.
Thus, empowerment maximization can be colloquially sum-
marized as "everything else being equal, keep your options
open." Empowerment quantifies what the agent can poten-
tially do, not what it actually does.

Empowerment is based on the interplay between the
agent's sensors and actuators. The concept of the "outside"
may arise as a result of maximizing empowerment. This
agent-centric view is based on that of Gibson [5] where the
agent sees the world in terms of what it can perceive and do.
In this work we go further by: (1) treating actions and per-
ceptions using the same formalism of Information Theory,
as parts of the agent's perception-action loop, and (2) pro-
viding a quantitative formalization of the degree of control
or influence the agent has and is able to perceive.

Gibson in [5] was against applying Information Theory
to the agent's perceptions, his main argument being that the
environment does not intentionally communicate any Shan-
non information to observers.' However, Ashby's work [1]
and also more recent work [13] show that Information The-
ory can be successfully applied to perception-action with-
out the need to assume any intentionality. We believe the
concept of empowerment, which is in the spirit of Gibson
and at the same time is quantified information-theoretically,
also contributes to reconciling perception-action with Infor-
mation Theory.

To illustrate how empowerment influences evolution we
have carried out two simple experiments. In the first exper-
iment we have evolved sensors to maximize empowerment
for a given actuator. The evolved sensors were adapted to
the niche for which they were evolved. In the second experi-
ment we have evolved actuators to maximize empowerment
for a given sensor. Again, the actuators evolved were spe-
cific and "meaningful" to the niche of the agent. Empower-
ment, used as a fitness function for morphology or "embod-

"The term information cannot have its familiar meaning of knowledge
communicated to a receiver.. The only recourse is to ask the reader to re-
member that picking up information is not to be thought of as a case of
communicating. The world does not speak to the observer... It [informa-
tion] is simply there. The assumption that information can be transmit-
ted and the assumption that it can be stored are appropriate for the theory
of communication, not for the theory of perception ... The information for
perception, unhappily, cannot be defined and measured as Claude Shan-
non's information can be." - J. J. Gibson, The Ecological Approach to
Visual Perception, [5, p. 242]

iment" evolution, can adapt the agent to its niche. However,
as opposed to the majority of other fitness functions, em-
powerment is agent-centric and universal. It is suitable for
any sensorimotor apparatus, it is calculated from the sen-
sor and actuator data available to the agent, and it does not
require one to externally assign meaning to the states of sen-
sors and actuators. This, we believe, is its greatest power.

Empowerment is useful for a number of reasons. Firstly,
it is defined to be universal, and the definition is independent
of a particular agent or its environment. Secondly, empow-
erment maximization has a simple interpretation - it tells
the agent to seek situations where it has perceivable con-
trol or influence over the world, where it can change the
world most. Thirdly, if the agent were to estimate empow-
erment on-board, it would know what actions lead to what
situations in the future - this knowledge could be used for
standard planning or homeostasis. Last but not least, em-
powerment can be calculated on-board in an agent-centric
way or externally, as, for example, a fitness function in evo-
lutionary search. In the latter case the agent need not know
anything about empowerment - as a result of evolution the
agent would just behave as though it maximizes empower-
ment.
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