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ABSTRACT

We present 12CO(2-1) observations of the submillimetre galaxy ALESS65.1 per-
formed with the Australia Telescope Compact Array at 42.3 GHz. A previous ALMA
study of submillimetre galaxies in the Extended Chandra Deep Field South detected
[CII] 157.74 pm emission from this galaxy at a redshift of 2 = 4.44. No 2CO(2-1) emis-
sion was detected but we derive a firm upper limit to the cold gas mass in ALESS65.1
of Mgas < 1.7 % 1019 M. The estimated gas depletion timescale is < 50 Myr, which is
similar to other high redshift SMGs, and consistent with z > 4 SMGs being the likely
progenitors of massive red-and-dead galaxies at z > 2. The ratio of the [CII], 12CO and
far-infrared luminosities implies a strong far-ultraviolet field of Gy > 102, as seen in
Galactic star forming regions or local ULIRGs. The observed Ljcryj/Lrir = 2.3 X 1073
is high compared to local ULIRGs and, combined with Lcr/Leo 2 2700, it is con-
sistent with ALESS65.1 either having an extended (several kpc) [CII] emitting region
or lower than solar metallicity.
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1 INTRODUCTION SMGs have typical redshifts of z ~ 2-3 (e.g.|Chapman et al.
2005} (Wardlow et al.|[2011; [Yun et al.|[2012; [Smol¢i¢ et al.
2012)), but an increasing number of higher redshift SMGs are
being found. The z > 4 SMGs represent candidates for the
most intense star formation phase of the massive red galaxies
seen at z > 2 (Cimatti et al.|2008; Marchesini et al.|[2010).
This high redshift tail of the SMG distribution was long

Submillimetre galaxies (SMGs) are ultraluminous, dusty
starbursting systems with extreme star formation rates
(SFRs) of 100 — 1000 M yr~! (e.g. Blain et al.|2002)). These
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under-represented in SMG redshift surveys, mostly because
they lie below the sensitivity limits of the radio interferome-
ter surveys used to identify SMGs. However, in the last few
years, over a dozen of these sources have been reported @
pak et al|[2008, [2011} [Daddi et al][2009alb; [Coppin et al.
[2009; [Knudsen et all][2010; [Carilli et al]2010, [2011} [Riechers]
et_al.|[2010} [Smol¢i¢ et al[2011} [Cox et al.|[2011} [Combes|
et al|2012} [Walter et al|[2012)), and recent ALMA redshift
surveys have doubled these numbers (Weiss et al. submitted;
Vieira et al. submitted). Detailed studies of the star forma-
tion and gas content in these z > 4 SMGs are still rare,
but are needed to provide a unique insight into the earliest
phases of the growth of massive elliptical galaxies.

The most accessible tracer of cold gas in galaxies is
12CO, which has been observed extensively in SMGs (e.g.
|Greve et al.||2005; [Tacconi et al|[2006} [Bothwell et al.|2013)).
Detections of '*CO in z > 4 SMCs have shown they are gas
rich systems with sufficient reservoirs (Mgas > 10'° Mg) to
sustain the extreme star formation rates of ~ 1000 Mg yr—*
for only short time scales (10s of Myrs) (Coppin et al.|2010}
[Riechers et al.||2010)), unless the gas is replenished. This is
consistent with high redshift SMGs being the progenitors of
the luminous red galaxies seen at z > 2.

The 2P; /2 — 2p, /2 fine structure line of singly ionised
carbon at 157.74 pm (here-after [CII]) has emerged as a
powerful alternative line for studying the ISM in high red-
shift sources. It can represent up to 1% of the bolomet-
ric luminosity of star forming galaxies (e.g. |Crawford et al.
|1985} [Stacey et al.|[1991). This line emission arises mainly
from the photodissociation regions (PDRs) that form at the
edges of molecular clouds illuminated by the UV photons
of young-massive stars, but a significant contribution can
also come from HII regions and the more diffuse warm in-
terstellar medium (Madden et al.||[1993} [Heiles|[1994). The
[CII] line therefore provides an important probe of the gas
content and star formation processes in a galaxy.

A recent ALMA Cycle 0 study of 126 submillimetre
sources located in the LABOCA Extended Chandra Deep
Field South (LESS, Karim et al. 2012;
Hodge et al. 2013 submitted) resulted in the serendipitous
identification of [CII] line emission from two SMGs
[bank et al| 2012 hereafter S12). The average [CII[/far-
infrared luminosity ratio of these two SMGs is ~ 0.0012
4 0.0004, roughly ten times higher than that observed in
local ultraluminous infrared galaxies, which has been in-
terpreted as evidence that their gas reservoirs are more
extended (S12). The large extent of SMGs is supported
by other observations, such as extended radio morpholo-
gies (e.g. [Chapman et al|[2004} Biggs & Ivison|[2008), ex-
tended H-a morphologies (e.g. [Swinbank et al.|[2006), large
2C0O(1-0) sizes (Ivison et al2010a} 2011} [Thomson et al.|
[2012} [Hodge et al|2012), lack of silicate absorption in mid-
infrared spectra (Menéndez-Delmestre et al.|[2009)), and less
reddened broad-band mid-infrared colours (Hainline et al.
2009). High [CII]/far-infrared ratios (Stacey et al.[2010; Ivi-
son et al. S12) add to this mounting evidence that
star-formation in SMGs takes place in a region larger than
the compact nuclear starbursts of local ULIRGs.

In this paper we present *>CO(2-1) observations of one
of the ALMA detected SMGs, ALESS J033252.26-273526.3
(hereafter ALESS65.1). We adopt the standard A-CDM cos-

mological parameters of Oy = 0.27, Q4 = 0.73, and a Hub-
ble constant of 71 km s~* Mpc~! throughout this paper.

2 OBSERVATIONS AND RESULTS

The 2CO(2-1) line (thest = 230.538 GHz) in ALESS65.1
(RA(J2000) = 03 32 52.26, Dec(J2000) = —27 35 26.3) (S12)
was observed over a period of four consecutive nights, 9 —
12 August 2012, with the Australia Telescope Compact Ar-
ray (ATCA), using the Compact Array Broadband Backend
(CABB). The array was in the most compact five-antenna
configuration, H75, which has a maximum baseline of 89m
and two antennas set along a northern spur. The hybrid
configuration allows good (u,v) coverage to be obtained for
integrations less than the full 12 hour synthesis. We centered
the 7mm IF1 receiver on 42.343 GHz, the expected frequency
of the *2CO(2-1) line emission given the [CII] redshift of
z = 4.4445 derived by S12. The 2GHz wide bandwidth of
CABB results in a frequency coverage of 41.3 to 43.3 GHz,
covering 2CO(2-1) emission between z = 4.32 — 4.58. The
weather was good to average, with rms atmospheric path
length variations of 100 to 400 microns throughout the run,
as measured on the 230m baseline ATCA Seeing Monitor
(Middelberg et al.|2006). The system temperature was 140
to 250 K throughout the four nights. Weather and atmo-
spheric conditions can induce temporal fluctuations across
the wide CABB band, so, following [Emonts et al.| (2011]),
a bandpass calibration scan was acquired at the beginning,
middle and end of each 8 hour night. Phase and amplitude
calibration information was acquired with 2 minute scans
on PKS 0346—279 every 10 minutes and pointing checks
performed on the same source every hour. Flux density cal-
ibration was performed on Uranus at the beginning of the
nights, when it was at an elevation of roughly 55 degrees.
The uncertainty in the flux density calibration using the
standard MIRIAD model of Uranus is estimated to be 30%
(Emonts et al.|2011)).

The data were calibrated, mapped and analysed using
the standard MIRIAD (Sault & Killeen|1999) and KARMA
packages. The synthesized beam from natural
weighting is 14.0 x 9.9 arcsec. A total of about 20 hours
on-source integration time was obtained over the 4 x 8 hour
nights. ALESS65.1 was not detected in the 42.3 GHz con-
tinuum map from the full CABB band, which achieves an
rms noise level of 11 pJy beam™?.

The resultant channel noise in the 1 MHz (7.1 km s™')
wide spectrum is ~ 0.43 mJy beam ™', consistent with other
comparable 7Tmm ATCA/CABB surveys (e.g. |Coppin et al.
[2010; [Emonts et al.|2011)). The visibilities were resampled to
velocity resolutions of 50, 100 and 200 km s~ and each cube
was examined for an emission line near the ALMA position.
A ~4o spike at the position of ALESS65.1 and offset from
the [CII] emission by ~ 280 km s~ ' was examined in detail.
It was deemed a noise spike because it is only present in one
channel in all three binned images and is present only in
the last night of data when each night is imaged separately.
We flag the spike (20 native channels) in the last night of
data and recombined all four nights of data to derive the
final spectra. The spectra at the source position in the 100
and 200 km s™' binned cubes (Figure 1) have an rms of
0.11 and 0.08 mJy beam ™!, respectively. Assuming a line
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Figure 1. 12CO(2-1) spectrum of ALESS65.1 binned into 100
km s~ ! channels and extracted at the ALMA position. The red
dashed line shows the ALMA [CII] spectrum from S12, binned to
a similar channel width (120 km s~!) and with the flux density
divided by 15 for clarity. The blue dotted line shows the spectrum
binned into 200 km s~! for maximum sensitivity. We conclude
that no line was detected to a 3o limit of 0.24 mJy beam~! per
200 km s~ channel.

FWHM identical to the [CII] emission line (470 km s™',
S12) and adopting a 3¢ limit, the *CO(2-1) line intensity
of ALESS65.1 is Ico(z—1) < 0.11 Jy km s™".

3 DISCUSSION

The observed and derived properties of ALESS65.1 are sum-
marised in Table 1. To estimate the cold molecular gas con-
tent in ALESS65.1 we calculate upper limits to the line lu-
minosity and total cold gas (Hz2 4+ He) mass from the CO(2—
1) flux density limit. Following Solomon and Vanden Bout
(2005), the line luminosity upper limit is Looo_qy < 2.2
x 10" K km s™' pc?. If we assume the gas is thermalised
(i.e. intrinsic brightness temperature and line luminosities
are independent of J transition), so Looe—1) = Looa—o)
and a CO-to-Hy conversion factor a« = 0.8 Mg (K km st
pc?)™!, which is appropriate for ULIRGs (e.g.
but see[Bothwell et al]2012)), the upper limit
on the total cold gas mass is Mgas < 1.7 X 1010 Mg. This
is consistent with the gas mass found in other z > 4 SMGs
(Schinnerer et al.|2008; Daddi et al.|[2009a; |Coppin et al|
[2010} Walter et al.|2012) and the typical [CII]/Mgas ratio at
high redshift (S12).

The total baryonic mass of ALESS65.1 can be derived
by combining the gas and stellar mass estimates for the sys-
tem. The stellar mass of the system was estimated from the
rest-frame absolute H-band magnitude to be M, ~ 9 x 10*°
Mg (S12), so the gas fraction is modest with Mgas /M, < 0.2.
The total baryonic mass Myary = Mgas+My is ~9—11x 101
Mg. This is consistent with the dynamical mass for the sys-
tem, based on the [CII] linewidths and spatial extent, of
Mayn sin?(i) ~ (3.4 £1.8) x 10'° Mg (S12).

ALESS65.1 is detected in the 870um continuum by
ALMA and weakly detected in the far-infrared (FIR) by
Herschel (S12). A fit to the IR SED resulted in a restframe
IR (8 — 1000 pm) luminosity Lir = (2.0 + 0.4) x 10'% Lg
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(S12), which corresponds to a star formation rate of ~ 340
Mg yr~! using the conversion of . The gas
depletion timescale 7 = Mgas/SFR < 50 Myr is similar to
the gas depletion rates of other high redshift SMGs (Schin-|
[nerer et al.|[2008; |Coppin et al.|[2010). This short timescale
provides further evidence that z > 4 SMGs have the gas
consumption timescales necessary to be the progenitors of
red-and-dead “ellipticals” at z > 2.

Next we examine the physical conditions of the gas in
ALESS65.1 using the [CII] detection and **CO(2-1) limit.
The L[CH]/LFIR versus LCO(l—O)/LFIR diagram is a pow-
erful diagnostic as these two ratios are sensitive to gas
density n and the incident far-ultraviolet (FUV) flux Go
(Stacey et al.|[1991). Figure 2 shows ALESS65.1 compared
with other low and high redshift galaxies, and solar metal-
lically PDR model curves (Kaufman et al|1999). This dia-
gram can be used to roughly estimate both n and Gy for
a galaxy, but there are some caveats, as outlined in
Breuck et al| (2011). These are: (i) the '*CO luminosity
is that of the ground state rotational line, (ii) [CII] emis-
sion from the diffuse ionised medium and cosmic-ray-heated
gas is assumed to be small compared to that from PDRs,
and (iii) AGN and their related X-Ray Dissociation Regions
(XDRs) are assumed to not contribute significantly to the
FIR and [CII] luminosity. To be consistent with both
[Breuck et al.| (2011) and [Stacey et al. (2010)) in Figure 2 we
assume Loo(2—1)/Leo—o) = 7.2, which is 90% of its value
if the gas was fully thermalised and optically thick. Cos-
mic ray rates are greater in starbursts compared to normal
galaxies but this does not seem to result in higher [CII]/CO
ratios, so cosmic ray ionization does not appear to domi-
nate the [CII]/CO ratio (De Breuck et al|[2011), at least
for local galaxies. ALESS65.1 is not detected in the 250ks

Chandra X-Ray observations of this region (Lehmer et al
2005)), so it is not a luminous QSO (Ls_sakev < 2-3x10%

erg s~1, for Ng = 0 — 10%*° cm™?). The maximum likely
AGN contribution to the FIR luminosity is estimated from
a multicomponent (AGN and starburst) fit to the FIR us-
ing Decompir software (Mullaney et al|[2011) and following
the method described by (Seymour et al|2012). We use the
24 pm flux density upper limit to constrain the short wave-
length part of the IR SED and find the AGN contribution
to the total FIR luminosity is <10%. ALESS65.1 therefore
appears to be dominated by star-formation processes and
the AGN contribution to [CII] and Lpr is minimal.

In examining the PDR physical conditions, we multiply
the 12CO(2-1) flux by a factor of two to account for the
line being optically thick, and hence only the *>CO emission
coming from the illuminated PDR side is seen
let al.[1999; Hailey-Dunsheath et al.[|2010). We also multiply
the [CII] flux by a factor of 0.7 to remove non-PDR con-
tributions (e.g. Hailey-Dunsheath et al|2010; [Stacey et al|
2010). The '2CO geometry correction applies to all galaxies
in Figure 2, and so does not affect the relative position of
ALESS65.1 on the diagram compared to other galaxies. Us-
ing the [Kaufman et al.| (1999) models, we find ALESS65.1
has Go ~ 10° and n < 10° cm™2 (Figure 2). Such a FUV
radiation field is on the high end of those seen in low red-
shift normal galaxies, but it is consistent with the strong
FUV fields seen in local starbursts, nearby ULIRGs, and
some z > 1 galaxies. This limit on Gy and n implies a PDR
temperature 2300 K (Kaufman et al|[1999). Using Equa-
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Table 1. Observed and derived properties of ALESS65.1

Parameter Value Reference
2[c1 4.4445 + 0.0005 S12
Iic 5.4+ 0.7 Jy km s~! S12
FWHM ¢y 470 4 35 km s~! S12
Licmy (3.2 £ 0.4) x 10° Lo S12
Lrr® (1.38 £ 0.28) x 102 Lg S12
Icoe-1) < 0.11 Jy km s~ (30) this paper
Mgas < 1.7 x 10'° Mg (30) this paper
Lcoz-1) < 8.5 x 10% Lg (30) this paper
L60(271) < 2.2 x 1019 K km s™! pc?  this paper

& converted from Lig(8 — 1000um) using Lprg (42 — 122 pm)
= Lir/1.45 (Stacey et al. 2010; De Breuck et al. 2011)

tion 1 from [Hailey-Dunsheath et al.|(2010), we estimate the
atomic gas associated with the PDR to be greater than 3
x 10° Mg. We note that this atomic mass estimate is very
uncertain, and it is highly dependent on n. The atomic gas
mass M, ~ 2.9 x 10° 4 (3.2 x 10*2/n), so for n = 10®> ecm™3
the atomic mass would be ~6 x 10° M.

ALESS65.1 and the other two z > 4 SMGs shown
in Figure 2, LESS J033229.4 (De Breuck et al. 2011) and
HDF850.1 (Walter et al. 2012), have a similar FUV radi-
ation field, Gy, to local starbursts, but have much higher
FIR luminosity, leading to suggestions that they are scaled-
up versions of local starbursts. For a given Lpir the size
of the emission region will increase for smaller Go. Fol-
lowing Stacey et al. (2010), we scale up from M82 using
two laws from Wolfire et al.| (1990) to constrain the size:
Gy )\LFIR/D3 if the mean free path of a UV photon A is
small and Gy o Lrr/D? if the mean free path of a UV pho-
ton is large. Applying these relations and using Go = 10° for
ALESS65.1 yields a diameter of 1.1 — 2.1 kpc. This is con-
sistent with the marginally resolved [CII] data which shows
ALESS65.1 has a possible extent of 3.3 £ 1.7 kpc (S12). The
same scaling relation applied to HDF850.1 results in a diam-
eter of 1.8 — 4.6 kpc, which is consistent with the observed
5.7 £ 1.9 kpc extent of the [CII] emission region (Walter et
al. 2012). Similarly, LESS J033229.4 has an extent of ~ 4
kpc (Coppin et al. 2010; De Breuck et al. 2011). Thus the
starburst in all three z > 4 SMGs appears to be extended
over galactic scales.

Local starbursts and Galactic OB star forming regions
lie on a line with [CII]/CO luminosity ratios of about 4100
in Figure 2. Higher [CII]/CO ratios can also be found in
low metallicity systems, such as 30 Doradus in the LMC,
where the size of the [CII] emitting envelope of the cloud
(relative to the the CO emitting core) is much larger than
in more metal-rich systems (Stacey et al.||[1991). Metallicity
may also affect the [CII]/CO ratios of the highest redshift
galaxies. For example, LESS J033229.4 at z = 4.76 has a
very high [CII]/CO ratio of =~ 10* and was initially thought
to have sub-solar metallicity (De Breuck et al|/2011), but
more recent [NII] observations suggest that the metallicity
of this galaxy is solar (Nagao et al.|2012). ALESS65.1 has
Liciy/Leo 2, 2700, which is consistent with low metallic-
ity, but it has an extent of several kpc so therefore the en-
hanced [CII] emission is more likely to be due to the ex-

tended star forming region. An extended (or less-dense) in-
terstellar medium would have an increased fraction of UV
photons available to ionize and excite gas, increasing the
relative intensity of fine structure lines (e.g. |Gracia-Carpio
et al.||[2011)).

We have assumed a single-phase ISM in this work.
Multi-phase ISMs are commonly required to explain the
2CO line ratios observed in local galaxies (e.g. |Guesten
et al.||1993; Ward et al. 2003). In some cases a single-
component ISM is unable to explain the 2CO-excitation
ladder (or spectral line energy distribution) observed in high
redshift SMGs (Carilli et al.[2010; |Harris et al.[2010; |Daniel-
son et al.|2011). These studies found that the ISM in such
sources is best described by a warm compact component sur-
rounded by a cooler more extended one. Support for such a
multi-component geometry in high-redshift sources has re-
cently been found in the spatially-resolved >CO study of the
gravitationally-magnified submm galaxy SMM J2135—0102
(Swinbank et al.[|2011} Danielson et al.|[2011). Future higher-
resolution continuum and line studies with ALMA may un-
cover similar evidence in ALESS 65.1, but the current data
provide no direct evidence.

4 CONCLUSION

We have observed ALESS65.1 for 20 hours to search for
'2C0(2-1) emission in this z = 4.44 submillimetre galaxy.
We detect no *>CO(2-1) emission in a spectrum reaching a
rms sensitivity of 0.08 mJy beam ™! per 200 km s~* channel.

Adopting the FWHM from the ALMA detection of [CII]
in ALESS65.1, we estimate a 3o limit to the *CO(2-1) lu-
minosity of Leoe—1) < 8.5 X 10° Lg and a cold gas mass
upper limit of Mg.s < 1.7 X 10'° M. This implies a gas
depletion timescale in ALESS65.1 of < 50 Myr, compara-
ble to other z > 4 SMGs and consistent with this high red-
shift population being the progenitors of z > 2 red-and-dead
galaxies.

We examine the physical conditions of the gas in
ALESS65.1 using the L[CII]/LFIR versus LCO(l—O)/LFIR di-
agram. We find ALESS65.1 has a strong FUV field compa-
rable to local starbursts. The observed [CII] to FIR ratio,
L[CH]/LFIR =23X 10737 is high compared to local ULIRGs
(as noted by S12). Combined with Liciyj/Leo 2 2700, this
high [CII] to FIR ratio is consistent with ALESS65.1 having
more extended regions of intense star-formation than local
ULIRGs. A possible, but less likely scenario, is ALESS65.1
has low metallicity gas.

Measurements of [CIT] and *2CO of a larger sample are
needed to confirm whether z > 4 starbursts have enhanced
[CII] emission compared to local galaxies, and whether this
is because of metallicity effects, the relative size of PDR
regions, a combination of the two, or other effects. Future
surveys by ALMA will shed further light on the physical
conditions of the gas in star forming galaxies in the early
universe.
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