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ABSTRACT 

 

Objectives  

The aim was to employ Gaussian Processes to assess mathematically the nature of a skin 

permeability dataset and to employ these methods, particularly feature selection, to determine the 

key physicochemical descriptors which exert the most significant influence on percutaneous 

absorption, and to compare such models to established existing models. 

 

Methods  

Gaussian Processes (GPR), including Automatic Relevance Detection (GPRARD) methods, were 

employed to develop models of percutaneous absorption that identified key physicochemical 

descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these 

models were compared to single linear networks (SLN) and quantitative structure–permeability 

relationships (QSPRs). Feature selection methods were used to examine in more detail the 

physicochemical parameters used in this study. A range of statistical measures to determine model 

quality.  

 

Key findings  

The inherently non-linear nature of the skin data set was confirmed. The GPR methods yielded 

predictive models that offered statistically significant improvements over SLN and QSPR models 

with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection 

analysis determined that the best GPR models were those that contained log P, melting point and the 

number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also 

found that great synergy existed between certain parameters. It further suggested that a number of 

the descriptors employed were effectively interchangeable, thus questioning the use of models 

where discrete variables are output, usually in the form of an equation.   

 

Conclusions  

The use of a non-linear GPR method produced models with significantly improved predictivity, 

compared to SLN or QSPR models. Feature selection methods were able to provide important 

mechanistic information. However, it was also shown that significant synergy existed between 
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certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular 

weight and melting point) without incurring a loss of model quality. Such synergy suggests that a 

model constructed from discrete terms in an equation may not be the most appropriate way of 

representing mechanistic understandings of skin absorption. 
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INTRODUCTION 

 

 

The prediction of skin absorption is of interest to many fields, including topical and transdermal 

drug delivery, cosmetics and risk assessment for dermal exposure. The development of viable, 

quantitative models has been an area of substantial interest for almost twenty years, and offers 

considerable advantages in reducing or replacing time-consuming and costly experiments. It is 

known that the physicochemical properties of a molecule exert a substantial effect on its 

permeability, and as such most predictive methods have relied on a qualitative or quantitative 

appraisal of such properties, usually as discrete entities within a mathematical representation of 

permeation, in order to understand the mechanisms of absorption and to allow prediction of the 

penetration of a range of exogenous chemicals. In particular, the effects of lipophilicity (most 

commonly expressed as log P, the octanol-water partition coefficient), hydrogen bonding, molecular 

weight (or size) and melting point were considered highly significant in their influence, and 

therefore predicting in permeability (Scheuplein & Blank, 1971; Michaels et al., 1975). 

Subsequently, several researchers determined that molecular size was more significant than 

previously suggested (i.e. Potts & Guy, 1992; Magnusson et al., 2004).  

 

It is interesting to consider the nature of descriptors returned by different analyses of datasets. This 

is clearly highlighted by Potts and Guy (1992; 1995). In these two studies the authors determined 

that the relationship between Kp and physicochemical descriptors differed as the nature of the 

dataset (from Flynn, 1990) was, in the later study, qualitatively examined and abbreviated to 37 

compounds. This subset was shown to be dependant on lipophilicity and hydrogen-bonding, 
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whereas an analysis of the whole dataset (Potts and Guy, 1992) demonstrated that lipophilicity and 

molecular weight were the key determinants in percutaneous absorption.  

 

Hydrogen-bonding, despite being absent from the seminal Potts and Guy (1992) model, has been 

considered as a key influence in percutaneous absorption for just over thirty years (Roberts, 1976). 

Partition phenomena, and in particular the development of the solvatochromic theory (Kamlet et al., 

1983) and developments in the understanding of epidermal permeability (Abraham et al., 1995; 

Roberts et al., 1995) indicated the importance of hydrogen-bonding acceptor and donor properties in 

percutaneous absorption. 

 

Roberts et al. (1996) showed that the introduction of even one hydrogen-bonding group to a 

molecule could result in a significant decrease in its permeability, whereas the addition of further 

groups to the molecule results in further, smaller, non-linear decreases. They concluded that 

hydrogen-bonding was the key factor in diffusion across the stratum corneum, whereas lipophilicity 

was more important for partitioning and may be related to the pKa of the penetrant. 

 

While it is difficult to directly compare the studies discussed above with other approaches (due to, 

for example, differences in dataset composition or statistical methods of analysis), it may be argued 

that the use of methods that do not properly consider the nature of the dataset used undermines any 

resultant model. Moss et al. (2009) compared the statistical accuracy of Gaussian Processes, single 

linear networks and QSPRs by a range of statistical methods, and found that the nature of the dataset 

was inherently non-linear and that skin permeation (as represented by Kp) was best described, in 

purely statistical terms, by Gaussian Process approaches.  
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As this field expanded a large number of studies presented a diverse range of models based on an 

array of different, often complementary, datasets, and an increasing number of physicochemical 

properties, including hydrogen bonding and molecular size, were presented (i.e. Abraham et al., 

1995; Potts & Guy, 1995; Pugh et al., 1996; Roberts et al., 1996; Cronin et al., 1999; Patel et al., 

2002). Various modifications have been made to these models, some of which involve the use of 

non-linear modelling. For example, Wilschut et al. (1995) examined five mathematical models by 

non-linear multiple regression. The octanol-water partition coefficient and molecular weight were 

used as independent parameters. They suggested that a modified form of the Potts and Guy (1992) 

equation best modelled skin absorption. Finally, in order to understand the scope, limitations and 

context of these models, and how they should be applied, it must be emphasised that they are all 

based on infinite doses being delivered from aqueous vehicles. 

 

Therefore, while non-linear modelling of skin absorption is not new, it is certainly an area which has 

not been extensively or systematically explored. The aim of this study is to further compare the 

statistical accuracy and predictive ability of linear and non-linear methods of modelling, and to also 

explore combinations of molecular descriptors that may influence, individually or synergistically, 

percutaneous absorption. 
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METHODS 

 

Dataset 

 

The dataset employed in this study was obtained from Moss et al (2009). It is, briefly, a dataset that 

contains 142 different chemicals and their associated physicochemical descriptors and permeability 

values (Kp, as cm/h), and is an extension of that published by Flynn (1990) and utilised in the study 

by Potts and Guy (1992). It is supplemented by the addition of data from previous publications 

(Moss et al., 2006; Patel et al., 2002; Wilschut et al., 1995) and from the Edetox database (available 

at www.ncl.ac.uk/edetox/index.html). It includes the data, obtained from the literature, for six 

physicochemical descriptors of each compound; namely, molecular weight (MW), melting point 

(MPt), solubility parameter (SP) (Fedors, 1974), the octanol-water partition coefficient (log P, used 

as provided in the sources listed above), hydrogen bonding acceptor groups (HA) and donor groups 

(HD). 

Mathematical methods for model development 

 

The mathematical methods employed herein have been described in detail elsewhere (Rasmussen 

and Williams, 2006; Moss et al., 2009). The modelling in this study was carried out by a 

combination of machine learning methods and quantitative structure–permeability relationships 

(QSPRs). The QSPRs employed are those by Potts and Guy (1992), Cronin et al. (1999), Moss and 

Cronin (2002) and Luo et al. (2007).  

Machine learning methods include Single Layer Networks (SLN), which is a simple linear 

regression – it is the same as a linear regression method and uses iterated re-weighted least squares 



9 
 

training – and Gaussian Process Regression (GPR), which is a regression that calculates the 

relationship between variables via a non-linear processes. Further, Gaussian Process Regression 

with Automatic Resonance Detection (GPRARD) has been employed to calculate the relative 

significance of the molecular descriptors in GPR modelling (Moss et al., 2009). Performance 

measures of GPR, SLN, GPRARD and QSPRs were calculated by via Matlab (R2008a).  This 

programme relies on tailored scripts (essentially, a series of commands that allow Matlab to process 

the required calculations) to conduct calculations for the specific tests used in this study and in 

previous studies (i.e. Moss et al., 2009). The scripts used were analysis by SLN/QSPR, 

GPR/GPRARD, GPR (improvement over the naïve model (ION), with statistical significance 

determined by a paired t-test), one script for GPR (normalised mean squared error (NMSE), paired t-

test), GPR (correlation coefficient (CORR), r, paired t-test), SLN (ION paired t-test), SLN (NMSE 

paired t-test) and for SLN (CORR paired t-test).  Matlab was also used to perform statistical analysis 

of performance measures between SLN and GPR. Statistical comparisons between QSPR and 

maching learning methods (GPR and SLN) was performed using SPSS
®
 (version 16).  

 

QSPR analysis 

 

Prior to the application of the modeling methods described below to the dataset, the QSPR methods 

were applied to the data in order to provide a comparison between machine learning methods and 

previous approaches to this matter. The methods used are those reported previously (Potts & Guy, 

1992; Cronin et al., 1999; Moss et al., 2002). Further details on the nature of these models may also 

be found elsewhere (Cronin et al., 1999; Moss et al., 2002). 

 

Machine Learning Methods 
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Single Layer Networks 

Regression analysis was initially carried out on the dataset using a single layer network (SLN). This 

simple linear regression considers the output, y, as the weighted sum of the components of an input 

vector, x, which can be written as follows: 

 

      (1) 

 

where d is the dimensionality of the input space (i.e. the number of features used to describe a 

molecule) and w = (w1; : : : ;wd;w0) is the weight vector. The weights are set so that the sum squared 

error function is minimized on a training set. 

Gaussian Process Regression (GPR) 

Gaussian process (GP) modelling is a non-parametric method. It does not produce an explicit 

functional representation of the data, as QSPR modeling does in the form of an equation where the 

permeability is usually related to statistically significant physicochemical descriptors of a dataset. In 

GPR modeling it is assumed that the underlying function that produces the data, f(x), will remain 

unknown, but that the data are produced from a (infinite) set of functions, with a Gaussian 

distribution in the function space. This has been described in detail elsewhere (Moss et al., 2009; 

Rasmussen & Williams, 2006). Briefly, a Gaussian process is completely characterised by its mean 

and covariance function. The mean function is normally considered to be the ―zero everywhere‖ 

function. The covariance function, k(xi, xj), is crucial to GP modeling as it expresses the expected 

correlation between the values of f(x) at the two points xi, xj. In other words, it defines nearness or 

similarity between data points. Since the model employed herein is a Gaussian process, this 
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distribution is also Gaussian and is therefore fully defined by its mean and variance. The mean at x* 

is given by: 

 

     (2) 

 

where k* denotes the vector of covariances between the test point and Ntrn training data; K denotes 

the covariance matrix of the training data;  is the variance of an independent identically 

distributed Gaussian noise, which means that observations are noisy, K*
T  

 is the transpose of K* ;   

and I is the identity matrix; finally, y denotes the vector of training targets. The variance, at x*, is 

given by: 

 

    (3) 

 

where k(x*,x*) denotes the variance of y*. In the present study, the mean is used as the prediction 

and the variance as error bars on the prediction.  

 

GPR with automatic relevance determination (GPRARD) 

To implement automatic relevance determination (Neal, 1996) in GPR, the characteristic length-

scale matrix, M, is redefined as a diagonal matrix containing the elements of vector L =[ ,…, ], 

and l1,…,lD on the diagonal are the characteristic length scales for each input dimension, 

determining how relevant an input is to the task. If the length-scale has a very large value, it 

suggests that the corresponding input could be removed from the inference. These characteristic 

length-scales can be optimised from the data by Bayesian inference. 
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Feature Selection 

 

The features, or molecular descriptors, most frequently used in studies of modelling percutaneous 

absorption were employed in this study. Parameters were also used that were readily accessible and 

calculable without the need for expensive, specialist software (Moss et al., 2002; 2009).  The 

features utilised in this study are listed above.  

 

Analysis of the dataset 

 

Data was visualised by scatter diagrams plotted with Microsoft Excel 2007, in order to discern 

patterns between the features.  Such visualisation has been shown previously (Moss et al., 2009). 

 

The dataset was divided, for machine learning method development, into a training set and a test in 

the ratio of 75% (107 compounds) and 25% (35 compounds) respectively (Katritzky et al., 2006). 

The compounds were randomly allocated into the subsets automatically by Matlab R2008a via 

primeSeed code, which acts as a recorder to document the allocation of the compounds in the 

subsets.  In total, the experiment was repeated 10 times, generating 10 different test sets.  Each test 

set contains a unique primeSeed code that records the compounds allocated in the corresponding test 

set.  The same primeSeed codes were included in every script for the machine learning method and 

QSPR to ensure identical compounds were tested by each method.   

 

Regression modeling was employed with each combination of descriptors as input vectors. In 

Gaussian process modelling, the initial values of the logarithms of the characteristic length scale, the 
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signal variance and the noise variance were chosen using cross validation from 10 user-defined pre-

sets. In addition, a 5-fold cross-validation procedure was used to select optimal parameters for each 

test. In such cases, each training set was divided further into training and validation sets 5 times. 

 

To investigate which compound descriptors contribute significantly to the prediction, GPRARD 

methods were applied to the dataset. Experiments were again conducted on 10 randomly selected 

training and test sets. However, in this case the hyperparameters are optimised by maximizing the 

marginal likelihood using the derivative rather than selecting from pre-set hyperparameters using a 

cross validation procedure (Geinoz et al., 2004). In each case the logarithms of characteristic length-

scale, signal variance and noise variance were initialized for each input dimension, as [0; 0; 0; 0; 0; 

0; log(SQRT(0.1))]. Rasmussen and Williams’ (2006) GP Toolbox was applied to the dataset to 

carry out Gaussian process modeling.  

 

Performance measurements of QSPR models and machine learning methods were calculated via 

Matlab R2008a. The parameters employed to ascertain statistical quality of each model were percent 

improvement over the naïve model, (ION, %), normalised mean squared error (NMSE) and the 

correlation coefficient (CORR), as described above and employed previously (i.e. Moss et al., 

2009).     
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RESULTS 

 

Consideration of the results of this study can be divided broadly into four regions: the shape of the 

distribution between physiochemical properties and skin permeability, the comparison of the 

prediction accuracy between machine learning methods modelling and QSPR models, the 

comparison of the accuracy to quantify percutaneous absorption via non-linear and linear 

approaches and the selection of features that are significant in the mathematical quantification of 

skin absorption. As a measure of performance, ION, NMSE and CORR have been employed.  

 

Distribution of the physicochemical parameters and permeability coefficients.  

 

Visualisation of the data  provides an insight into the relationship between physiochemical 

properties and permeability coefficients among 142 compounds employed in this study. In common 

with previous work in this field (Moss et al., 2009; Sun et al., 2008) the visualisation of the data 

shown in Figure 1 suggests that the underlying relationship between the physicochemical descriptors 

and permeability coefficients is inherently non-linear. For example, the response between log Kp and 

log P, shown in Figure 1a, has a scattered distribution which indicates that this relationship is non-

linear. This is congruent with other literature evidence (i.e. Degim et al., 2003; Moss et al., 2006).  

Moreover, other molecule descriptors including melting point, molecular weight, solubility 

parameters, HA and HD also showed non-linearity with log Kp.   

 

Further, the visualisation of the data described previously ((Moss et al., 2009; Sun et al., 2008))  also 

indicates that the skin permeability coefficient is not solely dependent on one molecular descriptor.  
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Compounds with similar properties for one particular feature can demonstrate enormous variations 

in log Kp.  For example, if compounds with one hydrogen bond donor group are considered, log Kp 

is observed to vary from -1.2 to -5.0 approximately.  

 

However, it should be noted that certain parameters, such as hydrogen bond donor and acceptor 

groups, may be considered as discrete rather than continuous variables, and as such a linear 

relationship between these parameters and descriptors that are continuous in nature (such as log P, 

MW or solubility parameter) should not necessarily be expected, and may be of limited statistical 

value.  

Statistical evaluation of model quality 

 

Figure 1 indicates that those latter models, derived from a more comprehensive extension of Flynn’s 

(1990) dataset (for example, those that incorporate data from other studies (i.e. Johnson et al., 1995;, 

Kirchner et al., 1997; Degim et al., 1998)) result in improved predictions.  It should also be noted 

that, as expected, the model proposed by Barratt (1995) performs relatively weakly due to the 

limitation in the number of observation included in that study, a point made previously in the 

literature (Genioz et al., 2004).  This suggests the importance of dataset validity, particularly with 

regard to size, the consistency of experimental protocols, reproducibility, comprehensiveness in 

model developments (Moss et al., 2002). This point was highlighted by Moss and Cronin (2002) 

who developed a QSPR model which does not include the steroid data used by Scheuplein et al. 

(1969), which is collated into Flynn’s dataset (1990), but instead uses the data colleted by Johnson 

et al. (1995). The inclusion of the model by Barratt (1995) suggests a possible limitation in the use 

of this data, which the results in Figure 1 would appear to substantiate.  
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As discussed above, log P, molecular weight and terms pertaining to hydrogen bonding have been 

widely identified as highly significant phenomena in developing a mechanistic understanding of 

percutaneous absorption. Despite this, the QSPR-type models employed in this study – and which 

contain most, if not all of these parameters – fail to accurately predict Kp; in most cases, they return 

predictions that are, in terms of the statistical tests used to compare the performance of models (i.e. 

measures of ION, NMSE and CORR), significantly worse than the naïve model, which is simply the 

average Kp value of the whole dataset.  It can be seen that, by using the same parameters, Gaussian 

Process and Single Layer Network models provide statistically better results than QSPR models, 

particularly in terms of higher ION and lower NMSE values, although difference is NMSE values 

are not always as pronounced as those for ION.  Nevertheless, the improvement is statically valid (p 

< 0.05, Table 1). For the combination of features discussed in the preceding section, the Gaussian 

Process demonstrates the best results, even compared to Single Layer Network, in terms of both 

model’s prediction accuracy (ION) and stability (NMSE) as shown in Table 1.  However, as 

discussed previously (Moss et al., 2009) the nature of the dataset and its compatibility with a 

particular mathematical approach should be considered. Nevertheless, Figure 2 shows a clear 

improvement in the predictivity of the GP model, compared to Potts and Guy (1992). 

 

Feature Selection 

 

Due to the large number of statistical comparisons made between each possible combination of 

molecular features, Table 2 shows only a condensed comparison of the statistical tests carried out 

comparing the combination of features in Gaussian Process models. Specifically, it includes only 

models that demonstrated no significant difference compared to the highest ION (%) ranked model 

[GPR: MPt, log P and HD] – in effect, the best performing combination of features as defined by the 
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results of the statistical comparison of models. Table 4 shows the Gaussian Process models that, on 

both ION (%) and NMSE measurements, demonstrated no significant difference compared to 

Gaussian Process models with better performance measures, as well as either no significant 

difference or significant improvement compared to Gaussian Process models with worse 

performance measures. The statistically ―best‖ Gaussian models all contain the specific combination 

of log P and HD, coupled with either melting point or molecular weight. It appears that melting 

point and molecular weight are, in a purely modelling context, interchangeable in this process, and 

replacing one with the other does not exert a detrimental effect on a particular model. It should also 

be pointed out that the reduced correlation coefficient observed for the Potts and Guy equation (in 

Table 1) may be as a result of the application of this model to our dataset, which differs from that 

used originally to develop this model, and which may be potentially of limited value.Table 5 shows 

a summary of length scale analysis, calculated by Gaussian Process Automatic Resonance Detection 

for each feature in the Gaussian Process models recorded in Table 2. Essentially, a lower length 

scale value indicates a higher significance of the role of a particular molecular descriptor in 

predictions of permeability coefficients. From Table 5, it can be seen that the difference in the 

length scale factor between the molecular features in each model is relatively small.  The only 

exception is the solubility parameter, which demonstrated a minimum of two significance figures 

difference compared to other molecular descriptors.  In essence, this indicates that the solubility 

parameter is not a significant feature in the quantification of percutaneous absorption.  This is 

further supported by addition of solubility parameters into the combination of descriptors, which did 

not lead to a significant improvement in model predictivity.   For example, the Gaussian Process 

combinations [GPR: MW, MPt, SP, log P, HD] and [MPt, log P, HA, HD] offer equally significant 

predictions of log Kp.  In some cases the inclusion of solubility parameters can cause significant 
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reductions in a model’s predictivity – for example, the Gaussian Process combination [GPR: MW, 

MPt, log P, HA, HD] is more significant than [GPR: MW, MPt, SP, log P, HA, HD]. 

 

The results of this particular analysis suggest that, using the physicochemical descriptors of log P, 

the number of hydrogen bonding donor groups, and either molecular weight or melting point, results 

in a Gaussian Process model with optimal predictivity and that the addition of further molecular 

descriptors does not improve the quality of the model. 

 

Comparison of non-linear and linear predictions of skin absorption 

 

Lian et al., (2008) suggested that the simplicity of linear equations enhance the ability of a model to 

provide accurate predictions. This comment has been explored in this study, where the difference in 

predictivity of the permeability coefficient between Gaussian Process and Single Layer Network 

modelling has been explored. The results in Table 4 indicate that the Gaussian Process provides 

significantly better predictions of log Kp than Single Layer Networks for the overall highest ION 

model, as well as the best models within its categories based on specific combinations of 

physicochemical descriptors. The only exception was the model with two features, where the overall 

best Single Layer Network model (where MPt and HA are returned as the most significant 

parameters) demonstrated no significant difference with Gaussian Process model [GPR: MW and 

HD]. The results of the statistical comparisons (paired t-tests) of these models is summarised in 

Table 5. These results suggest that Gaussian Process modelling is, in statistical terms, the most 

appropriate model of those analysed to employ in predicting percutaneous absorption, with the 

observed differences being statistically significant. In terms of models quality (i.e. accuracy of 
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prediting Kp) the statistical comparisons used in this study would suggest the following rank order: 

GP > SLN > QSPR (all types). 



20 
 

 

DISCUSSION 

 

An important point in this study is that the composition of the dataset (the inputs) clearly affects the 

nature of any model derived (the output). This may seem obvious but it is important to make such a 

point, given that the dataset used in this study is different from those employed to develop the 

established QSPR models. However, the specific composition of the dataset can clearly influence 

the nature of the model. Moss et al. (2009) discussed this, in terms of the breadth of the Flynn 

(1990) dataset which underpins so much of the work in this field. That dataset is composed 

predominately of molecules which, for example, have log P values less than 2.0. Moss et al. (2009) 

argued that this may in effect be providing only a limited picture of percutaneous absorption, 

limiting the applicability of the model, and this indeed has been addressed by other researchers (i.e. 

Wilschut et al., 1995) where non-linear modifications of the Potts and Guy (1992) equation were 

proposed. This suggests that a simple linear relationship between Kp and any number of molecular 

descriptors may not fully represent percutaneous absorption, and may result in limited or inaccurate 

predictivity for a particular model. In addition, data visualisation also suggests a clear non-linear 

relationship between physicochemical properties of molecules, suggesting no clear linear trend 

between any of these descriptors (Ghafourian & Fooladi, 2001). Those QSPR models that can be 

loosely described as being of the ―Potts and Guy‖ type suggest that a linear response exists between, 

for example, Kp and log P. As discussed recently (i.e. Moss et al., 2006; Neumannet et al., 2005; 

Pannier et al., 2002) it should be noted that such a relationship only exists within the specific range 

of the models; ostensibly, this reflects the range of data employed to construct the model. It may be 

the case that the models are therefore limited by the range of their dataset and that this study, and 
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those like it, yield models that are more representative of percutaneous absorption across a wider 

range of physicochemical properties.  

 

A range of non-linear methods have been employed to improve predictions of skin absorption. 

Artificial neural networks (ANN) have been employed (Degim et al., 2003), showing high 

predictive power. However, it is a limited method in that ANN’s have a tendency to over-fit where 

large numbers of physicochemical descriptors exist, compared to the data points used. Such models 

are often weighted and are susceptible to over-training (Neumann et al., 2006). This results in 

idiosyncratic results, particularly as the output will tend to fit the noise in such cases, providing poor 

predictivity for new compounds (Guha & Jurs, 2005). GP methods do not alleviate all these issues, 

but minimise them (Rasmussen and Williams, 2006), providing better predictions of percutaneous 

absorption than existing models (Moss et al., 2009).  

 

Therefore, this study employed GP methods of analysis and, in particular, Gaussian Process 

Automatic Resonance Detection. This measures the covariance and length scale of each feature in 

the combination.  The inverse of the length scale determines the relevance between input and output, 

thereby a low length scale value implies that the input and covariance are highly dependent on each 

other.  In other words, this can reduce the limitation of Gaussian Process caused by a ―black box‖ 

approach (Moss et al., 2009) and provide an insight into the significance of specific molecular 

descriptors. Single layer networks (SLN) were also evaluated as they allow interpretation of the 

predictivity limitations in linear model at different ranges of features, providing a comparison 

between linear QSPR and machine learning methods (Gramatica et al., 2007).  
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Data visualisation (Moss et al., 2009) also indicates that Kp is not solely dependent on one molecular 

descriptor. Compounds with similar properties for one particular descriptor can demonstrate 

enormous variations in log Kp.  For example, for compounds with one hydrogen bond donor group, 

log Kp is observed to vary from -1.2 to -5.0 approximately. Such a visualisation of data clearly 

demonstrates the synergic effects between the physicochemical features investigated in this study 

and would indicate either that more than one physicochemical descriptor is required to successfully 

model percutaneous absorption, or that such parameters are not independent of each other (such as 

the relationship between log P and molecular weight) and that the use of particular parameters may 

be limited in terms of gaining specific understandings of mechanisms of absorption. Further, effects 

such as ionisation (and therefore solubility and speciation) have not been considered by any of these 

studies.  

 

Nevertheless, Figure 2 demonstrates a clear improvement in predictivity by the GP model compared 

to the Potts and Guy (1992) model. Figure 2 contains data points obtained from a subset of the 

overall dataset, due to the methods employed for the generation of tests sets, as described in the 

previous section. The test set shown in Figure 2 is that which results in the Potts and Guy (1992) 

model achieving the best performance among the ten test sets generated by this analysis. This is 

compared with experimental log Kp and predicted Kp from the model with the highest ION (%) 

value [GPR: MPt, log P and HD. It is a good example of how GP methods provide a better fit to 

experimental log Kp in contrast to Potts and Guy (1992).  Even with such a subset, where 

performance is, in effect, at an optimum, the statistical performance of the Potts and Guy (1992) 

model results in a majority of the predicted log Kp values being distinctly different from the 

experimental log Kp  values, as indicated by comparatively poor ION and NMSE values. Even in 

this case the GP model is, in statistical terms, more accurate. Further, and rather qualitatively, it may 
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be suggested that the scatter of the output shown in Figure 2 from the GP is substantially less linear 

than that from the QSPR model, and that the latter appears to be more representative of the scatter 

associated with the experimental data. 

 

In the best Gaussian Process models (shown in Table 4), every combination of features contains log 

P and HD together with either melting point or molecular weight. This suggests that molecular 

weight, melting point, log P and HD are important features in permeability coefficient predictions. It 

also suggests at the inter-relationship and lack of independence of certain descriptors. Interestingly, 

in this type of combination, melting point and molecular weight are inter-exchangeable to give 

predictions with no significant differences; for example, the Gaussian Process combinations [MPt, 

Log P, HD] and [MW, Log P, HD] produce models of a similar statistical quality. Furthermore, 

addition of molecular weight or melting point to these models does not significantly influence log 

Kp predictions, such as the Gaussian Process combinations [MW, log P, HD], [MPt.log P, HD] and 

[MW, MPt, log P, HD], which all demonstrate no significant difference in performance measures. 

This inter-exchangeability implies that high level of correlation existed between melting point and 

molecular weight (Williams, 2003).  On the other hand, it should be considered that, while 

molecular weight and melting point are interchangeable for modelling purposes, this does not 

necessarily indicate a degree of correlation between the two parameters. This is reflected in the 

findings of a previous Gaussian Process study (Moss et al., 2009). 

 

HD only appears to exert its importance in skin permeability when coupled with log P. When log P 

is absent, inclusion of HD in the model can significantly decrease a model’s predictive power.  

However, when a model is constructed containing log P, HD constantly demonstrated a lower length 

scale value than HA. In this case, addition of HA to the model does not result in improvements in 
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predictivity. This means that the GP models [GPR: MW, log P, HA, HD] and [GPR: MW, logP, 

HA] have a similar statistical performance, whereas removal of HD can significantly reduce 

performance measures. For example, [GPR: MPt, log P, HD, HA] is significantly better than [GPR: 

MPt, log P, HA] (p = 0.0022). 

 

It is not just the removal of HD that impacts on the statistical quality of models. For example, in the 

absence of log P, the GP model [GPR: MW, MPt and HA] demonstrated no significant difference in 

ION (%) value compared to [GPR: MPt, Log P, HD], the latter being the model with the best overall 

performance measures.  This might be due to the molecular weight bias of the dataset employed in 

this study (Poda et al., 2001), which is predominately based on Flynn (1990).  Further, this also 

highlights that the effects of ionisation might not have been considered in the development of these 

models, or in previous models that employ such literature data. It should also be noted, however, 

that [GPR: MW, MPt and HA] performs poorly in NMSE measurements, indicating that this model 

is not, in a statistical sense, a stable and reliable combination.     

 

The results presented in Table 4 indicate that the Gaussian Process provides significantly better 

predictions of log Kp than Single Layer Networks for the overall highest ION model, as well as the 

best models within its categories based on specific combinations of physicochemical descriptors. 

The only exception was the model with two descriptors, where the overall best Single Layer 

Network model (which returned MPt and HA as being the most significant parameters) 

demonstrated no significant difference with the GP model [MW and HD]).   

 

The ―black box‖ approach as presented previously (Moss et al., 2009) does not allow the elucidation 

of mechanistic information, only predictions of Kp for chemicals of interest. The current study, and 
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the use of feature selection methods, allows all combinations of molecular descriptors to be assessed 

for their ability to improve statistically the quality of models generated. While this has resulted in a 

clear understanding of the models that will improve prediction of Kp, it has demonstrated that the 

combination of descriptors responsible for such improvements is not always clear or consistent. This 

essentially demonstrates the interconnection of the parameters used. For example, an increase in 

lipophilicity can be achieved by increasing MW (Buchwald & Bodor, 2001) and such increases are 

not necessarily linear. A compound’s lipophilicity is determined by its chemical structures and the 

position of the aromatic ring; carbons, benzene rings and amide groups can increase log P (Geinoz et 

al., 2002; Refsgaard et al., 2005).  As molecular weight increases, the number of carbon skeletons 

increases and therefore the lipophilic surface of a compound increases.  The increase in number of 

hydrophobic alkane groups is considered as the major contribution to the increase in lipophilicity 

and hence, to an extent, permeability (Roberts et al., 1995). Water prefers to interact with hydrogen 

bonding groups or ionic molecules rather than non-polar compounds (Williams, 2003).  Ghasemi 

and Saaidpour (2007) highlighted that, as molecular weight increases, the increase in lipophilicity 

resulted in the compound becoming non-polar, increasing solubility in the stratum corneum and 

reducing solubility in the aqueous environment (dermis). This is consistent with the findings of 

previous studies in this field (Moss et al., 2006; 2009). 

 

As number of hydrogen bonding groups on molecule increases, the ability of the molecule to form 

hydrogen bond with water increases and therefore lipophilicity decreases.  Therefore, hydrogen 

bond can, indirectly, be an indication of log P.  Fitzpatrick et al., (2004) suggested that a hydrogen 

bond related descriptor should be included in a model when there is the absence of a parameter 

directly relating to lipophilicity.  
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Compared to log P and molecular weight, the exact mechanistic understanding of how hydrogen 

bonding influences percutaneous absorption is less clear. Several authors (for example, Abraham et 

al., 1995; Pugh et al., 1996; Ravesky and Schaper , 1998) also demonstrated that hydrogen bonding 

is highly related to skin permeability. Poulin & Krishnan (2001) and Potts and Guy (1995) 

suggested that hydrogen bonding can significantly influence percutaneous absorption by reducing 

the compound’s ability to penetrate the skin, and that hydrogen bond acceptor groups play a more 

significant role than donor groups, a suggestion also supported by Pugh et al. (1996).   

 

However, the findings of this study suggest a different conclusion, where generally acidic hydrogen 

bond donor groups have been shown to be more significant than generally basic hydrogen bond 

acceptor groups. These findings are in agreement with those presented by El Tayar et al (1991) and 

Geinoz et al. (2002).  This discrepancy may be due to the role ionisation plays in both the overall 

process of percutaneous absorption but also in the nature of the descriptors. Poulin and Krishnan 

(2001) suggested that the effects of lowering Kp by hydrogen bonding are particularly strong when 

the molecule has two or more hydrogen bonding donors or acceptors group in the compounds. 

According to Roberts et al., (1995) and Ghafourian & Fooladi (2001) inclusion of one hydrogen 

bond group (either a donor or acceptor) to the hydrocarbon skeleton would cause a substantial 

reduction in Kp. Addition of subsequent groups also reduce Kp, but do so in a non-linear additive 

manner. 

 

Hadgraft (2004) highlighted that interactions between compound and the polar head groups of skin 

lipids in the intercellular channels plays a significant role in percutaneous absorption. Molecules 

containing hydrogen bond groups can associate with the immobilised polar head groups of the 

lipids. As a result, their passage across the skin may be hindered, decreasing the diffusion 
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coefficient and reducing their ability to diffuse across stratum corneum (Pugh et al., 2000).  This 

may result in hydrogen bonding and ionic forces modification, which implies a change of head 

group domains.  This complicates skin penetration as such an alteration may influence permeation of 

other exogenous chemicals in, for example, the same formulation. The number of hydrogen bond 

groups may vary during the partitioning process. For example, once a donor group donates a 

hydrogen bond, it has the potential to become a hydrogen bond acceptor, while groups that have not 

been ionised remained as hydrogen bond donor groups. Further, intermolecular hydrogen bond has a 

substantial influence on aqueous solubility (Yin et al., 2002) since the O-H and N-H bonds are 

strongly polarized and may readily facilitate donation.  

 

Most of the permeants in the data set are either weak acids or weak bases. Hence, ionisation can 

occur at different pH values (Hadgraft, 2004).  According to Aberg et al. (2008), the skin surface is 

acidic with pH ranging from 4 to 6.  However, the pH of extracellular fluid in the body is 

approximately 7.4, and implies a large pH gradient between the stratum corneum and underlying 

tissues. Removal or addition of a hydrogen bond can lead to a compound becoming ionised. The 

extracellular stratum corneum lipid contains free fatty acids that can undergo dissociation, resulting 

in a negative surface charge caused by the presence of ionised carboxyl groups (Aberg et al., 2008). 

As the skin is a negatively charged membrane, this electrostatic interaction becomes a hindrance of 

ionised penetrants (Raiman et al., 2003). Thus, ionic compounds, particularly cations, have a lower 

ability to penetrate the skin compared to neutral compounds. 

 

The disparity between the findings of Potts and Guy (1995) and this study also relate to ionisation.  

During the process of experimentally measuring Kp, the solute is placed in a solvent where it is 

possible for the solute to interact with the solvent and, depending on the pKa of the solute and the 
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pH of the solvent, for the solute to ionise. It should also be considered that log P values are also 

measured with ionisable compounds under conditions that may favour more ionic species, thus 

influencing the log P value obtained. Thus, experimental measurements of Kp might not 

appropriately reflect the effects of hydrogen bonding but may instead reflect the effects of 

ionisation.   
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CONCLUSIONS 

 

In comparing different approaches for developing predictive models of percutaneous absorption, the 

current study agrees with previous work (Moss et al., 2009) that suggests the inherently non-linear 

nature of the skin data set used. Further, Gaussian Process machine learning methods produce 

statistically more robust models than other approaches (SLN or QSPR-based models). The use of 

feature selection enables the development of a mechanistic understanding of percutaneous 

absorption. While this approach results in specific models that are statistically superior, it also 

indicates clearly the interdependence of the physicochemical descriptors employed in this, and in 

many other, studies. This suggests that the approach of quantifying models of skin absorption by 

means of a simple equation may have limited mechanistic value. While hydrogen bonding appears 

to play an important role in percutaneous absorption the issue of ionisation may limit the validity 

and accuracy of models.  
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Table 1. 

Descriptors 

Models or 

Machine 

Learning 

Method Assessed 

ION (%) ± SD 

(higher 

number is best) 

NMSE ± SD 

(smallest 

number is best) 

CORR ± SD 

(highest 

value is best) 

p-values (QSPR vs. SLN) p-values (QSPR vs. GP) p-values (SLN vs GP) 

ION 

(%) 
NMSE CORR 

ION 

(%) 
NMSE CORR 

ION 

(%) 
NMSE CORR 

Log P and 

Molecular 

Weight 

Potts & Guy 

(1992) 

-681.08 ± 

139.93 
7.52 ± 0.80 0.25 ± 0.11 0.00 0.00 0.08 0.00 0.00 0.01 

 

Cronin et al., 

(1999) 
-66.81 ± 41.90 1.70± 0.42 0.31 ± 0.12 0.00 0.00 0.36 0.00 0.00 0.00 

Moss & Cronin 

(2002) 
-59.05  ± 39.06 1.62 ± 0.39 0.29  ± 0.12 0.00 0.00 0.26 0.00 0.00 0.002 

Luo et al., (2007) -53.25 ± 36.24 1.56± 0.35 0.24 ± 0.11 0.00 0.00 0.06 0.00 0.00 0.00 

SLN 9.83 ± 11.1 0.93 ±  0.17 0.34 ±  0.17 
  0.00 0.00 0.01 

GPR 22.89 ± 10.62 0.79 ± 0.17 0.49 ± 0.11 

Log P, 

Molecular 

Weight and 

Melting 

Point 

Barratt (1995) 
-4977.6 ± 

3318.9 
51.60 ± 34.32 0.30 ± 0.15 0.00 0.00 0.76 0.00 0.00 0.00  

SLN 5.69 ± 12.32 0.97 ± 0.19 0.31 ± 0.14 

  0.00 0.00 0.00 
GPR 27.61 ± 9.32 0.75 ± 0.15 0.53 ±  0.11 
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Table 2. 

IO

N 

(%) 

ran

kin

g 

 GPR 

Combinati

on of 

Features 

MP

t.L

og 

P.H

D 

MW.

MPt.

Log 

P.HD 

MW.M

Pt.SP.L

og 

P.HD 

MPt

.Lo

g 

P.H

A.H

D 

MW.

SP.L

og 

P.H

D 

MPt.

SP.L

og 

P.H

D 

MW.

MPt.

Log 

P.HA.

HD 

M

W.

Log 

P.H

D 

M

W.

Log 

P.H

A.H

D 

MW.M

Pt.SP.L

og P 

.HA.H

D 

MW.

MPt.

HA 

MW.M

Pt.HA.

HD 

1 

GPR  

MPt.LogP.H

D 

- X X X X X X X X X X X 

2 

GPR  

MW.MPt.Lo

gP.HD  

X - X X X X X X √ X X √ 

3 

GPR  

MW.MPt.SP.

LogP.HD  

X X - X X X √ X √ X √ √ 

4 

GPR  

MPt.LogP.Ha

.HD  

X X X - X X X X X X X X 

5 

GPR  

MW.SP.LogP

.HD  

X X X X - X X X X X X √ 

6 

GPR  

MPt.SP.LogP

.HD  

X X X X X - X X X X X √ 

7 

GPR  

MW.MPt.Lo

gP.Ha.HD  

X X √ X X X - X X √ X √ 

8 

GPR  

MW.LogP.H

D 

X X X X X X X - X X X X 

9 

GPR  

MW.LogP.H

a.HD  

X √ √ X X X X X - X X X 

10 

GPR  

MW.MPt.SP.L

ogP.Ha.HD  

X X √ X X X √ X X - X √ 

11 GPR  X X √ X X X X X X X - √ 
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MW.MPt.HA 

12 

GPR  

MW.MPt.HA

.HD  

X √ √ X √ √ √ X X √ √ - 

Note: X indicates no significant difference (p < 0.05) and √ indicates a significant difference (p > 0.05) between the two 

groups compared. 
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Table 3.  

 

 

Statistical performance 

measures Length scale  

Combination of 

features 

ION (%) 

± SD 

NMSE ± 

SD 

CORR ± 

SD MW MPt SP Log P HA HD Features significance Ranking 

MPt.LogP.HD 
37.59 ±  

8.54 

0.64 ± 

0.13 

0.63 ± 

0.09 
- 1.23 - 0.51 - 0.99 Log P > HD > MPt 

MW.MPt.Log P.HD 
37.40 ± 

7.56 

0.65 ± 

0.15 

0.62 ± 

0.09 
5.22 1.28 - 0.51 - 1.03 Log P > HD > MPt > MW 

MW.MPt.SP. 

Log P.HD 

37.35 ± 

7.23 

0.65 ±  

0.14 

0.62 ± 

0.09 
5.20 1.27 31.09 0.51 - 1.0 Log P > HD > MPt > MW > SP 

MPt.Log P.Ha.HD 
35.19 ±  

10.81 

0.67 ± 

0.18 

0.62 ± 

0.10 
- 1.14 - 0.85 2.51 1.11 Log P > HD > MPt > HA 

MW.SP. 

Log P.HD 

35.12 ±  

7.08 

0.67 ±  

0.12 

0.62 ± 

0.08 
0.77 - 83.70 0.64 - 0.62 HD > Log P > MW > SP 

MPt.SP.Log P.HD 
34.21 ± 

11.46 

 0.68 ± 

0.19 

 0.61 ± 

0.10 
- 1.22 24.47 0.51 - 0.98 Log P > HD > MPt > SP 

MW.LogP.HD    0.77 - - 0.64 - 0.62 HD > Log P > MW 

MW.Log P.Ha.HD    0.62 - - 0.78 0.64 0.41 HD > HA > Log P > MW 

MW.MPt.SP. 

Log P.Ha.HD 

   
0.90 1.31 53.92 0.86 0.70 0.39 HD > HA > Log P > MW > MPt > SP 

MW.MPt.Ha 
   

0.38 0.86 - - 0.43 - 
MW > HA > MPt 

 

MW.MPt.Log P. 

Ha.HD 

   
0.90 1.32 - 0.87 0.70 0.40 

HD > HA > Log P 

> MW > MPt 
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MW.MPt.Ha.HD    0.26 1.91 - - 0.38 0.70 MW > HA > HD > MPt 
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Table 4. 

Highest 

ION (%) 

model 

GPR models SLN models GPR 

ION(%) 

± SD 

GPR 

NMSE 

± SD 

SLN ION 

(%) 

± SD 

SLN 

NMSE 

± SD 

P-value 

(ION %) 

P-value 

(NMSE) 

Significant 

difference 

(ION %) 

Significant 

difference 

(NMSE) 

Overall MPt.LogP.HD MPt.HA 
37.59 

± 8.54 

0.64 

± 0.13 

11.23 

± 11.29 

0.91 

± 0.13 
0.00 0.00 Y Y 

2 features MW.HD MPt.HA 
25.54 

± 12.90 

0.77 

± 0.19 

11.23 

± 11.29 

0.91 

± 0.13 
0.34 0.046 N Y 

3 features MPt.LogP.HD MPt.SP.HA 
37.59 

± 8.54 

0.64 

± 0.13 

10.77 

± 11.52 

0.91 

± 0.14 
0.00 0.00 Y Y 

4 features 
MW.MPt.log P 

.HD 

MW.MPt.SP. 

HA 

37.40 

± 7.56 

0.65 

± 0.15 

9.36 

± 11.20 

0.93 

± 0.18 
0.00 0.00 Y Y 

5 features 
MW.MPt.SP. 

Log P.HD 

MW.MPt.SP. 

HA.HD 

37.35 

± 7.23 

0.65 

± 0.14 

6.90 

± 13.33 

0.96 

± 0.19 
0.00 0.00 Y Y 

6 features 
MW.MPt.SP. 

Log P.HA.HD 

MW.MPt.SP. 

Log P.HA.HD 

31.61 

± 10.70 

0.71 

± 0.15 

3.47 

± 14.24 

0.99 

± 0.20 
0.00 0.00 Y Y 
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Table 5. 

Model 1 Model 2 Model 1 Model 2 P-value Significance 

difference 
ION (%) 

± SD 

NMSE 

± SD 

ION (%) 

± SD 

NMSE 

± SD 

  

ION (%) NMSE 

GPR 

Mpt. 

LogP.HD 

SLN 

MPt.HA 

37.59 

± 8.54 

0.64 

± 0.13 

11.23 

± 11.29 

0.91 

± 0.13 0.00 0.00 Y 

GPR 

MPt. 

LogP.HD 

Luo  

et al., 

(2007) 

37.59 

± 8.54 

0.64 

± 0.13 

-53.25  

± 36.24 

1.56 

± 0.35 0.00 0.00 Y 

SLN 

MPt.HA 

Luo  

et al., 

(2007) 

11.23 

± 11.29 

0.91 

± 0.13 

-53.25  

± 36.24 

1.56 

± 0.35 0.00 0.00 Y 
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LEGENDS FOR FIGURES AND TABLES 

 

 

Table 1. Performance measures and statistical comparisons of QSPR and corresponding machine 

learning methods models (in all cases, 10 evaluations were carried out in order to measure standard 

deviations and P-values for each parameter).  Highlights indicate the models with the best 

performance measured values within each category. Statistical analysis relates to p-values for t-tests 

carried out between the performance measures of each QSPR model and corresponding Single Layer 

Network Machine Learning models. Table 2. Summary of the statistical analysis of the comparisons 

of Gaussian Process models with different combinations of physicochemical descriptors.  

 

Table 3. Statistical performance measures of the best-performing models, and significance of 

molecular descriptors employed in the Gaussian Process models. 

 

Table 4. Statistical analysis (paired t-test) between the Gaussian Process and Single Layer Network 

models with the highest ION (%) in each number of molecular descriptor categories. 

 

Table 5. Statistical analysis of the best models obtained by Gaussian Process, Single Layer Network 

and QSPR methods. 
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Figure 1. Comparison of the improvement over the naïve model for (a) machine learning methods 

(GP and SLN) compared with a range of QSPR models that relate the permeability of a penetrant to 

log P and MW and (b) with the QSPR model proposed by Barratt (1995). 

 

Figure 2. Comparison of the predictive ability of Gaussian Process models with the QSPR model 

proposed by Potts and Guy (1992) across a wide range of lipophilicities. Data points shown are 

obtained from a subset of the overall dataset (as described in the Methods section). The test set 

shown is that which results in the Potts and Guy (1992) model achieving the best performance 

among the ten test sets generated by this analysis. 

 

 

 

 

 

 

 


