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Abstract—This paper begins by discussing the running of the
first distributed queries across a heterogeneously distributed
scientific database between Manchester and Portsmouth. It then
investigates the join operations over the distributed terabyte
datasets. Finally, we discuss our experiences of distributed
query optimization by pushing the local join operations to the
database level.

I. INTRODUCTION

Started in April 2000, the Sloan Digital Sky Survey (SDSS)
is an influential project building a very detailed digital map
of the visible stars and galaxies in the night sky [13], [14].
The SDSS-III is making the map of the Milky Way and
searching for extrasolar planets as well as trying to solve the
mystery of dark energy [3]. To Date with data release 9 (DR9),
the data produced by the survey is summarised in an sixty-
terabyte relational database containing photometric objects and
spectroscopic information with 14,555 square degrees of the
sky coverage. The SDSS data is available to the scientists and
the general public via the SkyServer (http://skyserver.sdss.org),
the Science Archive Server (SAS) DR9 (http://dr9.sdss3.org)
or various mirror sites.

In recent papers we described how we created an exper-
imental distributed version of the SDSS database [6], [7],
[9], [11] and experimented with data integration using union
queries [12] via the Grid middleware. This is based on OGSA-
DQP Distributed Query Processing [15] and the OGSA-
DAI middleware[1]. We used OGSA-DAI and OGSA-DQP
to integrate the data across different sites—forming a logical
distributed database system. Global distributed queries can be
processed over this logical database system [8].

In particular, this paper will focus on running local join
operations with distributed queries over a distributed SDSS
database among different network nodes. We describe the
issues when trying to run the local join operation with gigabyte
and terabyte datasets.

Please refer to [7], [9] for the details of how we distributed
the SDSS MyBestDR5 database system among hosts within
the University of Portsmouth and between the universities of
Manchester and Portsmouth.

Please refer to [11] for the details of the OGSA-DQP system
and its architecture. This paper follows on from our earlier
publications [5], [6], [7], [9], [10], [11], [12].

II. DISTRIBUTING QUERIES OVER A WIDE AREA
NETWORK

In the last paper [12], we successfully ran union queries
across multiple machines within the University of Portsmouth
LAN for the first time. In this paper, we tried to run similar
queries on a larger scale.

SELECT OBJID
FROM FIRST
WHERE ID>20506
AND ID<20642

(1)
Query 1 uses > and < in the WHERE clause to limit the result
data to a particular range. It returns 351 rows from the Oracle
database SAND and 708 rows from SQL Server database
DR5one on Ace. It returns 1,059 rows when executed against
the full SDSS database, taking less than one second.

There was no problem on running the query 1 individually
against SAND on Manchester Vidar or DR5one on Portsmouth
Ace through OGSA-DQP. Next we tried the following equiva-
lent OGSA-DQP query on the distributed BestDR5 database,
between Portsmouth Ace and Manchester Vidar over the
WAN:

(SELECT SAND_FIRST.OBJID FROM SAND_FIRST
WHERE SAND_FIRST.ID>20506 AND SAND_FIRST.ID<20642)

UNION ALL
(SELECT DR5one_First.objID FROM DR5one_First
WHERE DR5one_First.id>20506 AND DR5one_First.id<20642)

(2)
The OGSA-DQP query 2 failed, but we did not see any
obvious error message on the command line output (the query
seemed to hang forever).

We enabled the debugging and looked into the DQP evalu-
ator log files for both individually run query 1 and the union
query 2. For the failed query 2, running across Ace and Vidar,
the log contained this output:

Starting next operation on root exchange 2
[...]
Received EOF from input
[...]
service.TransportHandler
(TransportHandler.java:170)
- Exception while sending data:
nested exception is:
java.net.ConnectException: Connection refused

The exception message suggests something is blocking the
connection for sending the data. We were running the query
from Ace in Portsmouth, so we had asked for the Manchester
firewall to be configured so evaluator and data service at
Manchester were accessible from Portsmouth.
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Fig. 1. Query plan for running query 2 on Ace

Figure 1 illustrates the query plan for running query 2 on
Ace. The red line in the query plan indicates the data flow
from Vidar evaluator to Ace evaluator. This was an unexpected
feature—that we have to open the evaluator on Ace, because
evaluator at Vidar talks back to it. We had only anticipated
the need to open up the firewall ports for the evaluator on
Vidar, and the coordinator and data service on Ace (but not
the firewall port for the evaluator on Ace to receive data from
Vidar).

We configured the DQP evaluator on Ace on another port,
which is opened through the firewall at the University of
Portsmouth. The DQP query 2 ran successfully and returned a
1, 059-row result set in a total time of 5-10 seconds across Ace
and Vidar. The OGSA-DQP run-time is related to the memory
setting on the DQP Evaluator: more memory leads to less time.
For example, it took only five seconds to run query 2 through
OGSA-DQP on Ace when its evaluator memory was set to
500MB, but it took about ten seconds if the evaluator memory
was below 256MB. (The time for executing the original SDSS
query 1 without using OGSA-DQP was less than 1 second.)

We successfully ran union queries across multiple machines
between Portsmouth and Manchester, after some firewall prob-
lems were resolved.

This was an important milestone in the project—we had
run the first distributed query against the full distributed SDSS
database successfully. However, this was a simple table-scan
type query, involving only one table. We are going to discuss
more interesting queries involving joins in the following
section.

III. LOCAL JOIN OPTIMIZATION

The join operation joins two or more tables together, by
matching rows from one table to another using one or more
column values (join condition). It has received considerable
attention as one of the most important operations in a relational
database [16]. For example, there are many tables and views

in the SDSS database, most of them are linked together with
some kinds of cross-referencing. For example the ParentID
of Galaxy or Star could be cross-referenced to the objID
in PhotoObjAll, and we could find out which stars and
galaxies have the same parent object through a join operation
like the one in sample query 3 below [8].

SELECT Galaxy.ObjID, Galaxy.u, Galaxy.g,
Galaxy.r, Galaxy.i, Galaxy.z

FROM Galaxy, Star
WHERE Galaxy.parentID > 0
AND Galaxy.parentID = Star.parentID

(3)
Optimizing the join operation is important when running

the OGSA-DQP queries.
Some of the sample queries in our earlier publications were

relatively simple; they only involved one table per query, for
example table PhotoObjAll in query 1. At the end of an
earlier publication [9], we also did some local join queries on
a small Oracle database buck involving two or three tables. In
this paper we are going to further test the join queries involves
more tables through OGSA-DQP.

Consider this query:
SELECT PHOTOOBJALL.OBJID, PHOTOOBJALL.RA, PHOTOOBJALL.DEC,

NEIGHBORS.NEIGHBOROBJID, NEIGHBORS.DISTANCE
FROM PHOTOOBJALL, NEIGHBORS
WHERE PHOTOOBJALL.OBJID = NEIGHBORS.OBJID
AND PHOTOOBJALL.OBJID = 587726015612912497

(4)
It returns two rows when executed against the full SDSS
database, taking less than 1 second. Under the database
partitioning described in the earlier publications [7], [9] , the
rows in the result set of this query will come from the SDSS
Oracle partition called buck in the case of the distributed
MyBestDR5 database (subset SDSS) and the partition called
SAND in the case of the distributed BestDR5 database (full
SDSS).

We first ran query 4 against buck through OGSA-DQP. It
took 2 minutes 31 seconds (with debugging turned off). We
then ran it against sand through OGSA-DQP. In that case the
query never finished.

To try to find out what was happening we ran query 4 on
buck and sand through OGSA-DQP with debugging turned
on. The size of the coordinator log file on Gizmo (host for
buck) grew to 568MB while the coordinator log on Vidar
(host for sand) kept growing larger and larger until we killed
the OGSA-DQP query.

The databases buck and sand have the same SDSS Oracle
database schema. For this reason, the query plans on buck
and sand look the same, even though the databases have
very different data volumes. Figure 2 shows the query plan
for query 4 on the SDSS Oracle databases.

Compared with the first query plan shown in [9], the
new feature here is obviously the HASH_JOIN operator. The
HASH_JOIN operator takes the outputs from APPLY opera-
tions 1 and 3 and joins them together under the condition that
PHOTOOBJALL.OBJID is equal to NEIGHBORS.OBJID.
The joined result data is then projected in the APPLY operation
5 to give the five requested columns, before being sent to the
root evaluator in the coordinator.
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Fig. 2. Query plan for query 4 on the SDSS Oracle database
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Fig. 3. Query plan for query 4 on buck highlighting two SQL Queries

After applying our optimization described in [9] the
TABLE_SCAN/APPLY sub-trees of the query plan form two
SQL queries directly executed against the database. The green
blobs in the query plan of Figure 3 highlight these two SQL
queries. The HASH_JOIN/APPLY sub-tree are computed from
the result sets within the evaluator itself.

Looking at the source code for the OGSA-DQP evaluator,
we find ObjectBuilder converts the HASH_JOIN node to
a HashJoinOp object. The documentation comment on the
Open() method of this class says:

The Open() method opens the left input, recur-
sively calls the next method for the left input and
hashes each tuple to the hash table, until the left
input is exhausted. Then it opens the right input.

The documentation comment on the Next() method says:
The Next() method fetches the next tuples from
the right input, applies the same hash function and
probes the hash table for matches. If a match is
found, the two tuples are joined and verified against
the predicate. If the predicate evaluation returns true,
the tuple is returned to the upper operator, otherwise
the next tuple is fetched from the right input—this
process is repeated till the EOF is found.

By the tuple is returned to the upper operator, they just mean
that the Next() method returns this tuple to the operator
above in the query plan.

What this is saying is that the whole of the left input is
loaded into evaluator memory. The right input is streamed in
and selected or discarded row by row. In our example the
left input is only going to be a single selected row from
PHOTOOBJALL. But all rows from NEIGHBORS will be
streamed through the evaluator as the right input. That is a
table with a lot of rows .

To find out exactly how many rows the HASH_JOIN
operation of query 4 has to deal with, we need to take a look at
the SQL queries in the TABLE_SCAN/APPLY sub-trees of the
Figure 3. The SQL query for TABLE_SCAN(0)/APPLY(1)
sub-tree is:

SELECT PHOTOOBJALL.OBJID, PHOTOOBJALL.RA, PHOTOOBJALL.DEC
FROM PHOTOOBJALL
WHERE PHOTOOBJALL.OBJID = 587726015612912497

(5)
The SQL query for TABLE_SCAN(2)/APPLY(3) sub-tree is:

SELECT NEIGHBORS.NEIGHBOROBJID, NEIGHBORS.DISTANCE
FROM NEIGHBORS

(6)
SQL query 5 returns only 1 row on either buck or SAND.
But SQL query 6 returns 355, 214 rows from the buck
database and 1, 431, 788, 773 rows from the SAND database.
The evaluator has to inspect all these intermediate result data
to find the two rows in the final result. Processing all these
intermediate result data in the evaluator is incredibly slowing
down the whole query process.

Having to process large numbers of intermediate data in the
evaluator is the reason why the query 4 through OGSA-DQP
is relatively slow on buck and appears to hang indefinitely
on sand. This also explained why the evaluator log grew so
large during the OGSA-DQP query processing with debugging
enabled.

Clearly what we would like is for the local join to be done
in SQL. Figure 4 captures such an optimization, abstracting
all the TABLE_SCAN, APPLY and HASH_JOIN operations
into a single SQL query.

So we want to do some more optimization on the evaluator,
to amalgamate local joins into single SQL queries that can
be executed at the database level, therefore avoiding the
intermediate data flooding the evaluator. We now sketch an
optimization to local joins that involves intervention in classes
TableScanOp, Operator, BaseOperator, ReduceOp,
and JoinAndEvaluateBaseOperator, and introduces a
new class called SQLSelect.
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Fig. 4. Query plan for query 4 on buck highlighting single SQL Query
after optimization.

In the original version of the OGSA-DQP evaluator, direct
SQL queries against the local database are usually made
by TableScanOp1. This operator executes a query of the
general form:

SELECT * FROM table WHERE <predicate>

As we have explained, this is the most complex kind of query
that OGSA-DQP normally executes against the underlying
SQL databases. More complex queries are built from these
queries by processing their output, within the evaluator.

We implemented our optimization code by first gener-
alizing this original TableScanOp, and renaming it to
SQLSelect. The new class can execute a query of the
general form:

SELECT <select-list> FROM table1, ..., tableN WHERE <predicate>

The constructor for this class takes a list of tables, a “tuple
type” that includes the list of fields to select, and the predicate.
We added two mutator methods called project() and
join(). The first mutator changes the SQL query created
by the constructor, replacing the tuple type with one that
projects the selection list. The second mutator takes a second
SQLSelect and a join condition (and a tuple type). The
tables in the SQLSelect argument are added to the tables
of the original query, and the predicates are “anded” together
with the join condition. Like all OGSA-DQP operators, our
SQLSelect class follows the iterator model [17] and imple-
ments methods Open(), Next() and Close() to run the
query, then iterate through its result set.

Now the base class of the OGSA-DQP operators is modified
to add a property sqlOp of type SQLSelect.

1The HashLoopJoinOp can also make direct queries, but we did not
usually see this in our query plans.

The TableScanOp class now becomes very simple.
Its constructor just initializes the sqlOp property with a
SQLSelect containing a single table and a tuple type equiv-
alent to selecting “*”. Its Open(), Next() and Close()
methods just call the same methods on sqlOp.

The OGSA-DAI ReduceOp is characterized by an input
operator inputOp and an operation type applyOpType. We
modified this class so that its Open() method does something
like2:

SQLSelect inputSql = inputOp.getSqlOp() ;
if(inputSql != null && "PROJECT".equals(applyOpType)) {
sqlOp = inputSql.project(tupleType) ;

}
if(sqlOp != null) {
return sqlOp.Open();

}
... else use original implementation of Open()...

In other words, if the input operation has a SQLSelect
equivalent, and the reduction is a simple projection operation
(the commonest kind of reduction), the input SQLSelect is
projected and the result becomes the SQLSelect replace-
ment for this class, which is opened. Otherwise the original
implementation is used. The Next() method looks something
like this:
if(sqlOp != null) {
return sqlOp.Next();

}
... else use original implementation of Next()...

A join operator is characterised by a left input, a right input,
and a join condition. We modified the Open() method to
something like:

SQLSelect leftSql = leftInput.getSqlOp() ;
SQLSelect rightSql = rightInput.getSqlOp() ;
if(leftSql != null && rightSql != null &&

... input queries refer to same local database ...) {
sqlOp = leftSql.join(rightSql, mExpression, tupleType) ;

}
if(sqlOp != null) {
return sqlOp.Open();

}
... else use original implementation of Open()...

So if the input operations both have a SQLSelect equivalent
referring to the same database, these SQLSelects are joined
and the result becomes the SQLSelect replacement for this
class, which is opened. Otherwise the original implementation
is used.

This recursive approach ensures that if all child components
of the query have a “SQL equivalent”, the whole query is
implemented as local SQL. If (for example) any child is an
exchange operator, there will be no SQL equivalent, and the
original implementation is used.

After implementing these changes to the OGSA-DQP, we
ran query 4 through OGSA-DQP against both buck and
SAND. The OGSA-DQP query on buck now took only
12 seconds with debugging turned off. Compared with the
original time of 2 minutes 31 seconds before the optimization,
this is more then 12 times faster. More importantly, the query
on SAND also finished within seconds (it never finished at all
before the optimization). The coordinator log on Vidar is also

2This is pseudo code. The real logic is a bit more complicated.



relatively small. (The time for executing the original SDSS
query 4 without using OGSA-DQP was less than 1 second.)

As well as running the test query on the Oracle databases,
we also ran a similar query against the DR5one SQL Server
database through the optimized OGSA-DQP and got the
correct result back within seconds.

SUMMARY AND FUTURE WORK

In this paper we first showed how to run a query against
a distributed version of the full SDSS database using OGSA-
DQP. We then identified a problem when running the local join
operation through OGSA-DQP. With the standard implemen-
tation of OGSA-DQP, the local join queries ran on a gigabyte
database (slowly) but failed to run on the terabyte database.
We rewired the OGSA-DQP evaluator and pushed the local
join operation to the database level. Our solution produced
a dramatic improvement to the query performance. The local
join queries now run much faster in both gigabyte and terabyte
databases. In future publications we will investigate distributed
join queries, involving cross-joins.
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