Preprint typeset using LATEX style emulateapj v. 12/16/11

CHASING THE IDENTIFICATION OF ASCA GALACTIC OBJECTS (CHICAGO) - AN X-RAY SURVEY OF UNIDENTIFIED SOURCES IN THE GALACTIC PLANE. I: SOURCE SAMPLE AND INITIAL RESULTS

GEMMA E. ANDERSON^{1, †}, B. M. GAENSLER¹, DAVID L. KAPLAN², PATRICK O. SLANE³, MICHAEL P. MUNO^{4, ‡}, BETTINA POSSELT⁵, JAESUB HONG³, STEPHEN S. MURRAY⁶, DANNY T. H. STEEGHS⁷ CRYSTAL L. BROGAN⁸, JEREMY J. DRAKE³, SEAN A. FARRELL¹, ROBERT A. BENJAMIN⁹, DEEPTO CHAKRABARTY¹⁰, JANET E. DREW¹¹, JOHN P. FINLEY¹², JONATHAN E. GRINDLAY³, T. JOSEPH W. LAZIO¹³, JULIA C. LEE³, JON C. MAUERHAN¹⁴, MARTEN H. VAN KERKWIJK¹⁵

ACCEPTED TO APJ: February 28, 2014

ABSTRACT

We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the $F_x \sim 10^{-13}$ to 10^{-11} erg cm⁻² s⁻¹ X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multi-wavelength follow-up program, with the ultimate goal of classifying the > 100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these *Chandra* observations within 3' of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the *Chandra* observations reveal that the primary populations of Galactic plane X-ray sources that emit in the $F_x \sim 10^{-13}$ to 10^{-11} erg cm⁻² s⁻¹ flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding-wind binaries, X-ray binaries, and magnetars. There is also a fifth population that is still unidentified but, based on its X-ray and infrared properties, likely comprise partly of Galactic sources and partly of active galactic nuclei.

Keywords: surveys – X-rays: general – X-rays: binaries – X-rays: galaxies – X-rays: stars

1. INTRODUCTION

¹ Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia: gemma.anderson@astro.ox.ac.uk

² Department of Physics, University of Wisconsin, Milwaukee, WI 53201,

USA ³ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138,

USA ⁴ Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

Department of Astronomy and Astrophysics, Pennsylvania State University, PA 16802, USA

⁶ Department of Physics and Astronomy, John Hopkins University, Baltimore, MD 21218, USÅ

- Department of Physics, University of Warwick, Coventry CV4 7AL, UK ⁸ National Radio Astronomy Observatory, Charlottesville, VA 22903,
- USA ⁹ Department of Physics, University of Wisconsin, Whitewater, WI 53190,

¹⁰ MIT Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA

- 02139, USA ¹¹ Centre for Astrophysics Research, STRI, University of Hertfordshire, Hatfield AL10 9AB, UK
- ¹² Department of Physics, Purdue University, West Lafayette, IN 47907,
- USA ¹³ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ¹⁴ Spitzer Science Center, California Institute of Technology, Pasadena,

CA 91125, USA ¹⁵ Department of Astronomy and Astrophysics, University of Toronto,

- Toronto, ON M5S 3H4, Canada
- [†] Current address: Department of Physics, Astrophysics, University of Oxford, Denys Wilkinson Building, Oxford, OX1 3RH, UK

[‡] Current address: Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108, USA

From 1996 to 1999, the Advanced Satellite for Cosmology and Astrophysics (ASCA) performed the ASCA Galactic plane survey (AGPS), which was designed to study 40 deg² of the Xray sky, over the Galactic coordinates $|l| \lesssim 45^{\circ}$ and $|b| \lesssim 0^{\circ}.4$, in the 0.7-10 keV energy range (Sugizaki et al. 2001). This survey resulted in a catalog of 163 discrete X-ray sources with X-ray fluxes between $F_x \sim 10^{-13}$ and 10^{-11} erg cm⁻² s⁻¹, many of which are much harder and more absorbed than any other X-ray source previously detected in the Galactic plane. While the AGPS yielded the first ever $\log N - \log S$ distribution of hard (2-10 keV) Galactic plane X-ray sources, ASCA's limited spatial resolution (3') and large positional uncertainty (1')left > 100 of the AGPS sources unidentified. Even in the era of the Chandra X-ray Observatory and the XMM-Newton telescope, a substantial fraction of the AGPS source catalog, and therefore a large fraction of the Galactic plane X-ray population, still remain unidentified.

For the last few years, new and archival multi-wavelength data have been used to improve the general understanding of the Galactic X-ray sources detected in the AGPS. Recent work has demonstrated that unidentified ASCA sources represent a whole range of unusual objects. For example Gelfand & Gaensler (2007) used new and archival Chandra and XMM observations to identify the AGPS source AX J155052-5418 (also known as 1E 1547.0-5408) as a magnetar sitting at the center of a faint and small, previously unidentified, radio supernova remnant (SNR) called G327.24-0.13. Investigations of archival XMM data allowed Kaplan et al. (2007) to identify the AGPS source AX J183528-0737 as a likely symbiotic X-ray binary (SyXB) comprising of a late-type giant or supergiant and a neutron star (NS) with a 112s pulse period. Gaensler et al. (2008) identified the AGPS source AX J172105-3726 as the X-ray emission associated with the radio SNR G350.1-0.3. The XMM X-ray spectrum, combined with the presence of non-thermal, polarized, radio emission, showed G350.1-0.3 to be a very young and luminous SNR. A central compact object was also resolved in these X-ray observations and identified as a NS. XMM (Funk et al. 2007) and Chandra (Lemiere et al. 2009) observations have demonstrated that the AGPS source AX J164042-4632 is an Xray pulsar wind nebula (PWN) located at the center of the radio SNR G338.3-0.0. Chandra results, discussed in Anderson et al. (2011), have revealed that two AGPS sources, AX J163252-4746 and AX J184738-0156, are massive stars in colliding wind binaries (CWBs). New Chandra, XMM, and ATCA observations have also been used to identify the AGPS source AX J162246-4946 as the radio and X-ray emitting magnetar, PSR J1622-4950, and have exposed the likely X-ray transient nature of this source (Anderson et al. 2012). These identifications over the last 8 years have therefore demonstrated that many of the unidentified AGPS sources are unusual and rare Galactic plane X-ray objects.

The most comprehensive X-ray survey to-date, in terms of area coverage, was performed by the ROSAT X-ray Satellite (for example see Voges et al. 1999), which mapped the soft X-ray source population (0.1-2.4 keV) down to a flux sensitivity of a few 10^{-13} erg cm⁻² s⁻¹. Projects that fo-cused on the *ROSAT* data covering the Galactic plane (e.g. the ROSAT Galactic Plane Survey; Motch et al. 1997, 1998) demonstrated that stars and AGN dominate the soft X-ray sky. However, performing a similar Galactic plane survey to include those sources with energies up to 10 keV, sensi-tive to the $F_x \sim 10^{-13}$ to $\sim 10^{-11}$ erg cm⁻² s⁻¹ flux range, would be impractical to achieve with the current X-ray telescopes Chandra and XMM due to their limited fields of view. Astronomers have therefore had to rely upon characterizing the distribution of the harder X-ray source populations within much smaller regions of the Galactic plane (e.g. Hands et al. 2004; Ebisawa et al. 2005; Grindlay et al. 2005). For example, Motch et al. (2010) used the XGPS (Hands et al. 2004) to determine the contributions of active stellar coronae and accreting X-ray source populations in the Galactic plane for $F_x \lesssim 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$. The Chandra Multiwavelength Plane survey (ChaMPlane; Grindlay et al. 2005) has now surveyed 7 deg² of the Galactic plane and bulge with *Chandra* (van den Berg et al. 2012), identifying the contributions of magnetic cataclysmic variables (CVs) to the Galactic ridge X-ray emission (Hong 2012).

The key to obtaining a complete understanding of the Galactic plane X-ray source populations, from 0.3 - 10 keV, that make up the $F_x \sim 10^{-13}$ to 10^{-11} erg cm⁻² s⁻¹ X-ray flux range is to identify the unidentified AGPS sources, as *ASCA* covered a much larger area of the Galactic plane (~ 40 deg²) than other X-ray surveys (for example the XGPS and ChaMPlane; Hands et al. 2004; Motch et al. 2010; Grindlay et al. 2005; van den Berg et al. 2012). In order to identify the AGPS sources, the <u>Chasing the Identification of ASCA Galactic</u> <u>Objects</u> (ChIcAGO) survey was conceived. In this survey the subarcsecond capabilities of *Chandra* are used to localize the unidentified AGPS sources listed by Sugizaki et al. (2001). Once the positions of these sources have been determined, an extensive multi-wavelength program is activated, which is aimed at determining the identities of the sources and the nature of their X-ray emission.

In this paper, we present the results of Chandra observations of 93 unidentified AGPS sources, along with the multiwavelength follow-up that has allowed the identification of optical, infrared and radio counterparts. Section 2 explains the Chandra observing strategy employed to localize the unidentified AGPS sources. To begin the identification process, we automated the Chandra data analysis and preliminary multi-wavelength follow-up, which involves comparisons with existing optical, near-infrared (NIR) and infrared (IR) surveys. X-ray spectral modeling using "quantile analysis" (Hong et al. 2004) and Cash (1979) statistics, and further multi-wavelength observations in the optical, infrared and radio bands required to ultimately classify each source, are also described. Section 3 details the results of each AGPS position observed with Chandra. These results include details on the individual X-ray sources detected, the parameters of their likely X-ray spectral shapes, and the names and magnitudes of their infrared, optical and radio counterparts. The possibility of short term variability or periodicity is also explored. In Section 4, we discuss the AGPS sources that have been identified through a visual inspection of radio Galactic plane surveys. The X-ray fluxes and NIR and IR magnitudes of the remaining unidentified sources, reported in Section 3, are then used to conduct X-ray and infrared population statistics. Resulting flux and color-color diagrams allow the identification of likely Galactic plane X-ray populations with infrared counterparts. This analysis is followed by a discussion of particularly interesting individual sources that have been identified as a result of this work. The final part of this section includes a tabulated summary of all the 163 AGPS sources along with their confirmed identifications (obtained from the literature and the present paper) or their tentative identifications that are based on our ChIcAGO survey statistical results. In Section 5 we summarize the results from this paper, with a particular focus on our statistical findings.

2. METHOD

2.1. Chandra Observations

The main goal of the ChIcAGO survey is to localize the positions of the unidentified AGPS sources, so that multiwavelength follow-up can be used to identify them. It is therefore necessary to design an experiment that will allow each source to be localized precisely enough to identify counterparts in the crowded Galactic plane. *Chandra* can provide subarcsecond localization as it has an intrinsic astrometric precision accuracy of 0."6 at 90% confidence within 2' of the aim-point (Weisskopf et al. 2003).

For all but the brightest targets, *Chandra*'s Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 2003) was used as it provides simultaneous positional, temporal and spectroscopic information. The ACIS-S configuration was chosen as it fully encompasses the AGPS positional uncertainties of up to 3' (Sugizaki et al. 2001). (The aimpoint of the ACIS-I configuration is near a chip gap.) The High Resolution Camera (HRC; Murray 2000) in the I focal plane array was used to observe those sources with a predicted ACIS count-rate > 0.2 counts s⁻¹, to avoid positional, spectral, and temporal degradation associated with pile-up (Davis 2001).

At Chandra's high angular resolution, only a small number of X-ray counts are required to localize each source sufficiently to overcome confusion from IR field stars in the Galactic plane. We first considered the number density of such stars in the K_s -band at low Galactic latitudes. Figure 24 of Kaplan et al. (2004) shows that 0.2 stars $\operatorname{arcsec}^{-2}$ are expected with a magnitude $K_s \lesssim 19$. For there to be a < 25% chance of random alignment of the Chandra source with an infrared field star of this magnitude, a total astrometric er-extremely high positional precision (0."1 1 σ error) and *Chan*dra's 90% absolute astrometry error of 0."6, a centroiding error of $< 0.0^{\prime\prime}$ with 95% accuracy is required for *Chandra*. The Chandra Interactive Analysis of Observations (CIAO)¹⁸ software tool wavdetect (Freeman et al. 2002) was chosen to detect the point sources in our fields. Equation (5) of Hong et al. (2005) provides the 95% confidence position error circle of a point source detected with wavdetect for a given number of source counts at a given off axis angle. At the maximum off-axis angle expected for an ASCA source localization (< 3'), ~ 100 X-ray counts are required to ensure that a source's centroiding error is below 0.''4.

Using the count rates and power-law spectral fits calculated by Sugizaki et al. (2001) for each AGPS source and the *Chandra* Proposal Planning Toolkit (PIMMS)¹⁹, the exposure time required to detect ~ 100 counts with *Chandra* for each source was estimated. For those AGPS sources that were too faint for Sugizaki et al. (2001) to calculate spectral fit parameters, an absorbed power-law model with a photon index $\Gamma = 2$ and an absorption $N_H = 10^{22}$ cm⁻² was used, which are representative values of a non-thermal X-ray source and typical Galactic plane absorption.

In order to select the AGPS source candidates to be observed with *Chandra*, each source was investigated individually. First those AGPS sources that have already been conclusively identified, either by Sugizaki et al. (2001) or by other groups in the literature, were removed from the *Chandra* target list. Based on this criteria, a total of 43 AGPS sources were identified and therefore rejected for *Chandra* follow-up (these sources are described in Appendix A). The *ASCA* images of each of the remaining unidentified AGPS sources were then studied to determine if any sources appeared to be too extended for *Chandra* to successfully localize in a short amount of time. These sources were also rejected for *Chandra* followup. The remaining, unidentified AGPS sources, were then prioritized for *Chandra* follow-up based on their absorbed X-ray flux or count-rate that was listed by Sugizaki et al. (2001).

A total of 93 AGPS sources have been observed with *Chandra* as part of the ChIcAGO survey, of which 84 were imaged with ACIS-S and 9 were imaged with HRC-I. The ChIcAGO *Chandra* observations took place over a three and a half year period, from 2007 January to 2010 July. The *Chandra* exposure times ranged from $\sim 1-10$ ks. All the details of these *Chandra* observations are listed in Table 1. The initial automated analysis of these *Chandra* observations was conducted using the ChIcAGO Multi-wavelength Analysis Pipeline, described in Section 2.2. We then performed a more detailed X-ray analysis and counterpart study for those 74 sources with > 20 X-ray counts, as such sources are approximately within

the original AGPS sources X-ray flux range (see Sections 3.2 and 3.3).

2.2. ChIcAGO Multi-wavelength Analysis Pipeline (MAP)

It is crucial to the efficiency of the project to automate the analysis of the *Chandra* observations, such as the detection and extraction of sources, as well as the search for multi-wavelength counterparts. We therefore created the ChIcAGO Multi-wavelength Analysis Pipeline (MAP) for this task. ChIcAGO MAP takes the ACIS-S or HRC-I *Chandra* observation of an AGPS source field and detects and analyzes all point sources within 3', equivalent to the largest likely position error, for the original AGPS source positions supplied by Sugizaki et al. (2001). From hereon we refer to all point sources detected in the *Chandra* observations of the AGPS fields as "ChIcAGO sources". The X-ray analysis component of this pipeline uses the CIAO software, version 4.3, with CALDB version 4.5.5, and follows standard reduction recipes given in the online CIAO 4.3 Science Threads.²⁰

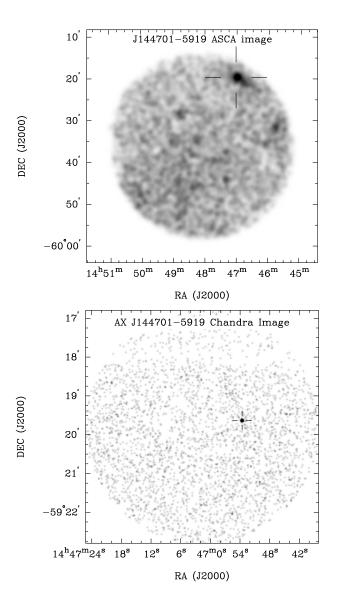
ChIcAGO MAP carries out the following steps, all of which are explained in more detail below. These steps apply to both ACIS-S and HRC-I datasets unless otherwise stated.

- An image of the original *ASCA* detection of the AGPS source is created (for example see the top image of Figure 1).
- The CIAO tool chandra_repro is run to reprocess the *Chandra* data.
- The new event file is filtered to only include photons with energies in the range 0.3-8.0 keV.
- The CIAO tool wavdetect is used to detect all Xray point sources (ChIcAGO sources) within 3' of the AGPS position. A *Chandra* image is then created for each ChIcAGO source (for example see the bottom image of Figure 1). If no sources are detected, ChIcAGO MAP ends.
- The position, source counts, and associated errors are calculated for each ChIcAGO source detected. If the dataset is an ACIS-S observation then the total counts are obtained in the 0.3-8.0, 0.5-2.0, and 2.0-8.0 keV energy ranges, and the energy quartiles (E_{25}, E_{50} , and E_{75}), which are used in quantile analysis (see Section 2.3.1), are calculated.²¹
- The CIAO tool specextract is run on ACIS-S datasets to obtain the source and background spectrum files and their corresponding redistribution matrix file (RMF) and the ancillary response file (ARF) for each ChIcAGO source. These files are used in quantile analysis and spectral modelling (see Section 2.3).
- A timing analysis is conducted on each ChIcAGO source (detected with either the ACIS or HRC instruments) to search for short term variability and periodicity.

¹⁸ http://cxc.harvard.edu/ciao/index.html

¹⁹ http://cxc.harvard.edu/toolkit/pimms.jsp

²⁰ http://cxc.harvard.edu/ciao4.3/threads/index.html


²¹ The HRC instrument has very poor spectral resolution so this, and the following step, are not conducted on these datasets.

- A light-curve with 8 bins is constructed using the CIAO tool dmextract. The χ^2 is calculated for this light-curve in order to test for short-term variability (e.g. Figure 2).
- The Z_1^2 statistic is calculated to search for sinusoidal periodicity (Buccheri et al. 1983). This process creates a power spectrum and folded light curve (e.g. Figure 3), which predicts the most likely pulsed frequency, its corresponding power, and the probability that the power is random noise.
- Multi-wavelength follow-up and catalog searches are conducted to identify likely optical, infrared, and radio counterparts to each ChIcAGO source.
 - The USNO B1 (Monet et al. 2003), 2MASS PSC (Skrutskie et al. 2006), and GLIMPSE I and II (Benjamin et al. 2003) catalogs are accessed to obtain a list of all optical and infrared sources within 4" of the ChIcAGO source's wavdetect position.
 - Small sized (6' by 6') image cutouts, centered on the ChIcAGO source's wavdetect position, are obtained from the 2nd Digitized Sky Survey (Red: DSS2R and Blue: DSS2B; McLean et al. 2000), 2MASS, and the GLIMPSE I and II surveys. A 30' by 30' radio image cutout is obtained from the Sydney University Molonglo Sky Survey (SUMSS; Bock et al. 1999). Examples of all the image cutouts can be found in Figures 4 and 5.

ChIcAGO MAP first generates an image of the AGPS source as originally detected by the Gas Imaging Spectrometer (GIS; Ohashi et al. 1996) onboard *ASCA*. The GIS has a circular field-of-view with a 50' diameter. The top image of Figure 1 shows the *ASCA* GIS detection of the AGPS source AX J144701–5919. We have chosen AX J144701–5919 as the example source for illustrating the output of ChIcAGO MAP because it was the first AGPS source observed with *Chandra* as part of the ChIcAGO survey, and it is also an interesting source with a bright counterpart (as demonstrated by its identification as an X-ray emitting WR star in Anderson et al. 2011).

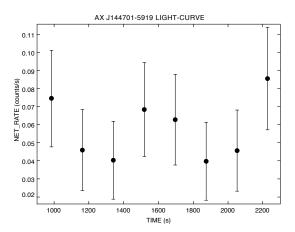
ChIcAGO MAP reprocesses all of the *Chandra* observations, both ACIS and HRC, using the CIAO chandra_repro script, which creates a new level=2 event file and bad pixel file. The *Chandra* ACIS data are filtered to only include events with energies in the range 0.3 - 8.0 keV in order to avoid high-energy and cosmic ray particle backgrounds.

We have chosen to optimize ChIcAGO MAP for the detection of point sources as our short *Chandra* observations (< 10 ks) are not very sensitive to extended sources. ChIcAGO MAP uses the CIAO wavelet detection algorithm, wavdetect, which we have set to search for all sources with wavelet scales of radii 1, 2, 4, 8 and 16 pixels. This does, however, introduce a source selection bias as it is possible that AGPS sources that were unresolved with the *ASCA* PSF could be extended, and therefore resolvable with *Chandra*. Re-running ChIcAGO MAP using wavdetect with larger scales more appropriate for extended sources, or using the CIAO Voronoi Tessellation and Percolation source detection algorithm vtdetect

Figure 1. X-ray images of AX J144701–5919 as output by ChIcAGO MAP. Top: The ASCA GIS detection of the AGPS source AX J144701–5919. The circular field-of-view has a 50' diameter and the position of this AGPS source, as listed by Sugizaki et al. (2001), is indicated by the black crosshair. Bottom: The 3' radius field-of-view of the *Chandra* observation of AX J144701–5919, which is centered on the position of this AGPS source listed by Sugizaki et al. (2001). The one ChIcAGO source detected in this field is indicated by a black cross-hair, and is likely the *Chandra* counterpart to AX J144701–5919.

(Ebeling & Wiedenmann 1993), could be conducted in the future to detect extended sources in the ChIcAGO *Chandra* images.

ChIcAGO MAP utilizes wavdetect to detect all sources within 3' of the original ASCA position (for example see the *Chandra* detection of AX J144701–5919 in the bottom image of Figure 1). This search radius is based on the position accuracy and spatial resolution of ASCA and therefore designed to ensure that the majority of contributing X-ray sources are encompassed. (However, it is also possible that there are associated X-ray sources beyond 3' from the AGPS position. This could be due to the inaccuracy of the ASCA positions of those sources that are blended or near the edge of the field-ofview. This is further explored in Section 3.1 and Appendix B.) In many cases more than one X-ray source could have been contributing to the total X-ray flux from an AGPS source originally detected with *ASCA*. (Note this is not the case for the example of AX J144701–5919.) The positional accuracy of wavdetect has been well investigated and tested in previous *Chandra* surveys (i.e. ChaMPlane; Hong et al. 2005).


The position of each ChIcAGO source as output by wavdetect is obtained and Equation (5) of Hong et al. (2005) is used to calculate the 95% confidence position error circle.²² This wavdetect error is then added in quadrature to the absolute astrometry error of *Chandra* to obtain the total position error of each ChIcAGO source.

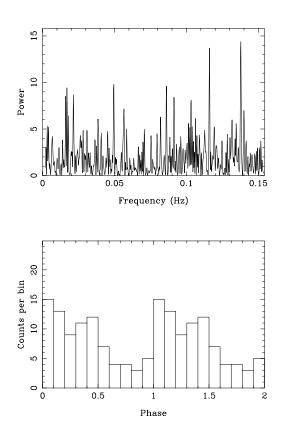
The source regions used to calculate the total number of source counts, which are centered on the source position as output by wavdetect, have a radius equivalent to 95% of the point-spread function (PSF) at 1.5 keV. The background subtraction is performed using an annulus whose size is between two and five times the above 95% PSF radius, centered on the source position. Given the low number of counts detected, usually < 100, the 1σ lower and upper confidence limits of the total number of counts are calculated using Gehrels (1986) statistics. The following energy based analysis is then performed on the ACIS-S observations. The total number of counts are calculated for the 0.3-8.0, 0.5-2.0, and 2.0-8.0keV energy ranges. ChIcAGO MAP then uses the extracted ACIS-S counts and corresponding energies to calculate the 25%, 50% and 75% photon fractions (E_{25} , E_{50} and E_{75}), the energies below which 25%, 50% and 75% of the photon energies are found, respectively. These median (E_{50}) and quartile $(E_{25} \text{ and } E_{75})$ values can immediately characterize the hardness of a source without using conventional hardness ratios, which are not versatile enough to account for diverse X-ray spectral types in the Galactic plane. These quartile fractions can then be used to employ quantile analysis (Hong et al. 2004), which uses a quantile based color-color diagram to classify spectral features and shapes of low count sources (see Section 2.3.1).

The CIAO tool, specextract, is also run on the ACIS-S detected ChIcAGO sources to generate source and background spectrum files and their corresponding RMF and the ARF. These files are used to perform spectral interpolation with quantile analysis and to conduct spectral modelling and fitting with the CIAO package Sherpa. Further details on the spectral investigations of the ChIcAGO sources can be found in Section 2.3

ChIcAGO MAP then performs a timing analysis on all the ChIcAGO sources, detected with either the ACIS or HRC instruments, to search for evidence for short term variability and periodicity. In each case a light-curve is extracted using dmextract where the counts are divided into 8 bins (for example see Figure 2). The Gehrels approximation to confidence limits for a Poisson distribution is used to estimate the errors as there are < 20 X-ray counts in each bin. The χ^2 statistics are adopted to test for variability (for example see Gaensler & Hunstead 2000). (It should be noted that as dmextract uses the upper (larger) Gehrels confidence limit

to estimate the count-rate errors, the resulting χ^2 output by ChIcAGO MAP may be underestimated.) For 7 degrees of freedom, $\chi^2 \gtrsim 24.3$ is required for a source to be considered variable at 99.9% confidence.

Figure 2. The *Chandra* ACIS-S light-curve of the ChIcAGO source AX J144701–5919 as output by ChIcAGO MAP. This ChIcAGO source does not exhibit evidence for short-term variability as its resulting $\chi^2 = 3.4$ for 7 degrees of freedom is below the confidence threshold of 99.9%.


After correcting the photon arrival times to the Solar System barycenter, the target source is then investigated for evidence of periodicity using the Z_n^2 test (Buccheri et al. 1983), equivalent to the Rayleigh statistic when n, the chosen number of harmonics, is set to 1. ChIcAGO MAP uses n = 1 for the sake of simplicity and because such a test is sensitive to sinusoidal distributions. Z_1^2 has a probability density function equivalent to the χ^2 statistic with 2 degrees of freedom. ChIcAGO MAP searched for periodicity down to 6.48s (twice the frame-time resolution; Weisskopf et al. 2003) for sources detected with ACIS, and down to 0.01s for sources detected with HRC.²³ A power spectrum (power vs. frequency) and folded light curve (counts per bin vs. phase) of each source is generated, predicting the pulsed frequency of the highest Z_1^2 power, and the probability that this power was random noise for a given number of trials (for example see Figure 3). A 99.9% confidence was required for a source to have a significant level of periodicity, which corresponds approximately to $Z_1^2 \gtrsim 26$ and $Z_1^2 \gtrsim 36$ for ACIS and HRC observations, respectively.

It is also possible that many of the AGPS sources are transient or undergo long-term variability, so have changed significantly in flux since the original *ASCA* observations. The detailed analysis of any periodic, variable, and transient sources is beyond the scope of this paper. We only flag those source that may fit into one of the above categories for the purpose of future investigations.

The next step in the ChIcAGO identification process is to search for multi-wavelength counterparts to the ChIcAGO sources. ChIcAGO MAP accesses the US Naval Observatory B Catalog, version 1.0 (USNO B1, visual magnitude bands *B*, *R*, and *I*; Monet et al. 2003), the Two Micron All Sky Survey Point Source Catalog (2MASS PSC, near-infrared magnitude

²² This equation was constructed by running wavdetect on ACIS-I and ACIS-S data. It is therefore unknown whether this position error equation is applicable to the positions calculated from running wavdetect on HRC data sets. However, since the wavdetect algorithm is not instrument specific, it is likely that this equation estimates reasonable errors for sources detected in HRC observations.

 $^{^{23}}$ The lower-limit of 0.01s for the HRC observations is chosen because a wiring error in the detector degrades the time resolution accuracy from $16\mu s$ to the mean time between events. See http://cxc.harvard.edu/proposer/POG/html/chap7.html#sec:hrc_anom

Figure 3. The power spectrum and folded light curve resulting from a Z_1^2 statistical search for periodicity from AX J144701–5919 as output by ChIcAGO MAP. Top: The power spectrum (power vs. frequency (Hz)) of AX J144701–5919. The power spectrum peaks at a value of $Z_1^2 = 14.4$ at a frequency of 0.1378 Hz. The probability of this power being random noise is 0.16. It is therefore unlikely to be a real signal. Bottom: The folded light curve (counts per bin vs phase) that has been folded at 0.1378 Hz.

bands *J*, *H*, and *K*_s; Skrutskie et al. 2006), and the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire I and II Spring 07' Catalogs (highly reliable) and Archives (more complete, less reliable) (GLIMPSE, infrared magnitude bands 3.6, 4.5, 5.8, and 8.0 μ m; Benjamin et al. 2003) to obtain a list of all the optical and infrared sources within 4" of the wavdetect position of each ChIcAGO source. The information extracted from these surveys includes the position of the source, the offset from the *Chandra* position and the magnitudes listed in the given survey or dataset.²⁴

Small sized images cutouts (6' by 6') from optical and infrared surveys, centered on the ChIcAGO source wavdetect position, are also downloaded to enable a visual inspection of likely counterparts and their surrounding environments. The *B* and *R* magnitude band images are obtained from the 2nd Digitized Sky Survey (Blue: DSS2B and Red: DSS2R; McLean et al. 2000) and the *J*, *H*, and *K* magnitude band images are obtained from 2MASS. Image cutouts of the infrared magnitude bands 3.6, 4.5, 5.8 and 8.0 μ m are obtained from the GLIMPSE I and II, version 3.5, surveys.²⁵ A 30' by 30' image cutout of the 843 MHz radio sky is also generated from SUMSS, which is a survey conducted with the Molonglo Observatory Synthesis Telescope (MOST) and has a resolution of $43'' \times 43'' cosec$ |dec| (Bock et al. 1999).²⁶ An example of all the image cutouts generated by ChIcAGO MAP for AX J144701–5919 can be seen in Figures 4 and 5.

2.3. ChIcAGO Sources Spectral Investigation

Deducing the best spectral model fit to the ChIcAGO sources is difficult using standard X-ray spectral fitting techniques due to the small number of X-ray source counts detected in the *Chandra* observations (usually < 100). We therefore implement two different techniques for predicting the best spectral parameters for the brighter (> 20 X-ray counts) ChIcAGO sources. The first technique is "quantile analysis" (Hong et al. 2004), which has been recently developed to address some of the problems associated with spectral modeling of sources with low number statistics. Quantile analysis allows for the interpolation of likely spectral shapes of X-ray sources with as few as 10 counts. The second technique is utilizing the CIAO spectral fitting tool Sherpa to obtain best fit spectral parameters using Cash (1979) statistics. These statistics are based on Poisson distributed data and are therefore ideal for modeling spectra with a limited number of source counts. Both methods are described in detail below.

2.3.1. Quantile Analysis

Quantile analysis uses predetermined fractions of the total number of energy source counts, such as the median (E_{50}) and quartile energies (E_{25} and E_{75}), to construct a quantile-based phase space that can be overlayed with grid patterns of common spectral models. This quantile phase space is more sensitive to the wide range of Galactic X-ray sources than those constructed from conventional hardness ratios. This is because there is no count-dependent sensitivity bias toward any spectral type, which is inherent to the choice of sub-energy bands in the conventional spectral hardness or X-ray color analysis. In the ChIcAGO survey, quantile analysis is adopted to calculate potential spectral shapes of the ChIcAGO sources.

The ACIS-S detected ChIcAGO sources selected for quantile analysis have > 20 (net) X-ray counts in the 0.3-8.0 keV energy band, as these are likely to be bright enough to be the original AGPS sources (see Section 2.1). The net counts were obtained by summing the total number of counts inside a source region that is 6 times the error radius in size and subtracting the background normalized counts calculated from an annulus that has an outer radius of ~ 15" with the source region subtracted. The three quartiles (E_{25}, E_{50} , and E_{75}) and their corresponding errors were calculated as outlined by Hong et al. (2004).

The quantile phase space, suggested by Hong et al. (2009, see their Figure 4), used to calculate the likely spectral shapes, was constructed for each ChIcAGO source. This phase space consists of the normalized logarithmic median $(\log(E_{50}/E_{low})/\log(E_{high}/E_{low}))$ and the normalized quartile ratio $(3 \times (E_{25}-E_{low})/(E_{75}-E_{low}))$, where $E_{low} = 0.3$ keV and

²⁴ The catalog information is downloaded via a generic URL from the VizieR Service (http://vizier.cfa.harvard.edu/viz-bin/VizieR) and the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu/).

²⁵ http://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE/

²⁶ The images from the DSS2R, DSS2B, 2MASS and SUMSS surveys are downloaded using a generic URL from the virtual observatory SkyView, which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory (SAO), http://skyview.gsfc.nasa.gov/

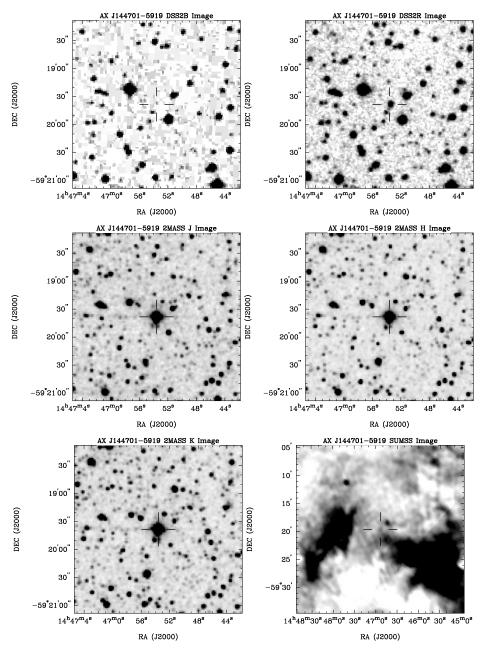


Figure 4. The DSS2B, DSS2R, 2MASS and SUMSS image cutouts of the region surrounding the AGPS source AX J144701–5919, which has been localized by *Chandra*, as output by ChIcAGO MAP. In all images the *Chandra* position of AX J144701–5919 is indicated by a black cross-hair. The survey name and filter band of each image cutout is listed at the top of each Figure.

 $E_{high} = 8.0$ keV, equivalent to the energy range explored. The logarithmic median phase space takes advantage of the higher sensitivity at low energies in typical X-ray telescope CCDs, while keeping the spectral discernibility more or less uniform throughout the full range of the phase space. In order to compensate for the spatial change of the detector response in Chandra/ACIS, the RMF and the ARF, appropriate to the observed location of each ChIcAGO source in the CCD, are calculated using the CIAO tools.

The data points of the ChIcAGO sources in the quantile diagram were compared with simple power-law and thermal bremsstrahlung spectral models to extract the most plausible spectral parameter values for each source. It should be noted that quantile analysis cannot evaluate which model is more likely unless the estimated parameters of the model turn out to be unphysical (e.g. $\Gamma > 4$). The estimate of the spectral parameters are limited to $-2 \le \Gamma \le 4$ for a power law model and 0.1 keV $\le kT \le 10$ keV for a bremsstrahlung model. The explored extinction (N_H) covers the range $0.01 - 100 \times 10^{22}$ cm⁻². If the data point for a source in quantile phase space sits outside of the model grid set by these parameter ranges, the model is considered incompatible with the observed spectrum of the source. The quantile errors allow the spectral parameter uncertainties to be calculated for each ChIcAGO source (Hong et al. 2004).

2.3.2. Spectral Modeling

AX J144701-5919 GUMPSE 3.6 J144701-5919 GLIMPSE 30 30 19'00 19'00 DEC (J2000) (J2000) 30 30 DEC 20'00 20'00 30 30 -59°21'00 -59°21'00 14^h47 56 528 14^h47 47 n08 56 52 RA (J2000) RA (J2000) AX J144701-5919 GLIMPSE 5.8 micron Image AX J144701-5919 GLIMPSE 8.0 micron Image 30 30' 19'00' 19'00 (J2000) DEC (J2000) 30' 30 DEC 20'00 20'00' 30' 30 -59°21'00 -59 21 00 14^h47 14^h47 47^m0 52 56 48 56 RA (J2000) RA (J2000)

Figure 5. As for Figure 4, but showing the GLIMPSE 3.6, 4.5, 5.8, and 8.0 μm bands.

The spectral modeling of the ChIcAGO sources was conducted using the CIAO 4.5 spectral fitting package Sherpa with the statistics set to the XSpec (Dorman & Arnaud 2001) implementation of Cash (1979) statistics. Cash statistics apply a maximum likelihood ratio test that can be performed on sources with a low number of source counts per bin. We chose to restrict all spectral modeling to those ChIcAGO sources with > 50 X-ray counts as attempted modeling of those sources with less counts usually did not converge.

Cash statistics cannot be performed on a background subtracted spectrum. The source and background spectrum must instead be modeled simultaneously. However, in the case of the *Chandra* observations of ChIcAGO sources the background is extremely low and cannot be described by a generic spectral model. As a result attempting to model the background spectrum does not improve the overall spectral fit. We therefore only model the source spectrum of the ChIcAGO sources.

Both an absorbed power law and an absorbed thermal bremsstrahlung model are applied to the ChIcAGO source spectra so that they can be directly compared to the quantile analysis spectral interpolation results. The parameter errors are calculated using the Sherpa "projection" function, which estimates the 1σ confidence intervals. The absorbed and unabsorbed flux (plus errors) are calculated using the Sherpa function "sample_flux", which is new to CIAO 4.5. The overall goodness of fit measure is defined by the value of the Cash statistic divided by the number of degrees of freedom and should be of order 1.

2.4. Multi-wavelength Follow-up Observations

While the X-ray morphology and spectrum can provide information on the nature of a ChIcAGO source, the key to identification is usually through an extensive multi-wavelength follow-up campaign. ChIcAGO MAP identifies the possible optical and infrared counterparts in existing multi-wavelength Galactic plane surveys. There are, however, many cases where the counterparts are too faint to be detected in these surveys due to the high absorption in the Galactic plane. It is also possible that the high object density in the Galactic plane may result in confusion with nearby sources. In these cases, further optical and infrared photometric observations were conducted with large telescopes to obtain detections of faint counterpart candidates and to separate likely blends. If the first photometric observing attempt was unsuccessful at detecting or separating a counterpart candidate then deeper imaging using longer exposure times was conducted. Those X-ray sources that remain undetected at optical and infrared wavelengths will need to be further investigated in the X-ray band or at other wavelengths.

The radio wavelength band is also a useful diagnostic for identifying X-ray sources in the Galactic plane. Comparing the Xray source positions with radio surveys can indicate if there is a likely radio counterpart or whether the X-ray source lies in a diffuse region of radio emission in the Galactic plane. Interferometric radio observations of a small subset of ChIcAGO sources were obtained in order to resolve confusing regions of radio emission and allow for the detection or confirmation of compact radio counterparts.

2.4.1. Optical and Near Infrared Observations with Magellan

The optical and NIR photometric observations presented in this paper were obtained using instruments on the twin 6.5m, Baade and Clay, Magellan telescopes, located at Las Campanas Observatory, Chile. The NIR photometry, $1-2.5\mu$ m, was obtained using the Persson's Auxiliary Nasmyth Infrared Camera (PANIC; Martini et al. 2004; Osip et al. 2008) on Baade. PANIC was used primarily to detect the counterparts of ChIcAGO sources with no cataloged counterparts or to utilize this instrument's high angular resolution to eliminate possible blendings. Observations were obtained in the *J*, *H* and *K*_s photometric bands, using short exposures (10–30s) that were dithered to account for the high sky background inherent to NIR observations.

The PANIC NIR imaging data were reduced using the Image Reduction and Analysis facility (IRAF; Tody 1986, 1993) and the PANIC Data Reduction Package for IRAF (Martini et al. 2004), taking into account the corresponding darks, sky flats and bad pixel maps obtained for each respective night. The absolute astrometry for the PANIC observations was derived using the 2MASS PSC and the Graphical Astronomy and Image Analysis Tool (GAIA; Draper et al. 2009). The positional accuracy of the 2MASS PSC is 0.''1 (1 σ , Skrutskie et al. 2006), and since there are usually many 2MASS sources in the field, a similar order of astrometric accuracy at the target positions was reached. SExtractor (Bertin & Arnouts 1996) was used for source detection, and the calibration of the photometry was performed by applying 2MASS PSC photometry to known 2MASS sources in the target fields. No correction to the atmospheric extinction was applied as this effect is very small in the NIR (~ 0.06 magnitudes in the *H*-band). The errors were obtained by comparing the NIR-magnitudes with 2MASS PSC magnitudes, and reflected average deviations from the 2MASS catalog magnitudes.

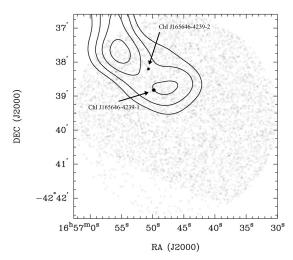
Optical photometric observations of the counterparts were obtained utilizing several Magellan instruments depending on availability. These included the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2006; Osip et al. 2008) and the Raymond and Beverly Sackler Magellan Instant Camera (MagIC; Osip et al. 2008) on the Baade telescope. These instruments provide access to different photometric filters including Bessel *B*, *V* and *R*, and CTIO *I*.

The IMACS *B*, *V*, *R* and *I* imaging data were reduced using IRAF, in which the data were trimmed, overscan-corrected and flat-fielded. A dark current subtraction was not applied since the dark images showed it to be negligible. Standard stars were observed throughout in several bands, although the weather during some of the observing nights varied. The absolute astrometry was again computed using GAIA with comparisons to the USNO B1 Catalog or the 2MASS PSC. The photometry of each counterpart was calculated using SExtractor and was calibrated using the USNO B1 Catalog.

MagIC observations were obtained in the V, R, and I bands. Short 30 s exposures were obtained in each filter, which were later combined to make sure that the brighter stars (used for astrometric referencing) were not saturated. These data were then reduced following standard procedures in IRAF: overscan subtraction for each amplifier, flatfielded using dome flats, and the separate exposures combined. The astrometry was applied by referencing the observations to the 2MASS PSC, resulting in an rms residual of 0."1 in each coordinate. Photometric calibration was derived using observations of the Stetson (2000) standard fields. The measured photometry for the airmass terms appropriate to Las Campanas Observatory were corrected and the zero-points with scatters of 0.02 magnitudes in each filter were obtained. Similarly to the PANIC and IMACS observations, the photometry of each counterpart was then measured using SExtractor.

2.4.2. Radio follow-up and ATCA Observations

Radio survey data already exist for all of the AGPS source regions, via the first and second epoch Molonglo Galactic Plane Surveys at 843 MHz (MGPS1 and MGPS2 respectively, $43'' \times 43'' cosec$ |dec| resolution; Green et al. 1999; Murphy et al. 2007), the 90cm Multi-configuration Very Large Array Survey of the Galactic Plane (42'' resolution; Brogan et al. 2006), The Multi-Array Galactic Plane Imaging Survey at 1.4 GHz (MAGPIS, 6'' resolution; Helfand et al. 2006), and the Very Large Array (VLA) Galactic Plane Survey at 1.4 GHz (VGPS, 1' resolution; Stil et al. 2006). To search for possible radio counterparts we first visually inspected the above surveys at the position of each ChIcAGO source. Any coincident radio emission was then categorized (see Section 3.4).


Follow-up Australia Telescope Compact Array (ATCA) observations were conducted to identify the nature of any radio counterparts to the ChIcAGO sources found through this visual inspection. The ATCA was also used to resolve any diffuse radio emission surrounding a ChIcAGO source, allowing the detection of any underlying, compact radio counterpart. The high resolution ATCA observations were instrumental in confirming a positional coincidence between the radio counterpart and the Chandra position of the ChIcAGO source, to measure accurate radio fluxes and spectral indices, to broadly characterize variability with respect to earlier epochs, and to constrain the object's spatial extent. The Chandra positions of ten ChIcAGO sources were observed with the ATCA on 2008 January 21 and on 2008 April 11. Each source was observed for ~ 1 hour at each of 1.4, 2.4, 4.8 and 8.6 GHz over a 12 hour period with a 6km baseline configuration.

3. RESULTS

3.1. Chandra Results

We present results on 93 APGS sources that have been observed with Chandra as part of the ChIcAGO survey. In many cases more than one source was detected within 3' of the original AGPS source positions so, as mentioned in Section 2.2, we will refer to these all as ChIcAGO sources. We therefore detected a total of 253 ChIcAGO sources in these 93 Chandra observations. The naming convention we have adopted is to call each source by the AGPS coordinate name, using ChI as the prefix, with a suffix between 1 to i, where i is equal to the number of sources detected in the 3' field. (The source name order is based on the order that wavdetect detected and output the sources in ChIcAGO MAP.) For example, two ChIcAGO sources, ChI J165646-4239_1 and ChI J165646–4239_2, were detected with Chandra in the vicinity of the AGPS source AX J165646-4239. These two ChIcAGO sources are the black dots in Figure 6. The ASCA GIS detection of AX J165646-4239 is overlayed on Figure 6 in the form of contours, demonstrating that both ChI J165646-4239_1

and ChI J165646–4239_2 may have contributed to the X-ray emission originally detected for this source in the AGPS.

Figure 6. The 3' radius field-of-view of the *Chandra* observation of the AGPS source AX J165646–4239, which is centered on the position of AX J165646–4239 as listed by Sugizaki et al. (2001). Two ChICAGO sources, ChI J165646–4239_1 and ChI J165646–4239_2, which are black dots indicated by arrows, were detected with *Chandra* and are labeled on this Figure. The black contours represent the smoothed *ASCA* GIS detection of AX J165646–4239 at 65%, 75%, 85%, and 95% of the peak count-rate.

The *Chandra* observations of the 93 AGPS sources are summarized in Table 1. This information includes the observation identification, the date of the observation, instrument (ACIS-S or HRC-I), and the exposure time. Table 1 also lists the ChIcAGO sources detected by ChIcAGO MAP within 3' of the *ASCA* position and their corresponding wavdetect position, the offset of this position from the original AGPS position error, the background corrected net counts in the 0.3–8.0, 0.5-2.0 and 2.0-8.0 keV energy ranges,²⁷ and the median energy quartile (E_{50}) and quartile ratio ($3 \times (E_{25}-0.3)/(E_{75}-0.3)$) used in quantile analysis (see Section 2.3.1).

The variability analysis performed by ChIcAGO MAP detected only one ChIcAGO source, ChI J170444–4109_1, with a χ^2 exceeding the 99.9% short term variability threshold ($\chi^2 = 80.6$). However, this variability is not real as the ACIS-S detection of ChI J170444–4109_1 fell in the chip gap between the CCDs. This resulted in its light-curve displaying the *Chandra* spacecraft's built-in dither as the source moved on and off the chip at regular intervals.²⁸ No other ChIcAGO source had a χ^2 exceeding the 99.9% confidence threshold for short term variability or periodicity. This does not, however, rule out the possibility that some of these sources are periodic as the Z_1^2 period search technique is extremely limited for < 200 X-ray counts.

Several faint ChIcAGO sources were detected with wavdetect in the *Chandra* observations that are not

suspected of being significant contributors to the ASCA counts detected in the AGPS. (All these faint sources are included in Table 1.) In order to determine the detection significance of these sources, we independently calculated the probability of a false detection (Pfd) for each source based on the Poisson statistics. We expect there to be ~ 100000 trials in a 3' radius ACIS CCD field-of-view if a detection cell size of a 1" radius circle is assumed with 2D Nyquist sampling (Weisskopf et al. 2007). (A generic detection cell size of 1'' for this detection significance calculation was suggested by Weisskopf et al. (2007) since the CIAO source detection algorithms usually use a detection cell size of between 40 - 80% of the PSF at a given energy.²⁹) Pfd = 10^{-5} implies that there is one false source in the 3' radius ACIS Chandra field. The probability of a false detection was calculated for each source (see footnote 13 in Kashyap et al. 2010). Only 11 sources (out of 253) have a Pfd > 10^{-5} but all have Pfd $< 7 \times 10^{-4}$. Several of these sources also have a likely optical and/or infrared counterpart, increasing the significance of these detections. As this technique for calculating source significance is highly theoretical (e.g. the effective detection cell size of ACIS is likely to be slightly smaller than the 1'' radius circles), without any consideration for possible counterparts, we will include these 11 marginally significant sources in Table 1 (denoted by a * symbol in the first column).

Several of the sources detected in these observations have also been listed in the *Chandra* Source Catalog (CSC; Evans et al. 2010). We assume that a CSC source and a ChIcAGO source are the same if the separation between their two positions is less than the quadratic sum of their 95% error radii plus a constant term of 0."7, which accounts for the 95% absolute astrometry error of *Chandra* assuming the errors follow a Gaussian distribution³⁰ (see Equation (6) of Hong et al. 2005). We have conducted the same comparison with the fifth public release of the Second *XMM-Newton* Serendipitous Source Catalogue (2XMMi-DR3; Watson et al. 2009)³¹. The CSC and 2XMMi-DR3 names that correspond to any ChIcAGO sources are listed in Table 1. Further analysis of the *XMM* observations will be conducted in future work.

The purpose of the ChIcAGO survey is to study those Xray sources detected in the ChIcAGO Chandra observations that fall within the flux range of the AGPS sources ($F_x \sim$ 10^{-13} to 10^{-12} erg cm⁻² s⁻¹). In 62 out of the 93 AGPS sources observed with Chandra, ChIcAGO MAP found 74 sources with > 20 X-ray counts that fall within the investigated 3' field-of-view that is centered on the AGPS positions. For the purposes of this study we will focus on these 74 ChIcAGO sources, listed in Table 2, as they are approximately within the original AGPS flux range. The detailed analysis of those 179 ChIcAGO sources with < 20 counts will be deferred to future work. There were 6 AGPS sources where no ChIcAGO source was detected by Chandra: AX J165951-4209, AX J175331-2538, AX J180816-2021, AX J183607-0756, AX J185905+0333, and AX J191046+0917. At least three of these AGPS sources, AX J180816–2021, AX J185905+0333, and AX J191046+0917, may be transient given how bright

²⁷ The net counts were calculated separately for each energy range so there are several cases where the total number of counts in the 0.3-8.0 keV energy range is slightly different to the sum of counts detected in the 0.5-2.0 and 2.0-8.0 keV energy ranges. These differences are due to rounding errors, as well as the exclusion of very soft counts that were detected between 0.3-0.5 keV. (The 0.3-0.5 keV energy range was excluded as the 0.5-2 keV energy band is more commonly used than the 0.3-2 keV energy band.)

²⁸ see http://cxc.harvard.edu/ciao/why/dither.html

²⁹ See the CIAO detect manual http://cxc.harvard.edu/ciao/download/doc/detect_manual/

³⁰ The *Chandra* astrometric error is included in this calculation as the source positions listed in the CSC can be obtained from more than one dataset.

³¹ http://xmmssc-www.star.le.ac.uk/Catalogue/2XMMi-DR3/

they were in the original *ASCA* detections (Sugizaki et al. 2001). The remaining 25 AGPS fields observed with *Chandra* only have faint sources with < 20 X-ray counts. There are also 6 AGPS sources, AX J144519–5949, AX J151005–5824, AX J154905–5420, AX J194310+2318, AX J194332+2323, and AX J195006+2628, where multiple ChIcAGO sources detected in each region (with ≤ 30 X-ray counts) sum to ≥ 60 counts, which are close to the number of X-ray counts that were expected to be detected with *Chandra* from each AGPS source (see Section 2.1). Many of the ChIcAGO sources in these field also have optical and/or infrared counterparts and may therefore be members of star clusters (see Section 4.1 for further discussions).

The contribution of X-ray emission beyond the 3' search radius was also investigated using wavdetect to identify all the point sources with > 20 X-ray counts in the *Chandra* observations that lie between 3'-5' from the original AGPS position. Only 14 X-ray point sources were found in the 3'-5'annulus surrounding 11 AGPS sources, which demonstrates that the 3' search radius used by ChIcAGO MAP is reasonable and has likely allowed us to identify the majority of ChIcAGO sources. These 14 X-ray point sources are further discussed in Appendix B where we explore the likelihood of whether they could be associated with their nearby AGPS source.

3.2. Quantile Analysis and Spectral Modeling Results

Quantile analysis and spectral modeling using Cash statistics were both techniques used to infer the most likely absorbed power-law and absorbed thermal bremsstrahlung spectrum of the bright ChIcAGO source detected by ACIS-S.³² The spectral parameters and the absorbed and unabsorbed Xray fluxes for an absorbed power law and absorbed thermal bremsstrahlung model are listed in Tables 3 and 4, respectively. There are also six HRC-I detected ChIcAGO sources with > 20 counts (ChI J144042–6001_1, ChI J153818– 5541_1, ChI J163252–4746_2, ChI J163751–4656_1, ChI J165420–4337_1, and ChI J172642–3540_1) that are not included in Tables 3 and 4 as their X-ray observations do not contain any spectral information. The possible counterparts to these six sources are, however, explored in detail in Section 3.3.

There is no measure of goodness for the quantile analysis derived absorbed power-law and absorbed bremsstrahlung spectral parameters listed for the ChIcAGO sources in Tables 3 and 4. Instead a spectral interpolation is classified as unreasonable if the resulting parameters are outside $-2 < \Gamma <$ 4 for a power-law model and 0.1 < kT < 10 keV for a bremsstrahlung model. These parameter limits can allow for the grouping of the ChIcAGO sources into existing categories that are based on the physical understanding of X-ray sources that emit in the *Chandra* energy range (0.3-8 keV). While these selection criteria explicitly excludes the identification of new types of X-ray sources with unusual spectra, such an investigation is beyond the scope of this work. In all cases if one of the quantile analysis spectral interpolations was disregarded for a given ChIcAGO source, the other is reasonable when considering the above criteria.

As a way to further explore the goodness of the spectral interpolations, the CIAO spectral fitting tool Sherpa was used to fit the X-ray spectrum of each ChIcAGO source with spectral parameters derived from quantile analysis in Tables 3 and 4. The χ^2_{red} was calculated for each ChIcAGO source where > 40 X-ray counts was detected with ACIS-S. In many cases we found $\chi^2_{red} < 1$, which is not unexpected given the low number of X-ray counts detected, indicating that any reasonable model is a decent fit. However, there are also a few cases where $\chi^2_{red} > 2$ indicating that the spectral parameters do not adequately describe the spectrum. The values of χ^2_{red} corresponding to the quantile interpolated spectral parameters are included in Tables 3 and 4.

The parameters and fluxes resulting from the absorbed power law and absorbed thermal bremsstrahlung spectral modeling of the ChIcAGO sources have also been included in Tables 3 and 4 so that they can be directly compared to the quantile analysis results. Best fit absorbed power law parameters were obtained for all the ACIS-S detected ChIcAGO sources with > 50 X-ray counts (see Table 3). However, there were several cases where the absorbed thermal bremsstrahlung fitting was unsuccessful as the Sherpa modeling algorithm hit the hard maximum limit on the kT parameter (10 keV). These unsuccessful fits were not included in Table 4.

All of the parameters and absorbed fluxes derived from the Cash statistics spectral fitting agree within 3σ of those derived from the quantile analysis spectral interpolation, the majority of which agree within the 1σ errors. The only exception is the kT parameter value for ChI J171910–3652_2. However, the unabsorbed fluxes were far less agreeable between the two techniques as there were several ChIcAGO sources for which this value differed by $> 3\sigma$. These include ChI J183356-0822 2 and ChI J184738-0156 1 from the power law spectral analysis and ChI J144547-5931 1, ChI J144701-5919 1, ChI J165646-4239 1, ChI J171910-3652 2, ChI J172050-3710 1, and ChI J185608+0218 1 from the bremsstrahlung spectral analysis. Both these techniques therefore appear to be successful in constraining the spectral parameters and absorbed fluxes for each of the investigated ChIcAGO sources but less successful in constraining the unabsorbed fluxes. It should also be noted that the majority of the reduced Cash statistics from the spectral modeling were systematically higher than the corresponding χ^2_{red} derived from the spectral parameters interpolated through quantile analysis.

3.3. Infrared and Optical Counterparts

Infrared and optical follow-up were primarily performed on those ChIcAGO sources with > 20 X-ray counts (see Table 2). In order to determine which optical and infrared sources are counterparts to ChIcAGO sources, we used a similar technique to that described by Zhao et al. (2005), using their Equation (11). If the separation between a ChIcAGO source's wavdetect position and its possible counterpart is less than the quadratic sum of their 3σ position errors and the 3σ *Chandra* pointing error³³, then the X-ray and optical (or infrared) sources are likely to be associated. The 1σ position errors for all sources in 2MASS PSC and the GLIMPSE³⁴ catalogs are 0."1 (Skrutskie et al. 2006) and 0."3, respectively. USNO B has an astrometric accuracy of < 0."25 (Monet et al. 2003).

 $^{^{32}}$ ChIcAGO sources with > 20 X-ray counts for quantile analysis and > 50 X-ray counts for spectral modeling.

³³ http://cxc.harvard.edu/cal/ASPECT/celmon/

³⁴ See GLIMPSE documents http://www.astro.wisc.edu/sirtf/docs.html

We have assumed that the error distributions of the *Chandra* observations, *Chandra* pointing, and USNO B Catalog are all Gaussian for the purposes of identifying possible counterparts to the ChIcAGO sources. While this assumption is not necessarily correct in every case, the full examination required to obtain the Gaussian errors would involve a very complicated approach. However, other *Chandra* Galactic plane X-ray surveys that search for multi-wavelength counterparts assuming Gaussian errors for cross-correlation purposes have had successful results (e.g. ChaMPlane; Zhao et al. 2005). Based on these results we feel that Gaussian errors are an acceptable assumption for the purpose of identifying optical and infrared counterparts to the ChIcAGO sources.

The infrared properties, such as the names and magnitudes of any likely 2MASS or GLIMPSE counterparts, together with the NIR magnitudes (J, H, and K) obtained from Magellan PANIC observations, are listed in Table 2 along with the date of each observation. We assume that those ChIcAGO sources with no listed 2MASS (or PANIC) counterpart have 2MASS PSC limiting magnitudes J > 15.8, H > 15.1, and K > 14.3(Skrutskie et al. 2006). In Table 5, optical magnitudes have also been provided for those 44 ChIcAGO sources with > 20X-ray counts that have optical counterparts in the USNO B1 Catalog or in one of the IMACS or MagIC Magellan observations. Two other ChIcAGO sources (ChI J170017–4220_1 and ChI J181213–1842_7) with magnitude limits obtained with either IMACS or MagIC are also included in Table 5.

Of the 74 ChIcAGO sources with > 20 X-ray counts listed in Table 2, 59 have a NIR counterpart, 44 of which are 2MASS sources and 15 of which were detected in PANIC observations. Looking into the mid-infrared wavelength bands, we find that 41 of these 2MASS sources and 3 of the PANIC sources also have GLIMPSE counterparts. NIR magnitude limits were obtained for 4 other PANIC-observed ChIcAGO sources, since any possible counterparts were too faint to be detected or, in the case of ChI J181116–1828 2 and ChI J185643+0220_2, the counterpart appeared to be blended. (ChI J181116-1828 2 does, however, have a unique GLIMPSE counterpart.) If we include ChI J181116–1828_2 and ChI J185643+0220_2, for which we have detected a counterpart but the magnitudes are only an upper limit due to blending, then 89% of our PANIC observations of ChIcAGO sources have yielded a detection in one of more of the J, H, or K filter bands. There are also a few ChIcAGO sources where the 2MASS counterpart magnitudes are listed as 95% confidence upper limits due to a non-detection or inconsistent deblending. We were therefore able to use PANIC to obtain more accurate magnitudes for 4 ChIcAGO sources for which have limited 2MASS magnitude information in one or more bands. (These 4 ChIcAGO sources can be identified as those with three letters listed in the "Data" column of Table 2.)

All of the 46 ChIcAGO sources listed in Table 5 (44 ChIcAGO sources with optical counterparts and 2 with limiting magnitudes obtained with Magellan instruments) have NIR counterparts detected with either 2MASS or PANIC. Of the 44 with optical counterparts, 41 have USNO B1 counterparts, for 4 of which extra magnitude measurements were obtained with one of the two Magellan optical imagers. A further 3 ChIcAGO sources, uncataloged in USNO B1, were also detected in the optical with these Magellan instruments. Of the 74 ChIcAGO sources with > 20 X-ray counts, 14 do not have a detected optical, NIR or IR counterpart.

We conducted an experiment similar to that outlined in Kaplan et al. (2004) to quantify the probability that the optical and infrared survey counterparts quoted in Tables 2 and 5, are a random chance association with the > 20 X-ray count ChIcAGO source of which they are coincident. We searched for all 2MASS, GLIMPSE and USNO B1 sources brighter than the possible counterpart listed in Tables 2 and 5 within 10' of each ChIcAGO source position. (We only searched for survey sources that have a brighter K_s , 3.6μ m, and second epoch R band magnitude for the 2MASS, GLIMPSE and USNO B1 surveys, respectively.) We then used the resulting statistics to determine the number of survey sources brighter than the listed counterpart that are likely to be detected within a region the same size as the ChIcAGO source's 95% position error circle. We did this for each ChIcAGO source individually as the density of sources can vary dramatically across the Galactic plane. In most cases the resulting chance of a random association is very low (< 0.01). Those ChIcAGO sources that have a random chance of association > 0.01 in either 2MASS or GLIMPSE are listed in Table 6. For each ChIcAGO source the chance of a random association with a USNO B1 is < 0.01.

We refer to the ChIcAGO sources that have < 20 counts as "secondary" sources. In Table 7 we list the names of any USNO B1, 2MASS and GLIMPSE sources that appear to be coincident with a secondary ChIcAGO source based on our position agreement criteria outlined in Section 2.4.1. This Table also includes the offset in arcseconds between the secondary ChIcAGO source's wavdetect position and the position of the coincident survey source. (Only those secondary ChIcAGO sources that have a coincident survey source have been included in Table 7.) A summary of the fraction of ChIcAGO sources with a coincident source in the 2MASS, GLIMPSE and USNO B1 catalogs, can be found in Table 8. This Table includes the fraction of the total number of ChIcAGO sources, as well the fraction of just the > 20 Xray count ChIcAGO sources, with a coincident survey source. (Note that we assume the coincident survey sources to the > 20 X-ray count ChIcAGO sources are counterparts based on the very low chance of random associations as demonstrated by Table 6.)

3.4. Radio Counterparts

As mentioned in Section 2.4.2, the position of each ChIcAGO source (above and below 20 X-ray counts) was visually inspected for any possibly associated radio emission in the MGPS, MAGPIS, VGPS and the 90cm Multi-configuration Very Large Array Survey of the Galactic Plane. The results of this inspection are listed in Table 9. ChIcAGO source position comparisons were also made with the Green (2009) catalog of Galactic supernova remnants. Any possibly counterparts that are known objects, such as supernova remnants (SNRs), H II regions, infrared dark clouds (IRDCs; Peretto & Fuller 2009), colliding-wind binaries (CWBs) or massive stars, are listed in Table 9 under "type". However, if the radio sources are uncataloged, they have instead been flagged as being possibly compact, diffuse, or arc/shell structured diffuse emission. Two ChIcAGO sources, ChI J181116-1828_5 and ChI J184741-0219_3, appear to be previously unidentified AGN as their coincident radio sources show core-lobe morphologies in the MAGPIS 1.4 GHz survey images.

Each of the ChIcAGO sources with a possible radio associ-

ation is then listed in Table 9 as being either coincident to, adjacent to, or on the limb of the radio source (such as on the limb of a SNR, diffuse emission or H II region). If a ChIcAGO source is listed as either coincident or on the limb of a SNR then this means it is within the extent of the SNR based on the SNR's size quoted in the Green (2009) catalog. In the cases of the two candidate AGN, these ChIcAGO sources appear to be directly coincident with the core of the AGN. The name of each radio source and the corresponding reference are listed in Table 9.

The 10 ChIcAGO sources observed with the ATCA are also included in Table 9. The ATCA-detected compact radio counterparts to both ChI J144701–5919_1 and ChI J163252–4746_2, aided in their identification as X-ray emitting massive stars or CWBs (see Anderson et al. 2011). No radio counterparts were detected for the other 8 ChIcAGO sources observed with the ATCA.

In summary, Table 9 shows there to be 16 ChIcAGO sources, from the *Chandra* observations of 8 different AGPS source regions, that are coincident, or on the limb, of 9 SNRs. There are 54 ChIcAGO sources, from 7 different AGPS source regions, that fall within the extent of 6 H II regions. There are also 4 massive stars, all of which are confirmed or candidate CWBs (see Anderson et al. 2011; Motch et al. 2010), with radio counterparts. Only two ChIcAGO sources, both toward the same single AGPS target, are coincident with an IRDC.

Several ChIcAGO sources also fall within regions of uncataloged extended radio emission. These include 15 ChIcAGO sources, from 5 different AGPS source regions, falling within the extent of 5 regions of diffuse radio emission. Of these 15 ChIcAGO sources, there are 6 (from 3 different AGPS source regions) that are coincident with uncataloged diffuse emission with an arc or shell structure. Excluding the two AGN candidates, there is only one other ChIcAGO source coincident with an unidentified compact radio source.

There are 74 ChIcAGO sources (14 sources with > 20 X-ray counts and 60 with < 20 X-ray counts), out of the 253 detected, with no optical or infrared counterparts, making them possible compact object candidates and therefore potentially detectable in the radio. We therefore searched for any possible pulsar counterparts in the Australia Telescope National Facility Pulsar Catalogue (Version 1.44^{35} Manchester et al. 2005) but no known pulsars exist within 0/6 of the wavdetect position of any of the 74 sources.

4. DISCUSSION

4.1. Unidentified ChIcAGO Sources with Radio Counterparts

Table 9 lists 16 ChIcAGO sources that fall within the extent of 9 SNRs. X-ray point sources within SNRs could be associated compact objects. Identification of an optical or infrared counterpart discounts such a possibility, since the optical/IR counterparts to neutron stars and other compact objects are expected to be very faint (for the details on this approach see Kaplan et al. 2004). Those SNR coincident ChIcAGO sources with a random chance of association > 0.01 in the USNO B1 and GLIMPSE catalogs are listed in Table 10. (The chance of a random association between one of these 16 ChIcAGO sources and a 2MASS catalog source is < 0.01.)

35 http://www.atnf.csiro.au/research/pulsar/psrcat

Of the 16 ChIcAGO sources inside SNRs, only 5 have no optical or infrared counterparts. These 5 X-ray sources are all very faint, with < 8 X-ray counts detected for each in the ChIcAGO *Chandra* observations. These are ChI J145732–5901_2 in SNR G318.2+0.1 (Whiteoak & Green 1996), ChI J182435–1311_2,3,4 in SNR G18.1–0.1 (Helfand et al. 2006; Brogan et al. 2006) and ChI J184447–0305_1 in SNR G29.3667+0.1000 (Helfand et al. 2006). Bocchino et al. (2001) has already reported on three X-ray sources within SNR G318.2+0.1 but not at the position of ChI J145732–5901_2. Both SNR G18.1–0.1 and SNR G29.3667+0.1000 are newly discovered SNRs so little X-ray analysis has been done on these objects. Further investigation is required to determine if any of these 5 ChIcAGO sources are compact objects and if they are associated with the surrounding SNRs.

There are 54 ChIcAGO sources coincident with 6 different H II regions that were detected in the ChIcAGO Chandra observations of 7 AGPS sources (see Table 9). Based on the results from X-ray observations of other H II regions (for example see Broos et al. 2007) it is possible that many of these 54 ChIcAGO sources could be pre-main sequence (PMS) stars, massive OB and WR stars, and CWBs. Simpson & Cotera (2004) also found optically obscured star clusters in 2MASS images within 1' of 3 of these AGPS sources; AX J144519-5949, AX J151005–5824, and AX J162208–5005, which supports a H II region and young and massive star interpretation for these ASCA sources. Of these 54 ChIcAGO sources, 43 have optical and/or infrared counterparts supporting a possible stellar origin (see Tables 2, 5 and 7). In most cases the chance of random association with a field source is low (< 0.01). Those H II region coincident ChIcAGO sources for which the chance of random association with a 2MASS or GLIMPSE source is > 0.01 are listed in Table 11.

The possible nature of these H II region coincident ChIcAGO sources could be further investigated by comparing their luminosities to those of PMS stars, massive OB and WR stars, and CWBs. A spectral analysis of the 54 ChIcAGO sources is extremely difficult given that they all have ≤ 32 X-ray counts. However, the primary goal is to obtain a wide-band flux that can then be converted into a luminosity. Quantile analysis was therefore performed to obtain absorbed Mewe-Kaastra-Liedahl (Mekal; Mewe et al. 1985, 1986; Kaastra 1992; Liedahl et al. 1995) spectral interpolations of all the H II region coincident ChIcAGO sources with ≥ 5 X-ray counts. A Mekal model was chosen as thin thermal plasma emission is expected from hot X-ray emitting stars (for example see Wolk et al. 2005; Sana et al. 2006). The absorbed Mekal spectral interpolations can be found in Table 11.

The luminosity of these ChIcAGO sources were calculated using kinematic distance estimates to the H II regions of which they are coincident. Kinematic distances calculated by Russeil (2003) were used to calculate luminosities for the ChIcAGO sources coincident with G320.3–0.3, G333.6–0.2, and G59.5–0.2. (Note that there is a more distant kinematic distance estimate of 6.3 kpc to G59.5–0.2 calculated by Kuchar & Bania (1994) but we have decided to use the more recent estimate from Russeil (2003).) The kinematic distances used in the luminosity calculations for G326.96+0.03 and G62.9+0.1 were obtained from McClure-Griffiths et al. (2001) and Fich & Blitz (1984), respectively. The kinematic distance to the massive young stellar object G316.8112–00.0566 (Busfield et al. 2006), likely embedded within GAL

316.8–00.1, was used in the luminosity calculations for those ChIcAGO sources coincident with this H II region. (The distance from Busfield et al. (2006) agrees reasonably well with the near kinematic distance to GAL 316.8–00.1 calculated by Caswell & Haynes (1987) when revised for a modern Galactic center distance of 8.5 kpc.) Table 11 lists the kinematic distance and corresponding absorbed and unabsorbed luminosities calculated for each H II region coincident ChIcAGO source.

The range of absorbed luminosities calculated for all the ChIcAGO sources coincident with the 6 H II regions span the range $30.6 \text{ ergs}^{-1} < \text{Log } L_{x,abs} < 32.4 \text{ ergs}^{-1}$ (0.3 – 8 keV). This absorbed luminosity range is similar to that observed from the H II region M17 (29.3 $\text{ergs}^{-1} < \text{Log } L_{x.abs} <$ 32.8 ergs^{-1} (0.5 – 8 keV); Broos et al. 2007). With the exception of ChI J151005-5824_8, the H II region coincident ChIcAGO sources in Table 11 have unabsorbed luminosities between $L_{x,unab} \sim 10^{31}$ to 10^{35} erg s⁻¹. The unabsorbed luminosities of these ChICAGO sources cover the ranges of what has been observed from flaring PMS stars ($L_{x,unab}$ ~ 10^{30} to 10^{33} erg s⁻¹; Favata et al. 2005; Wolk et al. 2005), single and binary massive O type stars ($L_{x,unab} \sim 10^{31}$ to 10^{33} erg s⁻¹; Oskinova 2005; Sana et al. 2006), WR stars ($L_{x.unab} \sim$ 10^{31} to 10^{34} erg s⁻¹; Oskinova 2005; Mauerhan et al. 2010), and CWBs ($L_{x,unab} \sim 10^{32}$ to 10^{34} erg s⁻¹; Oskinova 2005; Mauerhan et al. 2010). In fact, we were able to identify ChI J194310+2318_5, which is within G59.5-0.2, as the O7V((f)) type star HD 344784 (Walborn 1973) using the SIM-BAD Astronomical Database. It is therefore likely that the AGPS sources AX J144519-5949, AX J151005-5824, AX J154905-5420, AX J162208-5005, AX J194310+2318, AX J194332+2323, and AX J195006+2628 are young and massive stars within H II regions. Deeper X-ray, radio and IR observations are required to determine the precise nature of the individual ChIcAGO sources.

4.2. Unidentified ChIcAGO Sources with Infrared Counterparts

The X-ray and infrared population statistics performed in this section are just conducted using those ChIcAGO sources with > 20 X-ray counts, therefore concentrating on the persistent populations that fall within the AGPS flux range $(F_x \sim 10^{-13} \text{ to } 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1})$. However, discarding the ChIcAGO sources with < 20 X-ray counts limits our analysis as we are excluding the populations of sources that exhibit long term variability or transient behavior. Sources with < 20 X-ray counts will need to be investigated in future work using archival X-ray observations at different epochs.

4.2.1. X-ray and Infrared Populations Statistics

Using the X-ray and infrared properties of the unidentified ChIcAGO sources, it is possible to classify some of the sources detected in the AGPS into possible populations. We chose to focus on the IR counterparts as this waveband is less affected by interstellar extinction when compared to the optical band. This group of sources therefore makes up a larger subset of the unidentified ChIcAGO sources than those with optical counterparts (see Section 3.3). For those unidentified ChIcAGO sources observed with the *Chandra* HRC instrument (for which there is no spectral information), we gen-

erated fake spectra, using XSpec and the CIAO spectral fitting tool Sherpa. These spectra are based on the absorbed power-law fits reported in Sugizaki et al. (2001), allowing the absorbed X-ray flux and median energy (E_{50}) of the unidentified ChIcAGO source in question to be calculated. These values are used in the statistical plots described below.

To help identify possible distinct populations in the statistical plots, we have also included both archival sources (those AGPS source identified by Sugizaki et al. 2001, or in the literature and so were not observed with *Chandra* as part of the ChIcAGO survey) and the previously identified ChIcAGO sources (for example those investigated by Anderson et al. 2011, 2012). Fake spectra were generated using Sherpa and XSpec for these archival sources, using spectral fits in the literature, to determine their absorbed X-ray fluxes and E_{50} values for the energy ranges investigated. All archival AGPS sources are summarized and tabulated in Section 4.5 (see Table 12) and are individually described in Appendix A.

The identified sources were divided into the following categories: AGN, CVs, CWBs, HMXBs, magnetars, massive stars and stars. The "AGN" category includes ChI J184741-0219_3, which we identified by positional comparison with MAGPIS radio data (for the radio identification and further details on this source see Sections 3.4 and 4.3.15, respectively). The "CWB" category includes AX J163252-4746 and AX J184738-0156, which were identified in Anderson et al. (2011, listed as ChI J163252-4746 2 and ChI J184738-0156_1 in Table 1, respectively), and AX J183116-1008 and AX J183206-0938, which were identified in the XGPS (Motch et al. 2010, listed as ChI J183116-1008_1 and ChI J183206-0938_1 in Table 1, respectively). The "HMXB" category includes the archival AGPS sources that are supergiant HMXBs (McClintock & Remillard 2006), supergiant fast X-ray transients (SFXTs; Sguera et al. 2006), and SyXBs (Masetti et al. 2007). The infrared and X-ray fluxes from magnetars are variable and correlated (Durant & van Kerkwijk 2005) so the fluxes we used in the "magnetar" category are from infrared and X-ray observations that occurred close together in time. PSR J1622-4950, which was determined through the ChIcAGO Chandra observation to be the main contributor to AX J162246-4946 has also been included as an identified magnetar (see Anderson et al. 2012, and Section 4.3.6 for further details). The sources included in the "massive star" category are massive stars that are Wolf-Rayet (WR), luminous blue variable (LBV) stars, and massive O-type stars, which emit X-rays through instability-driven wind-shocks (Lucy & White 1980; Lucy 1982) and possibly through colliding-winds in a CWB. These include AX J144547-5931 and AX J144701-5919, which were identified by Anderson et al. (2011, listed as ChI J144547-5931_1 and ChI J144701-5919_1 in Table 1, respectively). All other nondegenerate stars are in the "star" category, and most likely correspond to active stellar coronae or PMS stars.

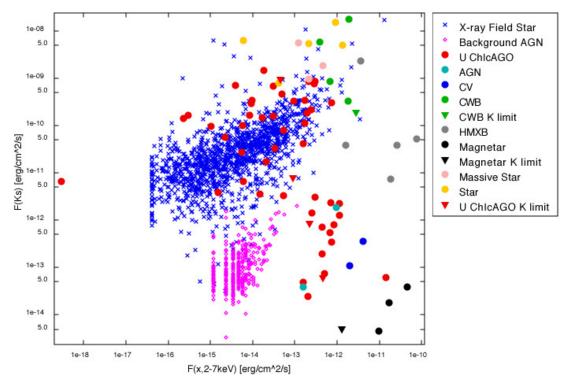
We first investigated the relationship between the X-ray and infrared flux of the ChIcAGO sources by comparing these properties to those of known stars and AGN. Figure 5 of Gelfand & Gaensler (2007) shows the X-ray versus K_s -band flux of sources from the *Chandra* Orion Ultradeep Project (COUP; Getman et al. 2005) and XBootes Survey (Jannuzi et al. 2004; Kenter et al. 2005), which are stars (predominantly in the PMS) and AGN, respectively. In Figure 7 we create a similar plot that includes the unidentified ChIcAGO sources (U ChIcAGO; red data points) along with the COUP stars (blue crosses) and the XBootes Survey AGN (magenta diamonds) (for further details on the data from these surveys see Gelfand & Gaensler 2007, and references therein). The X-ray flux ($F_{x,2-7keV}$) is over the 2.0–7.0 keV energy range and the K_s -band flux ($F_{Ks} = \lambda F_{\lambda,Ks}$) is derived from $F_{\lambda,Ks}$ (erg cm⁻² s⁻¹ μ m⁻¹) where the effective wavelength is $\lambda = 2.159 \ \mu$ m. The archival sources and the identified ChIcAGO sources with *K*-band counterparts have also been included in Figure 7 in order to further distinguish between possible X-ray populations.

Two groups and two outliers are apparent in Figure 7 among the unidentified ChIcAGO sources: group 1, those coincident with the COUP stars, and group 2 that sits to the right of the AGN detected in the XBootes survey. The two outliers are ChI J154557-5443_3, on the very left of this Figure with a hard X-ray flux limit of $F_{x,2-7keV} \leq 3 \times 10^{-19}$ erg cm⁻² s⁻¹,³⁶ and the source on the bottom right, ChI J153818-5541_1, with an X-ray flux of $F_{x,2-7keV} \sim 1 \times 10^{-11}$ erg cm⁻² s⁻¹, located near the identified magnetars.

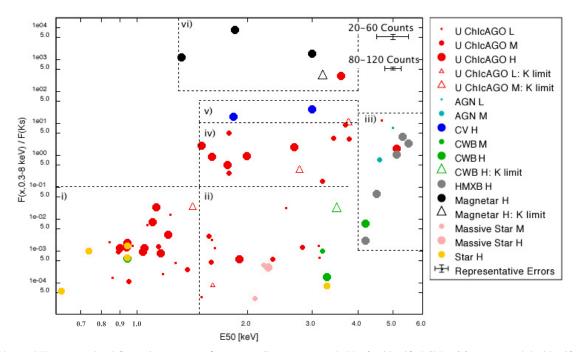
Group 1 is distributed similarly to the COUP stars, following a "track" indicating an increase in K-band flux with X-ray flux. This comparison demonstrates that a large number of the ChIcAGO stellar population could be PMS stars. While the overall Galactic X-ray population is dominated by field stars, we would expect that the ChIcAGO survey (and the AGPS) is bias towards PMS stars as such objects are brighter and harder X-ray emitters (for example see Wolk et al. 2005). The identified ChIcAGO and archival sources that have been categorized as massive stars (light pink dots) and CWBs (green data points) congregate near the top right of group 1, beyond most of the COUP stars. These massive stars and CWBs are composed of massive late-type WR stars in the nitrogen sequence that are hydrogen rich (WNH: Smith et al. 2008), or their massive O star progenitors (Of: Crowther et al. 1995), all of which are expected to be bright in the infrared and potentially harder in X-rays than other types of X-ray emitting stars (yellow data points). (See Anderson et al. 2011, for further details on these WR and massive O stars.) It is therefore possible that the unidentified ChIcAGO sources located near these massive stars and CWBs in Figure 7 could be similar objects. It should also be noted that the identified AGPS HMXBs sit to the right of group 1, with no unidentified ChIcAGO sources near their positions to draw comparison with.

Group 2 sits at a similar K_s -band flux but higher X-ray flux than the AGN from the XBootes survey. The identified ChIcAGO and archival AGN are coincident with the unidentified ChIcAGO sources in group 2, indicating that at least part of this group could also be AGN. Such AGN would have to be very X-ray bright in order to be detected through the high foreground column density in the Galactic plane. The identified archival CVs sit adjacent to group 2, at a slightly higher X-ray flux, indicating another possible population identification.

The unidentified ChIcAGO source ChI J154557-5443_3, has a similar *K*-band flux to the COUP stars but has an extremely faint hard X-ray flux. No identified ChIcAGO or archival sources are located near ChI J154557-5443_3 in Figure 7 that suggest a clue to its nature. ChI J154557-5443_3 is discussed further in Section 4.3.4.


The unidentified ChIcAGO source that sits at the bottom right of Figure 7, ChI J153818-5541_1, is very faint in the nearinfrared but bright in high energy X-rays. It is therefore very similar in both X-ray and K_s -band flux to the identified archival magnetars, suggesting a similar identification that warrants further investigation. ChI J153818-5541_1 is further discussed in Section 4.3.3.

In order to further identify the possible populations that make up the above described groups, we created a statistical plot that also takes into account the hardness of each of the unidentified ChIcAGO sources. Figure 8 plots the X-ray-to-K_s-band flux ratio $(F_{x,0.3-8.0 \text{keV}}/F_{Ks})$ versus the median energy $(E_{50} \text{ keV})$, in the 0.3-8.0 keV energy band, of each unidentified ChIcAGO source ("U ChIcAGO;" red data points). We further separated the ChIcAGO sources into the categories "low", "medium" and "high", based on their ACIS-S and HRC-I X-ray count rates, using symbol sizes to distinguish these categories. The smallest data points (low) have count rates < 15 counts s⁻¹, the medium sized data points (medium) have count rates between 15 and 40 counts s^{-1} , and the largest data points (high) have count rates > 40 counts s^{-1} . The identified ChIcAGO and archival sources, also divided into categories based on the X-ray count-rate expected from a Chandra ACIS-S observation, have also been included in Figure 8. As the X-ray fluxes and median energy errors are fundamentally based on the number of X-ray counts detected in the Chan*dra* observations, we show two representative error bars for the low count ChIcAGO sources (20-60 counts) and the high count ChIcAGO sources (80-120 counts). The error associated with the K_s -band flux is greater for PANIC magnitudes than for 2MASS magnitudes. We therefore adopt the PANIC $K_{\rm s}$ -band flux errors so that the vertical error bars represent the maximum possible error in the F_x/F_{Ks} ratio for low- and highcount unidentified ChIcAGO sources.


In Figure 8, group 1 plus the source ChI J154557-5443_3 from Figure 7 have flux ratios $F_x/F_{Ks} < 0.1$ but have a wide range of median energies. Group 2 is harder than group 1, with $E_{50} > 1.5$ keV but with a flux ratio $0.1 < F_x/F_{Ks} <$ 20. The unidentified ChIcAGO source ChI J153818-5541_1, from Figure 7 is quite hard ($E_{50} > 3$ keV), with $F_x/F_{Ks} \approx 300$. Using Figure 7 as a guide, as well as the relative positions between the unidentified ChIcAGO sources and the identified ChIcAGO and archival sources in Figure 8, we divided the groups and isolated sources from Figure 7 into six different population regions. These regions are marked by dashed lines and labeled with Roman numerals in Figure 8. The region boundaries in this plot are based on the observed X-ray properties and K_s band flux. If these values were extinction and absorption corrected, both the F_x/F_{Ks} and E_{50} region boundaries would lower.

Region i ($E_{50} < 1.5$ keV and $F_x/F_{Ks} < 0.1$) in Figure 8 contains unidentified ChIcAGO sources with low, medium and high count rates. The majority of the low count rate unidentified ChIcAGO sources included in this Figure fall into this region. These low count rate sources could be either very nearby objects that were only detected due to their close proximity to the Solar System or they are simply a more distant version of the medium and high count rate sources in Region i. All the unidentified ChIcAGO sources in this region are unlikely to be extragalactic given their softer X-ray spectra and

 $^{^{36}}$ The majority of X-ray counts that *Chandra* detected from ChI J154557-5443_3 were soft (< 2 keV). This hard flux is therefore an upper-limit.

Figure 7. Observed K_s -band flux (F_{Ks}) vs absorbed 2–7 keV X-ray flux ($F_{x,2-7keV}$) of unidentified ChIcAGO sources ("U ChIcAGO:" red points) and identified ChIcAGO and archival sources. Triangular data points represent those sources that only have upper limits on their K_s -band fluxes. The *Chandra* Orion Ultradeep Project sources (blue crosses) and the XBootes Survey sources (magenta diamonds), which are predominantly PMS stars and background AGN, respectively, are also included. The lone red data point on the far left of the diagram (ChI J154557–5443_3) should be treated as a X-ray flux upper limit as *Chandra* detected very few hard X-ray counts (> 2 keV) from this source. This plot is based upon Figure 5 of Gelfand & Gaensler (2007).

Figure 8. Observed X-ray-to- K_s -band flux ratio ($F_{x,0.3-8keV}/F_{Ks}$) vs median energy (E_{50} keV) of unidentified ChIcAGO sources and the identified ChIcAGO and AGPS sources. The different sizes of data points represent whether a given source has a low count-rate (L as listed in the legend), medium count-rate (M) or a high count-rate (H). The unidentified ChIcAGO sources ("U ChIcAGO") are represented by red data points and the identified ChIcAGO and archival sources are in other colors. The triangles represent those sources that only have upper limits on their K_s -band fluxes, implying lower limits on their F_x/F_{Ks} ratios. The representative error bars demonstrate the sizes of errors expected from a 20–60 count X-ray source or a 80–120 count X-ray source. This plot has been divided into 6 regions, indicated by the dashed lines and Roman numerals, in order to further explore the source populations (see Section 4.2).

bright K_s -band counterparts compared to the XBootes AGN in Figure 7. Within this region are three of the archival X-ray stars (yellow data points), of which there is an RS CVn star, a PMS star and a multiple system. The unidentified ChIcAGO sources in Region i are therefore likely to be soft X-ray stars with active stellar coronae or PMS stars, similar to the three archival stars, but at a variety of distances in the Galaxy.

The sources in Region ii ($E_{50} > 1.5$ keV and $F_x/F_{Ks} < 0.1$) of Figure 8 have similar F_x/F_{Ks} ratios, but slightly harder Xray emission, to those in Region i. This region also has fewer unidentified ChIcAGO sources than Region i, implying that it may contain a slightly rarer X-ray source population. The majority of the unidentified ChIcAGO sources in Region ii have low or medium count-rates, with only one in the high count rate category. The identified ChIcAGO and archival sources in this region are CWBs (green data points) and massive stars (pink dots), all of which sit at the top of the stellar track in Figure 7. We defined $E_{50} > 1.5$ keV as the lower energy cutoff of Region ii by looking at the closest unidentified ChIcAGO sources to the CWBs and massive stars in Figure 7. The CWBs and massive stars are WNH and Of stars, which produce X-rays through instability-driven wind-shocks but can also, in the case of CWBs, produce hard X-rays due to colliding-winds (for example see Anderson et al. 2011). It is therefore likely that many of the unidentified ChIcAGO sources in Region ii are WR and Of stars, some of which may also be CWBs.

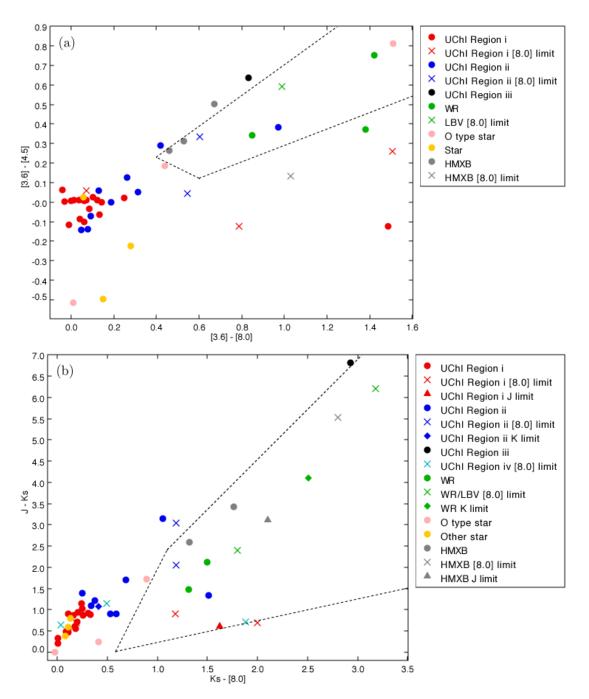
Region iii ($E_{50} > 4.0$ keV and $1 \times 10^{-3} < F_x/F_{Ks} < 20$) in Figure 8 encompasses the archival HMXBs (grey dots) and the archival and identified ChIcAGO AGN (cyan dots). The only two unidentified ChIcAGO sources in this region are ChI J170017-4220_1 (high) and ChI J172550-3533_1 (low), and are therefore quite hard X-ray sources, making HMXB or AGN identifications a strong possibility.

Region iv $(1.5 < E_{50} < 4.0 \text{ keV} \text{ and } 0.1 < F_x/F_{Ks} < 10)$ in Figure 8 contains 12 medium and high count rate unidentified ChIcAGO sources. However, there are no identified ChIcAGO or archival sources in this region that could indicate any likely source populations. The best clue comes from Figure 7, which shows that these unidentified sources are in the same region of this plot as the identified ChIcAGO and archival AGN. In the Galactic plane, the $\log N - \log S$ relation of X-ray sources in the 2.0-10.0 keV energy range (see Figure 15 of Hands et al. 2004), demonstrates that within the X-ray flux range $1 \times 10^{-13} < F_x < 2 \times 10^{-12}$ of Region iv, between 0.06 and 8 extragalactic sources are expected per square degree. These number densities are consistent with more recent $\log N - \log S$ modeling conducted by Mateos et al. (2008) who used 1129 XMM observations at $|b| > 20^{\circ}$ to demonstrate that sources in the 2-10 keV energy range, at high Galactic latitudes, agree with AGN models to better than 10%. As the ChIcAGO sources in Region iv have a number density $< 8 \text{ deg}^{-2}$ it is not unreasonable to speculate that the many of the unidentified ChIcAGO sources in this region could be AGN. However, we compared the N_H values of the Region iv ChIcAGO sources calculated from the power law quantile analysis and spectral fits in Table 3 to the Galactic column densities in their direction from surveys conducted by Kalberla et al. (2005) and Dickey & Lockman (1990).³⁷ In all

³⁷ The Galactic column densities were obtained using the online HEASARC calculator http://heasarc.gsfc.nasa.gov/cgiby four cases the ChIcAGO sources have N_H values an order of a magnitude lower than the Galactic N_H , suggesting a possible Galactic origin. The ChIcAGO sources ChI J181116– 1828_2, ChI J181213–1842_7, ChI J190749+0803_1, and ChI J194152+2251_2 have N_H values of the same order as the Galactic column density ($N_H = 1.2 \times 10^{22}, 1.3 \times 10^{22}, 1.5 \times 10^{22}$, and 1.1×10^{22} cm⁻², respectively, Kalberla et al. 2005), which is more indicative of an extragalacitc origin and therefore an AGN identification. Further investigation is required to confirm the nature of the Region iv population.

Region v (1.5 < E_{50} < 4.0 keV and 10 < F_x/F_{Ks} < 50) of Figure 8 encompasses the two identified archival CVs and the lower F_x/F_{Ks} ratio limit of unidentified ChIcAGO source ChI J181852-1559_2. As its flux ratio is only a lower limit (corresponding to an upper-limit on the *K*-band flux), it is possible that ChI J181852-1559_2 may instead be a member of Region vi (described below).

Region vi $(1.3 < E_{50} < 4.0 \text{ keV}$ and $F_x/F_{Ks} > 1 \times 10^2)$ contains four identified archival magnetars. The only unidentified ChIcAGO source that sits within this region is ChI J153818-5541_1. Based on its proximity to these magnetars, it is possible that ChI J153818-5541_1 could also be a magnetar, however, its X-ray emission is much harder in comparison. Regardless, the position of ChI J153818-5541_1 in Figure 8 indicates that this source is definitely worthy of further study.


4.2.2. Infrared Population Statistics

In order to further refine the possible populations within Figure 8, we investigated the infrared colors of the unidentified ChIcAGO sources, once again drawing comparisons with the identified ChIcAGO and archival sources. As mentioned above, there is strong evidence in Figure 8 that some of the unidentified ChIcAGO sources in Region ii could be massive stars such as WR and Of stars, and perhaps even CWBs. It is also possible that many of the ChIcAGO sources, particularly in Region i, are PMS stars given their similar X-ray-toinfrared flux ratio to the COUP stars in Figure 8. However, for the purposes of this paper we have chosen to concentrate on the selection criteria for the hard X-ray emitting massive stars. We therefore leave the investigation of the PMS star population in the ChIcAGO survey for future work (for infrared selection criteria for PMS stars see Favata et al. 2005; Maercker & Burton 2005; Maercker et al. 2006).

Hadfield et al. (2007) created a selection criterion for WR stars using GLIMPSE and 2MASS magnitudes, which was further refined by Mauerhan et al. (2011). Figures 9(a) and 9(b) are recreations of the Hadfield et al. (2007) [3.6]-[4.5] vs [3.6]-[8.0] and $J - K_s$ vs K_s - [8.0] color-color plots, showing the unidentified ChIcAGO sources. (The numbers in brackets correspond to the effective wavelength in μ m of the GLIMPSE magnitude bands.) The dashed lines in Figures 9(a) and 9(b) indicate the color space used by Mauerhan et al. (2011) to select WR candidates. These color spaces indicate where WR stars are expected to fall, in comparison to field stars, due to the infrared excess of WR stars resulting from free-free emission generated in their strong, dense stellar winds (see Mauerhan et al. 2011, and references therein).

In Figures 9(a) and 9(b), the unidentified ChIcAGO sources (UChI) have been separated into different colored symbols

bin/Tools/w3nh/w3nh.pl

Figure 9. Infrared and near-infrared color-color diagrams illustrating the selection criteria of Hadfield et al. (2007) and Mauerhan et al. (2011) for WR stars. (a) 3.6 μ m – 4.5 μ m vs 3.6 μ m – 8.0 μ m. (b) *J* – *K_s* vs *K_s* – 8.0 μ m. In both plots the dashed lines indicated the WR color space used by Mauerhan et al. (2011). The unidentified ChIcAGO sources ("UChI") are represented by red, blue and black for Regions i, ii, and iii, respectively. The identified ChIcAGO and archival AGPS sources that are WRs and LBVs (green), massive O-type stars (pink), all other non-degenerate stars (yellow) and HMXBs (grey) are also represented. The dots represent those sources that have accurate photometric information in the magnitude bands plotted. The crosses indicate those source for which we have used their GLIMPSE 5.8 μ m magnitude in the absence of a GLIMPSE 8.0 μ m detection. The Region iv sources in Figure 9(b) (cyan crosses) were not detected at 5.8 or 8.0 μ m, so their 4.5 μ m magnitude is a lower-limit.

based on whether they are in Region i (red), Region ii (blue), or Region iii (black). In both these Figures, the majority of unidentified ChIcAGO sources, particularly from Region i, do not have an infrared excess so cluster together near the origin where Hadfield et al. (2007) state the general stellar locus is located. These unidentified ChIcAGO sources are therefore unlikely to have strong stellar winds, so are more likely to have active stellar coronae. There are, however, several Region ii sources, and three Region i sources, that have more unusual colors, falling within, very close or below the indicated WR color spaces. (It should be noted that many of these unusually colored unidentified ChIcAGO sources only have magnitude lower limits in one or more of the filter bands, making their positions in these color-color diagrams uncertain. See Figures 9(a) and 9(b) for details on these magnitude limited sources.)

Rather than keeping the original identified source categories we have instead separated the identified ChIcAGO and archival massive stars and CWBs into categories based on their dominant stellar components. These categories are WR and LBVs (green data points), massive O type stars (pink data points), and all other non-degenerate stars (yellow data points). The HMXBs are still indicated by grey data points.

The identified WR stars fall within one or both of the Mauerhan et al. (2011) WR color spaces in Figures 9(a) and 9(b). Based on their positions within one or both WR color spaces, it is possible that the unidentified Region ii ChIcAGO sources ChI J181915–1601_2, ChI J180857–2004_2 and ChI J183345–0828_1 may also be WR stars. In fact, using this color space technique Hadfield et al. (2007) identified the 2MASS counterpart of ChI J181915–1601_2, 2MASS J18192219âĹŠ-1603123, as a WR star and further classified it as a WN70 star using spectroscopy. There are also three Region i unidentified ChIcAGO sources, ChI J154557–5443_1, ChI J154557–5443_3, and ChI J172550–3533_2, whose magnitude limits fall within the WR color space of Figure 9(b) and below the WR color space of Figure 9(a), which may also be worth further investigation.

The identified ChIcAGO source AX J144547-5931 (an Of type star, which is also shown as a pink dot in Figures 7 and 8, see Anderson et al. 2011) sits to the left of both WR color spaces in Figures 9(a) and 9(b). The unidentified Region ii ChIcAGO sources ChI J182435-1311_1, ChI J182651-1206_4, ChI J183356-0822_3, and ChI J184652-0240_1 are also located in this same vicinity as AX J144547-5931 in one or both Figures (within 0.2 < [3.6] - [8.0] < 0.5 in Figure 9(a) and within $0.5 < K_s - [8.0] < 1.2$ in Figure 9(b)). While these four unidentified ChIcAGO sources have unusual infrared colors, they are not as extreme as those of typical WR stars. Given their proximity in Figure 9 to the Of star AX J144547-5931, it is possible that these unidentified ChIcAGO sources could be similar massive O-type stars. The remaining Region ii ChIcAGO sources lie within the general stellar locus of Figures 9(a) and 9(b), so could be massive stars, active stellar coronae, or PMS stars.

The archival HMXBs also have unusual infrared colors as they fall within or above the top edge of the WR color spaces in Figures 9(a) and 9(b). These infrared colors may be due to intrinsic absorption (for example see Rodriguez et al. 2006). Several unidentified Region ii ChIcAGO sources also lie close to the HMXBs in these Figures, but as they have much softer median X-ray energies (see Figure 8), such an identification is unlikely. ChI J170017–4220_1 is the only Region iii source with sufficient infrared magnitude information to be displayed in Figures 9(a) and 9(b). This unidentified ChIcAGO source falls within the vicinity of the HMXBs in Figure 8 but has much more extreme infrared colors, and lies above the WR color space in both color-color plots. Further investigation is required to confirm the X-ray binary nature of ChI J170017– 4220_1.

None of the 11 unidentified Region iv ChIcAGO sources have been detected at 8 μ m, with only three, ChI J163751–4656_1, ChI J165420–4337_1, and ChI J190818+0745_1, detected with GLIMPSE at 3.6 and 4.5 μ m, all of which are likely to be Galactic in origin (see Section 4.2.1). In Figure 9(b) we have plotted these three unidentified ChIcAGO sources using their 4.5 μ m magnitude in place of 8 μ m magnitude. Only ChI J165420-4337_1 falls within the WR color space. Given the extreme uncertainties associated with the K_s – [8.0] color of ChI J165420-4337_1, no conclusions can be drawn about its possible nature.

4.3. Further Discussion of Interesting ChIcAGO and AGPS Sources

We have flagged several of the unidentified ChIcAGO sources as interesting and worthy of future follow-up based on their X-ray and infrared properties explored in Section 4.2. These population statistics have also allowed us to make some tentative identifications. The details of these sources are described below. There are several unidentified ChIcAGO sources that are not detailed in this Section but are listed, along with their tentative identification based on the population statistics, in Table 12.

4.3.1. ChI J144519-5949_2

ChI J144519–5949_2 is one of the six ChIcAGO sources detected within the H II region GAL 316.8–00.1 (see Table 9). As it does not have a GLIMPSE counterpart, it is not included in Figures 9(a) and 9(b). However, its 2MASS counterpart, 2MASS 14452143-5949251, has unusual colors and falls within the WR color space of the J-H vs $H-K_s$ plot in Figure 1 of Mauerhan et al. (2011). We therefore tentatively identify ChI J144519–5949_2 as a candidate WR star. Given the location of ChI J144519–5949_2 in Region ii of Figure 8, particularly near two identified CWBs, it is very likely that this star has very strong winds that are generating X-rays through instability-driven wind-shocks. This object could even possibly be a CWB (for example see Anderson et al. 2011).

4.3.2. ChI J150436-5824_1

Several unidentified AGPS sources have been investigated by Degenaar et al. (2012) using the X-ray telescope (XRT) on the *Swift* satellite (Gehrels et al. 2004). Degenaar et al. (2012) suggest that ChI J150436-5824_1 (which they publish under the AGPS name AX J1504.6–5824) could possibly be associated with a main sequence star that falls within the 90% XRT error circle. However, the ChIcAGO *Chandra* observation of ChI J150436-5824_1 demonstrates that there is no cataloged counterpart within the < 1" position error circle of this X-ray source, arguing against this tentative identification.

4.3.3. ChI J153818-5541_1

In Figure 7, ChI J153818–5541 1 has properties that are clearly not consistent with the stellar or AGN populations. It sits near the bottom right-hand corner of Figure 7, having similar X-ray and infrared fluxes to the archival magnetars (black data points). ChI J153818-5541_1 also falls within Region vi in Figure 8 along with these same magnetars, further indicating a possible magnetar nature. However, during the writing of this paper, recent studies with Swift have indicated that ChI J153818–5541 1 (published under its AGPS name AX J1538.3–5541) may in fact be a low mass X-ray binary (LMXB; Degenaar et al. 2012). If this is the case, then X-ray and infrared statistical analysis is not a foolproof diagnostic. That being said, this same statistical analysis has allowed us to show that interesting and unusual Galactic Xray sources fall within Region vi of Figure 8. (It should be noted that a magnetar identification for this source has not been completely ruled out.)

4.3.4. ChI J154557-5443_3

ChI J154557–5443 3 is a soft X-ray source as demonstrated by its isolated position in Figure 7. Only 2 X-ray counts, from a total of 22 detected with Chandra, had an energy > 2 keV, but otherwise the source's median energy (E_{50} = 0.8 keV) is consistent with the other sources in Region i of Figure 8. The X-ray-to-optical flux ratio for this source is $\log[F_{(x,0.3-8keV)}/F_R] = -2.5$ (where $F_R = \lambda F_{R,\lambda}$ using the R magnitude band), which is consistent with what is expected from stars and normal galaxies (Mainieri et al. 2002). An unusual property of this source is its position in WR color space in Figure 9(b), but this may result from using its 5.8 μ m GLIMPSE magnitude in place of a lacking 8.0 μ m magnitude. An optical or infrared spectrum would likely reveal the identity of this source. ChI J154557-5443_3 is therefore unlikely to be related to AX J154557-5443 as ASCA only detected hard counts (> 2 keV) from this AGPS source.

4.3.5. ChI J162011-5002_1

Degenaar et al. (2012) tentatively identified ChI J162011– 5002_1 (published under its AGPS name AX J1620.1–5002) as a candidate accreting magnetized white dwarf based on its hard X-ray spectrum described by a flat power law, and lack of any cataloged optical/infrared counterpart. The power-law index obtained using quantile spectral interpolation (see Table 3) agrees with the result from Degenaar et al. (2012) and is consistent with the spectra of magnetically accreting white dwarfs ($\Gamma < 1$; Muno et al. 2003). However, our analysis resulted in a higher column density than the value calculated by Degenaar et al. (2012, $N_H \lesssim 3 \times 10^{21}$ cm⁻²). Deep imaging in the *H*-band with PANIC resulted in the detection of a faint counterpart ($H = 17.01 \pm 0.14$). Further follow-up is required to confirm this classification.

4.3.6. AX J162246-4946

The newly discovered radio and X-ray emitting magnetar, PSR J1622–4950 (also known as CXOU J162244.8–495054, Evans et al. 2010; Levin et al. 2010), was not cataloged by ChIcAGO MAP. This is because it lies 4' from the position of AX J162246–4946, and is therefore outside the 3' radius

for which ChIcAGO MAP searches for X-ray point sources. However, PSR J1622–4950 was detected in this ChIcAGO *Chandra* observation and further investigation in Anderson et al. (2012) demonstrates that this magnetar may have contributed up to 75% of the X-ray emission originally detected by *ASCA* from AX J162246–4946. We therefore identify AX J162246–4946 as PSR J1622–4950, and this source has been included as an identified magnetar in Figures 7 and 8. (For further discussion on X-ray point sources detected beyond the 3' search radius surrounding the AGPS position see Appendix B.)

4.3.7. AX J165951-4209

While Sugizaki et al. (2001) reported an absorbed flux of $F_x = 4.04 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$ from AX J165951–4209 in the 0.7-10.0 keV band, this AGPS source was not detected in the ChIcAGO Chandra observation on 2008 June 21, with an upper limit on any X-ray flux of $F_x \sim 5 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$ (0.3-8 keV). AX J165951–4209 was also not detected with the *Swift* XRT on 2008 January 23 (Degenaar et al. 2012) at a flux level of $F_x \sim 3 \times 10^{-13}$ erg cm⁻² s⁻¹ (0.3 – 10 keV). While variability of several orders of magnitude (in this case a factor of \sim 100) is typical behavior of both Be X-ray binaries (BeXs; Reig 2011) and black hole transients (McClintock & Remillard 2006), the hard power law index calculated from the ASCA spectrum of this source ($\Gamma \sim 0.47$; Sugizaki et al. 2001) is quite hard. This power law index is harder than what is usually observed from black hole transients (McClintock & Remillard 2006) but is consistent with spectra from BeXs (for example see Haberl et al. 2008). We therefore suggest that AX J165951-4209 could be a transient BeX.

4.3.8. ChI J170017-4220_1

ChI J170017–4220_1 (also known as AX J1700.2–4220) has long been assumed to be a HMXB (see Liu et al. 2006; Bird et al. 2007; Krivonos et al. 2007; Bird et al. 2010). This is, however, unconfirmed and is partly based upon the assumption that the Be star HD 153295 (2MASS J17002524-4219003) is the counterpart to ChI J170017–4220_1 (Negueruela & Schurch 2007). The ChICAGO *Chandra* observation shows that HD 153295 is actually the counterpart to ChI J170017–4220_2 (see Table 7) and that ChI J170017–4220_1 has no 2MASS counterpart. The main clue to the nature of ChI J170017–4220_1 comes from Markwardt et al. (2010), who detected a 54s X-ray pulse period and 44 day orbital period using archival *XMM* and *Rossi X-ray Timing Explorer* data. These period values are suggestive of a Be HMXB (Markwardt et al. 2010).

We obtained PANIC NIR observations of ChI J170017– 4220_1 and identified its GLIMPSE counterpart, allowing this ChIcAGO source to be represented in Figures 7, 8, and 9. ChI J170017–4220_1 is part of Group 2 in Figure 7, and is therefore consistent with an AGN, but this source is also situated in the same region as the archival HMXBs in Figure 8. Its placement on Figures 9(a) and 9(b) demonstrates that it has very unusual infrared colors, even more extreme than the archival HMXBs, which could indicate strong winds or a large amount of circumstellar absorption. Further investigation is required to determine the true nature of ChI J170017–4220_1.

4.3.9. ChI J172050-3710_1

Degenaar et al. (2012) suggested that ChI J172050-3710_1 (also known as AX J1720.8-3710) may be associated with the NIR source 2MASS J17205180-3710371, which has colors similar to a main sequence star. They also suggested that the low absorption inferred from a power-law X-ray fit indicates that ChI J172050-3710_1 may be a foreground star. We agree that this 2MASS source is the likely counterpart to ChI J172050-3710_1 based on the position obtained with the ChIcAGO Chandra observation (see Table 2). We also agree that the counterpart colors are unremarkable (see Figures 9(a) and 9(b)), given that they are consistent with the general stellar locus depicted in Figure 1 of Hadfield et al. (2007). Our quantile thermal bremsstrahlung spectral interpolation of ChI J172050-3710 1 (see Table 4) also predicts a low value of N_H . This, combined with the unremarkable colors of 2MASS J17205180-3710371, and the fact that this ChIcAGO source is situated in Region i of Figure 8 with the other soft X-ray emitting stars, supports the claim by Degenaar et al. (2012) that ChI J172050-3710_1 is likely a foreground main sequence star. We therefore argue that the likely source of X-ray emission from ChI J172050-3710_1 is generated in an active stellar corona.

4.3.10. ChI J180857-2004_2

ChI J180857–2004 2 falls within the inner edge of the infrared dust bubble CN 148 (Churchwell et al. 2007). Such bubbles are formed by the stellar winds of young hot stars impacting the interstellar medium (Churchwell et al. 2006). The morphology of the dust cloud immediately surrounding ChI J180857–2004_2 demonstrates a shell-type structure. This could indicate that its stellar winds are impacting the environment and generating a small secondary bubble within CN 148. If this is the case, then ChI J180857–2004_2 could be a young massive star with strong stellar winds. This is already indicated by its position within the WR color spaces in Figures 9(a) and 9(b), and by the detection of hard X-ray emission with *Chandra*, indicated by its position within Region ii of Figure 8. ChI J180857-2004 2 could therefore be a WR star, for which the X-ray emission is generated through instability-driven wind-shocks or in a CWB (see Anderson et al. 2011).

4.3.11. ChI J181116-1828_5

ChI J181116–1828_5 is a faint point source detected in the *Chandra* observation of AX J181116–1828 so it is unlikely to be the main contributor of X-ray emission to this AGPS source. This source is, however, quite hard, with all but one count having an energy > 2 keV, and is coincident with a MAGPIS radio source with a core-lobe morphology (see Section 3.4). Given the morphology of its likely radio counterpart, along with the detection of predominately hard X-rays ($E_{50} = 3.4 \text{ keV}$), we tentatively identify ChI J181116-1828_5 as an AGN.

4.3.12. ChI J181852-1559_2

During the writing of this paper, ChI J181852–1559_2 (also known as AX J1818.8–1559) was proposed as a magnetar candidate through the analysis of several X-ray observations (Mereghetti et al. 2012). This proposed identification is encouraging as the lower limit of ChI J181852–1559_2 in Figure 8 is consistent with the archival magnetars in Region vi,

demonstrating the usefulness of this statistical plot for identifying interesting sources.

4.3.13. ChI J181915-1601_2

As mentioned in Section 4.2.2, Hadfield et al. (2007) identified 2MASS J18192219–1603123 (the counterpart to ChI J181915–1601_2, see Table 2) as a WR star of type WN7o using the same selection criteria that we have adopted in Figures 9(a) and 9(b). The mechanism behind the production of X-ray emission is still unknown, but is likely caused by massive stellar winds as demonstrated by the position of ChI J181915–1601_2 within Region ii of Figure 8. Further investigation is required to determine if this WR star is mainly producing X-ray emission through instability-driven windshocks, or if it is part of a CWB.

4.3.14. *ChI J183345–0828_1*

Kargaltsev et al. (2012) identified 2MASS J18334038– 0828304 as the counterpart to ChI J183345–0828_1 (also known as CXOU J183340.3–082830), but the nature of this X-ray source is still unknown. ChI J183345–0828_1 falls within an extended X-ray source in SNR G23.5+0.1, which Kargaltsev et al. (2012) have tentatively identified as the PWN powered by PSR B1830–08. It is possible that both this PWN and ChI J183345–0828_1 may have contributed to the X-ray emission originally detected by *ASCA* from AX J183345– 0828. While ChI J183345–0828_1 is unlikely to be associated with the PWN, given the relative brightness of its IR counterpart, it does fall within the WR color space in Figure 9(b). ChI J183345–0828_1 could therefore be a massive star with strong stellar winds.

4.3.15. ChI J184741-0219_3

As mentioned in Section 3.4, ChI J184741–0219_3 is coincident with a MAGPIS radio source that has a core-lobe morphology. Deep PANIC observations also allowed the detection of its infrared counterpart (K = 18.46), which places it in Region iii of Figure 8 (represented by the smallest cyan data point) along with the other archival AGN AX J183039–1002 (Bassani et al. 2009), which is the middle sized cyan data point. (We obtained the NIR magnitudes $J > 20.6 \pm 0.3$, $H = 17.3 \pm 0.2$ and $K_s = 14.3 \pm 0.2$ on 2007 July 29 for AX J183039–1002 using PANIC.) As ChI J184741–0219_3 had by far the highest count-rate of all sources detected in the 3' *Chandra* region around the aim-point for this target (see Table 1), it is likely the main contributor to the X-ray emission detected from AX J184741–0219 in the AGPS.

ChI J184741–0219_3 has a hard X-ray spectrum (see Table 3) where the resulting absorbed X-ray flux from the power-law spectral interpolation is $F_x = 2.6 \pm 0.5 \times 10^{-13}$ erg cm⁻² s⁻¹ in the 0.3 – 8 keV energy band. Using the same spectral interpolation parameters and the *ASCA* count-rates (Sugizaki et al. 2001), *Chandra* PIMMS estimates that ChI J184741–0219_3 had an absorbed X-ray flux of $F_x \approx 1 \times 10^{-12}$ erg cm⁻² s⁻¹ during the 1999 AGPS observation. Degenaar et al. (2012) also observed the field of ChI J184741–0219_3 with the *Swift* XRT in 2007 March but only obtained an absorbed X-ray flux upper-limit of $F_x < 1 \times 10^{-13}$ erg cm⁻² s⁻¹ (0.3 – 10 keV). These flux measurements suggest likely long-term variability from this source. We therefore tentatively identify ChI J184741–0219_3 as an X-ray variable AGN.

4.3.16. AX J185905+0333

Suzaku observations have demonstrated that AX J185905+0333 is likely an X-ray luminous cluster of galaxies behind the Galactic Plane (Yamauchi et al. 2011). The extended nature of this source is the likely reason it was not detected in the short ChIcAGO *Chandra* observation.

4.3.17. AX J191046+0917

AX J191046+0917 (also known as AX J1910.7+0917), while not detected in the ChIcAGO *Chandra* observation, has been detected intermittently in a small number of *ASCA*, *XMM*, and *Integral* observations, allowing Pavan et al. (2011) to identify it as a likely HMXB candidate. Further X-ray observations are required to confirm such an identification and further refine its class.

4.3.18. ChI J194939+2631_1

During the writing of this paper, ChI J194939+2631_1 (also known as AX J194939+2631) was identified as a CV by Zolotukhin & Chilingarian (2011) using the ChIcAGO *Chandra* observation and the Isaac Newton Telescope Photometric H α Survey of the northern Galactic plane (IPHAS; Drew et al. 2005). Further follow-up is required to confirm their tentative intermediate polar (IP) classification.

4.4. ChIcAGO Sources Identified with SIMBAD

We were also able to identify four of the bright (> 20 X-ray counts) ChIcAGO sources using the SIMBAD Astronomical Database. These four ChIcAGO sources are described below. We also discuss the secondary ChIcAGO source ChI J165420–4337_2.

4.4.1. ChI J144042-6001_1

The position obtained with the ChIcAGO *Chandra* observation confirms the Sugizaki et al. (2001) identification of ChI J144042-6001_1 (also known as AX J144042–6001) as the PMS star HD 128696. This source appears as an identified star (yellow data point) in group 1 of Figure 7, in Region i of Figure 8, and is consistent with the general stellar locus in Figures 9(a) and 9(b).

4.4.2. ChI J165420-4337_2

Sugizaki et al. (2001) identified AX J165420–4337 as the K5 type star HD 326426. After observing the *ASCA* position of AX J165420–4337 with *Chandra* HRC, we detected two ChIcAGO sources ChI J165420–4337_1 (123 X-ray counts detected) and ChI J165420–4337_2 (16 X-ray counts detected). As ChI J165420–4337_1 is by far the brightest of the ChIcAGO sources detected in this *Chandra* observation, it is therefore likely to be the main source of X-ray emission originally detected in the AGPS. The fainter (secondary) ChIcAGO source in the field, ChI J165420–4337_2, is in fact the X-ray counterpart to HD 326426 based on position comparisons using SIMBAD. Therefore the identification of AX J165420–4337 as HD 326426 by Sugizaki et al. (2001) is incorrect.

4.4.3. ChI J172550-3533_2

Using the position obtained with the ChIcAGO *Chandra* observation, we identified ChI J172550–3533_2 as the dwarf Nova V478 Sco (Vogt & Bateson 1982). ChI J172550–3533_2 has a soft X-ray spectrum, as indicated by its position within Region i of Figure 8, but has quite unusual infrared colors based on its position below the WR color-spaces in Figures 9(a) and 9(b).

4.4.4. ChI J172642-3540_1

Using SIMBAD, we identified ChI J172642–3540_1 as the X-ray counterpart to the K2V type star CD-35 11565 (Torres et al. 2006). ChI J172642–3540_1 is soft, like the other stars in Region i of Figure 8. Its position in Figures 9(a) and 9(b) is also consistent with the general stellar population.

4.4.5. ChI J194310+2318_5

ChI J194310+2318_5 is one of the 18 ChIcAGO sources detected within the H II region G59.5–0.2 (see Section 4.1 and Table 9). Using SIMBAD and the *Chandra* position for this source, we determined that ChI J194310+2318_5 is the X-ray counterpart to the O7V((f)) type star HD 344784 (Walborn 1973). This source is quite soft (within Region i of Figure 8) and has unremarkable infrared colors (see Figures 9(a) and 9(b)). The placement of ChI J194310+2318_5 in the aforementioned Figures, combined with its stellar classification, make this ChIcAGO source compatible with an active stellar corona identification.

4.5. Confirmed and Tentative Identifications of the AGPS Sources

Table 12 reproduces the original list of the 163 AGPS sources from Sugizaki et al. (2001), but now including the corresponding ChIcAGO sources with > 20 X-ray counts in column two. The confirmed or tentative identification of these ChIcAGO sources are listed in the third column, where the abbreviations are given in the Table caption. Those AGPS sources and corresponding ChIcAGO sources with confirmed identifications were either obtained from the literature, and are therefore called "archival AGPS" sources, or were obtained through the ChIcAGO survey's *Chandra* observations (i.e. this paper and Anderson et al. 2011, 2012). The tentative identifications were made through the multi-wavelength follow-up and population statistics conducted on the ChIcAGO sources in Section 4.2. The forth column gives the most common name for the AGPS and/or ChIcAGO source while column five lists the references from which the X-ray and infrared properties of a given source was obtained for use in the statistical plots (Figures 7, 8 and 9).

The tentative identifications of the ChIcAGO sources are based on the statistical plots in Section 4.2. For example, if a ChIcAGO source falls within Region i of Figure 8, then its type in Table 12 has been listed as being either an active stellar corona (ASC) or PMS star (ASC/PMS). If the ChIcAGO source falls within Region ii of Figure 8, and also within one or both of the WR color spaces in Figures 9(a) and 9(b), then its type has been classified as a WR star. Those ChIcAGO sources that fall within Region ii of Figure 8 and near AX J144547-5931 in Figures 9(a) and 9(b) (see text in Section 4.2.2) have been classified as massive O-type stars (MS-O). All Region ii stars that fall within the general stellar loci of Figures 9(a) and 9(b) could be either massive stars (MS) or ASC so are listed as MS/ASC. (A PMS star interpretation is also possible for these Region ii sources.)

Those Region ii ChIcAGO sources listed as Wolf-Rayet (WR), massive stars (MS), or massive O-type stars (MS-O), still need to be properly investigated for evidence of X-ray emission emanating from colliding-winds in a CWB. Such an identification requires further X-ray spectroscopic follow-up to identify plasma temperatures between 1 and 10 keV (Usov 1992). There are also 7 AGPS sources that are listed as H II regions. Those AGPS sources identified as "H II" are actually made up of many X-ray point sources that were detected in our ChIcAGO Chandra observations (see Section 4.1) and are therefore young and massive stars in the H II region listed. If there is an identified X-ray star that is a significant contributor to the X-ray emission, the stellar type is listed before the H II abbreviation in column 3, along with its ChIcAGO source name in column 2. The suffixes of the other ChIcAGO sources coincident with the H II region are listed in parentheses. All other AGPS and ChIcAGO sources for which there is no identification information are classified as unknown (U). If no sources were detected in a ChIcAGO Chandra observation, then the AGPS source falls in the no detection (ND) category. A detailed description of some of the AGPS sources identified through the ChIcAGO survey and of the archival AGPS sources (i.e. those sources identified in the literature and therefore not observed with Chandra as part of the ChIcAGO survey) can be found in Section 4.3 and Appendix A, respectively.

The final column in Table 12 contains a flag for columns one and two that indicates whether an AGPS and/or ChIcAGO source has a confirmed identification (I) obtained through work in the ChIcAGO survey or a tentative identification (T) using the population statistics in Section 4.2. Those AGPS sources for which no ChIcAGO sources were detected within 3' of the ASCA position, or only faint (< 20 X-ray counts) ChIcAGO sources were detected (F), are also indicated. (This flag excludes those AGPS sources that have been identified as H II regions.) The unidentified population of ChIcAGO sources that fall in Region iv of Figure 8 (R) are also included. There is also a flag for column three that indicates whether the type identification for a ChIcAGO source is unconfirmed (N) due to it being based on its tentative statistical identification in Section 4.2.

5. CONCLUSIONS

The main aim of the ChIcAGO survey is to identify the Galactic plane X-ray source populations that make up the $F_x \sim 10^{-13}$ to 10^{-11} erg cm⁻² s⁻¹ flux range. To achieve this we have used new observations from the *Chandra* X-ray telescope, along with extensive multi-wavelength follow-up, to identify sources from the *ASCA* Galactic Plane Survey (Sugizaki et al. 2001). We have reported observations of the *ASCA* positions of 93 unidentified AGPS sources with *Chandra*, from which a total of 253 X-ray point sources, termed "ChIcAGO sources", have been detected.

Through visual inspection of Galactic plane radio surveys, we have found 5 ChIcAGO sources within supernova remnants that have no cataloged optical or infrared counterparts. These sources could potentially be compact objects associated with their surrounding SNRs. Further radio analysis has also demonstrated that the ChIcAGO sources detected in the *Chandra* observations of the AGPS sources AX J144519–5949, AX J151005–5824, AX J154905–5420, AX J162208–5005, AX J194310+2318, AX J194332+2323, and AX J195006+2628 are all coincident with H II regions. Table 11 demonstrates that the range of luminosities, which are calculated using kinematic distances to the H II regions, are consistent with the luminosities we expect from flaring PMS stars, massive stars, and CWBs. We therefore identify the 54 separate ChIcAGO sources seen in these *Chandra* observations as young and massive stars within H II regions.

Of the 93 *Chandra*-observed AGPS fields, 62 have one or more sources with > 20 X-ray counts, resulting in the detailed study of 74 ChIcAGO sources in this paper. The multiwavelength follow-up of these ChIcAGO sources demonstrates the need for *Chandra*'s subarcsecond localization capabilities to correctly identify likely infrared and optical counterparts. The main focus of this paper has been on those unidentified ChIcAGO sources with > 20 X-ray counts and with near-infrared or infrared counterparts. This has allowed us to perform population statistics to identify some of the likely objects that make up the $F_x \sim 10^{-13}$ to 10^{-11} erg cm⁻² s⁻¹ Galactic plane X-ray source populations.

We have developed a new statistical diagnostic for identifying likely populations of X-ray emitting sources using *K*band fluxes and upper-limits (see Figure 8). The unidentified ChIcAGO sources in Region i of Figure 8 have soft X-ray emission and low X-ray-to-infrared flux ratios, making them consistent with many of the archival and identified ChIcAGO stars. Their X-ray-to-infrared flux ratios are also similar to the COUP stars (see Figure 7), which are predominantly PMS stars. The majority of the Region i sources also fall within the general stellar locus that is expected in Figures 9(a) and 9(b) (Hadfield et al. 2007). They are therefore likely to be active stellar coronae, which is consistent with the main soft X-ray populations expected in the Galactic plane (Hong et al. 2005), or PMS stars.

Many of the ChIcAGO sources in Region ii of Figure 8 have infrared colors similar to known Wolf-Rayet stars, as demonstrated in Figure 9, which indicate the presence of excess infrared emission resulting from strong, dense stellar winds. These sources are therefore likely to be massive stars generating X-rays through instability-driven wind shocks or even colliding winds in CWBs (for example see Anderson et al. 2011).

Only two unidentified ChIcAGO sources are located within Region iii of Figure 8, along with the archival high-mass and symbiotic X-ray binaries (and AGN). As such X-ray binaries (XRBs) are rare, only a few unidentified ChIcAGO sources are expected to fall within this group. This result therefore demonstrates that Figure 8 may be a very useful diagnostic for identifying XRBs.

Region vi contains four identified magnetars and a candidate LMXB. Even though there are likely two different source populations in Region vi, Figure 8 demonstrates that hard X-ray sources ($E_{50} > 1.3$ keV), with an X-ray-to-infrared flux ratio $F_x/F_{Ks} > 10^2$, are very rare and interesting Galactic X-ray sources.

The population of ChIcAGO sources in Region iv of Figure 8 remains unidentified. Based on their position relative to the identified AGN in Figure 7 and they high N_H values compared to the Galactic column density, we suggest that the 4 ChIcAGO sources ChI J181116–1828_2, ChI J181213–1842_7, ChI J190749+0803_1, and ChI J194152+2251_2 could be background AGN. The remaining 8 unidentified Region iv ChIcAGO sources have far lower N_H values than the Galactic column densities indicating that they could be located in our own Galaxy. Optical and infrared spectroscopic follow-up is required to identify the true nature of this population.

of the hard (2-10 keV) Galactic plane X-ray populations between $F_x \sim 10^{-13}$ and 10^{-11} erg cm⁻² s⁻¹ will be able to be constructed. This $\log N - \log S$ will be more complete than those constructed from previous X-ray surveys in the same flux range, as it will be representative of 40 deg² of the Galactic plane. It will also show individual contributions from different Galactic X-ray source populations including nonaccretion powered sources such as CWBs, SNRs, PWNe, and magnetars, which have not been a focus of previous work. Using the $\log N - \log S$ distribution and distance estimates, it will then be possible to construct luminosity functions and threedimensional spatial distributions of each class of X-ray source in the Galactic plane.

With further source identifications, a full $\log N - \log S$ model

APPENDIX

SOURCE DESCRIPTIONS OF THE ARCHIVAL AGPS SOURCES

As mentioned in Section 1, approximately one third of the AGPS sources were identified by Sugizaki et al. (2001) or were classified by other research groups prior to the ChIcAGO survey. It is these identified AGPS sources, referred to as "archival sources" in Section 4.2.1, which have been used to narrow down the possible unidentified ChIcAGO source populations. The archival AGPS sources are listed in Table 12 and are briefly described in below.

AX J143416-6024 RS CVn type variable star, HD 127535, with spectral type K1IIIe (Sugizaki et al. 2001).

- AX J155052–5418 X-ray and radio emitting magnetar 1E 1547.0-5408, associated with the possible radio SNR G327.24-0.13 (Gelfand & Gaensler 2007).
- AX J155644-5325 KOIIIe type star, TYC 8697–1438-1 (Torres et al. 2006).
- AX J161929-4945 SFXT, a sub-class of HMXBs that display fast X-ray outbursts (Sguera et al. 2006; Tomsick et al. 2006).
- **AX J162155–4939** K3III type star, HD 147070 (Sugizaki et al. 2001); this identification needs to be confirmed by follow-up X-ray observations
- AX J163159–4752 Accretion driven 1300s X-ray pulsar in a supergiant HMXB (Rodriguez et al. 2006; Walter et al. 2006). This system is one of the highly absorbed HMXBs identified by *Integral* (Negueruela & Schurch 2007).
- AX J163351-4807 The magnetic Of?p star HD 148937 (Nazé et al. 2012).
- AX J163555–4719 The X-ray emission associated with SNR G337.2+0.1 and its PWN (Combi et al. 2006). This system is also associated with the *Fermi*-LAT source 1FGL J1635.7–4715 (Abdo et al. 2010).
- **AX J163904–4642** Originally identified as a 912s pulsating, heavily-absorbed, HMXB (Bodaghee et al. 2006; Thompson et al. 2006), this source has now been reclassified as a SyXB (Nespoli et al. 2010).
- **AX J164042–4632** X-ray PWN associated with the radio SNR G338.3–0.0 and the very high energy γ -ray source HESS J1640–465 (Funk et al. 2007; Lemiere et al. 2009). This system is also associated with the *Fermi*-LAT source 1FGL J1640.8–4634 (Abdo et al. 2010; Slane et al. 2010).
- AX J165437-4333 The F7V type star HD 152335 (Sugizaki et al. 2001).
- AX J165904–4242 Herbig Be star V921 Sco, where the X-ray emission may arise from magnetic activity (Hamaguchi et al. 2005). (Sugizaki et al. 2001, incorrectly assigned this star as the counterpart to AX J165901–4208.)
- AX J170006–4157 Magnetized CV, likely of the IP class, with 715s X-ray pulsations (Torii et al. 1999; Kaur et al. 2010).
- AX J170047-4139 38s pulsating HMXB with an Ofpe/WNL type mass donor (Chakrabarty et al. 2002; Mason et al. 2009).
- **AX J170349–4142** SNR G344.7–0.1 and its possible central compact object (CCO; Combi et al. 2010). There is a possible γ-ray counterpart, HESS J1702–420 (Giacani et al. 2011).
- AX J171804–3726 SNR G349.7+0.2 and its possible CCO (Slane et al. 2002; Lazendic et al. 2005). This remnant is also associated with the *Fermi*-LAT source 1FGL J1717.9–3729 (Castro & Slane 2010).
- AX J172105–3726 SNR G350.1–0.3 and its CCO (Gaensler et al. 2008; Lovchinsky et al. 2011).

- AX J172743-3506 SNR G352.7-0.1 (Giacani et al. 2009).
- AX J173441–3234 Colliding-wind binary (CWB) HD 159176 (07V+07V) in the young open cluster NGC 6383. The short period of this binary implies that the winds likely collide well before reaching their terminal velocities, limiting the hardness of the resulting thermal X-ray emission (De Becker et al. 2004).
- AX J173518-3237 SNR G355.6-0.0 (Yamauchi et al. 2008).
- AX J180225–2300 X-ray emission associated with the OB type and pre-main-sequence stars in the Trifid Nebula. The main X-ray contributor is the HD 164492 multiple system of OB stars (Rho et al. 2004).
- AX J180838-2024 Magnetar SGR 1806-20 (Kouveliotou et al. 1998).
- AX J180902–1948 SNR G10.5–0.0. Other than this ASCA detection (Sugizaki et al. 2001), no other X-ray papers exist on this source. The radio SNR was discovered by Brogan et al. (2006).
- AX J180948–1918 PSR J1809–1917 and its PWN, which are likely associated with HESS J1809–193 (Kargaltsev & Pavlov 2007; Aharonian et al. 2007).
- AX J180951–1943 The X-ray and radio emitting magnetar XTE J1810–197 (Ibrahim et al. 2004; Halpern et al. 2005).
- AX J181211-1835 SNR G12.0-0.1 (Yamauchi et al. 2008).
- AX J182104-1420 SNR G16.7+0.1 and its central PWN (Helfand et al. 2003a).
- **AX J183039–1002** A Compton-thick active galactic nucleus (Bassani et al. 2009). A K_s -band magnitude of 14.3 ± 0.2 was obtained for this source with PANIC on 2007 July 29 (see Section 4.3.15).
- AX J183221–0840 Magnetized CV, likely of the IP class, with 1549.1s X-ray period pulsations (Sugizaki et al. 2000; Kaur et al. 2010).
- AX J183528–0737 The 112s pulse period X-ray binary, Scutum X-1. This system is likely to be a SyXB (Kaplan et al. 2007).
- AX J183800–0655 The 70.5 ms pulsar, PSR J1838–0655, and its PWN. This system is possibly associated with HESS J1837–069 (Gotthelf & Halpern 2008; Kargaltsev et al. 2012).
- AX J183931–0544 The luminous blue variable (LBV) candidate G26.47+0.02. This source is possibly in a CWB (Paron et al. 2012). It is assumed that the 2MASS J18393224–0544204 is the correct NIR counterpart for the purpose of the statistical analysis in Section 4.4.
- AX J184121-0455 The magnetar 1E 1841-045 and its associated SNR G27.4+0.0 (Kes 73; Gotthelf & Vasisht 1997; Morii et al. 2003).
- AX J184355–0351 X-ray emission associated with the non-thermal SNR G28.6–0.1/AX J1843.8–0352 and the thermal source CXO J184357–035441 (which may or may not be part of SNR G28.6–0.1, Bamba et al. 2001; Ueno et al. 2003).
- AX J184629–0258 X-ray emission from the SNR G29.7–0.3 (Kes 75), its central pulsar PSR J1846–0258 and associated PWN (Helfand et al. 2003b).
- AX J184848–0129 X-ray sources in the Galactic globular cluster GLIMPSE–C01 (Pooley et al. 2007) and the nearby diffuse source CXOU J184846.3–013040 (either a PWN or the globular cluster's bow shock; Mirabal 2010). These sources may also be associated with the *Fermi*-LAT source 0FGL J1848.6–0138 (Luque-Escamilla et al. 2009).
- AX J184930–0055 X-ray emission associated with the thermal composite SNR G31.9+0.0 (3C 391; Chen & Slane 2001; Chen et al. 2004). This SNR is likely associated with 1FGL J1849.0–0055 (Castro & Slane 2010).
- AX J185015-0025 The X-ray synchrotron-dominated SNR G32.4+0.1 (Yamaguchi et al. 2004).
- AX J185240+0038 X-ray emission associated with the SNR G33.6+0.1 (Kes 79) and the 105 ms pulsar PSR J1852+0040 (there is no detectable PWN; Gotthelf & Halpern 2005). This pulsar has been described as an "anti-magnetar" (Halpern & Gotthelf 2010).
- AX J185551+0129 X-ray emission from SNR G34.7–0.4 (also known as W44 and 3C392) and the PWN associated with its central pulsar, PSR B1853+0.1 (Petre et al. 2002). This system may be associated with the *Fermi*-LAT source 0FGL J1855.9+0126/1FGL 1856.1+0122 (Abdo et al. 2009, 2010).
- AX J190734+0709 SNR G41.1-0.3 (3C 397; Safi-Harb et al. 2005).
- AX J191105+0906 SNR G43.3-0.2 (W49B; Hwang et al. 2000).
- AX J194649+2512 X-ray emission likely associated with the H α emission line star VES 52 (Kohoutek & Wehmeyer 1997; Sugizaki et al. 2001, this identification still needs to be properly confirmed by follow-up X-ray observations).

CHANDRA DETECTED X-RAY POINT SOURCES BEYOND THE 3' SEARCH REGION

Table 13 lists those 14 *Chandra* detected X-ray point sources with > 20 X-ray counts that lie within 3'-5' of the ASCA position of 11 AGPS sources and therefore outside the ChIcAGO MAP default search radius. This Table includes the name of the AGPS sources for which the above applies, the position of the X-ray source, the offset from the original ASCA position, the net number of counts, and the most likely 2MASS counterpart.

A thorough analysis of these 14 X-ray point sources is beyond the scope of this paper, however, we have done a preliminary investigation of their possible contribution to the fluxes originally measured in the AGPS (Sugizaki et al. 2001). Using a similar technique to that described in Section 2.1 we entered the power law spectral fit of the AGPS source measured by Sugizaki et al. (2001) into *Chandra* PIMMS in order to estimate the number of source counts expected to be detected in the corresponding ChIcAGO *Chandra* observation. (Once again the photon index and absorption were set to $\Gamma = 2$ and $N_H = 10^{22} \text{ cm}^{-2}$ if no power law fit was provided.) These count predictions are listed in Table 13. The total number of counts detected from all the X-ray sources within 3' of the AGPS position are also included alongside these values. In the case of AX J154557–5420, AX J154905– 5420, AX J172642–3504, AX J181915–1601, AX J184741–0129, AX J194332+2323, the total number of X-ray counts detected within 3' of the AGPS position contribute $\leq 65\%$ of the predicted number of counts. It is therefore possible that the 8 X-ray point sources detected between 3'-5' from these AGPS sources could have contributed to the X-ray flux originally detected with ASCA. Such a result would not be unexpected for AX J154905–5420 and AX J194332+2323 as their corresponding Chandra resolved point sources are stars in H II regions, which were not individually resolved with ASCA. This analysis demonstrates that few \bar{X} -ray sources beyond 3' of the ASCA position contributed to the overall flux of a given AGPS source. The 3' search radius used in ChIcAGO MAP is therefore reasonable for detecting the majority of AGPS associated point sources detected with Chandra. (Note that this Table does not include the magnetar PSR J1622-4950 that was detected in the Chandra observation of AX J162246–4946, 4' for its ASCA position, as it was well investigated in Anderson et al. 2012).

G.E.A acknowledges the support of an Australian Postgraduate Award. B.M.G. acknowledges the support of an Australian Laureate Fellowship through ARC grant FL100100114. P.O.S. acknowledges partial support from NASA Contract NAS8-03060. D.T.H.S. acknowledges a STFC Advanced Fellowship. J.J.D was supported by NASA contract NAS8-39073 to the Chandra X-ray Center (CXC). Support for this work was also provided by NASA through Chandra Award Number GO9-0155X issued by the CXC, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA. The access to major research facilities program is supported by the Commonwealth of Australia under the International Science Linkages program. This research makes use of data obtained with the Chandra X-ray Observatory, and software provided by the CXC in the application packages CIAO. The ATCA is part of the Australia Telescope, funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The MOST is operated with the support of the Australian Research Council and the Science Foundation for Physics within the University of Sydney. Observing time on the 6.5m Clay and Baade Magellan Telescopes, located at Las Campanas Observatory, was allocated through the Harvard-Smithsonian Center for Astrophysics and the Massachusetts Institute of Technology. 2MASS is a joint project of the University of Massachusetts and the IPAC/Caltech, funded by the NASA and NFS. GLIMPSE survey data are part of the Spitzer Legacy Program. The Spitzer Space Telescope is operated by JPL/Caltech under a contract with NASA. This research has made use of NASA's Astrophysics Data System.

Facilities: ASCA, ATCA, CXO (ACIS,HRC), CTIO:2MASS, FLWO:2MASS, Magellan:Baade (IMACS, MagIC, PANIC), Molonglo, Spitzer, VLA, XMM (EPIC)

REFERENCES

- Abdo, A. A. et al.. 2010, ApJS, 188, 405
- . 2009, ApJS, 183, 46
- Aharonian, F. et al.. 2007, A&A, 467, 1075
- Anderson, G. E. et al.. 2011, ApJ, 727, 105
- -. 2012, ApJ, 751, 53
- Bamba, A., Ueno, M., Koyama, K., & Yamauchi, S. 2001, PASJ, 53, L21
- Bassani, L., Landi, R., Campana, R., McBride, V. A., Dean, A. J., Bird,
- A. J., Green, D. A., Ubertini, P., & de Rosa, A. 2009, MNRAS, 395, L1 Benjamin, R. A. et al.. 2003, PASP, 115, 953
- Bernardini, F. et al., 2011, A&A, 529, A19
- Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393
- Bird, A. J. et al.. 2010, ApJS, 186, 1
- . 2007, ApJS, 170, 175
- Bocchino, F., Parmar, A. N., Mereghetti, S., Orlandini, M., Santangelo, A., & Angelini, L. 2001, A&A, 367, 629
- Bock, D. C.-J., Large, M. I., & Sadler, E. M. 1999, AJ, 117, 1578
- Bodaghee, A., Walter, R., Zurita Heras, J. A., Bird, A. J., Courvoisier,
- T. J.-L., Malizia, A., Terrier, R., & Ubertini, P. 2006, A&A, 447, 1027 Brogan, C. L., Gelfand, J. D., Gaensler, B. M., Kassim, N. E., & Lazio, T. J. W. 2006, ApJ, 639, L25
- Broos, P. S., Feigelson, E. D., Townsley, L. K., Getman, K. V., Wang, J., Garmire, G. P., Jiang, Z., & Tsuboi, Y. 2007, ApJS, 169, 353
- Buccheri, R. et al., 1983, A&A, 128, 245
- Busfield, A. L., Purcell, C. R., Hoare, M. G., Lumsden, S. L., Moore,
- T. J. T., & Oudmaijer, R. D. 2006, MNRAS, 366, 1096

- Cash, W. 1979, ApJ, 228, 939
- Castro, D. & Slane, P. 2010, ApJ, 717, 372
- Caswell, J. L., Clark, D. H., Crawford, D. F., & Green, A. J. 1975,
- Australian Journal of Physics Astrophysical Supplement, 37, 1
- Caswell, J. L. & Haynes, R. F. 1987, A&A, 171, 261
- Chakrabarty, D., Wang, Z., Juett, A. M., Lee, J. C., & Roche, P. 2002, ApJ, 573, 789
- Chen, Y. & Slane, P. O. 2001, ApJ, 563, 202
- Chen, Y., Su, Y., Slane, P. O., & Wang, Q. D. 2004, ApJ, 616, 885
- Churchwell, E. et al.. 2006, ApJ, 649, 759
- Churchwell, E., Watson, D. F., Povich, M. S., Taylor, M. G., Babler, B. L., Meade, M. R., Benjamin, R. A., Indebetouw, R., & Whitney, B. A. 2007, ApJ, 670, 428
- Combi, J. A. et al.. 2010, A&A, 522, A50
- Combi, J. A., Albacete Colombo, J. F., Romero, G. E., & Benaglia, P. 2006, ApJ, 653, L41
- Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693
- Crowther, P. A., Smith, L. J., Hillier, D. J., & Schmutz, W. 1995, A&A, 293, 427
- Davis, J. E. 2001, ApJ, 562, 575
- De Becker, M., Rauw, G., Pittard, J. M., Antokhin, I. I., Stevens, I. R.,
- Gosset, E., & Owocki, S. P. 2004, A&A, 416, 221
- Degenaar, N. et al.. 2012, A&A, 540, A22
- Dickey, J. M. & Lockman, F. J. 1990, ARA&A, 28, 215

- Dorman, B. & Arnaud, K. A. 2001, in Astronomical Data Analysis Software and Systems X, ed. F. R. Harnden, F. A. Primini Jr, & H. E. Payne (San Francisco: Astronomical Society of the Pacific), p. 415
- Draper, P. W., Berry, D. S., Jenness, T., & Economou, F. 2009, in ASP Conf. Ser. Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler, Vol. 411 (San Francisco: Astronomical Society of the Pacific), 575
- Dressler, A., Hare, T., Bigelow, B. C., & Osip, D. J. 2006, Proc. SPIE, 6269, 13
- Drew, J. E. et al.. 2005, MNRAS, 362, 753
- Durant, M. & van Kerkwijk, M. H. 2005, ApJ, 627, 376
- Ebeling, H. & Wiedenmann, G. 1993, Phys. Rev. E, 47, 704
- Ebisawa, K. et al.. 2005, ApJ, 635, 214
- Evans, I. N. et al.. 2010, ApJS, 189, 37
- Favata, F., Flaccomio, E., Reale, F., Micela, G., Sciortino, S., Shang, H.,
- Stassun, K. G., & Feigelson, E. D. 2005, ApJS, 160, 469
- Fich, M. & Blitz, L. 1984, ApJ, 279, 125
- Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185
- Funk, S., Hinton, J. A., Pühlhofer, G., Aharonian, F. A., Hofmann, W., Reimer, O., & Wagner, S. 2007, ApJ, 662, 517
- Gaensler, B. M. & Hunstead, R. W. 2000, PASA, 17, 72
- Gaensler, B. M., Tanna, A., Slane, P. O., Brogan, C. L., Gelfand, J. D., McClure-Griffiths, N. M., Camilo, F., Ng, C.-Y., & Miller, J. M. 2008, ApJ, 680, L37
- Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A., & Ricker, Jr., G. R. 2003, Proc. SPIE, 4851, 28
- Gehrels, N. 1986, ApJ, 303, 336
- Gehrels, N. et al.. 2004, ApJ, 611, 1005
- Gelfand, J. D. & Gaensler, B. M. 2007, ApJ, 667, 1111
- Getman, K. V. et al.. 2005, ApJS, 160, 319
- Giacani, E., Smith, M. J. S., Dubner, G., & Loiseau, N. 2011, A&A, 531, A138
- Giacani, E., Smith, M. J. S., Dubner, G., Loiseau, N., Castelletti, G., & Paron, S. 2009, A&A, 507, 841
- Gotthelf, E. V. & Halpern, J. P. 2005, ApJ, 632, 1075
- –. 2007, Ap&SS, 308, 79
- —. 2008, ApJ, 681, 515
- Gotthelf, E. V. & Vasisht, G. 1997, ApJ, 486, L133
- Green, A. J., Cram, L. E., Large, M. I., & Ye, T. 1999, ApJS, 122, 207
- Green, D. A. 2009, Bulletin of the Astronomical Society of India, 37, 45
- Grindlay, J. E. et al.. 2005, ApJ, 635, 920
- Haberl, F., Eger, P., & Pietsch, W. 2008, A&A, 489, 327
- Hadfield, L. J., van Dyk, S. D., Morris, P. W., Smith, J. D., Marston, A. P., & Peterson, D. E. 2007, MNRAS, 376, 248
- Halpern, J. P. & Gotthelf, E. V. 2010, ApJ, 710, 941
- Halpern, J. P., Gotthelf, E. V., Becker, R. H., Helfand, D. J., & White, R. L. 2005, ApJ, 632, L29
- Hamaguchi, K., Yamauchi, S., & Koyama, K. 2005, ApJ, 618, 360
- Hands, A. D. P., Warwick, R. S., Watson, M. G., & Helfand, D. J. 2004, MNRAS, 351, 31
- Haverkorn, M., Gaensler, B. M., McClure-Griffiths, N. M., Dickey, J. M., & Green, A. J. 2006, ApJS, 167, 230
- Helfand, D. J., Agüeros, M. A., & Gotthelf, E. V. 2003a, ApJ, 592, 941
- Helfand, D. J., Becker, R. H., White, R. L., Fallon, A., & Tuttle, S. 2006, AJ, 131, 2525
- Helfand, D. J., Collins, B. F., & Gotthelf, E. V. 2003b, ApJ, 582, 783
- Helfand, D. J., Velusamy, T., Becker, R. H., & Lockman, F. J. 1989, ApJ, 341, 151
- Hong, J. 2012, MNRAS, 427, 1633
- Hong, J., Schlegel, E. M., & Grindlay, J. E. 2004, ApJ, 614, 508
- Hong, J., van den Berg, M., Schlegel, E. M., Grindlay, J. E., Koenig, X., Laycock, S., & Zhao, P. 2005, ApJ, 635, 907
- Hong, J. S., van den Berg, M., Laycock, S., Grindlay, J. E., & Zhao, P. 2009, ApJ, 699, 1053
- Hwang, U., Petre, R., & Hughes, J. P. 2000, ApJ, 532, 970
- Ibrahim, A. I. et al.. 2004, ApJ, 609, L21
- Israel, G. et al.. 2005, A&A, 438, L1
- Israel, G. L. et al.. 2004, ApJ, 603, L97
- -. 2009, The Astronomer's Telegram, 1909
- Jannuzi, B. T. et al.. 2004, BAAS, 36, 1478
- Kaastra, J. S. 1992, in An X-ray Spectral Code for Optically Thin Plasmas Updated Version 2.0 (Leidon: SRON)
- Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnal, E. M., Bajaja, E., Morras, R., & Pöppel, W. G. L. 2005, A&A, 440, 775
- Kaplan, D. L., Frail, D. A., Gaensler, B. M., Gotthelf, E. V., Kulkarni, S. R., Ŝlane, P. O., & Nechita, A. 2004, ApJS, 153, 269

Kaplan, D. L., Levine, A. M., Chakrabarty, D., Morgan, E. H., Erb, D. K., Gaensler, B. M., Moon, D.-S., & Cameron, P. B. 2007, ApJ, 661, 437

27

- Kargaltsev, O. & Pavlov, G. G. 2007, ApJ, 670, 655
- Kargaltsev, O., Schmitt, B. M., Pavlov, G. G., & Misanovic, Z. 2012, ApJ, 745,99
- Kashyap, V. L., van Dyk, D. A., Connors, A., Freeman, P. E.,
- Siemiginowska, A., Xu, J., & Zezas, A. 2010, ApJ, 719, 900 Kaur, R., Wijnands, R., Paul, B., Patruno, A., & Degenaar, N. 2010, MNRAS, 402, 2388
- Kenter, A. et al.. 2005, ApJS, 161, 9 Kohoutek, L. & Wehmeyer, R. 1997, Astronomische Abhandlungen der Hamburger Sternwarte, 11, 1
- Kouveliotou, C. et al., 1998, Nature, 393, 235
- Krivonos, R., Revnivtsev, M., Lutovinov, A., Sazonov, S., Churazov, E., & Sunyaev, R. 2007, A&A, 475, 775
- Kuchar, T. A. & Bania, T. M. 1994, ApJ, 436, 117
- Kuchar, T. A. & Clark, F. O. 1997, ApJ, 488, 224
- Lazendic, J. S., Slane, P. O., Hughes, J. P., Chen, Y., & Dame, T. M. 2005, ApJ, 618, 733
- Lemiere, A., Slane, P., Gaensler, B. M., & Murray, S. 2009, ApJ, 706, 1269 Levin, L. et al.. 2010, ApJ, 721, L33
- Liedahl, D. A., Osterheld, A. L., & Goldstein, W. H. 1995, ApJ, 438, L115
- Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2006, A&A, 455, 1165
- Lovchinsky, I., Slane, P., Gaensler, B. M., Hughes, J. P., Ng, C.-Y., Lazendic, J. S., Gelfand, J. D., & Brogan, C. L. 2011, ApJ, 731, 70
- Lucy, L. B. 1982, ApJ, 255, 286
- Lucy, L. B. & White, R. L. 1980, ApJ, 241, 300
- Luque-Escamilla, P. L., Martí, J., Muñoz-Arjonilla, A. J., Sánchez-Sutil, J. R., Combi, J. A., & Sánchez-Ayaso, E. 2009, A&A, 508, 1095
- Maercker, M. & Burton, M. G. 2005, A&A, 438, 663
- Maercker, M., Burton, M. G., & Wright, C. M. 2006, A&A, 450, 253
- Mainieri, V., Bergeron, J., Hasinger, G., Lehmann, I., Rosati, P., Schmidt,
- M., Szokoly, G., & Della Ceca, R. 2002, A&A, 393, 425 Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993
- Markwardt, C. B., Baumgartner, W. H., Skinner, G. K., & Corbet, R. H. D. 2010, The Astronomer's Telegram, 2564
- Martini, P., Persson, S. E., Murphy, D. C., Birk, C., Shectman, S. A., Gunnels, S. M., & Koch, E. 2004, Proc. SPIE, 5492, 1653
- Masetti, N. et al.. 2007, A&A, 470, 331
- Mason, A. B., Clark, J. S., Norton, A. J., Negueruela, I., & Roche, P. 2009, A&A, 505, 281
- Mateos, S. et al.. 2008, A&A, 492, 51
- Mauerhan, J. C., Muno, M. P., Morris, M. R., Stolovy, S. R., & Cotera, A. 2010, ApJ, 710, 706
- Mauerhan, J. C., Van Dyk, S. D., & Morris, P. W. 2011, AJ, 142, 40
- McClintock, J. E. & Remillard, R. A. 2006, in Compact stellar X-ray sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), p. 157
- McClure-Griffiths, N. M., Green, A. J., Dickey, J. M., Gaensler, B. M., Haynes, R. F., & Wieringa, M. H. 2001, ApJ, 551, 394
- McLean, B. J., Greene, G. R., Lattanzi, M. G., & Pirenne, B. 2000, in ASP Conf. Ser. Astronomical Data Analysis Software and Systems IX, ed. N. Manset, C. Veillet, & D. Crabtree, Vol. 216 (San Francisco: Astronomical Society of the Pacific), 145
- Mereghetti, S., Esposito, P., Tiengo, A., Götz, D., Israel, G. L., & De Luca, A. 2012, A&A, 546, A30
- Mereghetti, S. et al.. 2005, ApJ, 628, 938
- Mewe, R., Gronenschild, E. H. B. M., & van den Oord, G. H. J. 1985, A&AS, 62, 197
- Mewe, R., Lemen, J. R., & van den Oord, G. H. J. 1986, A&AS, 65, 511
- Mirabal, N. 2010, MNRAS, 402, 1391
- Monet, D. G. et al.. 2003, AJ, 125, 984
- Morii, M., Sato, R., Kataoka, J., & Kawai, N. 2003, PASJ, 55, L45
- Motch, C., Guillout, P., Haberl, F., Krautter, J., Pakull, M. W., Pietsch, W., Reinsch, K., Voges, W., & Zickgraf, F.-J. 1998, A&AS, 132, 341
- Motch, C., Guillout, P., Haberl, F., Pakull, M., Pietsch, W., & Reinsch, K. 1997, A&A, 318, 111
- Motch, C. et al.. 2010, A&A, 523, A92
- Muno, M. P., Baganoff, F. K., Bautz, M. W., Brandt, W. N., Garmire, G. P., & Ricker, G. R. 2003, ApJ, 599, 465
- Murphy, T., Mauch, T., Green, A., Hunstead, R. W., Piestrzynska, B., Kels, A. P., & Sztajer, P. 2007, MNRAS, 382, 382
- Murray, S. S. 2000, American Physical Society April Meeting, Abstract J8.003 Nazé, Y., Rauw, G., & Manfroid, J. 2008, A&A, 483, 171

Nazé, Y., Zhekov, S. A., & Walborn, N. R. 2012, ApJ, 746, 142

- Negueruela, I. & Schurch, M. P. E. 2007, A&A, 461, 631
- Nespoli, E., Fabregat, J., & Mennickent, R. E. 2010, A&A, 516, A94
- Ohashi, T. et al.. 1996, PASJ, 48, 157
- Osip, D. J., Floyd, D., & Covarrubias, R. 2008, Proc. SPIE, 7014, 70140A Oskinova, L. M. 2005, MNRAS, 361, 679
- Paron, S., Combi, J. A., Petriella, A., & Giacani, E. 2012, A&A, 543, A23
- Pavan, L., Bozzo, E., Ferrigno, C., Ricci, C., Manousakis, A., Walter, R., & Stella, L. 2011, A&A, 526, A122
- Peretto, N. & Fuller, G. A. 2009, A&A, 505, 405
- Petre, R., Kuntz, K. D., & Shelton, R. L. 2002, ApJ, 579, 404
- Pooley, D., Rappaport, S., Levine, A., Pfahl, E., & Schwab, J. 2007, arXiv:astro-ph/0708.3365
- Ramos-Larios, G., Phillips, J. P., & Pérez-Grana, J. A. 2010, MNRAS, 405, 245
- Reig, P. 2011, Ap&SS, 332, 1
- Rho, J., Ramírez, S. V., Corcoran, M. F., Hamaguchi, K., & Lefloch, B. 2004, ApJ, 607, 904
- Rodriguez, J. et al.. 2006, MNRAS, 366, 274
- Russeil, D. 2003, A&A, 397, 133
- Safi-Harb, S., Dubner, G., Petre, R., Holt, S. S., & Durouchoux, P. 2005, ApJ, 618, 321
- Sana, H., Rauw, G., Nazé, Y., Gosset, E., & Vreux, J. 2006, MNRAS, 372, 661
- Sguera, V. et al.. 2006, ApJ, 646, 452
- Shaver, P. A. & Goss, W. M. 1970, Australian Journal of Physics Astrophysical Supplement, 14, 133
- Simpson, J. P. & Cotera, A. S. 2004, BAAS, 36, 734
- Skrutskie, M. F. et al.. 2006, AJ, 131, 1163
- Slane, P., Castro, D., Funk, S., Uchiyama, Y., Lemiere, A., Gelfand, J. D., & Lemoine-Goumard, M. 2010, ApJ, 720, 266
- Slane, P., Chen, Y., Lazendic, J. S., & Hughes, J. P. 2002, ApJ, 580, 904
- Smith, D. A. et al.. 2008, A&A, 492, 923
- Stetson, P. B. 2000, PASP, 112, 925
- Stil, J. M., Taylor, A. R., Dickey, J. M., Kavars, D. W., Martin, P. G.,
- Rothwell, T. A., Boothroyd, A. I., Lockman, F. J., & McClure-Griffiths, N. M. 2006, AJ, 132, 1158 Sugizaki, M. Kinggas, K. Matanzaki, K. Tarada, Y. Varusuki, G. 6
- Sugizaki, M., Kinugasa, K., Matsuzaki, K., Terada, Y., Yamauchi, S., & Yokogawa, J. 2000, ApJ, 534, L181
- Sugizaki, M., Mitsuda, K., Kaneda, H., Matsuzaki, K., Yamauchi, S., & Koyama, K. 2001, ApJS, 134, 77

- Thompson, T. W. J., Tomsick, J. A., Rothschild, R. E., in't Zand, J. J. M., & Walter, R. 2006, ApJ, 649, 373
- Tody, D. 1986, Proc. SPIE, 627, 733
- Tody, D. 1993, in ASP Conf. Ser. Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch, R. J. V. Brissenden, & J. Barnes, Vol. 52 (San Francisco: Astronomical Society of the Pacific), 173
- Tomsick, J. A., Chaty, S., Rodriguez, J., Foschini, L., Walter, R., & Kaaret, P. 2006, ApJ, 647, 1309
- Torii, K., Sugizaki, M., Kohmura, T., Endo, T., & Nagase, F. 1999, ApJ, 523, L65
- Torres, C. A. O., Quast, G. R., da Silva, L., de La Reza, R., Melo, C. H. F., & Sterzik, M. 2006, A&A, 460, 695
- Ueno, M., Bamba, A., Koyama, K., & Ebisawa, K. 2003, ApJ, 588, 338 Usov, V. V. 1992, ApJ, 389, 635
- van den Berg, M., Penner, K., Hong, J., Grindlay, J. E., Zhao, P., Laycock, S., & Servillat, M. 2012, ApJ, 748, 31
- Voges, W. et al.. 1999, A&A, 349, 389
- Vogt, N. & Bateson, F. M. 1982, A&AS, 48, 383
- Walborn, N. R. 1973, AJ, 78, 1067
- Walter, R. et al.. 2006, A&A, 453, 133
- Watson, M. G. et al.. 2009, A&A, 493, 339
- Weisskopf, M. C., Aldcroft, T. L., Bautz, M., Cameron, R. A., Dewey, D., Drake, J. J., Grant, C. E., Marshall, H. L., & Murray, S. S. 2003, Experimental Astronomy, 16, 1
- Weisskopf, M. C., Wu, K., Trimble, V., O'Dell, S. L., Elsner, R. F., Zavlin, V. E., & Kouveliotou, C. 2007, ApJ, 657, 1026
- Whiteoak, J. B. Z. & Green, A. J. 1996, A&AS, 118, 329
- Wolk, S. J., Harnden, Jr., F. R., Flaccomio, E., Micela, G., Favata, F., Shang, H., & Feigelson, E. D. 2005, ApJS, 160, 423
- Yamaguchi, H., Ueno, M., Koyama, K., Bamba, A., & Yamauchi, S. 2004, PASJ, 56, 1059
- Yamauchi, S., Bamba, A., & Koyama, K. 2011, PASJ, 63, 957
- Yamauchi, S., Ueno, M., Koyama, K., & Bamba, A. 2008, PASJ, 60, 1143
- Zhao, P., Grindlay, J. E., Hong, J. S., Laycock, S., Koenig, X. P., Schlegel,
- E. M., & van den Berg, M. 2005, ApJS, 161, 429 Zolotukhin, I. Y. & Chilingarian, I. V. 2011, A&A, 526, A84

Chandra Obs ^a	ChIcAGO ^b	wavdetect Position	ct Position	Offset ^c	Position	Positional Errors ^d		Net Counts ^e	0	Energy (Energy Ouantiles ^f	CSC ^g	XMMi-DR3 ^h
(ID, Date,	Source ID	RA	Dec	from	Wav	Total	0.3-8	0.5-2	2-8 keV	E_{50}	Quartile	Name	Name
יומאים אפווו	CIII	(nnn7r)	(nnn7r)	() PUCH						(V JV)	Nauo	r nvn	
AX J143148-602	AX J143148-6021 8239 2007-09-05 ACIS-S 2.62ks J143148-6021 1 14:31:50.18	ACIS-S 2.62ks 14:31:50.18	-60:22:08.3	0.97	0.6	0.9	$4.0^{+3.2}$	$4.0^{+3.2}$	$0.0^{+1.9}_{-0.0}$				
	J143148-6021_2	14:31:48.56	-60:21:44.5	0.56	0.5	0.8	$10^{+4.9}$	7.0+3.8	$2.0^{+2.7}$	1.1 ± 0.4	1.4 ± 0.9		
	J143148-6021_3	14:31:48.06	-60:19:59.5	1.19	0.3	0.8	146^{+13}_{-13}	51^{+8}_{-7}	95^{+11}_{-10}	2.7 ± 0.2	1.1 ± 0.1	143148.0-601959	
	J143148-6021_4	14:31:41.52	-60:19:55.2	1.56	0.6	0.9	$5.9^{+3.6}_{-2.4}$	$2.9^{+2.9}_{-1.6}$	$0.0^{+1.9}_{-0.0}$	0.6 ± 0.3	0.5 ± 0.4		
	J143148-6021_5	14:32:02.80	-60:18:57.4	2.81	0.7	1.0	20^{+6}_{-4}	$0.0^{+1.8}_{-0.0}$	20+60	4.4 ± 0.5	1.8 ± 0.2	143202.8-601857	
AX J144042-60(AX J144042-6001 9599 2008-05-04 HRC-I 1.18ks	HRC-I 1.18ks											
		14:40:38.40	-60:01:36.8	0.56	0.3	0.8	326^{+19}_{-18}					144038.4-600136	
AX J144519-594	AX J144519-5949 8235 2007-10-19	ACIS-S 1.75ks				1		ç	<u>c</u>				
	J144519-5949_1	14:45:15.08	-59:49:29.1	0.61	0.7	1.0	$3.0^{+2.9}_{-1.7}$	$2.0^{+4.}_{-1.3}$	$1.0^{+2.5}_{-0.9}$		-		
	J144519-5949_2	14:45:21.39	-59:49:25.3	0.47	0.4	0.8	27+0	$4.0^{+0.1}_{-1.9}$	23+0	2.8 ± 0.3	1.7 ± 0.3	144521.3-594925	
	J144519-5949_3	14:45:12.73	-59:48:38.4	1.42	0.5	0.8	13-10	0.010.0	13-14 0 0-140	3.8 ± 0.4	2.1 ± 0.3	144512.7-594838	
	44019-0440 L	16.91:04:41	1.00:48:00.7	1./9	0.8	1.1	10.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0	4.0.4 0.1-0.0	0.0	1 - 1			
	2_646C-616441L 3_0403_013411	14:44:57.87 07 30:37.1	0.65:06:66-	1.71	0.1	1.1	7.0-2.6 2.0+2.9	5.0 -1.7 1 0+2.3	$4.0^{-1.9}_{-1.9}$	0.1 ± 0.2	1.1 ± 0.4		
AX 1144547-505	0_6761616111 0_6767-5931 8740 2007-08-12	ACTS-S 2 57ks	7.70.04.00-	1./1	0.0	1.1	0.0- 1.6	1.0-0.8	2·V_1.3				
	J144547-5931 1	14:45:43.67	-59:32:05.2	0.46	0.3	0.8	6+69	31^{+7}	38^{+7}	2.3 ± 0.2	1.8 ± 0.1	144543.6-593205	
AX J144701-591	AX J144701-5919 8233 2007-01-13	ACIS-S 1.43ks		2	2	0	~	9-	9-00				
	J144701-5919_1	14:46:53.59	-59:19:38.3	1.04	0.3	0.8	81^{+10}_{-9}	36^{+7}_{-6}	45^{+8}_{-7}	2.3 ± 0.1	1.7 ± 0.2	144653.5-591938	
AX J145732-59(AX J145732-5901 11880 2010-05-05 ACIS-S 10.03ks	5 ACIS-S 10.03	KS (S)				1		•				
	J145732-5901_1	14:57:34.93	-58:59:53.9	1.45	0.4	0.8	19^{+5}_{-4}	16^{+5}_{-4}	$2.8^{+2.9}_{-1.6}$	1.5 ± 0.1	1.9 ± 0.4		
	J145732-5901_2	14:57:42.16	-58:59:04.5	2.56	0.8	1.1	$5.9^{+3.6}_{-2.4}$	$0.0^{+1.9}_{-0.0}$	$5.9^{+3.6}_{-2.4}$	4.8 ± 0.8	2.1 ± 0.4		
AX J150436-582	AX J150436-5824 10508 2009-06-06 ACIS-S 4.3ks	6 ACIS-S 4.3ks		000	0	0	13	L+7.0	114.01	- - -	-		
	J150436-5824_1	15:04:30.99	-28:24:11.3	0.89	0.3	0.8	141^{+12}	. 30 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	104_{-10}^{+10}	3.7 ± 0.2	1.1 ± 0.1		
	J150436-5824_2	15:04:31.40	-58:23:05.8	1.75	0.8	1.1	4.8 ^{+2.1}	5.0 ^{+2:4}	0.010.0	-	-		
	- Iv	15:04:51.09	8.80:42:80-	1.93	0.0	0.9	1.8-2.7	8.0-2.8	$0.0_{-0.0}^{+1.0}$	1.1 ± 0.1	2.2 ± 0.8		
AX J151005-582		4 ACIS-S 9.92ks		1 40	20	00	C 0+3 8	1 0+2.3	£ 0+3.6		10105		
	1_4286-c001c1t	05.01:01:01	1.24:02:00-02	1.49	0.0	0.9	0.9-2-0	0.1 0.1	2.0-0-0 4.0-0-0	2.8 ± 0.0	$C.0 \pm V.1$		
	J151005-5824_2	15:09:54.87	-58:24:37.1	1.45	0.0	0.9	0.812.0	1.0	5.8-2	4.0 ± 1.5	1.1 ± 0.4		
	J151005-5824_3	15:10:07.69	-58:23:19.8	1.59	0.7	1.0	$6.6^{+3.6}_{-2.5}$	$7.0^{+3.6}_{-2.6}$	$0.0^{+1.9}_{-0.0}$	1.2 ± 0.2	2.0 ± 0.4		
	J151005-5824_4	15:10:07.13	-58:26:09.0	1.26	0.6	0.9	5.5+3.0	$1.9^{+2.7}_{-1.3}$	$3.7^{+5.2}_{-1.9}$	3.8 ± 1.2	1.0 ± 0.4		
	J151005-5824_5	15:10:06.84	-58:25:56.8	1.06	0.5	0.9	$5.3^{+5.0}_{-2.2}$	$1.7^{+2.7}_{-1.2}$	$3.6^{+3.6}_{-1.8}$	3.5 ± 1.4	0.9 ± 0.4		
	J151005-5824_6	15:09:51.83	-58:25:03.1	1.83	0.6	0.9	11 14	$9.0^{\pm1.1}_{-3.0}$	$1.8^{+2.7}_{-1.2}$	1.4 ± 0.2	2.1 ± 0.9		
	J151005-5824_7	15:10:11.48	-58:23:36.7	1.49	0.4	0.8	10^{+2}	$0.0^{+1.9}_{-0.0}$	16^{+5}_{-4}	4.9 ± 0.7	1.8 ± 0.2		
	J151005-5824_8	15:10:03.45	-58:26:45.6	1.88	0.6	0.9	$7.9^{+4.0}_{-2.8}$	$0.0^{+1.9}_{-0.0}$	$7.9^{+4.0}_{-2.8}$	2.9 ± 0.2	2.3 ± 0.2		
	J151005-5824_9	15:09:55.60	-58:26:22.0	1.98	0.8	1.0	$4.7^{+5.4}_{-2.1}$	$4.9^{+3.4}_{-2.2}$	$0.0^{+1.9}_{-0.0}$	1.4 ± 0.4	1.1 ± 0.3		
	J151005-5824_10	15:09:52.35	-58:27:12.2	2.90	0.9	1.1	$6.3^{+3.8}_{-2.5}$	$0.8^{+2.3}_{-0.7}$	$5.6^{+5.6}_{-2.3}$	2.9 ± 1.2	0.9 ± 0.5		
22 12LC311 AV	J151005-5824_11 15:10:05.09	15:10:05.09	-58:26:02.1	1.14	0.6	0.0	$4.6^{+3.4}_{-2.1}$	$1.9^{+2.7}_{-1.3}$	$2.7^{+2.9}_{-1.6}$	2.0 ± 1.6	0.9 ± 0.3		
.cc-1c/cc1r VA	00 10209 2009-01-2	+ AUI3-5 4.49KS 15-37-59 37	, _55·54·73 3	2 16	50	0.0	13+5	11+4	0.0+1.9	0.8 ± 0.1	16+0.8		
	J153751-5556_2	15:37:35.15	-55:56:50.1	2.40	0.9	1.1	5.8+3.6	$6.0^{+3.6}_{-3.6}$	$0.0^{+1.9}_{-0.0}$				
AX J153818-55 ²	AX J153818-5541 9600 2008-05-24 HRC-I 1.16ks	HRC-I 1.16ks					0.0	1.7	0.0				
22 0017211 24	J153818-5541_1	15:38:14.00	-55:42:13.6	1.02	0.4	0.8	49^{+6}_{-7}					153813.9-554213	
.cc-7214c1l XA	AX J124122-2222 8238 2001-00-11 253 2011-00-11	ACIS-S 1.93KS 15:41:15 70	7 80.1035	1.05	0.3	0.0	03+10	65+9	16+5	1.2 ± 0.1	10 ± 01	15/1157 557178	
	1-771+C1 r	C/.CT.T+.CT	1.07.17.00-	CU.1	C .0	0.0	6-00	8- CO	10-4	1.4 ± 0.1	1.4 ± 0.1	071700-1.011401	

 Table 1

 ChlcAGO MAP X-ray Results, including the position, position errors, net counts and outantile analysis values for each ChlcAGO source

THE CHICAGO SURVEY

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							-							-
	Chandra Obs ^a	ChlcAG0 ⁶	wavdetec	at Position	Offset	Position	al Errors ^a		Vet Counts	e	Energy (<u>Quantiles</u>	CSC	XMMi-DR3 ⁿ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(ID, Date, Inst, Exp)	Source ID ChI	RA (J2000)	Dec (J2000)	from $ASCA(')$	wav ('')	Total (")	0.3-8	0.5-2	2-8 keV	E_{50} (keV)	Quartile Ratio	Name CXO J	Name 2XMMi
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			15:41:33.14 15:41:10.72		1.77 1.82	0.8 0.8	1.1	$\begin{array}{c} 3.0^{+2.9}_{-1.6} \\ 6.0^{+3.6}_{-2.4} \end{array}$	${\begin{array}{c} 0.0^{+1.9} \\ 0.0^{-0.0} \\ 4.0^{+3.2} \\ -1.9 \end{array}}$	$3.0^{+2.9}_{-1.7}$ $2.0^{+2.7}_{-1.3}$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX J154557-54	Ñ.	.0 ACIS-S 8.33k 15:45:58.23		1.27	0.4	0.8	50^{+6}	53+ę	$3.0^{+2.9}$	1.2 ± 0.2	1.4 ± 0.2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		J154557-5443_2	15:45:44.38	-54:43:28.3	1.97	0.5	0.8	20+6	$0.0^{+1.9}_{-0.0}$	21^{+6}_{-5}	4.4 ± 0.4	2.2 ± 0.3		
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		J154557-5443_3	15:46:12.16	-54:43:10.9	2.07	0.4	0.8	22^{+6}_{-5}	20+60	$1.7^{+2.7}_{-1.2}$	0.8 ± 0.1	1.8 ± 0.6		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		J154557-5443_4	15:45:52.21	-54:42:44.8	0.90	0.5	0.8	11_{-5}^{+4}	$1.0^{+2.3}_{-0.9}$	$10^{+4^{-}}_{-3}$	3.9 ± 0.7	1.5 ± 0.4		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		J154557-5443_5	15:45:55.39	-54:43:29.1	0.49	0.6	0.9	$4.7^{+5.4}_{-2.1}$	$0.0^{+1.9}_{-0.0}$	$4.9^{+3.4}_{-2.1}$	4.2 ± 0.5	2.1 ± 0.2		
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		J154557-5443_6	15:45:55.41	-54:42:39.8	0.59	0.5	0.9	$5.8^{+3.6}_{-2.3}$	$5.9^{+3.6}_{-2.4}$	$0.0^{+1.9}_{-0.0}$	0.8 ± 0.1	1.5 ± 0.4		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			15:46:10.81	-54:41:35.2	2.43	0.9	1.1	$5.9^{+3.6}_{-2.4}$	$4.0^{+3.2}_{-1.9}$	$1.9^{+2.7}_{-1.3}$	1.7 ± 0.3	1.9 ± 0.5		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	X J154905-54	-	6 ACIS-S 7.6ks											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$J154905-5420_{-1}$	15:48:58.53	-54:21:47.7	1.61	0.6	0.9	$8.9^{+4.1}_{-2.9}$	$0.0^{+1.9}_{-0.0}$	$8.9^{+4.1}_{-2.9}$	2.9 ± 0.4	2.0 ± 0.2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		J154905-5420_2	15:49:02.83	-54:17:54.6	2.63	0.7	1.0	14^{+5}_{-4}	$2.8^{+2.9}_{-1.6}$	12^{+5}_{-3}	3.4 ± 0.6	1.4 ± 0.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$J154905-5420_3$	15:48:52.31	-54:19:12.9	2.30	0.9	1.1	$4.7^{+3.4}_{-2.1}$	$0.0^{+1.9}_{-0.0}$	$4.8^{+3.4}_{-2.1}$	3.3 ± 0.5	2.1 ± 0.3		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		J154905-5420 4	15:49:04.92	-54:19:30.2	1.02	0.6	0.9	$5.4^{+3.6}_{-3.6}$	$5.8^{+3.6}_{-3.6}$	$0.0^{+1.9}_{-0.0}$	1.1 ± 0.2	1.5 ± 0.4		
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J154905-5420 5	15:49:11.59	-54:22:27.7	2.15	0.6	0.9	$10^{+4.5}$	$5.9^{+3.6}_{-2.6}$	$4.0^{+3.2}_{-3.2}$	1.5 ± 0.8	0.7 ± 0.2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		J154905-5420 6	15:49:05.63	-54:22:07.7	1.61	0.7	1.0	$3.9^{+3.2}$	$0.0^{+1.9}$	3.9+3.2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1154905-5420 7	15.48.55 72	-54-19-54 5	1.52	0.5	6.0	8.1+4.1 8.1+4.1	2,7+2.9	5.6+3.6	2.8 ± 1.5	0.9 ± 0.3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1154905-5420_8	15:49:09 17	-54-19-27-9	1 20	0.6	0.0	4 8+3.4	$^{-, -1.6}_{1 0^{+2.3}}$	3 0+3:2	2.0 ± 1.5	1.0 ± 0.3		
-54:19:0052.881.11.3 4.87_{-2}^{+3} 4.07_{-2}^{+3} 8.97_{-1}^{+3} 0.97_{-2}^{+1} 1.1 ± 1.8 0.7 ± 0.7 -54:16:29.80.120.40.8 166_{-4}^{-3} 8.99_{-10}^{+3} 2.97_{-20}^{+3} 1.1 ± 1.8 0.7 ± 0.7 -54:16:29.80.120.40.8 166_{-4}^{-3} 8.09_{-4}^{+10} 8.09_{-10}^{+10} 1.3 ± 0.3 -54:09:16.20.120.40.8 166_{-4}^{-3} 8.09_{-4}^{+10} 1.1 ± 0.2 $154951.6.541629$ -54:09:16.20.30.40.8 116_{-4}^{-3} 8.09_{-4}^{+10} 1.1 ± 0.2 $154951.6.541629$ -54:09:16.20.30.40.8 117_{-10}^{-3} 8.09_{-4}^{-10} 1.1 ± 0.2 $154951.6.541629$ -54:07:21.91.370.30.8 211_{-6}^{+5} 100_{-10}^{-10} $3.0-40.1$ 1.1 ± 0.2 $154951.6.541629$ -54:07:21.91.370.30.8 111_{-2}^{-2} 2.09_{-2}^{-2} $3.0-40.1$ 1.1 ± 0.2 $154951.6.541629$ -53:47:58.60.900.8 1.1 2.91_{-2}^{-2} 5.00_{-2}^{-4} 1.1 ± 0.2 $155336.0.534826$ -53:47:58.60.900.8 1.1 2.91_{-2}^{-2} 5.00_{-2}^{-2} 1.1 ± 0.2 $1549.6.560.53660.560.560.560.560.560.560.560.560.560.$		J154905-5420 9	15:49:09.32	-54:19:17.0	1.37	0.6	0.0		4.0+3.2	2.0+2.7	1.3 ± 0.6	1.0 ± 0.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		J154905-5420 10	15:48:48.45	-54:19:00.5	2.88	1.1	1.3		$4.0^{+3.2}$	$0.9^{+2.3}_{-2.3}$	1.1 + 1.8	0.7 ± 0.7		
-54:16:29.8 0.12 0.4 0.8 -10^{-4} 8.0 $\pm 30^{-4}$ 8.0 $\pm 30^{-4}$ 8.00\pm 30^{-4} 9.00\pm 30^{-4}		J154905-5420 11	15:49:07.39	-54:18:53.5	1.66	0.5	0.9		8.944.1	$2.9^{+2.9}_{-2.9}$	1.6 ± 0.4	1.3 ± 0.6		
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X J154951-54	116 10501 2009-05-1	5 ACIS-S 1.63ks					6-	6.7-	0.1-				
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J154951-5416_1	15:49:51.66		0.12	0.4	0.8	16^{+5}_{-4}	$8.0^{+4.0}_{-2.8}$	$8.0^{+4.0}_{-2.8}$	2.0 ± 0.7	0.6 ± 0.2	154951.6-541629	J154951.7-541630
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X J155035-54	108 10510 2009-06-00	6 ACIS-S 5.37k					,	i.	-				
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J155035-5408_1	15:50:21.23	-54:09:54.3	2.41	0.5	0.9	21^{+0}_{-5}	195 44	$0.0^{+1.9}_{-0.0}$	0.9 ± 0.1	1.3 ± 0.3		
-54:07:219 1.37 0.3 0.8 203_{-14}^{+13} 152_{-15}^{-13} 511 $^{+5}_{-33}$ 1.6 \pm 0.1 1.5 \pm 0.1 -53:48:269 1.03 0.3 0.8 71_{-9}^{+9} 60_{-9}^{+1} 9.0_{-110}^{+1} 1.1 ± 0.0 1.8 ± 0.3 $155336.0-534826$ -53:47:586 0.90 0.8 1.1 2.9_{-16}^{+16} $0.0-0.0$ $3.0-16$ 1.8 ± 0.1 1.1 ± 0.2 $155336.0-534826$ -53:45:56 0.90 0.8 1.1 2.9_{-16}^{+16} 3.0_{-12}^{+16} 1.1 ± 0.2 $155328.3-533520$ -53:35:208 0.67 0.3 0.8 53_{-8}^{+8} 50_{-13}^{-4} 47_{-8}^{+3} 1.8 ± 0.1 1.1 ± 0.2 $155328.3-533520$ -53:34:06.6 2.47 0.7 1.0 0.8 0.3^{+1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} 0.7_{-13}^{-1} </td <td></td> <td>J155035-5408_2</td> <td>15:50:33.73</td> <td>-54:09:16.2</td> <td>0.63</td> <td>0.4</td> <td>0.8</td> <td>18^{+5}_{-4}</td> <td>$5.0^{+3.4}_{-2.2}$</td> <td>13^{+5}_{-4}</td> <td>3.0 ± 0.7</td> <td>1.1 ± 0.2</td> <td></td> <td>J155033.7-540914</td>		J155035-5408_2	15:50:33.73	-54:09:16.2	0.63	0.4	0.8	18^{+5}_{-4}	$5.0^{+3.4}_{-2.2}$	13^{+5}_{-4}	3.0 ± 0.7	1.1 ± 0.2		J155033.7-540914
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		J155035-5408_3	15:50:37.60	-54:07:21.9	1.37	0.3	0.8	203^{+15}_{-14}	152^{+13}_{-12}	51^{+8}_{-7}	1.6 ± 0.1	1.5 ± 0.1		J155037.5-540722
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X J155331-53	347 8152 2007-06-21	ACIS-S 2.03ks											
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J155331-5347_1	15:53:36.01	-53:48:26.9	1.03	0.3	0.8	71^{+9}_{-8}	60^{+9}_{-8}	$9.0^{+4.1}_{-3.0}$	1.1 ± 0.0	1.8 ± 0.3	155336.0-534826	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J155331-5347_2	15:53:26.06	-53:47:58.6	06.0	0.8	1.1	$2.9^{+2.9}_{-1.6}$	$0.0^{+1.9}_{-0.0}$	$3.0^{+2.9}_{-1.6}$				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X J155831-53	334 9601 2008-04-15	ACIS-S 1.43ks											
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J155831-5334_1	15:58:28.38	-53:35:20.8	0.67	0.3	0.8	53^{+8}_{-7}	32^{+7}_{-6}	20^{+6}_{-4}	1.8 ± 0.1	1.1 ± 0.2	155828.3-533520	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			15:58:47.31	-53:34:06.6	2.47	0.7	1.0	10^{+4}_{-3}	8.0+4.0	$2.0^{+2.7}_{-1.3}$	1.3 ± 0.2	1.8 ± 0.6		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X J162011-50	02 9602 2008-05-28	ACIS-S 1.53ks					5						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		J162011-5002_1	16:20:06.69	-50:01:59.0	0.80	0.3	0.8	53^{+8}_{-7}	$6.0^{+3.6}_{-2.4}$	47^{+8}_{-7}	3.7 ± 0.4	1.6 ± 0.2	162006.7-500159	
-49:42:14.8 0.65 0.3 0.8 117^{+12}_{-11} 80^{+10}_{-10} 37^{+7}_{-6} 1.6 \pm 0.1 1.0 \pm 0.2 - -50:06:00.6 0.38 0.4 0.8 18^{+5}_{-13} $4.8^{+3.4}_{-13}$ 14^{+5}_{-13} 3.2 ± 0.3 1.4 ± 0.3 $162209.7-500600$ $-50:05:55.1$ 0.22 0.7 1.0 $3.9^{+3.2}_{-13}$ $4.8^{+3.4}_{-13}$ 14^{+5}_{-13} 3.2 ± 0.3 1.4 ± 0.3 $162209.7-500600$ $-50:05:55.1$ 0.22 0.7 1.0 $3.9^{+3.2}_{-13}$ $2.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ $3.9^{+3.2}_{-13}$ 1.4 ± 0.3 $162209.7-500600$ -50:04:58.4 0.76 0.6 0.9 $7.0^{+1.2}_{-13}$ $5.0^{-2.2}_{-2.2}$ 3.7 ± 1.0 1.2 ± 0.4 1.2 ± 0.4 -49:46:379 0.80 0.4 0.8 1.1 $3.7^{+3.2}_{-3.2}$ $2.0^{+2.7}_{-2.7}$ $2.0^{+2.7}_{-2.7}$ $0.94:0.0$ 2.2 ± 0.4 $162251.6-494637$ $44:47.5$ 2.17		J162011-5002_2	16:20:06.05		1.00	0.4	0.8	13^{+5}_{-4}	11 14 14	$2.0^{+2.7}_{-1.3}$	1.2 ± 0.3	1.2 ± 0.8	162006.0-500140	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X J162046-49	142 10507 2009-01-2v	6 ACIS-S 3.33ks					+	2	2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$J162046-4942_1$	16:20:48.82	-49:42:14.8	0.65	0.3	0.8	117^{+12}_{-11}	80^{+10}_{-9}	37^{+7}_{-6}	1.6 ± 0.1	1.0 ± 0.2		J162048.8-494214
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X J162208-50	05 8141 2007-06-21	ACIS-S 1.53ks											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		J162208-5005_1	16:22:09.73	-50:06:00.6	0.38	0.4	0.8	18^{+5}_{-4}	$4.8^{+3.4}_{-2.1}$	14^{+5}_{-4}	3.2 ± 0.3	1.4 ± 0.3	162209.7-500600	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		J162208-5005_2	16:22:08.55	-50:05:55.1	0.22	0.7	1.0	$3.9^{+3.2}_{-1.0}$	$0.0^{+1.9}_{-0.0}$	$3.9^{+3.2}_{-1.0}$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		J162208-5005_3	16:22:06.98	-50:04:58.4	0.76	0.6	0.9	$7.0^{+3.8}_{-2.6}$	$2.0^{+2.7}_{-1.3}$	$5.0^{+3.4}_{-2.5}$	3.7 ± 1.0	1.2 ± 0.4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X J162246-49	346 8161 2007-06-13	ACIS-S 2.9ks							1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$J162246-4946_{-1}$	16:22:48.03	-49:48:54.6	2.00	0.8	1.1	$4.0^{+3.2}_{-1.9}$	$2.0^{+2.7}_{-1.3}$	$2.0^{+2.7}_{-1.3}$				
$16:22:49.63 - 49:44:47.5 2.17 0.8 1.1 3.7^{+3.2}_{-1.8}$		$J162246-4946_2$	16:22:51.68	-49:46:37.9	0.80	0.4	0.8	17^{+5}_{-4}	16^{+5}_{-4}	$0.0^{+1.9}_{-0.0}$	0.9 ± 0.0	2.2 ± 0.4	162251.6-494637	
		J162246-4946 3*	16:22:49.63	-49:44:47.5	2.17	0.8	1.1	$3.7^{+3.2}$	F	0.0				

Ш		1 1	I	I				1	I	I		1 F	1E '	Г	ne	ЛС		SC	1	EI	L			I		1		I	I		I		Т		1		נכ ו ו
XMMi-DR3 ^h	Name 2XMMi			J165248.6-4/4-005248.0-4			1163570 5-777837	1163750 8 765544																		0100212	CT0774-7.CT00/TC		J170058.1-421036	J170117.9-421337		J170440.6-411126	J1/0442.0-410920				
CSC ^g	Name CXO J			103248.5-4/4500			163570 5-777830	262214-C.UZCCUI		165111.6-440238	165219.0-441401		165423.4-433743	165434.8-433802	165649.7-423849	165650.6-423812		165/03.7-425442		165905.6-420725						010021 2 010021	610774-7.6100/1		170058.2-421037			170440.6-411127	1/0442.3-41001	170539.8-403812		170545.6-410417	
uantiles ^f	Quartile Ratio	1.0 ± 0.7					0.9 ± 0.3	0.1 + +.1		1.0 ± 0.1	1.1 ± 0.1				1.5 ± 0.1	1.1 ± 0.2		1.2 ± 0.2		1.7 ± 0.3	1.2 ± 0.3	1.3 ± 1.7	1.6 ± 0.3	0.9 ± 0.3		10401	1.1 ± 0.4		1.5 ± 0.3	1.7 ± 0.2		1.4 ± 0.1	7.0 ± 0.1	1.3 ± 0.2	$1 3 \pm 0.3$	1.3 ± 0.4	
Energy Quantiles ^f	E_{50} (keV)	1.1 ± 0.7					2.6 ± 0.9	1.2 ± 0.0		2.4 ± 0.2	2.0 ± 0.1				0.9 ± 0.0	1.8 ± 0.1		0.9 ± 0.1		4.4 ± 0.4	2.6 ± 0.7	1.0 ± 0.4	4.0 ± 0.6	1.7 ± 0.8		51403	3.1 ± 0.7		0.9 ± 0.1	4.5 ± 0.7		1.1 ± 0.1	0.7 ± 0.0	1.2 ± 0.1	0.9 ± 0.3	0.5 ± 0.3 1.5 ± 0.3	
0	2-8 keV	$0.9^{+2.3}_{-0.8}$					7.7 ^{+4.0} 0.0 ^{+2.3}	0.7_0.8	11+1.0	94_{-10}^{+11}	54^{+8}_{-7}				14+5	23^{+6}_{-5}	7 242	6.0-2.4 0.0+1.9	0.0-0.0	20^{+6}	12^{+5}_{-5}	$0.8_{-0.7}^{+2.3}$	12^{+5}_{-3}	$4.6^{+3.4}_{-2.1}$		65+9	$5.0^{+3.4}_{-3.4}$	7.7-	$0.0^{+1.9}_{-0.0}$	8.0 ^{+4.0}	0.2	22 22 21 22 22 22 22 22 22 22 22 22 22 2	- <u>5</u>	24+6	1 0+2.3	$2.0^{+2.9}_{-1.3}$	
Net Counts ^e	0.5-2	$5.0^{+3.4}_{-2.2}$				9	$4.0^{+5.2}_{-1.9}$	1.0-2.6	0772	20 ⁻¹	53^{+8}_{-7}				228^{+16}	$34^{+1.5}_{-6}$	8-0-	50 ⁻⁷ 5 0+3.4	J.U_2.2	$0.0^{+1.9}_{-0.0}$	$4.0^{+3.2}_{-1.9}$	$8.0^{+4.0}_{-2.8}$	$0.0^{+1.9}_{-0.0}$	$5.8^{+3.6}_{-2.4}$		1 0+2.3	$3.0^{+2.9}_{-2.9}$	0.1	$34^{+/}_{-6}$	$0.0^{+1.9}_{-0.0}$		122_{-11}^{+12}	1.0-0.9	89^{+10}_{-9}	8 0 ^{+4.0}	$10^{+2.8}_{-3}$	2
	0.3-8	$5.9^{+3.6}_{-2.4}$	$4.6^{+3.4}_{-2.1}$	00 8- 00	$3.6^{+3.2}_{-1.8}$	$2.6^{+2.9}_{-1.5}$	13^{+5}_{-4} 7 $8^{+4.0}_{-4}$	$7.0^{-2.7}$	8-7. 8-7.	150 ⁻¹²	107^{+11}_{-10}	:	123^{+12}_{-11}	16^{-0}_{-4}	265^{+17}	57^{-90}_{-8}	0772	61-8 - 0+3.4	J.U-2.2	20^{+6}	16^{+5}_{-4}	$8.7^{+4.1}_{-2.9}$	11+5	10^{+4}_{-3}		6+9	$8.0^{+4.0}_{-8}$	0 7 U	$36_{-6}^{+/}$	8.0+4.0	0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	148 ⁺¹²	5-77	113^{+12}_{-11}	9 0 ^{+4.1}	12^{+5}_{-3}	2
Positional Errors ^d	Total (")	0.9	1.1	0.8	0.9	1.1	0.9	0.0		0.8	0.8		0.8	0.9	0.8	0.8	0	0.8	1.2	0.8	0.9	0.9	0.9	1.0		00	0.0		0.8	0.9		0.8	0.8	0.8	6.0	0.9	
Positio	wav ('')	0.6	0.0	0.3	0.6	0.9	0.6	C:0 6		0.3	0.3		0.3	0.0	0.3	0.4		0.3	1.0	0.4	0.5	0.5	0.5	0.7		0.3	0.6		0.4	0.6		0.3	0.4	0.3	0.6	0.0	
Offset ^c	from ASCA (′)	2.03	1.65	1.22	0.88	1.51	2.60	08.0		1.34	0.28		0.55	2.64	1.01	1.61		C8.0	00.7	0.96	2.38	1.65		2.69		30.0	0.2.0 1.93		0.98	1.72		2.00	0.48	0.85	2 I 3	2.02	
t Position	Dec (J2000)	-49:46:11.1	-47:47:13.6	-4/:45:00.2	-47:27:55.5	-47:27:44.6	-47:30:56.7	0.10.02.14-		-44:02:38.8	-44:14:01.7		-43:37:43.7	-43:38:02.4	-42:38:49.4	-42:38:12.1		-42:54:42.0	· .	-42:07:26.0	-42:09:34.8	-42:08:45.2	-42:07:38.3	-42:05:49.0		101.00.07	-42:19:00.3		-42:10:37.0	-42:13:38.0		-41:11:27.4	-41:09:19.4	-40:38:12.4	-41-04-02.7	-41:04:17.5	
wavdetect Position	RA (J2000)	16:22:58.77	HRC-I 2.64ks 16:32:59.75	10:32:48.55 ACIS-S 6 57ks	16:35:20.72	16:35:32.89	16:35:20.86	HRC-I 1.48ks 16.37.50 87	ACIS-S 1.84ks	10:01:10:01	ACIS-S 2.2ks 16:52:19.02	HRC-I 1.56ks	16:54:23.44	16:54:34.86	AUIS-S 2.02KS 16:56:49.80	16:56:50.64	ACIS-S 1.24ks	16:57:03.74	10:21:10:91	16:59:05.65	16:59:11.97	16:59:10.07	16:59:17.62	16:58:54.24	ACIS-S 1.24KS No Detection	ACIS-S 1.63ks	17:00:25.25	ACIS-S 1.81ks	17:00:58.27	ACI3-3 1.20KS 17:01:17.92	ACIS-S 2.8ks	17:04:40.62	1/:04:42.33	17:05:39.82	ACIS-S 2.41ks 17.05.45 50	17:05:45.62	ACIS-S 1.34ks
ChlcAGO ^b	Source ID ChI		<u>-</u> 1 -1	J163252-4/46_2 28 10519 2009-01-25	J163524-4728_1*	J163524-4728_2*	J163524-4728_3 1163524-4728_4	AX J163751-4656 8140 2007-10-23 HRC-1 1.48ks 116.3751-3058 140 2007-10-23 HRC-1 1.48ks	AX J165105-4403 9603 208-06-09 ACIS-S 1.84ks	J165105-4403_1	5	3		J165420-4337_2 <u>AV1155646 4230 8241 2007 07 10</u>	\supset		-22.	1_6224-707651L	2_CC24-707C01L 2_CC24-707C01L	J165901-4208 1	J165901-4208_2	J165901-4208_3†	J165901-4208_4†	-	. 12-00-2012 2009 2005-10-21 J165951-4209 J165951-4209	AX J170017-4220 8234 2007-09-30	J170017-4220_1	-25	J170052-4210_1 17:00:58.27	J170112-4212_1	AX J170444-4109 8165 2007-10-26 ACIS-S 2.8ks	$11/0444-4109_1$	JI/0444-4109_2 AV 1170536 4038 0606 2008 05 11	J170536-4038_1	AX J170555-4104 8156 2007-10-26 ACIS-S 2.41ks 1170555-4104 1 17-05-45 50	J170555-4104_2	AX J171715-3718 9607 2008-09-20 ACIS-S 1.34ks
Chandra Obs ^a	(ID, Date, Inst, Exp)		AX J163252-47	AX 1163524-47				AX J163751-46	AX J165105-44		AX J102211 44	AX J165420-43		<u>UV 9795911 AV</u>	74-0400016 VA		AX J165707-42		AY 1165001-42						74-1060011 XA	AX J170017-42		AX J170052-42		74-7110/1 6 V A	AX J170444-41		07 11 202 11 AV		AX J170555-41		AX J171715-37

THE CHICAGO SURVEY

Chandra Obs ^a	ChIcAGO ^b	wavdetect Position	at Position	Offset ^c	Position.	Positional Errors ^d		Net Counts ^e	 	Energy C	Energy Quantiles ^f	CSC ^g	XMMi-DR3 ^h
(ID, Date, Inst, Exp)	Source ID ChI	RA (J2000)	Dec (J2000)	from ASCA (')	wav ('')	Total (")	0.3-8	0.5-2	2-8 keV	E_{50} (keV)	Quartile Ratio	Name CXO J	Name 2XMMi
	J171715-3718_1 J171715-3718_2	17:17:07.59 17:17:23.99	-37:16:14.3 -37:17:15.8	2.87 2.32	0.6 0.6	0.9 0.9	19^{+5}_{-4} 11 $^{+4}_{-3}$	$19^{+5}_{-4} \ 0.0^{+1.9}_{-0.0}$	$0.0^{+1.9}_{-0.0}\\11^{+4}_{-3}$	1.0 ± 0.1 6.2 ± 0.4	1.9 ± 0.2 2.3 ± 0.4	171707.6-371614 171723.9-371715	
AX J171910-36	AX J171910-3652 8157 2007-10-26 J171910-3652_1	ACIS-S 2.41ks 17:19:06.24	-36:51:31.8	1.56	0.4	0.8		$5.0^{+3.4}_{-2.7}$	15^{+5}_{-4}	2.9 ± 0.5	1.3 ± 0.2	171906.2-365131	
	J171910-3652_2 J171910-3652_3	17:19:13.10 17:19:24.07	-36:51:24.4 -36:52:09.7	1.56 2.84	0.3 0.7	0.8 1.0	114^{+12}_{-11} 12^{+5}_{-5}	95^{+11}_{-10} 8.9 ^{+4.1}	11^{+4}_{-3} 2.0 ^{+2.7}	0.9 ± 0.0 1.1 ± 0.2	1.7 ± 0.2 1.1 ± 0.6	171913.1-365124 171924.0-365209	
AX J171922-370	AX J171922-3703 10525 2009-02-08	~						6.7-	5.1-2				
	J171922-3703_1	17:19:20.88	-37:01:55.2	1.16	0.3	0.8		$9.0^{+4.1}_{-2.9}$	134^{+13}_{-12}	4.5 ± 0.2	1.7 ± 0.1		
	J171922-3703_2† J171922-3703_3	17:19:29.90 17:19:27.08	-37:01:12.7 -37:00:10.6	2.25 2.94	0.6 0.6	0.9	$8.7^{+4.1}_{-2.9}$ $15^{+5}_{-5.9}$	$8.8^{+4.1}_{-2.9}$ $0.0^{+1.9}_{-1.9}$	$0.0^{+1.9}_{-0.0}$ $15^{+5}_{-5.0}$	0.9 ± 0.1 4.2 ± 0.3	1.9 ± 0.3 2.2 ± 0.4		
	J171922-3703_4	17:19:21.43	-37:03:22.2	0.49	0.5	0.9		0.0+1:9	$6.8^{+3.8}_{-3.6}$	3.9 ± 0.5	2.6 ± 0.4		
AX J172050-37	AX J172050-3710 10520 2009-06-19	~		200	, ,	a 0		200+18		101	1 0 1 0 1		
AV 1177560 25	0.1C:02:/1 10.1/2-000/11 10.1/2 0.2020 0.201	08.1C:02:/1	-3/:10:3/.4	07.0	0.3	0.8	514_{-18}	280 ⁻¹⁷	5°-27	1.0 ± 0.0	1.0 ± 0.1		
	J172550-3533 1	17:25:49.58	s -35:33:41.4	0.22	0.3	0.8		$1.0^{+2.3}_{-0.0}$	42+8	4.7 ± 0.3	1.9 ± 0.2		
	J172550-3533_2	17:25:58.53	-35:32:31.3	1.97	0.4	0.8	44^{+8}_{-7}	35+73 -6	$7.9_{-2.8}^{+4.0}$	1.2 ± 0.1	1.4 ± 0.2		
	J172550-3533_3	17:25:50.24	-35:30:54.7	2.75	0.4	0.8		34^{+7}_{-6}	$5.9^{+3.6}_{-2.4}$	1.3 ± 0.1	1.5 ± 0.2		
AX J172623-35	AX J172623-3516 8154 2007-10-26 ACIS-S 2.31ks	ACIS-S 2.31ks		0		0		L+0	0 140 0	-	-		
	J1/2623-3516_1 1177623-3516_7	17:26:25.52	-35:16:22.9	0.62	0.3	0.0	43 ⁺⁰ 5 0 ^{+3.6}	35-6 5 0 ^{+3.4}	8.0 ^{-2.8} 0 0+2.3	1.4 ± 0.1	1.5 ± 0.4	1/2625.5.51622	
AX J172642-350	AX J172642-3504 10522 2009-02-06 ACIS-S 7.36ks	6 ACIS-S 7.36ks		7.1	0.0	200		2.2-2.2	0.2	1.0 1 7.1	0.0 + 1.1		
	J172642-3504_1	17:26:39.21	-35:04:18.4	0.68	0.3	0.8		$7.9^{+4.0}_{-2.8}$	79^{+10}_{-9}	3.7 ± 0.2	1.5 ± 0.1		J172639.2-350418
	J172642-3504_2	17:26:37.20	-35:05:00.7	1.43	0.6	0.9	$5.7^{+3.6}_{-2.3}$	$1.0^{+2.3}_{-0.9}$	$4.7^{+3.4}_{-2.1}$	2.5 ± 0.8	1.4 ± 0.3		
	J172642-3504_3	17:26:47.45	-35:04:56.7	1.41	0.7	1.0		$1.9^{+2.7}_{-1.3}$	$2.8^{+2.9}_{-1.6}$	2.4 ± 0.9	0.7 ± 0.4		
	J172642-3504_4†	17:26:45.22	-35:02:05.6	2.02	0.5	0.8		16^{+3}_{-4}	$1.0^{+2.5}_{-0.8}$	1.0 ± 0.1	1.1 ± 0.5		J172645.3-350205
AX J172642-35	AX J172642-3540 8222 2007-10-23	H	C.CU.2U.CC-	7.10	6.0	1.2		0.0-0.0	4.0 _{-1.9}				
	J172642-3540_1		-35:40:52.5	0.22	0.3	0.8	81^{+10}_{-0}					172641.7-354052	
	J172642-3540_2*	17:26:55.49	-35:41:48.1	2.78	1.3	1.5	$2.7^{+2.9}_{-1.6}$						
AX J173548-32	AX J173548-3207 8148 2007-10-26 ACIS-S 2.01ks	ACIS-S 2.01ks				1	c		ų				
	J173548-3207_1	17:35:46.28	-32:07:9.8	0.37	0.3	0.8	45^{+0}_{-7}	29-5	16^{+3}_{-4}	1.4 ± 0.2	1.2 ± 0.2	173546.2-320709	
16-8206/ 11 AA	AA JI /3028-5141 8138 200/-10-20 ACIS-5 2.31KS 1173509 3111 1	ACIS-S 2.51KS	1 20,11,12	000	r o	0.0	10+4	o 0+4.1	0.0+1.9	00+01	20121		
	1173628-3141 2	17.36.25.82	-31-41-09.8	0.20	0.6 0.6	0.0		0.7-2.9 0.0+1.9	5 0+3.4	0.9 ± 0.1	1.4 ± 0.5		
	J173628-3141_3	17:36:35.48	-31:39:30.1	2.29	1.1	1.3	$3.9^{+3.2}_{-1.0}$	0.0+1:9	$3.9^{+3.2}_{-1.0}$				
AX J175331-25.	AX J175331-2538 8149 2007-10-26 ACIS-S 2.01ks 1175331 2539	ACIS-S 2.01ks						0.0					
AX J175404-25	AX J175404-2553 10521 2009-08-03	3 ACIS-S 6.76ks											
	J175404-2553_1†	17:54:01.73	-25:54:58.0	1.84	0.7	1.0		$0.9^{+2.3}_{-0.8}$	$4.9^{+3.4}_{-2.1}$	3.8 ± 0.9	1.6 ± 0.4		
	J175404-2553_2*	17:54:14.42	-25:53:54.4	2.37	1.0	1.2	$2.6^{+2.9}_{-1.5}$		1.7				
	J175404-2553_3	17:54:02.52	-25:53:07.1	0.42	0.4	0.8		$0.0^{+1.9}_{-0.0}$	28^{+6}_{-5}	4.9 ± 0.2	2.2 ± 0.2		
AX J180816-20	AX J180816-2021 8151 2007-10-26 ACIS-S 2.11ks J180816-2021 No Detection	ACIS-S 2.11ks No Detection											
AX J180857-20	AX J180857-2004 10518 2009-02-10 ACIS-S 6.47ks	0 ACIS-S 6.47ks											
	$J180857-2004_1$	18:08:59.25	-20:05:11.5	0.77	0.4	0.8		$4.8^{+3.4}_{-2.1}$	39^{+7}_{-6}	3.3 ± 0.3	1.7 ± 0.2		
	J180857-2004_2	18:08:59.11	-20:05:08.2	0.70	0.3	0.8		15^{+5}_{-4}	63^{+9}_{-8}	3.2 ± 0.2	1.7 ± 0.1		
	J180857-2004_3 1180857-2004_4	18:09:08.97 18:08:58 76	-20:04:22.2 -20.01.363	2.73	0.6	1.2 0.9	$6.7_{-2.5}^{+3.6}$ 13^{+5}	6.9 ^{+3.6} 9.0 ^{+4.1}	$0.0^{+0.0}_{-0.0}$	1.2 ± 0.1 1.2 ± 0.4	2.2 ± 0.3 1 1 + 0 3		J180909.0-200422
					2			6.7-~	6.1-2.2	i i i			

												,	Тн	E (Сн	IC	AC	ίΟ	St	JR	VE	Y																		33
XMMi-DR3 ^h	Name 2XMMi			J181113.2-182800											J181210.5-184208	011101 0001011	J181209.2-184149						J181703.8-161012							J181922.1-160310										
CSC ^g	Name CXO J	181032.7-191755		181113.1-182758	181109.7-182746										181210.3-184208		181209.1-184140					181705.8-160557				18181.8.1.8.181 200221 2 120101	776001-010101			181922.1-160309		181907.8-154928								
uantiles ^f	Quartile Ratio	1.6 ± 0.5	1,1+0.6	1.3 ± 0.2	2.3 ± 0.7	10405	C.O.T. C.T		24+06	2.7 ± 0.0 1.5 ± 0.3	1.6 ± 0.3			1.6 ± 0.4	1.3 ± 0.1	2.5 ± 0.5	1.2 ± 0.3					1.7 ± 0.3	1.7 ± 0.4		-	1.6 ± 0.3	7.0 ± 0.1			1.1 ± 0.1	1.1 ± 0.1			2.3 ± 0.3	2.0 ± 0.3	1.8 ± 0.1	0.9 ± 0.6	2.2 ± 0.3	1.6 ± 0.8	
Energy Quantiles ^f	E_{50} (keV)	1.3 ± 0.3	1.3 ± 0.3	2.8 ± 0.3	1.1 ± 0.1	21406	0.0 + 1.0		10 + 0.2	0.9 ± 0.2	2.3 ± 0.5			1.1 ± 0.2	3.8 ± 0.2	1.3 ± 0.1	1.0 ± 0.2					3.3 ± 0.6	4.6 ± 0.8			1.0 ± 0.1	C.U ± 0.C			2.3 ± 0.3	2.4 ± 0.3			4.9 ± 0.2	4.3 ± 0.5	1.5 ± 0.1	1.2 ± 1.0	4.0 ± 0.4	1.7 ± 0.3	
9	2-8 keV	$1.0^{+2.3}_{-0.9}$	$0.0^{+1.9}$	35^{+70}_{-6}	$1.0^{+2.3}_{-0.9}$	$0.0^{+1.9}_{-0.0}$	···2.6	$6.0^{+3.6}_{-2.4}$	0 0 ^{+1.9}	$0.0^{-0.0}_{-1.0}$	$3.0^{+2.9}_{-1.6}$	$2.0^{+2.7}_{-1.3}$	$1.0^{+2.3}_{-0.9}$	$0.0^{+1.9}_{-0.0}$	96^{+11}_{-10}	$0.0^{+1.9}_{-0.9}$	4.0.19	3 0+2.9	$1.0^{+2.3}_{-0.0}$	$2.9^{+2.9}_{-1.6}$	$1.0^{+2.3}_{-0.8}$	$10^{\pm 4}_{-3}$	$7.0^{+3.8}_{-2.6}$	$0.9^{+2.3}_{-0.8}$	0 0 1 1 0	$0.0^{+0.0}_{-0.0}$	$0.0^{+1.9}_{-0.0}$		$3.0^{-1.7}_{-1.7}$	2-67 8+01	48 <u>-</u> 7			16^{+3}_{-4}	8.9-2.9	15^{+5}	$0.7^{+2.3}_{-0.2}$	$5.9^{+3.6}_{-2.4}$	$3.9^{+3.2}_{-1.9}$	
Net Counts ^e	0.5-2	$8.0^{+4.0}_{-2.8}$	7,0+3.8	15^{+5}_{-4}	$9.0^{\pm4.1}_{-3.0}$	3.9 ^{+3.2} 0.0 ^{+2.3}	0.2	$0.0^{+1.9}_{-0.0}$	a 0 ^{+4.1}	7.0+3:0	$2.0^{+2.9}_{-1.3}$	$1.9^{+2.7}_{-1.3}$	$2.0^{+2.7}_{-1.3}$	$4.9^{+3.4}_{-2.2}$	17^{+5}_{-4}	$5.0^{+5.4}_{-2.2}$	18-4	$0.0^{+1.9}$	$4.0^{+3.2}_{-10.0}$	$1.0^{+2.3}_{-0.8}$	$3.0^{+2.9}_{-1.6}$	$1.0^{+2.3}_{-0.9}$	$0.0^{+1.9}_{-0.0}$	$2.9^{+2.9}_{-1.6}$	2 043 6	6.0-2.4 0+2.74	$3.0^{+1.3}_{-1.3}$	01.0	0.0-0.0	27 27 27 27 27 27 27 27 27 27 27 27 27 2	5-17		-	0.0+0.0	$0.0_{-0.0}^{+1.5}$	76^{+10}	$3.9^{+3.2}_{-3.2}$	$0.0^{+1.5}_{-0.0}$	$4.7^{+3.4}_{-2.1}$	
	0.3-8	$9.0^{+4.1}_{-3.0}$	6.9+3.8	50^{+8}_{-7}	10^{+4}_{-3}	$3.8^{+3.2}_{-1.9}$ 7 0+4.0	1.7-2.8	$5.9^{+3.6}_{-2.4}$	a n ^{+4.1}	6.8+3:0	$4.9^{+3.6}_{-2.5}$	$3.9^{+3.2}_{-1.9}$	$3.0^{+2.9}_{-1.7}$	$4.7^{+3.4}_{-2.1}$	113^{+12}_{-11}	$4.9^{+3.4}_{-2.1}$	5-77	3 0+2.9	$5.0^{+3.4}_{-3.5}$	$3.8^{+3.5}_{-1.0}$	$3.9^{+3.2}_{-1.9}$	11^{+4}_{-3}	$6.9^{+3.8}_{-2.6}$	$3.8^{+3.4}_{-1.9}$	- 0+3 K	$0.0^{-2.4}_{-2.4}$	$3.0^{+2.9}_{-1.7}$		$3.0^{-1.7}$	54 ⁷⁰ 75+10	6-C/	13^{+5}	4	16^{+0}_{-4}	8.9_2.9	91^{+11}_{-11}	$4.5^{+3.4}_{-3.4}$	$5.6^{+3.6}_{-2.3}$	$8.5^{+4.1}_{-2.9}$	
Positional Errors ^d	Total (")	0.8	6.0	0.8	0.9	1.3	0.1	1.2	0.0	1.1	0.9	1.0	1.4	1.2	0.8	1.2	0.8	13	1.0	1.0	1.1	0.9	1.1	1.2	0	0.0	0.0 1.0		1.2	0.8	0.8	0.9		0.9	1.0	0.8	1.0	0.9	0.9	
Positior	wav ('')	0.5	50	0.3	0.5	1.1		0.9	0.6	0.0	0.6	0.7	1.1	0.9	0.3	0.0	0.4	11	0.7	0.7	0.8	0.5	0.8	0.0	i c	c.0 2 0	C.U	,	1.0	0.4	c.U	0.6		0.5 2 2	0.7	0.3	0.7	0.6	0.6	
Offset ^c	from ASCA (')	0.36	0.96	0.92	1.74	2.60 7.61	7.01	2.71	731	2.80	1.09	1.02	2.22	2.32	0.88	2.59	16.1	215	1.51	1.24	2.14	1.96	2.30	2.10		0.29	0.62		2.41	2.35	70.0	2.48		2.12	2.91	0.71	1.19	1.60	2.48	
t Position	Dec (J2000)	-19:17:54.6	-18.28.19.9	-18:27:58.6	-18:27:47.0	-18:30:48.4 -18:28:21.7	1.17.07.01	-19:16:15.4	-18-44-03-0	-18:39:37.8	-18:43:27.6	-18:41:26.1	-18:40:34.8	-18:43:25.1	-18:42:08.8	-18:42:02.8	-18:41:40.3	-16.10.03 5	-16:06:27.4	-16:09:04.4	-16:08:23.5	-16:05:57.6	-16:10:11.8	-16:06:18.1		-15:59:40.2	-15:59:16.3		-16:03:40.6	-16:03:12.5	-10:01:21.8	-15:49:27.3		-14:26:13.1	-14:22:32.6	-13:10:36.7	-13:12:07.7	-13:09:38.4	-13:08:50.2	
wavdetect Position	RA (J2000)	ACIS-S 0.94ks 18:10:32.80	ACIS-S 2.78ks 18-11-20 83	18:11:13.11	18:11:09.73	18:11:19.08 18:11:05 70	VLIS-S 2 21ks	18:11:23.27	ACIS-S 3.0ks 18-12-20-87	18:12:14.94	18:12:12.54	18:12:12.87	18:12:08.65	18:12:05.06	18:12:10.38	18:12:24.74	18:12:09.14 ACIS-S 2 63ks	18-17-04 38	18:17:03.79	18:17:03.41	18:16:56.60	18:17:05.84	18:17:03.81	18:16:59.70	ACIS-S 1.63ks	0/.1C:81:81 06 13:01:01	18:18:50.09	~	18:19:12.98	18:19:22.19	18:19:15.22	18:19:08.54	2 ACIS-S 2.6ks	18:22:24.24	18:22:17.16	AUD-5 9.92KS 18:24:37.61	18:24:32.90	18:24:33.72	18:24:39.38	ACIS-S 8.22KS
ChlcAGO ^b	Source ID ChI		AX J181116-1828 8162 2007-05-04 A 1181116-1828 1	J181116-1828_2	J181116-1828_3	J181116-1828_4	<u>AX 1181 120-1013 8153 2007-10-26 ACIS-S 2 21ks</u>	J181120-1913_1	AX J181213-1842 8167 2007-10-26 ACIS-S 3.0ks 1181213-1842 1+ 18-12-20 87	J181213-1842_2	J181213-1842_3	J181213-1842_4	J181213-1842_5	J181213-1842_6	J181213-1842_7	J181213-1842_8	J181215-1842_9 AX 1181705-1607 8160 2008-02-16 A		J181705-1607_2	J181705-1607_3	$J181705-1607_4$	J181705-1607_5†	J181705-1607_6		19	L_9661-268181L	J181852-1559_3	-06	1_1091-619181L	J181915-1601_27 1181015 1601 2	v	J46 9010 2006-09-23 I J181917-1548 1	3-1	J182216-1425_1	J182216-1425_2 <u>AV 1182435 1211 11882 2010 05 10</u>	7	J182435-1311_2	J182435-1311_3	J182435-1311_4	AX J182509-1253 1052/ 2009-02-15 ACIS-S 8.25ks
Chandra Obs ^a	(ID, Date, Inst, Exp)	AX J181033-15	AX J181116-15				AX 1181120-16		AX J181213-15								AX 1181705-16								AX J181852-15			AX J181915-16			AV 1191017 15	71-/161016 VH	AX J182216-14		C1 2010011 AV	21-0047016 VH				4X J1822014

							1						
Chandra Obs ^a	ChlcAGO ^b	wavdetect Position	t Position	Offset ^c	Position	Positional Errors ^d		Net Counts ^e		Energy C	Energy Quantiles ^f	CSC ^g	XMMi-DR3 ^h
(ID, Date, Inst, Exp)	Source ID ChI	RA (J2000)	Dec (J2000)	from ASCA (′)	wav ('')	Total (")	0.3-8	0.5-2	2-8 keV	E_{50} (keV)	Quartile Ratio	Name CXO J	Name 2XMMi
	J182509-1253_1 J182509-1253_2 J182509-1253_3	18:25:08.73 18:25:03.16 18:25:11.59	-12:53:31.6 -12:52:11.1 -12:51:57.6	0.33 2.00 1.45	0.3 0.5 0.4	0.8 0.9 0.8	$\begin{array}{c} 90^{+11}_{-9} \\ 10^{+4}_{-3} \\ 47^{+8}_{-7} \end{array}$	78^{+10}_{-9} 10^{+4}_{-3} $0.9^{+2.3}_{-0.8}$	$11^{+4}_{-3} 0.0^{+1.9}_{-10} 46^{+8}_{-7}$	$\begin{array}{c} 1.2 \pm 0.1 \\ 0.9 \pm 0.2 \\ 4.4 \pm 0.2 \end{array}$	$\begin{array}{c} 1.5 \pm 0.1 \\ 1.6 \pm 0.5 \\ 1.8 \pm 0.2 \end{array}$		
AX J182530-1	AX J182530-1144 10515 2009-02-19 J182530-1144_1* J182530-1144_2	9 ACIS-S 5.88ks 18:25:26.77 18:25:24.77	s -11:45:28.7 -11:45:24.7	1.09 1.50	0.8 0.3	1.1 0.8	$2.8^{+2.9}_{-1.6}$ 236^{+16}_{-15}	54^{+8}_{-7}	182^{+15}_{-13}	3.5 ± 0.2	1.2 ± 0.1		
AX J182538-1	AX J182538-1214 10504 2009-03-09 ACIS-S 2.27ks J182538-1214_1 18:25:33.69	9 ACIS-S 2.27ks 18:25:33.69	s -12:14:50.8	1.21	0.4	0.8	32^{+7}_{-6}	26^{+6}_{-5}	$5.0^{+3.4}_{-2.2}$	1.0 ± 0.1	1.6 ± 0.4		J182533.6-121452
AX J182651-1	AX J182651-1206 10516 2009-02-15 ACIS-S 5.68ks J182651-1206_1 18:26:55.40 1182651-1206_7+ 18:26:55 83	5 ACIS-S 5.68ks 18:26:55.40 18:26:55 83	s -12:05:14.1 -17:04:47.2	1.58 2.07	0.5	0.9		$2.9^{+2.9}_{-1.6}$	$5.0^{+3.4}_{-2.2}$	2.6 ± 0.6	1.6 ± 0.5		
	J182651-1206_3 J182651-1206_3 J182651-1206_4	18:26:46.88 18:26:46.88 18:26:48.75	-12:08:43.4 -12:07:05.7 -12:06:32.2	2.94 1.24 0.59	0.7	1.0 0.8 0.8	13^{+5}_{-4}	$0.0^{-0.9}_{-0.0}$ 15^{+5}_{-4} $15^{+2.7}_{-4}$	$2.9^{+0.0}_{-1.0}$ $2.9^{+3.6}_{-2.4}$ $7.9^{+2.0}_{-2.4}$	5.1 ± 0.4 1.6 ± 0.2 3.8 + 1.5	2.3 ± 0.1 1.2 ± 0.3 1.1 ± 0.4		
AX J183116-1	AX J183116-1008 10506 2009-02-13 J183116-1008_1 J183116-1008_2* J183116-1008_3*	3 ACIS-S 2.82ks 18:31:16.52 18:31:16.44 18:31:21.00		0.84 0.60 1.29	0.3 0.7 0.6	0.8 1.0 0.9		$5.9^{+3.6}_{-2.4}$ $2.9^{+2.9}_{-2.9}$	80^{+10}_{-9} 2.0 ^{+2.7}	3.4 ± 0.2 1.8 ± 0.9	1.7 ± 0.1 1.1 ± 0.7	183116.4-100924	J183116.5-100926
AX J183206-0		ACIS-S 1.04ks 18:32:08.95	-09:39:05.7	0.84	0.3	0.8	153^{+13}_{-12}	32^{+7}_{-6}	121^{+12}_{-11}	3.3 ± 0.2	1.3 ± 0.1	183208.9-093905	
AX J183345-0	AX J183345-0828 10524 2009-02-13 J183345-0828_1 J183345-0828_2 J183345-0828_2	3 ACIS-S 8.03ks 18:33:40.39 18:33:45.30	s -08:28:30.8 -08:25:18.9	1.34 2.83	0.4 1.0	0.8 1.2	40^{+7}_{-6} 3.8 ^{+3.2} -1.9	11^{+4}_{-3} 4.0 ^{+3.2} 1.9	29^{+6}_{-5} $0.0^{+1.9}_{-0.0}$	2.6 ± 0.3	1.4 ± 0.2		J183345.1-082520
AX J183356-0	AX J183356-0822 11884 2010-07-06 ACIS-S 9.92ks J183356-0822_1† 18:33:50.37 J183356-0822_2 18:33:50.57 J183356-0822_4 18:33:55.97 J183356-0822_4 18:33:55.97 J183356-0822_4 18:33:55.97 J183356-0822_5 18:33:49.44	6 ACIS-S 9.92ks 18:33:50.37 18:33:55.97 18:33:55.97 18:33:55.97 18:33:52.12 18:33:52.12		1.56 0.85 1.26 1.24 2.60	0.5 0.3 0.4 0.7	0.8 0.8 0.8 1.0	10^{+4}_{-3} 66^{+3}_{-3} 66^{+3}_{-8} 13^{+5}_{-5} 13^{+5}_{-5} 7^{-8+4}_{-2}	$\begin{array}{c} 7.9^{+4.0}\\ 0.0^{+1.3}\\ 6.0^{+1.3}\\ 6.0^{+2.3}\\ 0.9^{+2.4}\\ 0.0^{+1.3}\\ 0.0^{+1.3}\\ 0.0^{+1.3}\\ 0.0^{-1.3}\\$	$\begin{array}{c} 1.8^{+2.7}_{-1}\\ 66^{-9}_{-8}\\ 16^{+3}_{-4}\\ 16^{+5}_{-4}\\ 12^{+3}_{-3}\\ 12^{+3}_{-3}\\ 7.8^{+4.0}_{-2.7}\\ 7.8^{-2.7}_{-2.7}\end{array}$	$\begin{array}{c} 1.4\pm 0.2\\ 4.5\pm 0.3\\ 3.1\pm 0.4\\ 5.0\pm 0.5\\ 5.0\pm 0.5\\ \end{array}$	$\begin{array}{c} 1.6\pm0.4\\ 2.1\pm0.1\\ 1.3\pm0.3\\ 1.6\pm0.3\\ 2.2\pm0.4\\ 2.2\pm0.4\end{array}$		1183350,4-082300 1183359,6-082225 1183356,1-082138
AX J183518-0 AX J183607-0	AX J183518-0754 8166 2008-02-16 18:34:05:42 AX J183518-0754 8166 2008-02-16 HRC-1 3:15ks J183518-0754_1 18:35:24:44 AX J183607-0756 8159 2008-02-16 ACIS-S 2:52ks	18:34:05:42 18:34:05:65 HRC-13:15ks 18:35:24:44 ACIS-S 2:52ks	-08:20:46.4 -08:21:03.2 -07:54:38.2	2.91 2.91 1.54	0.9 0.6	1.1 1.1 0.9		5.0 ^{+3.4}	$1.8^{+2.4}_{-1.2}$	4.1 ± 0.9 1.6 ± 0.5	1.5 ± 0.6		
AX J184008-0 AX J184400-0	J183607-0756 No Detection AX J184008-0543 8144 2008-02-19 ACIS-S1.63ks J184008-0543 1 18:40:04.88 J184008-0543 2 18:40:04.88 AX J184400-0355 8169 2008-05-2 ACIS-S 3.12ks AX J184400-0355 8169 2008-05-2 ACIS-S 3.12ks	No Detection ACIS-S 1.63ks 18:40:04.88 18:40:03.45 ACIS-S 3.12ks 19:44.0220	-05:44:15.5 -05:44:03.4	0.96	0.5	0.8	8.9+4.1 8.9+4.1 6.0+3.6 -2.4	$\begin{array}{c} 0.0^{+1.9}\\ 0.0^{-0.0}\\ 0.0^{+1.9}\\ 0.0 \end{array}$	8.9+4.1 8.9-2.9 6.0+3.6 -2.4	3.8±0.3 4.6±0.8	2.3±0.3 1.9±0.3	184004.8-054415 184003.4-054403	
AX J184447-0.	AX J184447-0305 8163 2007-05-24 ACIS-S 2.72ks J184447-0305 8163 2007-05-24 ACIS-S 2.72ks J184447-0305_1 18:44:41.84	ACIS-S 2.72ks 18:44:41.84	-03:05:51.2	1.47	0.7	1.1	$3.9^{+3.2}_{-1.9}$	$1.0^{+2.3}_{-0.8}$	$3.0^{+2.9}_{-1.6}$	1.0 ± 0.1	1.7 ± 0.0	<10000-7-00++01	J184441.9-030551
AX J184652-0	6 Ir	ACIS-S 1.91ks 18:46:47.68 18:46:56.27	-02:41:20.1 -02:39:53.4	1.61 0.98	0.3 0.7	0.8 1.0	86^{+10}_{-9} $3.9^{+3.2}_{-1.9}$	$^{47^{+8}}_{3.0^{+2.9}_{-1.6}}$	39^{+7}_{-6} $1.0^{+2.3}_{-0.8}$	1.9 ± 0.1	1.5 ± 0.2	184647.6-024120	
AX J184/38-0 AX J184741-0	AX J184738-0156 9612 2008-05-27 ACIS-5 1.654s J184738-0156_1 18:47:36.65 AX J184741-0219 10512 2009-02-21 ACIS-S 5.69k	ACIS-S 1.63ks 18:47:36.65 1 ACIS-S 5.69ks	-01:56:33.3	0.50	0.3	0.8	120^{+12}_{-11}	$3.0^{+2.9}_{-1.7}$	117^{+12}_{-11}	4.2 ± 0.2	2.0 ± 0.1	184736.6-015633	J184736.6-015633

	ChIcAGO ^b	wavdeteo	t Position	Offset ^c	Position	al Errors ^d		et Counts'	0	Enerov (Duantiles ^f	CSC®	XMMi-DR3 ^h
	Source ID ChI	RA (J2000)	Dec (J2000)	from ASCA (')	wav ('')	Total (")		0.5-2	2-8 keV	E_{50} (keV)	Quartile Ratio	Name CXO J	Name 2XMMi
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0.01						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1184741-0219_1*$	18:47:48.01	-02:21:25.4	2.93	1.5	1.7		ç					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J184741-0219_2	18:47:36.52	-02:19:32.2	1.30	0.6	0.9		$4.9^{+5.4}_{-2.2}$	$0.9^{+2.3}_{-0.8}$	1.7 ± 0.5	1.3 ± 0.7		
	$J184741-0219_3$	18:47:37.28	-02:18:49.4	1.02	0.4	0.8		$1.0^{+2.5}_{-0.8}$	$31^{+/}_{-6}$	5.0 ± 0.3	1.9 ± 0.2		
	$J184741-0219_4$	18:47:42.99	-02:18:22.2	0.78	0.5	0.9		$6.9^{+3.8}_{-2.6}$	$1.9^{+2.7}_{-1.3}$	1.3 ± 0.3	1.3 ± 0.3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J184741-0219 5	18:47:44.30	-02:19:16.5	0.80	0.8	1.0		$4.0^{+3.2}$	$0.0^{+1.5}_{-0.0}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 9613 2008-03-01	ACIS-S 1.41ks						-1.9	-0.0				
	1185608+0218_1	18.56.09.55	+02.17.440	0.61	03	0.8	192+15	165^{+14}	50+6	1.0 + 0.0	1.6 ± 0.1	185609 5+021743	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1185608+0718 7	18.56.05 53	+02.18.771	0.67	0.5	80	8 0+4.0	10^{-13}	7 0+3.8	10+00	1.0 ± 0.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70 10513 7000 00 7	CC.CU.UC.01	TU2.10.44.1	70.0	C •0	0.0	0.0-2.8	1.0-0.9	1.0-2.6	4.7 ± 0.7	1.0 1 0.4		
	7-70-6007 \$1001 07	300.0 C-CIUA 2	S			0		1100	r c				
	J185643+0220_1	18:56:48.00	+02:18:36.6	2.06	0.6	0.9		$9.0^{++.1}_{-2.9}$	$1.9^{+2.7}_{-1.3}$	1.3 ± 0.2	1.4 ± 0.5		
	J185643+0220_2	18:56:43.61	+02:19:21.5	0.93	0.3	0.8		$4.0^{+3.2}_{-1.9}$	65^{+9}_{-8}	3.9 ± 0.2	1.4 ± 0.2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J185643+0220_3	18:56:43.98	+02:20:35.9	0.37	0.6	0.9		$0.9^{+2.3}_{-0.8}$	$3.9^{+3.2}_{-1.0}$	2.9 ± 0.5	1.9 ± 0.3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40 8150 2007-07-25	ACIS-S 2.21ks						0.0-	6.1-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J185750+0240_1	18:57:53.65	+02:40:10.8	0.71	0.3	0.8	44^{+8}_{-7}	11^{+4}_{-3}	33+7	3.2 ± 0.4	1.1 ± 0.2	185753.6+024010	
No Detection No Detection 2 ACISS 3.21ks 0659336 072 0.4 0.8 91^{+1}_{-10} 16^{+1}_{-20} 16 ± 02 1.3 ± 0.4 2 ACISS 3.21ks 9053273 9053273 8053429 0.72 0.3 0.8 91^{+1}_{-10} 90^{+1}_{-10} 82^{+1}_{-10} 3.7 ± 0.2 1.7 ± 0.1 1.96553731 $9108:11.18$ $+0823434$ 0.27 0.3 0.8 91^{+1}_{-10} 90^{+1}_{-10} 82^{+1}_{-10} 3.7 ± 0.2 1.7 ± 0.1 1.9655314577 1.279 0.4 0.8 91^{+1}_{-10} 90^{+1}_{-10} 82^{+1}_{-10} 0.92 ± 0.1 $1.940.3$ 1.965531435777 1.2756	3381432007-07-20	ACIS-S 1.76ks					1-	P	0-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J185905+0333	No Detection											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	59 8147 2007-07-12	ACIS-S 2.15ks											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J190534+0659_1	19:05:32.78	+06:59:33.6	0.72	0.4	0.8	22+6	18^{+5}	$4.0^{+3.2}_{-1.0}$	1.6 ± 0.2	1.3 ± 0.4	190532.7+065933	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	03 8168 2007-07-22	ACIS-S 3.21ks					0	+-	-1.7				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J190749+0803_1	19:07:48.84	+08:03:42.9	0.27	0.3	0.8	91^{+11}_{-10}	$9.0^{+4.1}_{-2.0}$	82^{+10}_{-0}	3.7 ± 0.2	1.7 ± 0.1	190748.8+080342	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	32 8223 2007-06-26	ACIS-S 3.48ks							6-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J190814+0832_1	19:08:11.18	+08:29:53.1	2.70	1.0	1.2		$1.0^{+2.3}_{-0.3}$	$2.9^{+2.9}_{-1.5}$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J190814+0832 2	19:08:09.95	+08:31:47.7	1.29	0.4	0.8		$31^{+7.0}_{-7.0}$	12^{+50}	1.6 ± 0.1	1.4 ± 0.2	190809.9 ± 083147	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1190814±0832_3	10-08-15 00	+08-32-40.6	0.43	0.6	0.0		5 0+3.4	0.0 ^{+1.9}	0.0 ± 0.1	$1 0 \pm 0 3$		
8 ACIS-S11320 $0.743:57.7$ 2.00 0.3 0.8 1.8 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 $19:08:13.20$ $+0.743:57.7$ 2.00 0.3 0.8 1.38 ± 3 79 ± 0.0 58 ± 9 1.8 ± 0.1 1.0 ± 0.1 $19:08:22.73$ $+0.744:28.3$ 1.92 0.5 0.9 12 ± 3 0.0 ± 3 3.7 ± 1.3 0.8 ± 0.3 1.1 $19:08:22.73$ $+0.744:28.3$ 1.92 0.5 0.9 12 ± 3 0.0 ± 3 0.8 ± 0.3 $0.8\pm 0.3 = 0.3 = 0.3$ $0.8\pm 0.3 = 0.3 = 0.3$ $0.8\pm 0.3 = 0.3 = 0.3 = 0.3$ $0.8\pm 0.3 = 0.3 = 0.3 = 0.3$ $0.8\pm 0.3 = 0.3 = 0.3 = 0.3 = 0.3 = 0.3$ $0.9\pm 0.3 = 0.$	1190814+0832_4	19-08-19 00	+08.33.438	1.71	0.8	11		$0.0^{+1.9}$	3 0+3.2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45 9614 2008-02-28	ACTS-S 1 431/6			200			~-~-0.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1100010,0745 1	10.08.12.20	L L 2.42.57 7		0.2	00		70+10	50+9	10701	10401	100013 7.07/357	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10.00.01.00.01	1.10.04.104 0.00.14.50	00.7	r.0	0.0		0-0/ 2-0+0/	00-8-00 L	1.0 + 0.1	1.0 - 0.0	10041072.010001	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		04.02.00.01	+01:44:20.3	1.94	C.U	6.0 C F		6. 1 6. 1 6. 1 4 0 7	/.7-2.8 0.1+1.0	C.1 ∏ 1.C	C.U II 0.U	190623.470/4420	
I ACIS-S 1.63ks No Detection 6 ACIS-S 2.71ks 1.3 1.5 $2.9^{+2.9}_{-1.6}$ 3.4 ± 0.3 1.2 ± 0.1 9:41:56.53 +22:51:12.5 0.63 0.3 0.8 $72^{+1.6}_{-1.6}$ 3.34 ± 0.3 1.2 ± 0.1 9:41:55.53 +22:54:18.3 2.59 1.1 1.3 $2.9^{+2.9}_{-1.6}$ 3.4 ± 0.3 1.2 ± 0.1 9:41:55.95 +22:54:18.3 2.59 1.1 1.3 $2.9^{+2.9}_{-1.6}$ 3.4 ± 0.3 1.2 ± 0.1 9:41:595 +22:54:18.3 2.59 1.1 1.3 $2.9^{+2.9}_{-1.6}$ 3.4 ± 0.3 1.2 ± 0.1 9:43:06.77 +23:16.12.5 2.76 0.6 0.9 1.1 $3.7^{+3.2}_{-4.4}$ $4.0^{+3.2}_{-1.9}$ 1.1 ± 0.2 1.4 ± 0.4 9:43:06.77 +23:16.12.5 2.76 0.8 1.1 $3.7^{+3.2}_{-1.2}$ 0.9 ± 0.5 1.0 ± 0.4 9:43:07.78 1.277 0.8 1.1 $3.7^{+3.2}_{-1.2}$ 0.9 ± 0.5 1.0 ± 0.4 9:43:07.77 $1.23:13.833.8$ 1.27 0.8 </td <td>5_C4/0+818061L</td> <td>19:08:22.73</td> <td>+0/:4/:48.9</td> <td>66.2</td> <td>1.1</td> <td>1.3</td> <td></td> <td>1.0-0.9</td> <td>$0.0_{-0.0}$</td> <td></td> <td></td> <td></td> <td></td>	5_C4/0+818061L	19:08:22.73	+0/:4/:48.9	66.2	1.1	1.3		1.0-0.9	$0.0_{-0.0}$				
NonDetection Anolese 6ACIS-S 2.71ks 1.3 1.5 $2.9^{+2.9}_{-1.6}$ 3.4 ± 0.3 1.2 ± 0.1 19:41:56.53 +22:51:12.5 0.63 0.3 0.8 $72^{+1.6}_{-1.6}$ 3.34 ± 0.3 1.2 ± 0.1 19:41:55.53 +22:54:18.3 2.59 1.1 1.3 $2.9^{+2.9}_{-1.6}$ $3.0^{-2.9}_{-1.7}$ 3.4 ± 0.3 1.2 ± 0.1 19:41:55.95 +22:54:18.3 2.59 1.1 1.3 $2.9^{+2.9}_{-1.6}$ $3.0^{-2.9}_{-1.7}$ $0.0^{-1.9}_{-1.9}$ 3.4 ± 0.3 26 ACIS-S 2.05ks 1.1 1.3 $2.9^{+2.9}_{-1.6}$ $3.0^{-2.9}_{-1.6}$ $0.0^{-1.9}_{-1.9}$ 3.4 ± 0.4 26 ACIS-S 2.05ks 1.1 1.3 $2.9^{+2.9}_{-1.6}$ $3.0^{-2.9}_{-1.9}$ $0.0^{-1.9}_{-1.9}$ 26 ACIS-S 2.05ks 19:307707 $4.23:18:33.8$ 1.27 0.8 1.1 $3.0^{+2.9}_{-1.9}$ 1.1 ± 0.2 1.4 ± 0.4 19:43:0778 $4.23:18:33.8$ 1.27 0.8 1.1 $4.0^{+3.2}_{-1.9}$ 0.9 ± 0.5 1.0 ± 0.4 19:43:10.98 <td< td=""><td>17 9615 2008-05-31</td><td>ACIS-S 1.63ks</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	17 9615 2008-05-31	ACIS-S 1.63ks											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J191040+091/ 51 8164 2007 07 16	INO DELECTION											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1104157.7751 1*	10.41.56.52	0.00.06.0	2 T C	1 2	4	o 0+2.9						
19.41:5295 +22:54:18.3 2.59 1.1 1.3 2.9^{+2}_{-16} $3.0^{-1.9}_{-1.7}$ $0.0^{-1.9}_{-1.0}$ 26 ACIS-S.205ks 1.1 1.3 $2.9^{+5}_{-1.6}$ $15^{+5}_{-1.6}$ $4.0^{+3.2}_{-1.19}$ 1.1 ± 0.2 1.4 ± 0.4 26 ACIS-S.205ks 19:43:06.77 $+23:17:03.1$ 1.88 0.8 1.1 $3.7^{+5.2}_{-1.4}$ $4.0^{-1.9}_{-1.9}$ 1.1 ± 0.2 1.4 ± 0.4 19:43:07.78 $+23:17:03.1$ 1.88 0.8 1.1 $3.7^{+5.2}_{-1.4}$ $4.0^{-1.9}_{-1.9}$ 0.1 ± 0.2 1.4 ± 0.4 19:43:07.78 $+23:17:03.1$ 1.88 0.8 1.1 $3.7^{+5.2}_{-1.2}$ 0.9 ± 0.5 1.0 ± 0.4 19:43:10.98 $+23:17:33.8$ 1.27 0.8 1.1 $4.0^{+3.2}_{-1.3}$ 0.9 ± 0.5 1.0 ± 0.4 19:43:10.98 $+23:17:45.5$ 1.09 0.4 0.8 20^{+6}_{-6} 1.7^{+3}_{-5} 3.0^{+2}_{-6} 1.0 ± 0.4 19:43:10.98 $+23:17:45.5$ 1.09 0.4 0.8 20^{+6}_{-6} 1.7^{+3}_{-5} 3.0^{+2}_{-6} 1.0 ± 0.4 19:43:10.76 $+23:18:17.3$	1194152+2251_7	19-41-54 60	+22.51.12 5	0.63	0.3	8.0		13+5	50+9	34+03	$1 \ 0 + 0 \ 1$	194154 6+225112	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1104150,0051 2	10.41.57.05	10.54.10.2	0.00		0.0 1 2		2 0+2.9					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15/ C S - 14.61	744.J4.10.J	60.7	1.1	C.1		7.1- ^{7.7}	0.0-0.0				
+23:16:1.2.5 -2.70 0.0 0.9 1.1 -1.1 <td></td> <td>NUNA 6-610A U</td> <td></td> <td></td> <td>20</td> <td></td> <td>10+5</td> <td>1 5 + 5</td> <td>1 0+3.2</td> <td></td> <td>1 1 0 1</td> <td></td> <td></td>		NUNA 6-610A U			20		10+5	1 5 + 5	1 0+3.2		1 1 0 1		
+23:17:03.1 1.88 0.8 1.11 $37_{-1.2}^{-1.3}$ $0.9^{-2.7}_{-1.2}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.7}_{-2.1}$ $0.9^{-2.6}_{-2.1}$ 0	J194510+2318_1	19:43:06.77	+23:16:12.5	0/.7	0.0	6.0	19 14 14 14 14	5- 4- 6-	$4.0_{-1.9}^{-5.5}$	1.1 ± 0.2	1.4 ± 0.4		
+23:18:338 1.27 0.8 1.1 $4.0^{+1.5}_{-1.2}$ $2.0^{-1.5}_{-1.2}$ $2.0^{-1.5}_{-1.2}$ 0.9 ± 0.5 +23:20:389 1.82 0.7 1.0 $4.9^{+1.5}_{-2.1}$ 0.9 ± 0.5 0.9 ± 0.5 +23:17:45.5 1.09 0.4 0.8 $31^{+1.5}_{-2.0}$ $30^{+1.6}_{-1.9}$ 1.0 ± 0.1 +23:17:45.5 1.09 0.4 0.8 $31^{+1.7}_{-2.5}$ $30^{+1.9}_{-2.9}$ 1.0 ± 0.1 +23:18:31.7 0.81 0.4 0.8 $20^{+1.6}_{-1.6}$ $1.7^{+2.5}_{-2.6}$ $3.0^{-1.9}_{-2.9}$ 1.0 ± 0.1 +23:18:17:2.5 1.55 0.7 1.0 $4.9^{+3.4}_{-3.6}$ $2.0^{-2.6}_{-2.6}$ $1.04^{-2.8}_{-2.6}$ 1.2 ± 0.4 +23:18:17:3 0.70 0.6 0.9 $5.8^{+3.6}_{-3.6}$ $6.0^{-3.6}_{-1.9}$ 1.1 ± 0.1 +23:18:17:3 0.70 0.6 0.9 $4.0^{+3.2}_{-1.9}$ $2.0^{-2.1}_{-2.7}$ 1.1 ± 0.1	J194510+2318_2*	19:43:07.78	+23:17:03.1	1.88	0.8	1.1		F C	r 0				
+23:20:389 1.82 0.7 1.0 $4.0^{+2.3}_{-2.1}$ $4.0^{+2.3}_{-1.9}$ 0.9 ± 0.5 +23:17:45.5 1.09 0.4 0.8 $31^{+0.3}_{-1.9}$ $30^{+2.3}_{-1.9}$ 0.9 ± 0.5 +23:17:45.5 1.09 0.4 0.8 $31^{+0.3}_{-1.6}$ $30^{+2.3}_{-1.9}$ 0.9 ± 0.5 +23:18:31.7 0.81 0.4 0.8 20^{+6}_{-6} 17^{+3}_{-5} $3.0^{+2.9}_{-2.9}$ 1.0 ± 0.1 +23:18:31.7 0.81 0.4 0.8 $20^{+6}_{-5.6}$ $1.0^{+2.8}_{-2.6}$ 1.0 ± 0.1 +23:20:16.4 1.73 0.6 0.9 $7.0^{+2.8}_{-2.8}$ $6.0^{-2.6}_{-2.7}$ 1.2 ± 0.4 +23:17:25.2 1.55 0.7 1.0 $4.9^{+5.4}_{-5.4}$ $2.0^{+2.6}_{-2.7}$ 2.7 ± 1.5 +23:18:15.8 0.78 0.6 0.9 $5.8^{+5.6}_{+5.6}$ $6.0^{-2.7}_{-2.7}$ 1.1 ± 0.1 +23:18:17.3 0.70 0.6 0.9 $4.0^{+2.9}_{-1.9}$ $2.0^{-2.7}_{-2.7}$	J194310+2318_3	19:43:04.94	+23:18:33.8	1.27	0.8	1.1		$2.0^{+2.7}_{-1.3}$	$2.0^{+2.7}_{-1.3}$				
+23:17:45.5 1.09 0.4 0.8 31^{+7}_{-5} 30^{+2}_{-5} 1.0 ± 0.1 +23:18:31.7 0.81 0.4 0.8 20^{+6}_{-5} 17^{+5}_{-5} $3.0^{+2.9}_{-2.6}$ 1.6 ± 0.1 +23:18:31.7 0.81 0.4 0.8 20^{+6}_{-5} 17^{+5}_{-5} $3.0^{+2.9}_{-2.6}$ 1.6 ± 0.1 +23:12:52.2 1.55 0.7 1.0 $4.9^{+54}_{-5.4}$ $2.0^{+2.6}_{-2.6}$ 1.2 ± 0.4 +23:17:25.2 1.55 0.7 1.0 $4.9^{+54}_{-5.6}$ $5.0^{+2.6}_{-5.6}$ 2.7 ± 1.5 +23:18:15.8 0.78 0.6 0.9 $5.8^{+56}_{-5.6}$ $6.0^{-1.0}_{-1.0}$ 1.1 ± 0.1 +23:18:17.3 0.70 0.6 0.9 $4.0^{+5.2}_{-1.2}$ $2.0^{-2.7}_{-1.2}$ 1.1 ± 0.1	J194310+2318_4†	19:43:11.33	+23:20:38.9	1.82	0.7	1.0		$4.0^{+3.2}_{-1.9}$	$0.9^{+2.3}_{-0.8}$	0.9 ± 0.5	1.0 ± 0.4		
+23:18:31.7 0.81 0.4 0.8 20^{+6}_{-5} 17^{+5}_{-5} $3.0^{+2.9}_{-2.5}$ 1.6 ± 0.1 +23:20:16.4 1.73 0.6 0.9 $7.0^{+3.8}_{-3.8}$ $6.0^{+3.6}_{-2.5}$ $1.0^{-2.3}_{-2.8}$ 1.2 ± 0.4 +23:217:25.2 1.55 0.7 1.0 $4.9^{+3.4}_{-3.4}$ $2.0^{+2.6}_{-1.3}$ 1.2 ± 0.4 +23:17:25.2 1.55 0.7 1.0 $4.9^{+3.4}_{-3.4}$ $2.0^{+2.6}_{-1.3}$ 2.7 ± 1.5 +23:18:15.8 0.78 0.6 0.9 $5.8^{+3.6}_{-3.6}$ $6.0^{-2.7}_{-1.3}$ 1.1 ± 0.1 +23:18:17.3 0.70 0.6 0.9 $4.0^{+3.2}_{-1.2}$ $2.0^{-2.7}_{-2.7}$ $2.0^{-2.7}_{-2.7}$	J194310+2318_5	19:43:10.98	+23:17:45.5	1.09	0.4	0.8		30^{+7}_{-5}	$0.0^{+1.9}_{-0.0}$	1.0 ± 0.1	1.3 ± 0.2		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	J194310+2318_6	19:43:07.07	+23:18:31.7	0.81	0.4	0.8		17^{+5}_{-4}	$3.0^{+2.9}_{-1.6}$	1.6 ± 0.1	1.8 ± 0.4		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	J194310+2318_7†	19:43:14.53	+23:20:16.4	1.73	0.6	0.9		$6.0^{+3.6}_{-2.4}$	$1.0^{+2.3}_{-0.8}$	1.2 ± 0.4	2.0 ± 1.0		
+23:18:15.8 0.78 0.6 0.9 $5.8^{+5.6}_{+5.7}$ $6.0^{+5.6}_{+5.7}$ $0.0^{+1.6}_{-1.0}$ 1.1 ± 0.1 2.1 +23:18:17.3 0.70 0.6 0.9 $4.0^{+5.2}_{+5.2}$ $2.0^{+5.7}_{-1.7}$ $2.0^{+2.9}_{-1.7}$	J194310+2318_8	19:43:13.06	+23:17:25.2	1.55	0.7	1.0		$2.0^{+2.7}_{-1.3}$	$3.0^{+2.9}_{-1.6}$	2.7 ± 1.5	0.6 ± 0.4		
$+23:18:17.3$ 0.70 0.6 0.9 $4.0^{+5.7}_{-1.9}$ $2.0^{+5.7}_{-1.3}$	J194310+2318_9	19:43:12.58	+23:18:15.8	0.78	0.6	0.9		$6.0^{+3.6}_{-3.6}$	$0.0^{+1.9}_{-0.0}$	1.1 ± 0.1	2.1 ± 0.3		
	J194310+2318_10	19:43:08.44	+23:18:17.3	0.70	0.6	0.9		$2.0^{+2.7}_{-1.3}$	$2.0^{+2.7}_{-1.3}$				
X J194332+23			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	wavdetect RA (J2000) 18:47:35.52 18:47:35.52 18:47:35.52 18:47:35.52 18:47:43.01 18:47:35.55 18:47:35.55 18:47:35.55 18:47:35.55 18:47:35.55 18:56:43.61 18:56:43.61 18:56:43.61 18:56:43.61 18:56:43.61 18:56:43.61 18:56:43.61 18:56:43.63 18:56:43.98 5 ACIS-S 1.21ks 18:56:43.65 18:56:43.65 18:56:43.65 18:56:43.65 18:56:43.65 18:56:43.98 18:56:43.98 18:56:43.98 18:56:43.98 18:56:43.98 18:56:43.98 18:56:43.98 18:56:43.91 18:56:43.93 18:57:53.65 18:57:53.65 18:57:53.65 19:00 8 ACIS-S 1.43ks 19:43:00 </td <td>wavdet ect Position RA Dec (J2000) (J2000) (J2000) (J2000) 18:47:48.01 -02:1125.4 18:47:35.2 -02:118:32.2 18:47:35.5 -02:119:32.2 18:47:35.5 -02:119:32.2 18:47:43.00 -02:119:16.5 18:47:43.00 -02:119:16.5 18:56:05.55 +02:17:44.0 18:56:05.55 +02:17:44.0 18:56:05.55 +02:18:32.1 18:56:05.55 +02:19:21.5 18:56:05.55 +02:18:26.1 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:32.1 18:56:03 +02:18:36.6 18:56:03 +02:18:36.6 18:56:03 +02:18:32.1 18:56:05 +02:18:32.1 18:56:03 +02:18:33.4 19:05:32.18 +06:59:33.6 19:07:48:44 +08:33:43.8</td> <td>wavdetect PositionOffset (12000)Offset (12000)RADecfrom ASCA(')$18:47:48.01$$-02:21:25.4$$2.93$$18:47:35.2$$-02:19:32.2$$1.02$$18:47:35.2$$-02:19:16.5$$0.80$$18:47:35.2$$-02:19:16.5$$0.80$$18:47:42.99$$-02:19:16.5$$0.80$$18:47:42.99$$-02:19:16.5$$0.80$$18:47:42.99$$-02:19:16.5$$0.80$$18:47:42.99$$-02:19:16.5$$0.80$$18:47:42.99$$-02:19:16.5$$0.80$$18:56:43.61$$+02:19:21.5$$0.93$$18:56:43.61$$+02:19:21.5$$0.62$$18:56:43.61$$+02:19:21.5$$0.93$$18:56:43.61$$+02:19:21.5$$0.93$$18:56:43.61$$+02:19:21.5$$0.62$$18:56:43.61$$+02:19:21.5$$0.62$$18:56:43.61$$+02:19:21.5$$0.72$$0.56:43.61$$+02:19:21.5$$0.62$$18:56:43.61$$+02:19:21.5$$0.72$$0.57:47:48$$+02:20:35.9$$0.77$$0.7CIS-S 1.7ks$$1.02:19:21.5$$0.72$$0.80:19.95$$+08:33:43.8$$1.71$$8:57:53.65$$+02:20:35.9$$0.77$$0.80:11.18$$+08:29:53.1$$2.70$$19:08:19.00$$+08:33:43.8$$1.71$$0.80:19.95$$+08:33:43.8$$1.71$$0.80:19.95$$+08:33:43.8$$1.71$$0.80:19.95$$+08:33:43.8$$1.71$$0.80:19.95$$+08:33:43.8$$1.71$<!--</td--><td>wavdet ectPositionOffsetPositionalRADecfromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav18:47:35.52$-02:19:16.5$$0.80$$0.8$18:47:35.53$-02:19:16.5$$0.80$$0.8$18:47:35.53$-02:19:16.5$$0.80$$0.8$1 ACIS-S 1.41ks$-02:18:22.1$$0.62$$0.5$1 8:47:35.56$-02:19:16.5$$0.37$$0.6$1 ACIS-S 1.41ks$-02:18:22.1$$0.62$$0.5$1 8:56:05.53$+02:18:36.6$$0.71$$0.3$1 8:56:05.53$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.98$+02:03:42.9$$0.27$$0.6$1 8:56:43.98$+02:03:42.9$$0.71$$0.3$1 8:56:43.54$+02:18:36.6$$0.71$$0.3$1 8:56:53$2.73$$1.07$$0.6$1 8:56:43.54$00:747:48.8$$1.71$$0.8$1 9:05:32.778$+06:59:33.6$$0.77$$0.3$1 9:05:53.778$+06:59:33.6$$0.77$$0.3$1 9:05:53.778$+06:59:33.43.8$$1.71$$0.8$1 9:05</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td>	wavdet ect Position RA Dec (J2000) (J2000) (J2000) (J2000) 18:47:48.01 -02:1125.4 18:47:35.2 -02:118:32.2 18:47:35.5 -02:119:32.2 18:47:35.5 -02:119:32.2 18:47:43.00 -02:119:16.5 18:47:43.00 -02:119:16.5 18:56:05.55 +02:17:44.0 18:56:05.55 +02:17:44.0 18:56:05.55 +02:18:32.1 18:56:05.55 +02:19:21.5 18:56:05.55 +02:18:26.1 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:36.6 18:56:05.55 +02:18:32.1 18:56:03 +02:18:36.6 18:56:03 +02:18:36.6 18:56:03 +02:18:32.1 18:56:05 +02:18:32.1 18:56:03 +02:18:33.4 19:05:32.18 +06:59:33.6 19:07:48:44 +08:33:43.8	wavdetect PositionOffset (12000)Offset (12000) RA Decfrom ASCA(') $18:47:48.01$ $-02:21:25.4$ 2.93 $18:47:35.2$ $-02:19:32.2$ 1.02 $18:47:35.2$ $-02:19:16.5$ 0.80 $18:47:35.2$ $-02:19:16.5$ 0.80 $18:47:42.99$ $-02:19:16.5$ 0.80 $18:47:42.99$ $-02:19:16.5$ 0.80 $18:47:42.99$ $-02:19:16.5$ 0.80 $18:47:42.99$ $-02:19:16.5$ 0.80 $18:47:42.99$ $-02:19:16.5$ 0.80 $18:56:43.61$ $+02:19:21.5$ 0.93 $18:56:43.61$ $+02:19:21.5$ 0.62 $18:56:43.61$ $+02:19:21.5$ 0.93 $18:56:43.61$ $+02:19:21.5$ 0.93 $18:56:43.61$ $+02:19:21.5$ 0.62 $18:56:43.61$ $+02:19:21.5$ 0.62 $18:56:43.61$ $+02:19:21.5$ 0.72 $0.56:43.61$ $+02:19:21.5$ 0.62 $18:56:43.61$ $+02:19:21.5$ 0.72 $0.57:47:48$ $+02:20:35.9$ 0.77 $0.7CIS-S 1.7ks$ $1.02:19:21.5$ 0.72 $0.80:19.95$ $+08:33:43.8$ 1.71 $8:57:53.65$ $+02:20:35.9$ 0.77 $0.80:11.18$ $+08:29:53.1$ 2.70 $19:08:19.00$ $+08:33:43.8$ 1.71 $0.80:19.95$ $+08:33:43.8$ 1.71 $0.80:19.95$ $+08:33:43.8$ 1.71 $0.80:19.95$ $+08:33:43.8$ 1.71 $0.80:19.95$ $+08:33:43.8$ 1.71 </td <td>wavdet ectPositionOffsetPositionalRADecfromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav18:47:35.52$-02:19:16.5$$0.80$$0.8$18:47:35.53$-02:19:16.5$$0.80$$0.8$18:47:35.53$-02:19:16.5$$0.80$$0.8$1 ACIS-S 1.41ks$-02:18:22.1$$0.62$$0.5$1 8:47:35.56$-02:19:16.5$$0.37$$0.6$1 ACIS-S 1.41ks$-02:18:22.1$$0.62$$0.5$1 8:56:05.53$+02:18:36.6$$0.71$$0.3$1 8:56:05.53$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.61$+02:18:36.6$$0.71$$0.3$1 8:56:43.98$+02:03:42.9$$0.27$$0.6$1 8:56:43.98$+02:03:42.9$$0.71$$0.3$1 8:56:43.54$+02:18:36.6$$0.71$$0.3$1 8:56:53$2.73$$1.07$$0.6$1 8:56:43.54$00:747:48.8$$1.71$$0.8$1 9:05:32.778$+06:59:33.6$$0.77$$0.3$1 9:05:53.778$+06:59:33.6$$0.77$$0.3$1 9:05:53.778$+06:59:33.43.8$$1.71$$0.8$1 9:05</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	wavdet ectPositionOffsetPositionalRADecfromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav(J2000)(J2000)Afromwav18:47:35.52 $-02:19:16.5$ 0.80 0.8 18:47:35.53 $-02:19:16.5$ 0.80 0.8 18:47:35.53 $-02:19:16.5$ 0.80 0.8 1 ACIS-S 1.41ks $-02:18:22.1$ 0.62 0.5 1 8:47:35.56 $-02:19:16.5$ 0.37 0.6 1 ACIS-S 1.41ks $-02:18:22.1$ 0.62 0.5 1 8:56:05.53 $+02:18:36.6$ 0.71 0.3 1 8:56:05.53 $+02:18:36.6$ 0.71 0.3 1 8:56:43.61 $+02:18:36.6$ 0.71 0.3 1 8:56:43.61 $+02:18:36.6$ 0.71 0.3 1 8:56:43.61 $+02:18:36.6$ 0.71 0.3 1 8:56:43.61 $+02:18:36.6$ 0.71 0.3 1 8:56:43.98 $+02:03:42.9$ 0.27 0.6 1 8:56:43.98 $+02:03:42.9$ 0.71 0.3 1 8:56:43.54 $+02:18:36.6$ 0.71 0.3 1 8:56:53 2.73 1.07 0.6 1 8:56:43.54 $00:747:48.8$ 1.71 0.8 1 9:05:32.778 $+06:59:33.6$ 0.77 0.3 1 9:05:53.778 $+06:59:33.6$ 0.77 0.3 1 9:05:53.778 $+06:59:33.43.8$ 1.71 0.8 1 9:05	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

THE CHICAGO SURVEY

Chandra Obs ^a	ChlcAGO ^b	wavdeteo	wavdetect Position	$Offset^{c}$	Position	Positional Errors ^d		Net Counts ^e	e_	Energy (Energy Quantiles ^f	CSC ^g	XMMi-DR3 ^h
(ID, Date, Inst, Exp)	Source ID ChI	RA (J2000)	Dec (J2000)	from ASCA (′)	wav ('')	Total (")	0.3-8	0.5-2	2-8 keV	E_{50} (keV)	Quartile Ratio	Name CXO J	Name 2XMMi
	J194332+2323_1	19:43:27.18	+23:23:31.2	1.30	0.4	0.8	15^{+5}_{-4}	12^{+5}_{-3}	$3.0^{+2.9}_{-1.6}$	1.3 ± 0.2	1.4 ± 0.4		
	J194332+2323_2	19:43:31.97	+23:24:55.6	1.06	0.6	0.9	$3.9^{+3.2}_{-1.9}$	$4.0^{+3.2}_{-1.9}$	$0.0^{+1.9}_{-0.0}$				
	J194332+2323_3	19:43:43.32	+23:24:56.4	2.67	0.8	1.0	$6.8^{+3.8}_{-2.6}$	$6.9^{+3.8}_{-2.6}$	$0.0^{+1.9}_{-0.0}$	1.5 ± 0.2	2.1 ± 0.3		
	J194332+2323_4	19:43:29.79	+23:25:09.7	1.44	0.7	1.0	$3.9^{+3.2}_{-1.9}$	$3.0^{+2.9}_{-1.7}$	$0.9^{+2.3}_{-0.8}$				
	J194332+2323_5†	19:43:33.02	+23:26:24.6	2.53	0.5	0.9	14^{+5}_{-4}	13^{+5}_{-4}	$1.0^{+2.3}_{-0.9}$	1.5 ± 0.1	1.6 ± 1.1		
	J194332+2323_6	19:43:23.05	+23:25:17.5	2.61	1.0	1.2	$6.8^{+3.8}_{-2.6}$	$5.9^{+3.6}_{-2.4}$	$0.9^{+2.3}_{-0.8}$	1.1 ± 0.6	1.3 ± 1.0		
	J194332+2323_7	19:43:28.11	+23:21:13.6	2.85	0.8	1.1	$8.7^{+4.1}_{-2.0}$	8.0+4.0	$0.0^{+1.9}_{-0.0}$	0.8 ± 0.1	1.6 ± 0.5		
	J194332+2323_8	19:43:23.24	+23:23:26.4	2.20	0.0	1.1	$4.8^{+3.4}_{-2.1}$	$4.9^{+3.4}_{-2.5}$	0.0+1.9				
AX J194622+2	AX J194622+2436 8232 2007-03-12 ACIS-S 1.34ks	? ACIS-S 1.34ks						2.2	0.0				
	$J194622+2436_1$	19:46:24.99	+24:35:46.8	1.17	0.8	1.1	$3.0^{+2.9}_{-1.7}$	$1.0^{+2.3}_{-0.9}$	$2.0^{+2.7}_{-1.3}$				
	J194622+2436_2	19:46:34.33	+24:37:05.9	2.75	1.1	1.3	$4.0^{+3.2}_{-1.9}$	$4.0^{+3.5}_{-1.9}$	$0.0^{+1.9}_{-0.0}$				
	$J194622+2436_3$	19:46:15.28	+24:38:32.1	2.37	1.0	1.2	$3.0^{+2.9}_{-1.6}$	$2.0^{+2.7}_{-1.3}$	$1.0^{+2.3}_{-0.8}$				
AX J194939+2	AX J194939+2631 8236 2008-01-05 ACIS-S 1.72ks	5 ACIS-S 1.72ks											
	$J194939+2631_1$	19:49:38.38	+26:31:49.0	0.33	0.3	0.8	114^{+12}_{-11}	17^{+5}_{-4}	97^{+11}_{-10}	3.8 ± 0.1	1.6 ± 0.1	194938.3+263149	
AX J194951+2	AX J194951+2534 8139 2008-02-08 HRC-I 1.15ks	3 HRC-I 1.15ks											
	J194951+2534_1*	19:49:48.84	+25:35:53.1	1.63	0.0	1.1	$2.7^{+2.9}_{-1.6}$						
AX J195006+2	AX J195006+2628 10511 2009-01-02 ACIS-S 5.35ks	12 ACIS-S 5.35k	S										
	J195006+2628_1	19:50:16.16	+26:27:17.1	2.40	0.7	1.0	$6.9^{+3.8}_{-2.6}$	$7.0^{+3.8}_{-2.6}$	$0.0^{+1.9}_{-0.0}$	1.0 ± 0.1	2.1 ± 0.6		
	J195006+2628_2	19:50:04.86	+26:28:21.8	0.37	0.4	0.8	28+6	25^{+60}_{-5}	$2.7^{+2.9}_{-1.6}$	1.1 ± 0.1	1.5 ± 0.4		
	J195006+2628_3	19:50:03.54	+26:27:43.3	0.89	0.6	0.9	$5.7^{+3.6}_{-2.3}$	$3.0^{+2.9}_{-1.7}$	$2.7^{+2.9}_{-1.6}$	1.4 ± 0.5	1.4 ± 0.5		
	J195006+2628_4	19:50:05.25	+26:28:17.5	0.28	0.5	0.8	$6.8^{+3.8}_{-2.6}$	$7.0^{+3.8}_{-2.6}$	$0.0^{+1.9}_{-0.0}$	1.5 ± 0.2	1.9 ± 0.4		
	J195006+2628_5	19:50:01.10	+26:29:34.2	1.74	0.5	0.9	12^{+50}_{-3}	12^{+5}_{-3}	$0.0^{+1.9}_{-0.0}$	1.1 ± 0.1	2.0 ± 0.4		

Details of the Chandra observation: the observation identification number (ID), the date of the observation (yyyy-mm-dd), the Chandra instrument used for the observation, and the exposure time of the observation in ks. ^b The ChIcAGO source name. Those ChIcAGO sources marked with a * have a probability of false detection that is > 10⁻⁵. The ChIcAGO sources marked with a \ddagger fall in the chip gap between ACIS-S CCDs 6 and 7.

^c The offset, in arcminutes, between the ChIcAGO source and the original AGPS source position published by Sugizaki et al. (2001).

d The ChIcAGO source position error information. way: The 95% position error circle of the ChIcAGO source wavdetect position. This was calculated using Equation 5 of Hong et al. (2005). Total: The total 95% position error circle of the ChIcAGO source taking into account the wavdetect position error and the absolute astrometric accuracy of Chandra. Both errors are in arcseconds.

^e The net number of counts in the 0.3 - 8.0, 0.5 - 2.0 and 2.0 - 8.0 keV energy ranges detected from each ChIcAGO source. The source counts were calculated using a source region with a radius equal to 95% of the PSF at 1.5 keV. The total

¹ The values used in the quantile analysis (results in Tables 3 and 4). E_{50} is the 50% photon detected in the 0.3 – 8.0 keV energy band. The quartile ratio is the ratio of the E_{52} (energy of the 25% photon detected) and E_{73} (energy of the 75% counts have been background subtracted and the upper and lower 1 σ confidence limits were calculated using Gehrels (1986) statistics.

photon detected) used in quantile analysis: $3 \times (E_{25} - 0.3)/(E_{75} - 0.3)$. See Section 2.3.1 for further details.

^g The corresponding *Chandra* Source Catalog name for each ChIcAGO source (Evans et al. 2010).

 $^{\rm h}$ The corresponding 2XMMi DR3 name for each ChlcAGO source (Watson et al. 2009).

36

Table 1 — Continued

шт		1				The (CHICAG	O SURVE	Y							37
	$M_{8.0}$	7.59 ± 0.03	6.63 ± 0.02 5.32 ± 0.03	8.47 ± 0.03 11.30 ± 0.14	$\begin{array}{c} 9.58 \pm 0.05 \\ 9.45 \pm 0.05 \\ 9.72 \pm 0.05 \end{array}$	7.39 ± 0.05 6.76 ± 0.03	8.30±0.04	$\begin{array}{c} 9.35\pm0.04\\ 11.77\pm0.17\\ 9.75\pm0.04\\ 10.58\pm0.06\end{array}$	8.93 ± 0.03 9.25 ± 0.03	9.33 ± 0.02	9.47 ± 0.04 8.08 ± 0.02	8.56 ± 0.02		6 25 + 0 03	6.47 ± 0.03 8.60 ± 0.03	
agnitudes ^b	$M_{5.8}$	7.64 ± 0.03	6.708 ± 0.03 5.574 ± 0.03	8.51 ± 0.04	$\begin{array}{c} 11.75\pm0.22^{\dagger}\\ 9.51\pm0.05\\ 9.42\pm0.06\\ 9.80\pm0.08\end{array}$	7.45 ± 0.03 7.27 ± 0.03	8.35 ± 0.05	9.19 ± 0.04 11.51 ± 0.10 9.813 ± 0.06 10.56 ± 0.06	8.97 ± 0.05 9.30 ± 0.03	9.37 ± 0.04	$\begin{array}{c} 11.59\pm0.14^{\dagger}\\ 9.47\pm0.04\\ 8.11\pm0.03 \end{array}$	8.59 ± 0.03	7.43 ± 0.10	20 U + 99 9	6.60 ± 0.03 8.65 ± 0.03	1
GLIMPSE Magnitudes ^b	$M_{4.5}$	7.63 ± 0.05	6.89 ± 0.04 $6.33 \pm 0.09^{\dagger}$	8.68 ± 0.06 12.91 ± 0.12	$\begin{array}{c} 12.67 \pm 0.17^{\dagger} \\ 9.59 \pm 0.05 \\ 9.65 \pm 0.06 \\ 9.95 \pm 0.06 \end{array}$	7.61 ± 0.05 7.43 ± 0.06 $14.03 \pm 0.15^{\dagger}$	$\begin{array}{c} 13.32 \pm 0.16^{\dagger} \\ 8.38 \pm 0.08 \end{array}$	$\begin{array}{c} 9.38 \pm 0.05 \\ 11.97 \pm 0.09 \\ 9.87 \pm 0.04 \\ 10.49 \pm 0.06 \end{array}$	9.05 ± 0.05 9.32 ± 0.05	9.39 ± 0.04	$\begin{array}{c} 12.84 \pm 0.15^{\dagger} \\ 9.44 \pm 0.04 \\ 8.21 \pm 0.04 \end{array}$	8.73 ± 0.04 13.33 ± 0.10	7.70 ± 0.20 13.56 ± 0.18	11.27 ± 0.12	6.61 ± 0.05 8.75 ± 0.06	1
	$M_{3.6}$	7.65 ±0.06	7.07 ± 0.05 $6.70 \pm 0.09^{\dagger}$	8.61 ± 0.05 12.78 ± 0.07	$\begin{array}{c} 12.54 \pm 0.08^{\dagger} \\ 9.60 \pm 0.04 \\ 9.50 \pm 0.05 \\ 9.97 \pm 0.06 \end{array}$	$\begin{array}{c} 7.47 \pm 0.05 \\ 8.18 \pm 0.06 \\ 14.31 \pm 0.07^{\dagger} \end{array}$	$14.05 \pm 0.13^{\dagger}$ 8.40 ± 0.08	9.39 ± 0.03 12.60 ± 0.06 9.88 ± 0.04 10.54 ± 0.06	9.01 ± 0.05 9.33 ± 0.04	9.40 ± 0.03	$\begin{array}{c} 13.10\pm 0.08^{\dagger}\\ 9.44\pm 0.04\\ 8.12\pm 0.03\end{array}$	8.63 ± 0.03 13.23 ± 0.11	8.03 ± 0.14 13.71 ± 0.12	11.35 ± 0.15	6.89 ± 0.04 8.75 ± 0.04	1
GLIMPSE name	SSTGLMC G	316.1785+00.0060	316.9656+00.1864 317.1882+00.3106	325.4962-00.1082 326.4069-00.0270	326.4461-00.0314 327.2633+00.0289 327.3210+00.0369 327.8592+00.0053	333.7304+00.2208 336.5085+00.1571 337.6914+00.0830	342.0899+00.0150 343.1338+00.2844	342.9535+00.0859 343.7749-00.0290 343.9762-00.0242 345.1795+00.0300	345.7335+00.2171 350.3441+00.3074	350.2693-00.1451	352.1998-00.0707 352.2063-00.0327 352.4741+00.0035	352.1660-00.2698 356.1769+00.1101	010.3179-00.1519 011.9905+00.1688	011.8954-00.1354	018.1759-00.1606	1
PANIC date	yyyy-mm-dd	2005-05-12		2009-04-13	2009-04-14	2009-04-14 2008-05-12 2007-06-25	2008-05-12 2008-05-13	2008-05-12 2008-05-12		11 10 0000			2008-05-13 2008 05-13	2008-05-12		2009-04-12
des	Κ	$15.6 \pm 0.1 \\ 7.70 \pm 0.02 \\ 0$	7.52 ± 0.02 6.82 ± 0.02	$\begin{array}{c} 18.0\pm0.5\\ 8.68\pm0.02\\ 12.92\pm0.05\end{array}$	$\begin{array}{c} 12.93 \pm 0.04 \\ 9.59 \pm 0.02 \\ 9.82 \pm 0.06 \\ 9.98 \pm 0.03 \\ 14.58 \pm 0.11 \end{array}$	7.64 ± 0.03 > 9.27 ± 0.0 14.07 ± 0.11	$15.34 \pm 0.11 \\ 15.2 \pm 0.2 \\ 8.61 \pm 0.03 \\ 8.61 \pm 0.03 \\ 15.2 \pm 0.03 \\ $	$\begin{array}{c} 18.25\pm0.11\\ 9.46\pm0.02\\ 14.7\pm0.2\\ 10.00\pm0.02\\ 10.91\pm0.03\end{array}$	9.11 ± 0.03 9.42 ± 0.03	9.44 ± 0.02	13.59 ± 0.05 9.56 ± 0.02 8.32 ± 0.03	8.74 ± 0.03 > 12.71 ± 0.0	8.61 ± 0.04 > 15.1 ± 0.0	10.1 ± 0.2 11.40 ± 0.02 $> 18.0 \pm 0.3$ 7.76 ± 0.02	7.06 ± 0.02 8.81 ± 0.02	1
Near-Infrared Magnitudes	Н	16.3 ± 0.1 7.88 ± 0.02	20.0 ± 0.01 8.10 ± 0.03 7.60 ± 0.04	$> 19.5 \pm 0.15$ 8.93 ± 0.06 $> 12.82 \pm 0.0$	$\begin{array}{c} 13.12\pm0.02\\ 9.71\pm0.02\\ 10.13\pm0.05\\ 10.19\pm0.03\\ 14.74\pm0.11\\ \end{array}$	$\begin{array}{c} 17.01 \pm 0.14 \\ 8.05 \pm 0.03 \\ 13.4 \pm 0.1 \\ 14.57 \pm 0.06 \end{array}$	15.6 ± 0.11 15.4 ± 0.2 8.86 ± 0.03	18.21 ± 0.11 9.67 ± 0.02 17.2 ± 0.2 10.25 ± 0.02 11.19 ± 0.02	9.27 ± 0.03 9.57 ± 0.03	9.55 ± 0.02	13.71 ± 0.04 9.64 ± 0.02 8.70 ± 0.04	8.83 ± 0.04 > 13.44 ± 0.0	9.69 ± 0.06 > 15.4 \pm 0.0	1.1 ± 0.2 11.48±0.03 > 18.8±0.3 8 3±0.06	7.38 ± 0.05 8.96 ± 0.02	$> 19.2 \pm 0.2$
Near	J	17.1 ± 0.1 8.28 ± 0.02	14.12 ± 0.04 9.23 ± 0.04 8.93 ± 0.02	$> 21.9 \pm 0.3$ 9.60 ± 0.02 > 13.52 ± 0.0	$\begin{array}{c} 13.82 \pm 0.02 \\ 9.90 \pm 0.02 \\ 11.02 \pm 0.03 \\ 10.82 \pm 0.02 \\ 15.20 \pm 0.06 \end{array}$	9.02 ± 0.03 13.36 ± 0.04 14.69 ± 0.03	$16.38 \pm 0.11 \\ 15.9 \pm 0.2 \\ 9.52 \pm 0.03 \\ $	$\begin{array}{c} 19.01 \pm 0.11 \\ 10.35 \pm 0.03 \\ 21.5 \pm 0.5 \\ 11.02 \pm 0.03 \\ 11.78 \pm 0.03 \end{array}$	9.65 ± 0.03 10.26 ± 0.03	9.90 ± 0.02	721.0 ± 0.2 14.26±0.04 10.02±0.03 9.46±0.02	9.33 ± 0.02 14.19 ± 0.04	11.63 ± 0.04	10.0 ± 0.2 11.73 ± 0.02 $> 20.3 \pm 0.3$ 0.00 ± 0.03	7.95 ± 0.02 9.51 ± 0.03	$> 21.4 \pm 0.0$
2MASS name	2MASS J	14403847-6001368	14452145-5949251 14454369-5932050 14465358-5919382	15411580-5521286 15455824-5444247	15461218-5443106 15502123-5409540 15503759-5407217 15533602-5348270 15582833-5335205	16204880-4942141 16324851-4745062 16375079-4655452	16564984-4238479	16570375-4254413 17005828-4210369 17044059-4111271	17053981-4038123 17191309-3651241	17205180-3710371	17255853-3532315 17255031-3530553 17262553-3516229	17264172-3540523 17354627-3207099	18085910-2005084	18120913-1841459 18102210-1603123	18243761-1310369 18250874-1253318	
NIR ^a	Data	d ∑ 2	a M M	$^{\mathrm{P}*}_{\mathrm{M}}$	M M M M M,P,P	P M M,P,M M,M,P	4 4 X 4	r Z r Z Z	MM	₩ ₩	ZZZ	MM	M % %	Zez	W W W	Р
ChIcAGO Source	ChI	J143148-6021_3 J144042-6001_1	J14450-5949_2 J144547-5931_1 J144701-5919_1	JJ 504 56-58 24 J JJ 538 18-554 J JJ 54 57-5443 J JJ 54 557 - 5443 J	115557-5442_2 1155557-5442_3 1155035-5408_1 1155035-5408_3 1155531-5347_1 1155831-5347_1		J165105-4403_1 J165217-4414_1 J165420-4337_1 J165646-4239_1	J165644259_2 J1657074255_1 J1700174220_1 J170424210_1 J1704444109_1	JI 70444-4109_2 J170536-4038_1 J171910-3652_2	J171922-3703_1 J172050-3710_1 1172550-3533_1	J172550-3533_2 J172550-3533_3 J172623-3516_1	J172642-3504_1 J172642-3540_1 J173548-3207_1 T175404 7553 2	J180857-2004_1 J180857-2004_1 J180857-2004_2 J181116-1828_2 J181112-19205	J161213-1642_/ J181213-1842_9 J181852-1559_2 T181015-1601_7	J181915-1601_2 J182435-1311_1 J182509-1253 1	J182509-1253_3 J182530-1144_2

 $\label{eq:Table 2} Table \ 2$ ChlcAGO sources with > 20 X-ray counts and their infrared properties

37

				4						
	$M_{8.0}$	11.33 ± 0.20	C0.0 T 7C.0	$10.13 \pm 0.07 \\ 6.95 \pm 0.03$		7.80 ± 0.02	7.09 ± 0.03	9.87 ± 0.04	7.84 ± 0.03	
agnitudes ^b	$M_{5.8}$	10.40 ± 0.09 11.25 ± 0.10 $6.66 \pm 0.03^{+}$	12.49 ± 0.25	$\begin{array}{c} 10.12 \pm 0.05 \\ 6.89 \pm 0.03 \end{array}$	$5.48 \pm 0.19^{\dagger}$	7.87 ± 0.03	7.14 ± 0.03	9.99 ± 0.06	7.80 ± 0.03	
GLIMPSE Magnitudes ^b	$M_{4.5}$	10.42 ± 0.06 11.41 ± 0.08 $6 \ 82 \pm 0.06^{\dagger}$	13.00 ± 0.03	10.39 ± 0.06 7.09 ± 0.05		7.90 ± 0.04	7.26 ± 0.05	10.06 ± 0.06 13.54 ± 0.12	7.83 ± 0.05	13.36 ± 0.13
	$M_{3.6}$	$\begin{array}{c} 10.47 \pm 0.07 \\ 11.46 \pm 0.06 \\ 7 \\ 17 \pm 0.04 \\ \end{array}$	13.04 ± 0.09	10.44 ± 0.04 7.22 ± 0.05		7.78±0.05	7.19 ± 0.04	10.06 ± 0.04 13.71 ± 0.09	7.84 ± 0.04	13.28 ± 0.10
GLIMPSE name	SSTGLMC G	019.1042+00.0722 019.3575-00.1313 021.6664.00.1070	023.3713+00.0549	023.5020+00.0505 030.0097-00.1937	030.7667-00.0346	035.5129-00.0030	040.7595+00.0667	042.4230+00.1975 041.7215-00.1814	059.4021-00.1526	062.9345+00.0934
PANIC date	yyyy-mm-dd		2009-04-14		2009-04-14	2009-04-13	2007-07-29	67-10-1007	2007-07-29/31 2009-04-13	2009-04-13
Ides	Κ	$\begin{array}{c} 10.59 \pm 0.02 \\ 11.86 \pm 0.03 \\ 7.62 \pm 0.02 \end{array}$	4.34 ± 0.03 13.68 ± 0.11	11.18 ± 0.03 7.64 ± 0.02	8.66 ± 0.04 18.46 ± 0.21	7.90 ± 0.02	13.74 ± 0.11 > 7.51 ± 0.0	117 ± 0.11 10.21 ± 0.03 14.04 ± 0.05	16.7 ± 0.12 7.84 ± 0.02	13.5 ± 0.11
-Infrared Magnitudes	Н	10.76 ± 0.02 12.10 ± 0.03 8.20 ± 0.04	5.40 ± 0.04 14.4 ± 0.11	12.11 ± 0.02 8.21 ± 0.05	11.01 ± 0.06 > 20.3 ± 0.3	8.02 ± 0.04 > 19.1 ± 0.2	14.66 ± 0.11 > 8.04 ± 0.0	16.39 ± 0.11 10.49 ± 0.03 14.36 ± 0.04	$\begin{array}{c} 17.05 \pm 0.11 \\ 7.89 \pm 0.02 \\ 17.38 \pm 0.13 \end{array}$	13.79 ± 0.11
Near-In	J	$11.27 \pm 0.02 \\ 12.75 \pm 0.03 \\ 0.00 \pm 0.02 $	7.05 ± 0.02 15.71 ± 0.10	14.32 ± 0.03 9.32 ± 0.03	14.85 ± 0.07 > 21.0 ± 0.3	8.44 ± 0.02	16.61 ± 0.11 8.58 ± 0.03	19.0 ± 0.11 11.29 ± 0.03 15.17 ± 0.04	18.09 ± 0.11 8.03 ± 0.02	14.43 ± 0.11
2MASS name	2MASS J	18253369-1214505 18264689-1207058 18211653 1000250	18320893-0939058 18334038-0828304	18335598-0821402 18464768-0241199	18473666-0156334	18560956+0217438	19053278+0659334	19080997 + 0831478 19081320 + 0743576	19431096+2317454	
NIR ^a	Data	ZZZ	M M M,P,P	ΜM	₩*4	₽∦	¥.∑°	- Z Z	% ∑ d	. <u>с</u> .
ChIcAGO Source	ChI	182538-1214_1 182651-1206_4 182116_1008_1	183206-0938_1 183345-0828_1 183356-0822_1	$183356-0822_3$ $184652-0240_1$	$184738-0156_1$ $184741-0219_3$	$185608+0218_1$ $185643+0220_2$	185750+0240_1 190534+0659_1	190/49+0805_1 190814+0832_2 190818+0745_1	1194152+2251_2 1194310+2318_5 1194939+2631_1	195006+2628_2

Note. — The wavdetect position of ChI J165646-4239_1 and the position of the quoted 2MASS source agree within 4 σ . We have listed this 2MASS source as a possible counterpart as it is considered to be the same as the quoted GLIMPSE source, which does agree within 3 σ of the wavdetect position. The quoted NIR magnitudes of ChI J181116-1828_2 and ChI J185643+0220_2, obtained with PANIC, are limits due to the counterparts being blended. The H-band PANIC observation of ChI J194152+2251_2 took place on 2007-07-31, whereas the other bands were observed on 2007-07-29.

^a Data from which the counterpart near-infrared magnitudes were obtained. M = 2MASS Point Source Catalog (Skrutskie et al. 2006), P = PANIC Magellan observations. If three letters are listed this indicates that the magnitudes were obtained from different datasets. This order corresponds to the J, H and K_s magnitude order. Those datasets marked with * are likely blended or, particularly in the case of ChI J194152+2251_2, perhaps extended. Those datasets marked

 $b_{3,6}, M_{4,5}, M_{5,8}$, and $M_{8,0}$ refer to the counterpart infrared magnitudes at 3.6, 4.5, 5.8, and 8.0 μ m, respectively. Those magnitudes marked with [†] are from the GLIMPSE archives (more complete, less reliable) rather than the catalogs with ** means that the counterpart has a low sigma detection of $> 1.5\sigma$ for the respective background plus RMS estimate.

(which are more reliable). In these cases the GLIMPSE archive source's names begin with SSTGLMA G.

38

Table 2 — Continued

THE CHICAGO SURVEY

Table 3 Quantile analysis power law interpolation and Cash statistics power law spectral fit to ACIS Chandra detections of the ChIcAGO sources

ChIcAGO Source	(Quantile abso	rbed power law	interpolation ^a			Cash statistics	absorbed pov	wer law fit ^b	
ChI	Г	N_H	$F_{x,abs}$	$F_{x,unabs}$	χ^2_{red}	Г	N_H	$F_{x,abs}$	$F_{x,unabs}$	С
J143148-6021_3	$0.91^{+0.44}_{-0.35}$	$0.61^{+0.54}_{-0.34}$	9.12 ± 0.75	10.93 ± 0.90	0.3	$0.70^{+0.26}_{-0.25}$	$0.42^{+0.20}_{-0.17}$	$9.85^{+1.35}_{-1.15}$	$11.17^{+1.29}_{-1.31}$	0.5
	-0.35	-0.34				-0.25	-9.16		$177.46^{+131}_{-139.42}$	1.0
J144701-5919_1							0 70+0 73	5 55+1.10	$177.46^{+157.69}_{-139.42}$	0.6
J150436-5824_1	$-0.37^{+0.17}_{-0.00}$	$0.01^{+0.06}_{-0.00}$	8.45 ± 0.71	8.47 ± 0.71	0.9	$3.39^{+0.07}_{-0.61}$ $-0.05^{+0.28}_{-0.27}$	$2.70_{-0.64}^{+0.75}$ $0.49_{-0.27}^{+0.32}$	$3.33_{-1.90}$ $8.46_{-0.84}^{+1.07}$	$9.03^{+1.05}_{-0.08}$	1.2
J154122-5522_1	$2 = 2 \pm 0.62$	0.14 ± 0.14	2.50 ± 0.27	4.46 ± 0.49	0.6	$2.35_{-0.39}^{+0.43}$	$0.15_{-0.09}^{-0.27}$	$2.86_{-0.46}^{+0.38}$	$4.82_{-1.22}^{+0.99}$	1.0
J154557-5443_1	208 + 1.30	$0.14_{-0.11}$ $0.29^{+0.19}_{-0.17}$	0.17 ± 0.04	0.56 ± 0.12		-0.39	-0.09		-1.22	
J155035-5408_3	$2.73^{+0.55}_{-0.46}$	$0.29_{-0.17}$ $0.67_{-0.21}^{+0.24}$	2.90 ± 0.20	11.47 ± 0.80	0.9	$2.72^{+0.28}_{-0.27}$	0.61 ± 0.11	$2.88^{+0.36}_{-0.33}$	$11.33^{+3.17}_{-3.55}$	1.8
J155831-5334_1	1.70 ± 0.72	$0.07_{-0.21}$ $0.43_{-0.34}^{+0.45}$	3.62 ± 0.50	5.45 ± 0.76	0.4	1 65+0.54	$0.38^{+0.28}_{-0.22}$	$2.88_{-0.33}$ $3.31_{-0.63}^{+0.74}$	$5.99^{+1.39}_{-2.16}$	1.0
J162011-5002_1	$1.70_{-0.63}^{+0.02}$ $0.88_{-1.00}^{+1.00}$	250+2.8	8.17 ± 1.11	11.73 ± 1.6	0.6	$0.75^{+0.83}_{-0.75}$	2 50+2.02	$7.62^{+2.09}_{-2.68}$	$12.82^{+1.50}_{-2.04}$	1.1
J162046-4942_1	$1.42^{+0.35}_{-0.31}$	$2.50_{-1.56}$ $0.12_{-0.10}^{+0.15}$	3.35 ± 0.31	3.84 ± 0.35	1.4	$1.71^{+0.31}_{-0.29}$	$0.31^{+0.13}_{-0.11}$	$3.32^{+0.61}_{-0.53}$	$5.01^{+0.72}_{-0.85}$	2.7
J165105-4403_1	$0.84_{-0.31}^{+0.37}$	0.34 ± 0.36	12.6 ± 1.03	14.19 ± 1.15	0.8	$0.97_{-0.27}^{+0.28}$	$0.58^{+0.22}_{-0.19}$	$13.42^{+1.59}_{-1.83}$	$16.43^{+2.16}_{-1.68}$	1.1
J165217-4414_1	$1.63^{+0.31}_{-0.49}$	$0.64^{+0.25}_{-0.34}$	5.97 ± 0.57	9.32 ± 0.9	0.7	$1.29^{+0.27}_{-0.27}$	$0.38^{+0.18}_{-0.15}$	$6.48^{+1.14}_{-1.06}$	$8.66^{+1.01}_{-1.56}$	0.9
J165646-4239_1						$3.93_{-0.36}^{+0.40}$	0.22 ± 0.06	$4.99^{+0.36}_{-0.39}$	$27.34^{+18.76}_{-13.30}$	2.8
J165646-4239_2	$1.49^{+0.79}_{-0.62}$	$0.31_{-0.30}^{+0.48}$	2.27 ± 0.30	2.98 ± 0.39	0.4	$1.28^{+0.44}_{-0.41}$	$0.22^{+0.21}_{-0.17}$	$2.37_{-0.36}^{+0.49}$	$3.18^{+0.35}_{-0.56}$	0.7
J165707-4255_1	$1.49_{-0.62}_{-0.62}$ $3.91_{-1.25}^{+1.07}$	$\begin{array}{c} 0.31\substack{+0.48\\-0.30}\\ 0.22\substack{+0.21\\-0.20} \end{array}$	2.5 ± 0.32	13.51 ± 1.73	2.1	$3.17^{+0.79}_{-0.60}$	$\begin{array}{c} 0.22 \substack{+0.17\\-0.17}\\ 0.07 \substack{+0.12\\-0.07}\end{array}$	$3.05_{-0.59}^{+0.53}$	$7.05^{+4.82}_{-2.67}$	2.6
J170017-4220_1	$-1.89^{+1.14}_{-0.10}$	$1.00^{+5.60}_{-0.99}$	19.25 ± 2.37	19.91 ± 2.45	1.0	$0.24^{+1.10}_{-0.98}$	$14.01^{+8.49}_{-6.85}$	$11.36^{+5.90}_{-7.08}$	$29.98_{-8.94}^{+6.53}$	1.0
J170052-4210_1						$0.24_{-0.98}$ $4.89_{-1.45}^{+1.98}$	$0.37_{-0.23}^{+0.31}$	$0.81_{-0.22}^{+0.23}$	$32.64_{-26.84}^{+152.63}$	3.6
J170444-4109_1	$3.38^{+0.86}_{-0.65}$	$0.16^{+0.18}_{-0.13}$	9.01 ± 0.73	27.22 ± 2.21	1.7	$3.17^{+0.38}_{-0.35}$	0.23 ± 0.09	$8.35^{+1.04}_{-1.16}$	$28.45_{-8.65}^{+14.82}$	2.1
J170444-4109_2	$0.31^{+1.60}_{-1.37}$	1 70+3.10	2.10 ± 0.50	2.51 ± 0.59						
J170536-4038_1	$0.51_{-1.37}$ $2.88_{-0.63}^{+0.79}$	$0.26^{+0.19}_{-0.15}$	6.54 ± 0.61	19.03 ± 1.79	1.0	$2.09^{+0.33}_{-0.31}$	0.14 ± 0.08	$8.50^{+1.05}_{-1.15}$	$12.81^{+2.24}_{-1.93}$	1.7
J171910-3652_2						$2.09_{-0.31}$ $3.25_{-0.44}^{+0.49}$	$0.14^{+0.08}_{-0.07}$	$2.64^{+0.38}_{-0.29}$	$6.78^{+3.77}_{-2.33}$	3.3
J171922-3703_1	$-0.75^{+0.49}_{-0.55}$	$1.15^{+1.85}_{-1.03}$	6.83 ± 0.56	7.27 ± 0.60	0.6		a 1 1 1 2	5 70+1.10	$7.09_{-1.65}^{-2.33}$	1.4
J172050-3710_1						$-0.26^{+0.41}_{-0.39}$ $4.70^{+0.39}_{-0.37}$	$\begin{array}{c} 2.19\substack{+1.12\\-0.92}\\ 0.54\substack{+0.08\\-0.07}\end{array}$	$2.07_{-0.18}^{+0.11}$	$67.55^{+49.73}_{-32.05}$	1.8
J172550-3533_1	$0.14^{+1.93}_{-1.40}$	$6.60^{+11.9}_{-5.3}$	2.8 ± 0.43	4.11 ± 0.63	0.4					
J172550-3533_2	$3.28^{+1.49}_{-1.00}$	$6.60^{+11.9}_{-5.3}$ $0.38^{+0.38}_{-0.25}$	0.44 ± 0.06	2.28 ± 0.34	0.6					
J172550-3533_3	$3.28_{-1.00}$ $3.17_{-0.79}^{+1.11}$	$0.28^{+0.30}_{-0.22}$	0.55 ± 0.09	2.11 ± 0.33						
J172623-3516_1	$2.94^{+2.04}_{-1.28}$	$0.46^{+0.84}_{-0.40}$	1.07 ± 0.16	4.44 ± 0.68	0.6	$1.63^{+0.52}_{-0.47}$	$0.13_{-0.13}^{+0.17}$	$1.64^{+0.61}_{-0.35}$	$2.49^{+0.41}_{-0.54}$	1.4
J172642-3504_1	$2.94_{-1.28}$ $0.84_{-0.70}^{+0.75}$	2.50 - 1.25	2.86 ± 0.31	4.01 ± 0.43	0.2	$1.63_{-0.47}^{+0.52}$ $0.64_{-0.51}^{+0.55}$ $2.17^{+0.60}$	$0.13^{+0.17}_{-0.13}$ $2.40^{+1.18}_{-0.28}$	$1.64_{-0.35}^{+0.01}$ $3.02_{-1.03}^{+0.57}$	$2.49_{-0.54}$ $4.28_{-1.61}^{+0.52}$	0.6
J173548-3207_1	$2.04^{+0.67}_{-0.47}$	$0.20_{-0.15}^{+0.22}$	1.65 ± 0.24	2.54 ± 0.37	3.5	$2.17^{+0.60}_{-0.55}$	$\begin{array}{c} 2.40\substack{-0.98\\-0.98}\\ 0.32\substack{+0.22\\-0.19}\end{array}$	$1.64^{+0.35}_{-0.48}$	$\begin{array}{r} 4.28_{-1.61} \\ 3.80_{-1.69}^{+1.86} \end{array}$	3.3
J180857-2004_1	$2.84^{+1.86}_{-1.28}$	$5.40^{+4.60}_{-2.80}$	1.16 ± 0.17	14.45 ± 2.18				0.40		
J180857-2004_2	$3.45^{+1.28}_{-0.93}$	$6.20^{+3.00}_{-2.00}$	1.94 ± 0.22	80.67 ± 9.02	0.7	$2.71^{+0.72}_{-0.67}$ $1.52^{+0.68}_{-0.61}$	$4.35^{+1.32}_{-1.15}$	$1.96^{+0.40}_{-0.59}$	$23.39^{+17.88}_{-13.91}$	1.7
J181116-1828_2	$2.00^{+1.38}_{-1.09}$	$2.20^{+2.20}_{-1.50}$	2.77 ± 0.39	7.66 ± 1.07	1.6	$1.52^{+0.68}_{-0.61}$	$4.33_{-1.15}^{+0.75}$ $1.13_{-0.58}^{+0.75}$	$2.24^{+0.58}_{-0.88}$	$5.14^{+1.53}_{-2.33}$	2.3
J181213-1842_7	$2.00^{+1.09}_{-1.09}$ $-0.16^{+0.55}_{-0.52}$	$2.20^{-1.50}_{-1.50}$ $0.52^{+0.73}_{-0.50}$	10.49 ± 0.98	11.03 ± 1.03	0.5	$\begin{array}{c} 1.52\substack{+0.08\\-0.61}\\ 0.37\substack{+0.42\\-0.39}\end{array}$	$1.13^{+0.75}_{-0.58}$ $1.62^{+0.77}_{-0.65}$	$10.12^{+1.67}_{-1.96}$	$12.47_{-1.92}^{+1.70}$	0.5
J181213-1842_9	3 6371.55	$0.32_{-0.50}$ $0.20_{-0.19}^{+0.31}$	0.35 ± 0.09	1.48 ± 0.36		.0.99		12.02	12.14	
J181852-1559_2	$0.77^{+1.11}_{-0.82}$	$0.20_{-0.19}$ $2.50_{-1.59}^{+3.20}$	6.00 ± 0.94	8.34 ± 1.30	1.1	$-0.18^{+0.88}_{-0.77}$ $2.14^{+0.69}_{-0.63}$	$1.24^{+2.19}_{-1.24}\\1.46^{+0.71}_{-0.58}$	$5.22^{+3.02}_{-3.62}$	$\begin{array}{c} 6.48^{+3.14}_{-3.06} \\ 9.40^{+7.92}_{-4.37} \end{array}$	0.7
J181915-1601_2	$1.32_{-0.37}^{+0.49}$	$2.50^{+0.50}_{-1.59}$ $0.70^{+0.50}_{-0.33}$	3.79 ± 0.52	5.20 ± 0.71	1.5	$2.14^{+0.69}_{-0.63}$ $1.61^{+0.52}_{-0.48}$	$1.46_{-0.58}^{+0.71}$	$5.22_{-3.62}$ $2.97_{-0.94}^{+0.89}$	$9.40^{+7.92}_{-4.37}$	2.0
J181915-1601_3	$1.21_{-0.34}^{+0.46}$	$0.67^{+0.33}_{-0.31}$	5.35 ± 0.62	7.03 ± 0.81	1.2	-8.48	$1.46_{-0.58}^{+0.59}$ $1.38_{-0.59}^{+0.59}$	$5.25^{+1.04}_{-1.29}$	$10.99^{+2.77}_{-4.17}$	1.6
J182435-1311_1						$4.77^{+0.78}_{-0.70}$	$1.44_{-0.30}^{+0.34}$	$0.45^{+0.09}_{-0.13}$ $0.57^{+0.12}_{-0.09}$	$60.30^{+99.63}_{-51.18}$	3.4
J182509-1253_1	0 0 - 1 65	5 0 0 1 7 50				$3.40^{+0.57}_{-0.52}$	$0.44^{+0.14}_{-0.13}$	$0.57_{-0.09}^{+0.12}$	$4.49^{+3.81}_{-2.67}$	2.2
J182509-1253_3	$-0.05^{+1.65}_{-0.84}$ $0.14^{+0.38}_{-0.37}$	$3.00^{+7.50}_{-2.66}$	1.96 ± 0.28	2.40 ± 0.34	1.9	$-0.08^{+1.15}_{-0.99}$	$2.98^{+4.05}_{-2.55}$	$1.25_{-0.96}^{+0.79}$	$1.84^{+0.74}_{-0.69}$	2.5
J182530-1144_2	$0.14^{+0.38}_{-0.37}$	$3.00_{-2.66}^{+0.36}$ $0.55_{-0.31}^{+0.33}$	9.44 ± 0.61	10.13 ± 0.66	1.0	$0.43_{-0.23}^{+0.24}$	$1.01_{-0.28}^{+0.32}$	$9.37_{-1.22}^{+0.71}$	$10.83^{+1.04}_{-1.16}$	1.7
J182651-1206_4	$1.80^{+0.89}_{-0.70}$	$0.28^{+0.42}_{-0.27}$	0.34 ± 0.08	0.49 ± 0.12		2 2010 86	0 1 5 1 2 26	5 001111	272 72 620 26	
J183116-1008_1	$2.28^{+0.70}_{-0.55}$	$4.80^{+1.80}_{-1.30}$	5.66 ± 0.61	28.9 ± 3.13	1.4	$\begin{array}{r} 3.28\substack{+0.86\\-0.79}\\ 0.86\substack{+0.36\\-0.35}\end{array}$	${\begin{array}{c}{8.15}\scriptstyle+2.26\\\scriptstyle-1.97\\$	$5.33^{+1.11}_{-2.67} \\ 33.04^{+3.69}_{-7.94}$	$\begin{array}{r} 373.72\substack{+629.26\\-273.72}\\ 47.45\substack{+5.54\\-11.41}\end{array}$	1.7
J183206-0938_1	$0.91^{+0.47}_{-0.46}$	1.50-0.71	29.85 ± 2.40	39.86 ± 3.20	0.7	$0.86_{-0.35}^{+0.50}$	$1.81_{-0.51}^{+0.58}$	$33.04_{-7.94}^{+3.09}$	$47.45_{-11.41}^{+3.54}$	1.4
J183345-0828_1	$2.63^{+1.40}_{-1.03}$	$2.60^{+2.00}_{-1.35}$	0.65 ± 0.10	4.04 ± 0.64		0.00+1.30	10 15+7 15	a < - +0.90	5 0 0±0 95	
J183356-0822_2	$\begin{array}{c} 1.80 \substack{+0.89\\-0.70}\\ 2.28 \substack{+0.70\\-0.70}\\ 2.28 \substack{+0.70\\-0.55}\\ 0.91 \substack{+0.47\\-0.46}\\ 2.63 \substack{+1.40\\-1.03}\\ 2.38 \substack{+2.60\\-1.03}\\ 2.38 \substack{+1.28\\-0.70\\-0.70\\-0.75 \substack{+1.79\\-1.69 \substack{+1.86}\\-1.86} \end{array}$	$\begin{array}{c} 0.28\substack{+0.42}{-0.27}\\ 4.80\substack{+1.80}{-1.30}\\ 1.50\substack{+0.90}{-0.71}\\ 2.60\substack{+2.00}{-1.35}\\ 18.0\substack{-1.020}{-1.25}\\ 18.0\substack{+0.20}{-1.25}\\ 1.80\substack{+2.40}{-1.20}\\ 1.50\substack{+0.56}{-0.56}\\ 12.0\substack{+9.00}{-1.20}\\ 1.00\substack{+12.00}{-0.99} \end{array}$	2.06 ± 0.25	26.08 ± 3.14	1.0	$0.82^{+1.30}_{-1.13}$	$10.46^{+7.15}_{-5.41}$	$1.65^{+0.90}_{-1.21}$	$5.80^{+0.95}_{-1.38}$	1.2
J183356-0822_3	$1.28^{+1.20}_{-1.11}$	$1.80^{+2.40}_{-1.61}$	0.43 ± 0.11	0.69 ± 0.17	1.0	a 0a+0 55	1 51+0 44	2 02+0 79	25 72+24 49	1.0
J184652-0240_1	$2.88_{-0.70}$	$1.50_{-0.56}^{+0.00}$	4.14 ± 0.45	28.0 ± 3.02	1.0	$\begin{array}{c} 2.92\substack{+0.55\\-0.51}\\ 0.53\substack{+0.57\\-0.53}\end{array}$	${\begin{array}{c}{1.51}\scriptstyle{+0.44}\\\scriptstyle{-0.38}\\{5.13}\scriptstyle{+2.14}\\\scriptstyle{-1.75}\end{array}}$	$3.93^{+0.79}_{-0.71}$	$35.73^{+24.49}_{-19.70}$	1.8
J184738-0156_1	$2.55^{+1.19}_{-1.14}$	$12.0^{+9.00}_{-5.20}$ 1.00+12.00	19.56 ± 1.76	178.36 ± 16.08	1.2	$0.53_{-0.53}$	$5.13^{+2.14}_{-1.75}$	$21.11_{-8.53}^{+4.10}$	35.70 ^{+3.87} -12.23	2.2
J184741-0219_3	$-1.62^{+1.86}_{-0.38}$	1.00-0.99	2.57 ± 0.46	2.67 ± 0.47		2 02+0 44	0.22 + 0.00	6 07+0 66	50 56+47 69	1.0
J185608+0218_1	0.00+0.63	0.07+1.53	2 27 1 0 20	2 50 1 0 42	1.2	$\begin{array}{c} 3.83\substack{+0.44\\-0.40}\\ 0.75\substack{+0.70\\-0.64}\\ 0.31\substack{+0.60\\-0.52}\end{array}$	0.33 ± 0.08	$\begin{array}{r} 6.97\substack{+0.66\\-0.74}\\ 3.03\substack{+0.53\\-1.35}\\ 4.01\substack{+0.78\\-1.45}\end{array}$	$50.56^{+47.69}_{-22.77}\\ 4.97^{+0.63}_{-0.80}\\ 4.28^{+1.01}_{-0.97}$	1.8
J185643+0220_2	$0.00_{-0.44}$	$0.97_{-0.81}$	3.27 ± 0.39	3.59 ± 0.43	1.3	$0.75_{-0.64}$	$\begin{array}{c} 3.22\substack{+1.83\\-1.47}\\ 0.30\substack{+0.61\\-0.30}\end{array}$	$3.03_{-1.35}$	$4.97_{-0.80}$	1.6
J185750+0240_1	$0.23_{-0.58}$	$0.52_{-0.31}$	4.20 ± 0.63	4.43 ± 0.66	0.5	$0.31_{-0.52}$	$0.30_{-0.30}^{+0.01}$	$4.01_{-1.45}$	4.28_0.97	0.4
J190534+0659_1	$2.28_{-0.96}$	$0.52_{-0.43}$	0.73 ± 0.19	1.70 ± 0.45	0.2	0.75+0.55	2 72+1 24	C 70+0 99	10 52+1 11	0.6
J190749+0803_1	$1./4_{-0.75}$	$4.80_{-2.00}$	6.12 ± 0.64	17.21 ± 1.80	0.2	$0.75_{-0.51}^{+0.85}$	$2.73^{+1.27}_{-1.04}$	$0.79_{-1.89}^{+0.18}$	$10.52^{+1.11}_{-2.06}$	0.6
J190814+0832_2	$2.00_{-0.56}^{+0.02}$	$0.73_{-0.27}^{+0.57}$	0.9 ± 0.14	3.41 ± 0.53	1.0	3.22 - 0.74 1.25+0.26	$0.74^{+0.00}_{-0.29}$	$0.73^{+0.10}_{-0.21}$	$3.83_{-3.54}^{+0.20}$	0.7
J190818+0745_1	$\begin{array}{c} 0.00 \substack{+0.63\\-0.25 \substack{+0.24\\-0.25 \substack{+0.24\\-0.25\\-0.28 \substack{+1.38\\-0.28 \atop{-1.38\\-0.28 \atop{-1.38}$	$0.20^{+0.13}_{-0.12}$	10.45 ± 0.89	12.38 ± 1.05	0.7	$1.33_{-0.25}^{+0.20}$	$0.22_{-0.10}^{+0.11}$	$10.33^{+1.30}_{-1.38}$	$12.91^{+1.30}_{-1.30}$	1.2
J194152+2251_2	$\begin{array}{c} 0.38\substack{+0.30\\-0.69}\\ 0.67\substack{+0.69\\-0.49}\end{array}$	$\begin{array}{c} 0.97\substack{+1.53\\ 81}\\ 0.32\substack{+1.08\\ 0.32\substack{+0.31\\ 0.52\substack{+0.68\\ -2.00\\ 0.73\substack{+0.37\\ -0.27\\ 0.20\substack{+0.12\\ -0.12\\ 0.82\substack{+0.58\\ -0.58\\ 2.30\substack{+1.90\\ -1.15\\ \end{array}}} \end{array}$	6.07 ± 0.72	6.84 ± 0.81	0.3	$\begin{array}{c} 0.75\substack{+0.55\\-0.51}\\ 3.22\substack{+0.86\\-0.76}\\ 1.35\substack{+0.26\\-0.25}\\ 0.36\substack{+0.30\\-0.46}\\ -0.10\substack{+0.38\\-0.35}\end{array}$	$\begin{array}{c} 2.73\substack{+1.24\\-1.04}\\ 0.74\substack{+0.36\\-0.29}\\ 0.22\substack{+0.11\\0.91\substack{+0.72\\-0.55}\\0.67\substack{+0.57\\-0.43}\end{array}$	$\begin{array}{c} 6.79\substack{+0.99\\-1.89}\\ 0.73\substack{+0.18\\-0.21}\\ 10.35\substack{+1.30\\-1.38}\\ 5.96\substack{+1.36\\-2.02\\18.24\substack{+2.62\\-4.08}\end{array}$	$\begin{array}{c} 10.52\substack{+1.11\\ 5.83\substack{+6.28\\ -3.54\\ 12.91\substack{+1.55\\ 7.02\substack{+1.39\\ -3.87\\ 20.06\substack{+2.18\\ -3.87\\ \end{array}}} \end{array}$	0.3
J194939+2631_1	$0.0/_{-0.49}$	2.30-1.15	16.71 ± 1.57	22.28 ± 2.09	0.9	$-0.10_{-0.35}$	$0.07_{-0.43}$	18.24-4.08	20.00-3.87	1.5

Table 3	- Continued
---------	-------------

ChIcAGO Source		Quantile abso	rbed power law	interpolation ^a	Cash statistics absorbed power law fit ^b						
ChI	Г	N_H	$F_{x,abs}$	$F_{x,unabs}$	χ^2_{red}	Г	N_H	$F_{x,abs}$	$F_{x,unabs}$	С	

Note. — The quantile analysis spectral interpolation and Cash statistics spectral modeling are performed on those ChIcAGO sources with > 20 and > 50 X-ray counts, respectively. ^a The quantile analysis interpolated absorbed power law model parameters including the spectral index, Γ , and absorption column density N_H (10²² cm⁻²), as well as the absorbed and unabsorbed X-ray fluxes, $F_{x,abs}$ and $F_{x,unabs}$ (10⁻¹³ erg cm⁻² s⁻¹), respectively, in the 0.3 – 8.0 keV energy range. The quoted χ^2_{red} value is what is expected if these interpolated spectral parameters are used to fit the X-ray spectrum of the source. ^b The absorbed power law fit model parameters using Cash (1979) statistics including the spectral index, Γ , and absorption column density N_H (10²² cm⁻²), as well as the absorbed

^D The absorbed power law fit model parameters using Cash (1979) statistics including the spectral index, Γ , and absorption column density N_H (10²² cm⁻²), as well as the absorbed and unabsorbed X-ray fluxes, $F_{x,abs}$ and $F_{x,anabs}$ (10⁻¹³ erg cm⁻² s⁻¹), respectively, in the 0.3 – 8.0 keV energy range. The quoted C value is the reduced Cash statistic, which is the observed statistic divided by the number of degrees of freedom. A good fit is indicated by a C value of order 1.

THE CHICAGO SURVEY

 Table 4

 Quantile analysis Bremsstrahlung spectral interpolation and Cash Statistic

 Bremsstrahlung spectral fit to ACIS Chandra detections of the ChICAGO sources

ChIcAGO Source		Absorbed Bi	emsstrahlung in	terpolation ^a		Casl	h statistics abso	orbed Brems	strahlung fit ^b	
ChI	kT	N_H	$F_{x,abs}$	$F_{x,unabs}$	χ^2_{red}	kT	N_H	$F_{x,abs}$	$F_{x,unabs}$	С
J144519-5949_2	$1.38^{+2.15}_{-0.65}$ $0.84^{+0.30}_{-0.21}$	$4.80^{+3.60}_{-2.2}$	2.17 ± 0.44	21.59 ± 4.37						
J144547-5931_1	$0.84^{+0.30}_{-0.21}$	$4.80_{-2.2} \\ 4.10_{-0.9}^{+1.20} \\ 3.50_{-1.2}^{+1.90}$	2.56 ± 0.31	57.74 ± 6.95	0.9	$1.01^{+0.37}_{-0.23}$ $2.04^{+0.95}_{-0.54}$	$3.27^{+0.86}_{-0.74}$ $1.93^{+0.49}_{-0.43}$	$1.93^{+0.68}_{-1.24}$ 5.78 ^{+1.16}	$37.28^{+9.98}_{-22.51}$ $23.52^{+4.04}_{-7.51}$	0.9
J144701-5919_1	$0.84_{-0.21}^{+0.21}$ $1.00_{-0.39}^{+0.70}$	$3.50^{+1.90}_{-1.2}$	5.49 ± 0.60	74.01 ± 8.12	0.6	$2.04^{+0.95}_{-0.54}$	$1.93^{+0.49}_{-0.43}$	$5.78^{+1.16}_{-2.03}$	$23.52_{-7.51}^{+4.04}$	0.9
J154122-5522_1	1 001006	$0.04_{-0.03}^{+0.09}$	2.35 ± 0.26	2.72 ± 0.3	0.6	$2.62^{+1.68}_{-0.80}$	$0.05_{-0.05}^{+0.06}$	$5.78^{+1.10}_{-2.03}$ $2.46^{+0.45}_{-0.47}$	$3.08^{+0.47}_{-0.70}$	1.0
J154557-5443_1		$\begin{array}{r} 3.50\substack{+1.90\\-1.2}\\ 0.04\substack{+0.09\\-0.03}\\ 0.14\substack{+0.15\\-0.1}\end{array}$	0.16 ± 0.03	0.25 ± 0.05						
J154557-5443_2	1 + 9643	$a_{40} + 460$	0.63 ± 0.16	17.65 ± 4.49						
J154557-5443_3		0.07 ± 1.23	0.11 ± 0.03	224.95 ± 51.46						
J155035-5408_1	0.35+0.18	$0.97_{-0.88}^{+0.38}$ $0.14_{-0.14}^{+0.38}$	0.18 ± 0.05	0.56 ± 0.14						
J155035-5408_3	$2.14^{+0.91}_{-0.72}$	$0.14^{+0.38}_{-0.14}$ $0.43^{+0.21}_{-0.1}$	2.73 ± 0.19	5.29 ± 0.37	0.9	$2.17^{+0.55}_{-0.38}$	$0.42^{+0.08}_{-0.07}$	$2.81^{+0.28}_{-0.37}$	$5.43^{+0.45}_{-0.85}$	1.8
J155331-5347_1	$2.14_{-0.72}$ $0.31_{-0.16}^{+0.31}$	$0.70^{+0.85}_{-0.39}$	1.25 ± 0.15	30.92 ± 3.67	2.2					
J155831-5334_1	$9.04^{+89.16}_{-5.99}$	$\begin{array}{c} 0.43 \substack{+0.21 \\ -0.1} \\ 0.70 \substack{+0.85 \\ -0.39} \\ 0.34 \substack{+0.30 \\ -0.22} \end{array}$	3.54 ± 0.49	4.73 ± 0.66	0.4					
J162046-4942_1						$8.37^{+16.53}_{-3.50}$ $0.78^{+0.14}_{-0.11}$	$0.24^{+0.09}_{-0.08}$	$3.48^{+0.50}_{-0.61}$	$4.48^{+0.56}_{-0.89}$	2.7
J165646-4239_1	$0.35^{+0.13}_{-0.10}$ $0.71^{+0.21}_{-0.31}$	$0.25^{+0.15}_{-0.10}$ $0.05^{+0.16}_{-0.04}$	4.06 ± 0.25	20.59 ± 1.26	1.8	$0.78^{+0.14}_{-0.11}$	0.03 ± 0.03	$3.48_{-0.61}^{+0.61}$ $5.06_{-0.64}^{+0.24}$ $2.69_{-0.53}^{+0.24}$	$4.48^{+0.36}_{-0.89}$ $6.62^{+0.49}_{-0.99}$	2.8
J165707-4255_1	$0.71^{+0.21}_{-0.31}$	$0.05^{+0.16}_{-0.04}$	2.53 ± 0.32	3.39 ± 0.43	2.1	$0.78_{-0.11}$ $0.87_{-0.16}^{+0.24}$	< 0.02	$2.69^{+0.24}_{-0.53}$		3.3
J170052-4210_1	$0.71_{-0.31}$ $0.31_{-0.16}^{+0.35}$	$0.25^{+0.45}_{-0.22}$	0.84 ± 0.14	4.93 ± 0.82		$\begin{array}{c} 0.87\substack{+0.24\\-0.16}\\ 0.51\substack{+0.42\\-0.19}\end{array}$	$0.13^{+0.17}_{-0.13}$ $0.03^{+0.06}_{-0.03}$	$2.69^{+0.24}_{-0.53}$ $0.84^{+0.18}_{-0.27}$	$2.78^{+0.24}_{-0.57}$ $1.98^{+0.69}_{-0.80}$	3.9
J170444-4109_1	0.07 ± 0.28	$\begin{array}{c} 0.05\substack{+0.16\\-0.04}\\ 0.25\substack{+0.45\\-0.22}\\ 0.01\substack{+0.10\\0.00}\\ 0.13\substack{+0.14\\-0.10\\0.61\substack{+0.39\\-0.24}\end{array}$	9.28 ± 0.75	9.85 ± 0.80	1.8		$0.03^{+0.06}_{-0.03}$	$\begin{array}{c} 0.84\substack{+0.18\\-0.27}\\ 8.51\substack{+0.66\\-0.88} \end{array}$	$10.48_{-1.02}^{+0.92}$	2.4
J170536-4038_1	$1.46^{+1.11}_{-0.55}$	$0.13^{+0.14}_{-0.10}$	6.09 ± 0.57	9.33 ± 0.88	1.1	$1.54^{+0.42}_{-0.30}$ $3.95^{+2.79}_{-1.29}$ $1.22^{+0.25}$	$0.03_{-0.03}^{+0.03}$ $0.05_{-0.05}^{+0.06}$	$8.51^{+0.00}_{-0.88}$ $8.65^{+0.81}_{-1.65}$		1.8
J171910-3652_2	$0.17^{+0.07}_{-0.06}$	$0.61^{+0.39}_{-0.24}$	1.81 ± 0.17	136.22 ± 12.59	1.1		< 0.03	$8.65^{+0.81}_{-1.65}$ $2.59^{+0.30}_{-0.26}$	$9.08_{-1.40}$ $2.71_{-0.20}^{+0.25}$	4.00
J172050-3710_1	$0.17_{-0.06}$ $0.38_{-0.06}^{+0.08}$	$\begin{array}{c} 0.61 \substack{+0.24 \\ -0.24 \\ 0.37 \substack{+0.09 \\ -0.09 \\ 0.20 \substack{+0.25 \\ -0.16 \end{array}} \end{array}$	1.77 ± 0.10	12.78 ± 0.72	1.1	$0.67^{+0.09}_{-0.08}$	$0.24^{+0.05}_{-0.04}$	$2.59_{-0.26}^{+0.13}$ $2.03_{-0.28}^{+0.13}$	$6.06^{+0.75}_{-0.98}$	2.1
J172550-3533_2	$1.14^{+1.35}_{-0.55}$	$0.20^{+0.25}_{-0.16}$	0.41 ± 0.06	0.81 ± 0.12	0.6					
J172550-3533_3	$1.14_{-0.55}^{+1.05}$ $1.28_{-0.56}^{+1.14}$	$\begin{array}{c} 0.20\substack{+0.25\\-0.16}\\ 0.10\substack{+0.21\\-0.09}\end{array}$	0.55 ± 0.09	0.79 ± 0.12						
J172623-3516_1	1 56+0.01	$0.28^{+0.69}_{-0.26}$	1.0 ± 0.15	1.93 ± 0.29	0.6				0.60	
J173548-3207_1	$4.00^{+6.00}_{-2.30}$	$0.12^{+0.21}_{-0.09}$	1.58 ± 0.23	1.95 ± 0.29	3.6	$3.67^{+5.98}_{-1.59}$	$0.21_{-0.13}^{+0.15}$	$1.57^{+0.42}_{-0.70}$	$2.13^{+0.68}_{-0.59}$	3.3
J175404-2553_3	$4.00_{-2.30}^{+95.64}$ $2.56_{-1.85}^{+95.64}$	$\begin{array}{c} 0.12\substack{+0.21\\-0.09}\\ 33.00\substack{+3.00\\-18.00}\\ 4.40\substack{+3.20\\-2.00}\end{array}$	1.34 ± 0.27	28.13 ± 5.69						
J180857-2004_1	$2.56_{-1.85}^{-1.85}$ $3.19_{-1.77}^{+19.41}$	$4.40^{+3.20}_{-2.00}$ $4.90^{+1.90}_{-1.40}$	1.12 ± 0.17	4.19 ± 0.63		1.75	.0.00	0.55	1.50	
J180857-2004_2	$5.19_{-1.77} \\ 2.21_{-0.82}^{+1.68} \\ 6.52_{-4.45}^{+91.68}$	$4.90^{+1.90}_{-1.40}$	1.88 ± 0.21	10.23 ± 1.14	0.6	$4.03^{+4.75}_{-1.50}$	$3.37^{+0.88}_{-0.78}$	$1.78^{+0.55}_{-1.13}$	$5.52^{+1.58}_{-3.43}$	1.9
J181116-1828_2	$6.52^{+91.68}_{-4.45}$	$1.85^{+1.55}_{-0.85}$	2.7 ± 0.38	5.36 ± 0.75	1.5					
J181213-1842_9	$\begin{array}{c} 6.52_{-4.45}^{+91.08} \\ 0.84_{-0.49}^{+0.79} \end{array}$	$0.04^{+0.27}_{-0.03}$	0.35 ± 0.09	0.45 ± 0.11		17.00	.0.10	0.55	.1.10	
J181915-1601_2	-0.10	.0.19				$5.44^{+17.68}_{-2.61}$ $0.74^{+0.21}_{-0.15}$	$1.15^{+0.49}_{-0.40}$ $0.99^{+0.24}_{-0.21}$	$3.25^{+0.55}_{-0.99}$ $0.44^{+0.08}_{-0.21}$	$5.92^{+1.18}_{-1.37}$ $3.90^{+0.91}_{-2.11}$	2.1
J182435-1311_1	$0.84^{+0.19}_{-0.17}$ $0.76^{+0.38}_{-0.23}$	$\begin{array}{c} 0.82\substack{+0.18\\-0.15}\\ 0.26\substack{+0.17\\-0.12}\\ 0.37\substack{+1.13\\-0.36}\end{array}$	0.47 ± 0.05	2.54 ± 0.27	1.7	$0.74^{+0.21}_{-0.15}$	$0.99^{+0.24}_{-0.21}$	$0.44^{+0.08}_{-0.21}$	$3.90^{+0.91}_{-2.11}$	3.3
J182509-1253_1	$0.76_{-0.23}^{+0.38}$	$0.26_{-0.12}^{+0.17}$	0.49 ± 0.05	1.4 ± 0.15	1.6	$1.37^{+0.15}_{-0.34}$	$0.99_{-0.21}$ $0.20_{-0.08}^{+0.09}$	$0.44_{-0.21}$ $0.54_{-0.19}^{+0.09}$	$1.03^{+0.21}_{-0.22}$	2.7
J182538-1214_1	$\begin{array}{c} 0.76_{-0.23}^{+0.00}\\ 0.38_{-0.26}^{+0.90}\\ 6.31_{-4.17}^{+91.89}\end{array}$	0.20	0.52 ± 0.10	3.86 ± 0.72						
J182651-1206_4		$\begin{array}{c} 0.20\substack{+0.28\\-0.19}\\ 4.10\substack{+1.30\\-1.00}\end{array}$	0.32 ± 0.08	0.42 ± 0.10		12.20	1.54	1.50	.7.40	
J183116-1008_1			5.55 ± 0.60	15.35 ± 1.67	1.5	$2.96^{+2.26}_{-0.96}$	$6.37^{+1.54}_{-1.35}$	$5.18^{+1.52}_{-2.86}$	$26.82^{+7.42}_{-13.83}$	1.9
J183345-0828_1	$3.26_{-2.28}$ $3.26_{-1.77}^{+13.04}$ $6.21^{+91.89}$	$2.00^{+1.40}_{-0.90}$ $16.0^{+13.0}_{-6.6}$	0.62 ± 0.10	1.64 ± 0.26						
J183356-0822_2	$0.51_{-4.64}$	$16.0^{+13.0}_{-6.6}$	2.05 ± 0.25	10.44 ± 1.26	1.0	1.00	0.21	0.70	1 01	
J184652-0240_1	2.21-0.86	$16.0^{+13.0}_{-6.6}$ $1.10^{+0.55}_{-0.37}$	3.9 ± 0.42	10.29 ± 1.11	0.9	$2.21^{+1.06}_{-0.59}$	$1.14^{+0.31}_{-0.27}$	$3.66^{+0.79}_{-1.46}$	$10.87^{+1.81}_{-3.90}$	1.8
J184738-0156_1	$5.47^{+92.73}_{-3.33}$	$11.0^{+6.00}_{-4.20}$ $0.31^{+0.15}_{-0.12}$	19.34 ± 1.74	83.9 ± 7.56	1.2	0.0510.21	0.1010.05	6 02 10 72	11.0011.01	•
J185608+0218_1	$0.42^{+0.17}_{-0.11}$ $3.12^{+41.53}_{-1.91}$	-8.14	5.66 ± 0.41	30.15 ± 2.16	1.3	$0.96^{+0.21}_{-0.16}$	$0.10\substack{+0.05 \\ -0.04}$	$6.82^{+0.72}_{-0.83}$	$11.02^{+1.91}_{-2.17}$	2.0
J190534+0659_1	$3.12^{+41.53}_{-1.91}$ $2.21^{+1.75}_{-0.72}$	$\begin{array}{c} 0.31_{-0.12} \\ 0.37_{-0.30}^{+0.45} \\ 0.52_{-0.19}^{+0.27} \end{array}$	0.69 ± 0.18	1.12 ± 0.30		1 00	a = a 0.25			
J190814+0832_2	$2.21^{+1.75}_{-0.72}$	$0.52^{+0.27}_{-0.19}$ $0.12^{+0.22}_{-0.1}$	0.84 ± 0.13	1.71 ± 0.26	0.8	$1.46^{+1.00}_{-0.48}$	$0.50^{+0.25}_{-0.21}$	0.77		0.4
J194310+2318_5	$2.21_{-0.72}$ $0.55_{-0.25}^{+0.29}$	$0.12_{-0.1}^{+0.22}$	0.69 ± 0.13	1.42 ± 0.26						
J195006+2628_2	$\begin{array}{c} 0.33_{-0.25} \\ 0.48_{-0.32}^{+1.01} \end{array}$	$0.12_{-0.1}$ $0.29_{-0.28}^{+0.81}$	0.22 ± 0.04	0.97 ± 0.20						

Note. — The quantile analysis spectral interpolation and Cash statistics spectral modeling are performed on those ChIcAGO sources with > 20 and > 50 X-ray counts, respectively. The CIAO task sample_flux failed for ChI J190814+0832_2 and so the quoted flux is taken from the best fit model parameters.

^a The quantile analysis interpolated absorbed thermal bremsstrahlung model parameters including the temperature, kT (keV), and absorption column density N_H (10²² cm⁻²), as well as the absorbed and unabsorbed X-ray fluxes, $F_{x,abs}$ and $F_{x,unabs}$ (10⁻¹³ erg cm⁻² s⁻¹), respectively, in the 0.3–8.0 keV energy range. The quoted χ^2_{red} value is what is expected if these interpolated spectral parameters are used to fit the X-ray spectrum of the source.

^b The absorbed thermal bremsstrahlung fit model parameters using Cash (1979) statistics including the temperature, kT (keV), and absorption column density N_H (10²² cm⁻²), as well as the absorbed and unabsorbed X-ray fluxes, $F_{x,abs}$ and $F_{x,unabs}$ (10⁻¹³ erg cm⁻² s⁻¹), respectively, in the 0.3–8.0 keV energy range. The quoted *C* value is the reduced Cash statistic, which is the observed statistic divided by the number of degrees of freedom. A good fit is indicated by a *C* value of order 1.

Table 5
Properties of optical counterparts, where they exist, for all ChIcAGO sources with > 20
X-ray counts

ChIcAGO Source	USNO Name	Optical ^a		Optical M	agnitudes ^b		MagIC or IMACS Date ^c
ChI	USNO-B1.0	Data Source	В	V	R	Ι	yyyy-mm-dd
J143148-6021_3	0296-0521275	U,A,A,A	19.71 ± 0.3	20.49 ± 0.03	19.31 ± 0.03	18.27 ± 0.03	2008-05-13
J144042-6001_1	0299-0503336	U	10.26 ± 0.3		9.36 ± 0.3	8.99 ± 0.3	
J144547-5931_1	0304-0487344	U	20.54 ± 0.3		15.79 ± 0.3	12.30 ± 0.3	
J144701-5919_1	0306-0492632	U			16.61 ± 0.3	12.95 ± 0.3	
J154122-5522_1	0346-0518164	U	13.17 ± 0.3		11.87 ± 0.3	10.87 ± 0.3	
J154557-5443_1	0352-0535858	U	16.16 ± 0.3		15.10 ± 0.3	14.67 ± 0.3	
J154557-5443_3	0352-0535969	U	17.91 ± 0.3		16.51 ± 0.3	15.42 ± 0.3	
J155035-5408_1	0358-0537979	U	11.40 ± 0.3		10.71 ± 0.3	10.43 ± 0.3	
J155035-5408_3	0358-0538167	U	15.81 ± 0.3		13.96 ± 0.3	13.09 ± 0.3	
J155331-5347_1	0361-0529851	U	14.38 ± 0.3		12.93 ± 0.3	12.74 ± 0.3	
J155831-5334_1	0364-0530109	U	16.99 ± 0.3		16.37 ± 0.3	16.15 ± 0.3	
J162046-4942_1	0402-0531543	U	15.03 ± 0.3		12.48 ± 0.3	10.71 ± 0.3	
J163252-4746_2		А		> 25	> 25	21.93 ± 0.05	2008-05-13
J163751-4656_1	0430-0573746	U	15.27 ± 0.3		14.94 ± 0.3	15.07 ± 0.3	
J165217-4414_1	0457-0509597	U,A,A,A	19.03 ± 0.3	19.73 ± 0.03	18.74 ± 0.03	17.80 ± 0.03	2008-05-13
J165420-4337_1	0463-0473777	U,A,A,A	17.62 ± 0.3	19.88 ± 0.03	19.01 ± 0.03	17.82 ± 0.03	2008-05-13
J165646-4239_1	0473-0602564	U	14.49 ± 0.3		12.46 ± 0.3	10.89 ± 0.3	
J165646-4239_2		А		22.69 ± 0.06	21.76 ± 0.05	20.83 ± 0.04	2008-05-13
J165707-4255_1	0470-0567106	U	14.15 ± 0.3		12.37 ± 0.3	11.04 ± 0.3	
J170017-4220_1		I,A,A,A	$> 23.5 \pm 0.3$	> 25	> 25	$> 23.4 \pm 0.3$	I:2008-07-30,A:2008-05-1
J170052-4210_1	0478-0576746	U	15.02 ± 0.3		13.57 ± 0.3	11.83 ± 0.3	
J170444-4109_1	0488-0491640	U	16.68 ± 0.3		15.07 ± 0.3	13.01 ± 0.3	
J170536-4038_1	0493-0497837	U	11.65 ± 0.3		10.89 ± 0.3	10.33 ± 0.3	
J172050-3710_1	0528-0624586	U	11.97 ± 0.3		11.62 ± 0.3	11.47 ± 0.3	
J172550-3533_2	0544-0498651	U	16.04 ± 0.3		14.84 ± 0.3	14.97 ± 0.3	
J172550-3533_3	0544-0498592	U	11.82 ± 0.3		11.16 ± 0.3	10.89 ± 0.3	
J172623-3516_1	0547-0493410	U	14.26 ± 0.3		11.86 ± 0.3	10.82 ± 0.3	
J172642-3540_1	0543-0502139	U	11.62 ± 0.3		9.98 ± 0.3	9.16 ± 0.3	
J173548-3207_1	0578-0723476	U	15.19 ± 0.3		14.67 ± 0.3	14.45 ± 0.3	
J181116-1828_2		A(blend)		20.08 ± 0.03	18.93 ± 0.03	17.84 ± 0.03	2008-05-13
J181213-1842_7		Ι		$> 23.5 \pm 0.5$			2008-07-30
J181213-1842_9	0713-0551349	U	13.43 ± 0.3			12.76 ± 0.3	
J181915-1601_2	0739-0563199	U	16.15 ± 0.3		13.66 ± 0.3	11.23 ± 0.3	
J182435-1311_1	0768-0532899	U	13.08 ± 0.3		11.01 ± 0.3	9.92 ± 0.3	
J182509-1253_1	0771-0546066	U	12.64 ± 0.3		11.36 ± 0.3	10.74 ± 0.3	
J182538-1214_1	0777-0567961	U	14.33 ± 0.3		13.00 ± 0.3	12.89 ± 0.3	
J182651-1206_4	0778-0569793	U	16.62 ± 0.3		13.97 ± 0.3	14.10 ± 0.3	
J183116-1008_1	0798-0402571	U	16.79 ± 0.3		13.38 ± 0.3		
J183206-0938_1	0803-0434604	U	10 50 1 5 5		16.59 ± 0.3	11.35 ± 0.3	
J184652-0240_1	0873-0550754	U	19.50 ± 0.3		15.44 ± 0.3	12.41 ± 0.3	
J185608+0218_1	0922-0521590	U	10.36 ± 0.3		9.48 ± 0.3	9.12 ± 0.3	
J190534+0659_1	0969-0463844	U	14.67 ± 0.3		11.98 ± 0.3	10.46 ± 0.3	
J190814+0832_2	0985-0428114	U	16.05 ± 0.3		14.32 ± 0.3	12.78 ± 0.3	
J190818+0745_1	0977-0515881	U	18.04 ± 0.3		16.74 ± 0.3	16.54 ± 0.3	
J194310+2318_5	1132-0447077	U	9.63 ± 0.3		9.08 ± 0.3	8.85 ± 0.3	2000 07 20
J194939+2631_1	1165-0456015	U,I,I,NA	20.20 ± 0.3	20.1 ± 0.1	19.1 ± 0.1		2008-07-30

Note. — ChI J170017-4220_1 was observed with both MagIC and IMACS. The dates of both observations are listed and prefixed by the corresponding dataset symbol described below. The MagIC observation of ChI J181116-1828_2 shows that it may be a blend.

^a Catalog or observations from which the counterpart optical magnitudes were obtained. U = USNO B1 Catalog (Monet et al. 2003), A = MagIC Magellan observations, I = IMACS Magellan observations, NA = no data for the corresponding magnitude. If four symbols are listed this indicates that the magnitudes were obtained from different datasets. This order corresponds to the *B*, *V*, *R* and *I* magnitude order.

^b The USNO-B1.0 *B* and *R* band magnitudes listed are the second epoch *B* and *R* magnitudes (Monet et al. 2003)

^c Date of the MagIC and IMACS observations: yyyy-mm-dd.

THE CHICAGO SURVEY

Table 6

The chance of a random association between the listed ChIcAGO sources (all of which have > 20 X-ray counts) and a 2MASS and GLIMPSE source

ChIcAGO source ChI	$\frac{2 \text{MASS } N(< K_s)^a}{(\times 10^{-2})}$	GLIMPSE $N(< M_{3.6})^{\rm b}$ (×10 ⁻²)
J155831-5334_1	1.76	
J163751-4656_1	1.67	3.16
J165420-4337_1		2.29
J172550-3533_2	1.08	1.71
J173548-3207_1	1.22	3.02
J181116-1828_2		3.15
J183345-0828_1 J190818+0745_1	1.25	1.17

Note. — Only those ChIcAGO sources where the chance of random alignment with a survey source is > 0.01 are listed.

^a Chance of finding a 2MASS source with a K_s magnitude brighter than the counterpart listed in Table 2 within the ChIcAGO source's 95% position error circle.

^b Chance of finding a GLIMPSE source with a 3.6µm magnitude brighter than the counterpart listed in Table 2 within the ChIcAGO source's 95% position error circle.

Table 7
Likely optical and infrared counterparts of secondary (< 20 X-ray counts) ChIcAGO
Sources

ChIcAGO Source	USNO Name	offset ^a	2MASS name	offset ^a	GLIMPSE nameb	offseta
ChI	USNO-B1.0	(arcsec)	2MASS J	(arcsec)	SSTGLMC G	(arcsec
J143148-6021 1	0296-0521300	0.4	14315021-6022087	0.56	G315.0382+00.1212	0.41
J143148-6021 2	0296-0521279	0.35	14314859-6021444	0.25	G315.0377+00.1287	0.36
J143148-6021_4	0296-0521208	0.32	14314161-6019552	0.7	G315.0358+00.1622	0.56
J144519-5949 1	0270 0321200	0.52	14451506-5949286	0.51	G316.7879-00.0504	0.61
J144519-5949 4	0301-0471052	0.36	14451937-5948007	0.47	G316.8065-00.0321	0.64
J144519-5949_5	0501 0471052	0.50	14445787-5950387	0.3	G316.7471-00.0527	0.66
J144519-5949 6			14450584-5949317	0.64	G316.7701-00.0429	0.00
J145732-5901 1			14573495-5859538	0.18	G318.5603-00.0084	0.22
J150436-5824 2			15043142-5823048	0.18	G319.6454+00.1008	1.11
J150436-5824_2	0315-0471854	0.84	15045112-5824582	0.57	G319.6676+00.0522	0.67
J151005-5824_5	0313-04/1034	0.04	15100715-5826089	0.23	G320.2556-00.3078	0.62
J151005-5824_4			15100685-5825567	0.23	0320.2330-00.3078	0.02
J151005-5824_5			15095562-5826220	0.14	G320.2324-00.2984	0.74
J151005-5824_9			15095233-5827126	0.10	G320.2189-00.3069	0.74
J151005-5824_10 J151005-5824_11			15100507-5826021	0.32	G320.2527-00.3040	0.40
J151005-5824_11 J153751-5556 1	0340-0505998	0.41	15375937-5554232	0.13	G324.7982-00.2732	0.39
	0340-0505789	0.41	15373513-5556504	0.43	G324.7982-00.2732 G324.7284-00.2727	0.29
J153751-5556_2	0340-0303789	0.57	155/5515-5550504	0.38		
J154122-5522_2					G325.5315-00.1292	0.55
J154122-5522_3	0252 0525941	0.22			G325.4728-00.1194	0.49
J154557-5443_6	0352-0535841	0.33				
J154557-5443_7	0353-0529489	1.13	15405052 5401472	0.42	G22(0824 00 0001	0.54
J154905-5420_1	0056 0505066	0.52	15485853-5421473	0.43	G326.9824-00.0001	0.54
J154905-5420_10	0356-0527966	0.53	15484845-5419001	0.26	G326.9922+00.0514	0.45
J154905-5420_11	0356-0528195	0.62	15490739-5418534	0.09	G327.0294+00.0242	0.2
J154905-5420_3	0056 0500174	0.54	15485233-5419128	0.26	G326.9974+00.0428	0.19
J154905-5420_4	0356-0528174	0.54	15490492-5419300	0.14	G327.0183+00.0200	0.19
J154905-5420_5			15491154-5422275	0.43	G327.0002-00.0285	0.54
J154905-5420_6					G326.9922-00.0152	0.78
J154905-5420_8	0057 0500760	0.07	15405160 5416005	0.00	G327.0269+00.0141*	0.62
J154951-5416_1	0357-0538762	0.27	15495168-5416297	0.28	G327.1384-00.0116*	0.46
J155035-5408_2	0358-0538121	0.35	15503372-5409160	0.14	G327.2937+00.0181	0.37
J155831-5334_2	0364-0530387	0.28	15584724-5334064	0.59	G328.6013-00.3046	0.71
J162011-5002_2	0399-0531568	0.16	16200603-5001406	0.23	G333.4207+00.0715	0.36
J162208-5005_3			16220699-5004580	0.38	G333.6115-00.1955	0.53
J162246-4946_2			16225165-4946377	0.27	G333.9125-00.0647	0.4
J162246-4946_4			16225873-4946109	0.33	G333.9312-00.0730	0.69
J163524-4728_3	0424-0650841	0.26	16352088-4730567	0.23	G336.9720+00.0028	0.07
J163524-4728_4	0425-0649089	0.39	16352057-4728317	0.44	G337.0012+00.0305	0.39
J165420-4337_2	0463-0473953	0.73	16543480-4338027	0.65	G342.1074-00.0150	0.71
J165707-4255_2	0470-0567346	0.62	16571994-4256206	0.33	G342.9629+00.0301	0.44
J165901-4208_1					G343.8034+00.2822	0.34
J165901-4208_2			16591198-4209350	0.34	G343.7873+00.2447	0.44
J165901-4208_3	0478-0574898	0.2	16591006-4208451	0.08	G343.7945+00.2579	0.13
J170017-4220_2	0476-0587932	0.03	17002524-4219003	0.08	G343.8034-00.0300	0.19
J170112-4212_1					G343.9738-00.1029	0.23
J170555-4104_1	0489-0494967	0.4	17054550-4104024	0.28	G345.4011-00.0573	0.17
J170555-4104_2	0489-0494969	0.28	17054564-4104172	0.37	G345.3981-00.0601	0.41
J171715-3718_1	0527-0619568	0.72	17170761-3716139	0.38	G349.7655+00.4099*	0.59
J171715-3718_2			17172402-3717160	0.5	G349.7829+00.3556	0.71
J171910-3652_3	0531-0542255	0.11	17192403-3652095	0.41	G350.3546+00.2705	1.02
J171922-3703 ²	0529-0602946	0.11	17192991-3701128	0.22	G350.2423+00.1677	0.33

 Table 7
 — Continued

ChIcAGO Source ChI	USNO Name USNO-B1.0	offset ^a (arcsec)	2MASS name 2MASS J	offset ^a (arcsec)	GLIMPSE name ^b SSTGLMC G	offset ^a (arcsec)
J171922-3703_4			17192143-3703225	0.3	G350.1967+00.1702	0.44
J172623-3516_2			17262588-3515229	0.48	G352.4885+00.0118	0.73
J172642-3504_3	0549-0511010	0.62	17264746-3504569	0.28		
1172642-3504 4	0549-0510994	0.71	17264522-3502047	0.8	G352.7090+00.0808	0.47
172642-3504_5	0019 0010991	0171	1,20,022,00020,1	0.0	G352.6923+00.1040	0.08
173628-3141 1	0583-0582872	0.43	17362729-3141234	0.2	G356.6169+00.2196	0.00
180857-2004_3	0699-0558263	0.45	18090897-2004218	0.41	G010.3480-00.1793	0.35
181033-1917 1	0077 0550205	0.25	18103278-1917550	0.49	G011.1845-00.0929	0.66
181116-1828_1	0715-0555726	0.14	18112081-1828199	0.17	G011.9999+00.1394	0.3
181116-1828_3	0715-0555720	0.14	18112081-1828199	0.17	G011.9999+00.1394 G011.9868+00.1823	0.3
181116-1828_4	0714-0538112	0.39	18111909-1830479	0.44	G011.9605+00.1256	0.39
181213-1842 1	0714-0550112	0.59	181122087-1844028	0.47	G011.8843-00.1943	0.39
181213-1842_1	0713-0551671	0.24	18122087-1844028	0.12	G011.9377-00.1384	0.24
_			10101000 1041050	0.66		
181213-1842_4	0713-0551557	0.45	18121282-1841259	0.66	G011.9073-00.1456	0.29
181213-1842_5	0713-0551321	0.4	10120510 1042240	0.76	6011 0627 00 1247	1.00
181213-1842_6	0712-0536482	0.4	18120510-1843248	0.76	G011.8637-00.1347	1.09
181213-1842_8	0712-0537442	0.58	18122472-1842024	0.47	G011.9210-00.1916	0.36
181705-1607_2	0738-0565615	0.57	18170377-1606272	0.3	G014.7290+00.0720	0.12
181705-1607_4	0738-0565492	0.63	18165657-1608235	0.36	G014.6869+00.0820	0.39
181705-1607_5	0739-0559943	0.14	18170585-1605576	0.2	G014.7402+00.0686	0.38
181705-1607_7	0738-0565550	0.44	18165970-1606182	0.18	G014.7235+00.0876	0.38
181852-1559_1	0740-0564778	0.27	18185174-1559403	0.22	G015.0335-00.2550	0.14
181852-1559_3	0740-0564744	0.23	18185004-1559157	0.8	G015.0364-00.2457	0.84
181917-1548_1			18190851-1549270	0.45	G015.2154-00.2336	0.19
182509-1253_2	0771-0545940	0.28	18250314-1252109	0.27	G018.4960-00.1086	0.09
182651-1206_1	0779-0556414	0.48			G019.4011-00.1473	0.31
183116-1008_2	0798-0402569	0.37	18311645-1009105	0.3	G021.6098-00.1949	0.07
183116-1008 3	0798-0402703	0.31	18312100-1007598	0.34	G021.6358-00.2024	0.19
183345-0828_2	0815-0416246	0.31	18334527-0825192	0.51	G023.4277+00.0616	0.42
183356-0822 1	0816-0437498	0.42	18335034-0823032	0.39	G023.4708+00.0605	0.35
183356-0822_6	0816-0437875	0.81				
183356-0822_7	0816-0437882	0.72	18340563-0821033	0.32		
183518-0754 1	0820-0496843	0.22	18352446-0754383	0.38	G024.0701-00.0659	0.7
184008-0543_1	0020 0190015	0.22	10552110 075 1505	0.50	G026.5331-00.0987	0.13
184400-0355_1	0860-0388202	0.42	18440331-0358188	0.5	G028.5561-00.1712	0.13
184652-0240_2	0873-0550942	0.5	18465626-0239530	0.27	G030.0475-00.2144	0.41
184741-0219 2	0876-0581370	0.34	18473651-0219323	0.18	G030.4257-00.2088	0.41
184741-0219_2	0870-0381370	0.54	18474299-0218227	0.18	G030.4257-00.2088 G030.4552-00.2240	0.24
184741-0219_4	0876-0581506	0.24	18474431-0219167	0.34	G030.4444-00.2357	0.38
185643+0220_1	0923-0533662	0.24	18564801+0218361	0.34	G035.5989-00.1389	0.14
190814+0832_1	0925-0555002	0.17	19081119+0829537	0.49	G042.3972+00.1784	0.33
	0085 0428172	0.46				
190814+0832_3	0985-0428173	0.46	19081590+0832408	0.24	G042.4474+00.1826	0.31
190818+0745_3	1100 0400140	0.01			G041.7964-00.1868	0.78
194152+2251_1	1128-0498149	0.81	10415007-0054177	0.77	C059 0142 00 0972	0.72
194152+2251_3	1129-0484063	0.26	19415297+2254177	0.67	G058.9142-00.0873	0.73
194310+2318_1	1132-0446999	0.24	19430677+2316122	0.25	G059.3716-00.1515	0.48
194310+2318_2	1132-0447018	0.8	19430779+2317032	0.26	G059.3858-00.1479	0.33
194310+2318_3	1133-0422179	0.52	19430494+2318339	0.16	G059.4023-00.1258	0.22
194310+2318_4	1133-0422272	0.5	19431133+2320391	0.27	G059.4446-00.1298	0.15
194310+2318_6	1133-0422204	0.21	19430704+2318318	0.33	G059.4058-00.1331	0.19
194310+2318_7	1133-0422314	0.17	19431451+2320165	0.21	G059.4452-00.1435	0.02
194310+2318_8			19431304+2317250	0.26	G059.4011-00.1623	0.33
194310+2318_10			19430845+2318172	0.16	G059.4050-00.1398	0.29
194332+2323_1	1133-0422494	0.51	19432717+2323314	0.26	G059.5163-00.1585	0.3
194332+2323_2	1134-0415530	0.45				
194332+2323_3			19434329+2324562	0.4	G059.5674-00.2002	0.29
194332+2323 4	1134-0415508	0.19	19432977+2325098	0.25	G059.5450-00.1535	0.16
194332+2323 5	1134-0415545	0.27	19433302+2326247	0.14	G059.5692-00.1539	0.18
194332+2323_6	1134-0415461	0.2	19432305+2325174	0.08	G059.5340-00.1301	0.23
194332+2323_0	-10.0110101	0.2	-, 102000120201/7	0.00	G059.5078-00.1462	0.23
194622+2436 1	1145-0435437	0.25	19462497+2435462	0.58	G060.8974-00.1421	0.91
194622+2436_1 194622+2436_2	1146-0434793		19463435+2437058		G060.9345-00.1617	0.69
		0.48		0.41	G060.9345-00.1617 G060.9190-00.0872	
J194622+2436_3	1146-0434550	1.05	19461529+2438323	0.39		0.52
J195006+2628_1	1164-0455522	0.46	19501612+2627172	0.43	G062.9404+00.0480	0.23
J195006+2628_3	1164 0 17 7 22 1	0.00	19500352+2627436	0.39	G062.9228+00.0922	0.15
J195006+2628 4	1164-0455331	0.89	19500525+2628178	0.36	G062.9343+00.0915	0.4 0.24
J195006+2628_5	1164-0455237	0.28	19500110+2629342	0.11	G062.9447+00.1156	

^a The offset, in arcseconds, between the catalogs and ChIcAGO source position for the likely USNO B1, 2MASS and GLIMPSE counterparts, respectively.

^b Those GLIMPSE counterpart names marked with a * are from the archives (more complete, less reliable) rather than the catalogs (more reliable). In these cases the archival GLIMPSE source's names begins with "SSTGLMA G."

Table 8

Summary of the fraction of ChIcAGO sources with a coincident cataloged source from 2MASS, GLIMPSE and USNO B1. These fractions are for the total number of ChIcAGO sources and for the ChIcAGO sources with > 20 X-ray counts.

ChIcAGO source samples	2MASS fraction (%)	GLIMPSE fraction (%)	USNO B1 fraction (%)
Total (253 sources)	57	61	47
> 20 X-ray counts (74 sources)	59	61	55

Table 9 Radio counterparts to ChIcAGO Sources

ChIcAGO Source (ChI) ^a	Survey ^b	Radio source	Type ^c	Location ^d	Reference ^e
J144042-6001_1	MGPS	SNR G316.3-0.0	SNR	L	1
J144519-5949_(1-6)	MGPS	GAL 316.8-00.1	ΗII	С	2
J144701–5919_1	ATCA	AX J144701–5919	MS	С	3
J145732-5901_(1-2)	MGPS	SNR G318.2+0.1	SNR	L	4,5
J151005-5824_(1-11)	MGPS	G320.3–0.3	ΗII	С	6
J153818-5541_1	ATCA		ND		7
J154905-5420 (1-11)	MGPS	G326.96+0.03	ΗII	А	8
J155331–5347_1	ATCA		ND		7
J155331-5347_2	ATCA		ND		7
J162208-5005_(1-3)	MGPS	G333.6–0.2	ΗII	С	6
J163252-4746_1	ATCA		ND		7
J163252-4746_2	ATCA	AX J163252-4746	CWB	С	3
J163751-4656_1	ATCA		ND		7
J165217-4414_1	MGPS	uncataloged	Arc	С	
J165420-4337_1	ATCA	-	ND		7
J165420-4337_2	ATCA		ND		7
J165646-4239_(1-2)	MGPS	SDC G343.306+0.161	IRDC	С	9
J165707-4255_(1-2)	MGPS	uncataloged	Arc	С	
J170052-4210_1	ATCA	-	ND		7
J172550-3533_(1-3)	MGPS	uncataloged	Arc	L	
J180857-2004_1,2	90, MAGPIS	MAGPIS 10.3139-01417	D	С	10
J181116-1828_5	MAGPIS	MAGPIS 11.97095+0.19155	AGN	K	10
J181213-1842_1,8	90, MAGPIS	SNR G11.8-0.2	SNR	L	11
J181213-1842_2,5	90, MAGPIS	SNR G12.0-0.1	SNR	А	12
J181705-1607_(1-7)	90, MAGPIS	MAGPIS 14.6167+0.0667	D	L	10
J182435-1311_(1-4)	90, MAGPIS	SNR G18.1-0.1	SNR	С	10,11
J182538-1214_1	90, MAGPIS	SNR G19.1+0.2	SNR	L	11
J183206-0938_1	MAGPIS	MAGPIS 22.15394-0.15414	CWB	С	10,13
J183356-0822_6,7	MAGPIS	SNR 23.5667-0.0333	SNR	L	10
J184400-0355_1	MAGPIS	SNR G28.6-0.1	SNR	L	14
J184447-0305_1	MAGPIS	SNR 29.3667+0.1000	SNR	С	10
J184738-0156_1	MAGPIS	NVSS 184736-015632	CWB	С	3,15
J184741-0219_3	MAGPIS	MAGPIS 30.43741-0.20625	AGN	K	10
J194310+2318_(1-10)	VGPS	G59.5–0.2	НII	С	6
J194332+2323_(1-8)	VGPS	G59.5–0.2	НII	С	6
J194622+2436_1	VGPS	NVSS 194620+243514	Com	L	15
J195006+2628_(1-5)	VGPS	G62.9+0.1	Нп	С	6,16

7: This paper; 8: McClure-Griffiths et al. (2001); 9: Peretto & Fuller (2009); 10: Helfand et al. (2006); 11: Brogan et al. (2006); 12: Caswell et al. (1975); 13: Motch et al. (2010); 14: Helfand et al. (1989); 15: Condon et al. (1998); 16: Ramos-Larios et al. (2010)

^a The names of the ChIcAGO sources with radio counterparts. If all the ChIcAGO sources in a *Chandra* observation of an AGPS source are coincident with the radio counterpart, then the range of suffixes are listed in parentheses. If only a subset of the ChIcAGO sources detected in a given Chandra observation are coincident with the radio counterpart, then only those suffixes are listed.

^b The radio Galactic plane surveys or observations visually inspected- MGPS: Molonglo Galactic Plane Survey, 90: 90cm Multi-configuration Very Large Array survey of the Galactic Plane, MAGPIS: The Multi-Array Galactic Plane Imaging Survey, VGPS: VLA Galactic Plane Survey. ATCA: Australia Telescope Compact Array observations obtained for radio follow-up of ChIcAGO sources (see Sections 2.4.2 and 3.4).

^c Type of radio source- SNR: Supernova Remnant; H II: H II region; MS: Massive star; CWB: colliding-wind binary; IRDC: Infrared Dark Cloud; AGN: Likely Active Galactic Nuclei based on a core-lobe morphology; D: Diffuse; Arc: Diffuse emission with an arc or shell morphology; Com: Compact; ND: No detection in the case of the ATCA observations. ^d Position of the ChIcAGO source relative to the radio source- C: Coincident, A: Adjacent; L: Limb (usually the limb or edge of a SNR, arc/shell structured diffuse emission or H II region); K: Core of a possible AGN given the apparent core-lobe morphology.

^e Many additional references to the SNRs are compiled in Green (2009).

 Table 10

 The chance of a random association between the listed ChIcAGO sources coincident with SNRs and a USNO B1 and GLIMPSE source

ChIcAGO source ChI	USNO B1 <i>N</i> (< <i>R</i>) ^a (×10 ⁻²)	GLIMPSE $N(< M_{3.6})^{b}$ (×10 ⁻²)
J181213-1842_1		1.15
J181213-1842_2	3.05	7.15
J181213-1842_5	4.04	
J182435-1311_1		3.17
J183356-0822_6	1.68	

Note. — Only those ChIcAGO sources where the chance of random alignment with a survey source is > 0.01 are listed.

^a Chance of finding a USNO source with a *R* magnitude brighter than the counterpart listed in Table 7 within the ChIcAGO source's 95% position error circle.

b Chance of finding a GLIMPSE source with a 3.6μ m magnitude brighter than the counterpart listed in Tables 2 or 7 within the ChIcAGO source's 95% position error circle.

ChIcAGO Source		Ab	Absorbed Mekal int	al interpolation ^a	Distance ^b	lce ^b	Lumin	Luminosities ^c	False assoc	False associations $(\times 10^{-2})^{d}$
ChI	kT	N_H	$F_{x,abs}$	$F_{x,unabs}$	(kpc)	Ref	$\mathrm{Log}L_{x,abs}$	$LogL_{x,unabs}$	2MASS $N(< K_s)$	GLIMPSE $N(< M_{3.6})$
J144519-5949_2	$1.52_{-0.73}^{+1.38}$	$5.00^{+3.60}_{-2.10}$	23.70 ± 4.80	218.44 ± 44.20	2.8	-	32.35	33.31		
J144519-5949_3	$0.78^{+2.69}_{-0.57}$	$22.00^{+51.00}_{-15.00}$	_	7207.60 ± 2610.31	2.8	1	32.09	34.83		
J144519-5949_5	> 1.94	$0.14_{-0.14}^{+0.68}$		3.98 ± 2.71	2.8	1	31.50	31.57		
J151005-5824_1	$0.90^{+1.80}_{-0.77}$	$7.60^{+27.40}_{-4.60}$	-	47.76 ± 28.64	4.7	7	31.29	33.10		
J151005-5824_2	82.45	$2.80^{+0.00}_{-2.07}$		2.92 ± 1.45	4.7	7	31.66	31.89		
J151005-5824_3	$0.21^{+1.42}_{-0.11}$	$1.60^{+1.30}_{-1.35}$	0.18 ± 0.12	65.24 ± 44.33	4.7	0	30.68	33.24		
J151005-5824_4	82.45	$2.20^{+-0.10}_{-1.53}$	1.21 ± 0.73	1.96 ± 1.18	4.7	0	31.51	31.71		
J151005-5824_5	82.45	$1.80^{+0.00}_{-1.50}$	1.14 ± 0.68	1.76 ± 1.06	4.7	7	31.48	31.67		
J151005-5824_6	> 0.1	$2.50^{+10.50}_{-2.40}$	-	452.64 ± 182.20	4.7	7	31.07	34.08		
J151005-5824_7	> 2.21	$21.00^{+11.00}_{-17.00}$	6.46 ± 1.94	36.97 ± 11.10	4.7	7	32.23	32.99		
J151005-5824_8	$0.17^{+0.33}_{-0.07}$	$33.00^{+28.00}_{-21.00}$	0.96 ± 0.48	$218762449.44 \pm 108233831.76$	4.7	7	31.41	39.76		
J151005-5824_9	> 2.49	$0.01^{+0.25}_{0.00}$	0.41 ± 0.28	0.42 ± 0.28	4.7	7	31.04	31.04		3.15
J151005-5824_10	> 5.26	$1.20^{+1.00}_{-1.16}$	1.39 ± 0.69	2.00 ± 0.99	4.7	7	31.56	31.72		1.71
J151005-5824_11	> 0.1	$0.38_{-0.38}^{+0.87}$	0.64 ± 0.43	0.79 ± 0.54	4.7	7	31.23	31.32		
J154905-5420_1	$0.61_{-0.33}^{+0.81}$	11.50 + 12.50	1.49 ± 0.68	743.78 ± 340.69	3.7	ю	31.39	34.09		
J154905-5420_2	> 2.63	$2.30^{+3.30}_{-0.50}$		6.63 ± 2.20	3.7	ю	31.82	32.04		
J154905-5420_3	$0.74^{+1.54}_{-0.56}$	$15.50^{+39.50}_{-0.50}$		397.68 ± 270.25	3.7	ю	31.21	33.81	2.40	2.21
$J154905-5420_{-}4$	$1.80^{+3.04}_{-1.60}$	$0.01^{+1.29}_{-0.00}$		0.41 ± 0.25	3.7	ю	30.82	30.83	1.62	1.88
J154905-5420_5	> 0.1	$0.01_{0.00}^{+0.42}$	1.66 ± 0.71	1.69 ± 0.72	3.7	б	31.44	31.44		
J154905-5420_7	> 16.3	$1.05^{+0.35}_{-1.04}$	1.89 ± 0.87	2.66 ± 1.22	3.7	ю	31.49	31.64		
$J154905-5420_8$	> 4.63	$1.20^{+1.10}_{-1.10}$		1.57 ± 1.07	3.7	ю	31.25	31.41		3.02
J154905-5420_9	> 0.1	$0.01_{0.00}^{+0.60}$	0.70 ± 0.38	0.71 ± 0.38	3.7	ю	31.06	31.07		
$J154905-5420_{-}10$	> 0.1	$0.01_{-0.00}^{+0.66}$	0.46 ± 0.31	0.47 ± 0.32	3.7	æ	30.88	30.89	3.25	5.29
J154905-5420_11	> 0.63	$0.46_{-0.45}^{\pm 1.39}$	1.24 ± 0.47	2.05 ± 0.78	3.7	ŝ	31.31	31.53		
J162208-5005_1	> 1.91	$2.40^{+3.60}_{-1.10}$	23.73 ± 6.53	42.69 ± 11.74	3.1	7	32.44	32.69		
J162208-5005_3	> 6.52	$2.60^{+2.30}_{-1.40}$	6.75 ± 4.59	11.30 ± 7.68	3.1	7	31.89	32.11		
J194310+2318_1	$2.28_{-1.86}^{+6.97}$	$0.01^{+1.04}_{-0.00}$	5.31 ± 1.46	5.47 ± 1.50	2.6	7	31.63	31.65		
J194310+2318_4	$0.12^{+19.33}_{-0.02}$	$0.67_{-0.66}^{+0.00}$	1.06 ± 0.72	253.21 ± 172.07	2.6	7	30.93	33.31		1.06
J194310+2318_5	$0.14^{+3.33}_{-0.03}$	$0.76^{+-0.03}_{-0.75}$	5.97 ± 1.08	1446.16 ± 262.87	2.6	7	31.68	34.07		
J194310+2318_6	$0.76^{+1.38}_{-0.62}$	$1.75_{-1.05}^{+3.85}$	5.33 ± 1.41	94.55 ± 24.98	2.6	0	31.63	32.88		
J194310+2318_7	> 0.19	$1.60^{+10.90}_{-1.59}$	1.70 ± 0.92	909.74 ± 491.76	2.6	7	31.14	33.87		
J194310+2318_8	82.45	$0.94_{-0.93}^{+0.26}$	3.77 ± 2.56	5.22 ± 3.55	2.6	7	31.48	31.63		
J194310+2318_9	$0.10^{+1.28}_{-0.00}$	$1.70^{+1.40}_{-1.69}$	0.99 ± 0.59	18914.51 ± 11342.64	2.6	7	30.90	35.18		
J194332+2323_1	$2.91^{+7.09}_{-2.56}$	$0.13^{+1.52}_{-0.12}$	1.65 ± 0.55	2.10 ± 0.69	2.6	7	31.13	31.23		
J194332+2323_3	$0.22_{-0.11}^{+0.33}$	$3.00^{+4.60}_{-1.30}$	0.64 ± 0.35	1053.73 ± 569.60	2.6	7	30.72	33.93		
J194332+2323_5	> 0.1	$1.15^{+10.35}_{-1.14}$	3.81 ± 1.32	24.79 ± 8.57	2.6	7	31.49	32.30		
J194332+2323_6	> 0.1		0.70 ± 0.38	0.73 ± 0.39	2.6	7	30.76	30.77	1.35	1.38
J194332+2323_7	$0.15_{-0.05}^{+0.55}$		0.64 ± 0.29	51.52 ± 23.60	2.6	7	30.72	32.62		
J195006+2628_1	$0.10_{-0.00}^{+0.04}$		0.70 ± 0.38	3815.10 ± 2062.27	2.3	4	30.65	34.38		
J195006+2628_2	$1.74^{+2.02}_{-1.62}$	$0.01^{+1.49}_{-0.00}$	2.74 ± 0.55	2.83 ± 0.57	2.3	4	31.24	31.25		
J195006+2628_3	$2.70^{+16.75}_{-2.59}$		0.61 ± 0.42	$.88 \pm .60$	2.3	4	30.59	30.75		
J195006+2628_4	$0.40^{+1.23}_{-0.29}$		0.63 ± 0.34	58.70 ± 31.73	2.3	4	30.60	32.57		
J195006+2628_5	$0.11^{+1.76}_{-0.01}$		0.74 ± 0.28	5807.00 ± 2211.85	2.3	4	30.67	34.57		

Table 11Quantile spectral interpolations and luminosity estimates for all ChIcAGO sources within
HII regions that have > 5 X-ray counts

THE CHICAGO SURVEY

47

	False associations $(\times 10^{-2})^d$	2MASS $N(< K_s)$ GLIMPSE $N(< M_{3.6})$
	Luminosities ^c	$\mathrm{Log}L_{x,abs}$ $\mathrm{Log}L_{x,unabs}$
Continued	Distance ^b	(kpc) Ref
Table 11 — Continuea	oolation ^a	$F_{x,unabs}$
	bsorbed Mekal interpol	$F_{x,abs}$
	Abs	N_H
		kT
	ChlcAGO Source	ChI

References. — 1: Busfield et al. (2006); 2: Russeil (2003); 3: McClure-Griffiths et al. (2001); 4: Fich & Blitz (1984)

^a The quantile analysis interpolated absorbed Mekal model parameters including the temperature, kT, and absorption column density N_H (10²² cm⁻²), as well as the absorbed and unabsorbed X-ray fluxes, $F_{x,abs}$ and $F_{x,anabs}$ (10⁻¹⁴ erg cm⁻²) s^{-1}), respectively, in the 0.3 – 8.0 keV energy range. (If kT = 82.45 then this indicates that the spectral interpolation of this ChIcAGO source has hit the hard limit for this parameter.)

^b The distances used to estimate the absorbed and unabsorbed luminosities. The corresponding reference is also listed.

^c The Log of the absorbed and unabsorbed luminosities, $L_{x,dbs}$ and $L_{x,dbs}$ (erg s⁻⁷), respectively, in the 0.3–8.0 keV energy range. ^d Chance of finding a 2MASS (or GLIMPSE) source with a K_s (or 3.6 μ m) magnitude brighter than the counterpart listed in Tables 2 or 7, within the ChIcAGO source's 95% position error circle. This value is only quoted for the ChIcAGO sources where the chance of random alignment with a survey source is > 0.01.

 Table 12

 Confirmed and tentative identifications of the AGPS sources, including both literature and ChIcAGO survey identifications

AGPS ID	ChIcAGO ID ^a	Type ^b	ID ^c	Reference ^d	Flag ^e
AX J143148-6021	ChI J143148-6021_3	U		1	n,R,n
AX J143416–6024		RS CVn	HD 127535	2,3*	n,n,n
AX J144042–6001	ChI J144042-6001_1	PMS	HD 128696	2*	n,n,n
AX J144519–5949	ChI J144519-5949_2(1,3-6)	WR and H II	GAL 316.8–00.1	1	T,T,N
AX J144547–5931	ChI J144547-5931_1	OIf ⁺		4,4	I,I,n
AX J144701–5919	ChI J144701-5919_1	WR U		4,4	I,I,n
AX J145605–5913 AX J145732–5901		U			n,n,n F,n,n
AX J145752–5901 AX J150436–5824	ChI J150436-5824_1	U		1	n,n,n
AX J150450=5824 AX J151005=5824	ChI J151005–5824_(1-11)	Нп	G320.3–0.3	1	I,n,N
AX J153751–5556	Chr313101005 5021_(1 11)	U	6520.5 0.5	1	F,n,n
AX J153818–5541	ChI J153818-5541_1	LMXB		5	n,n,N
AX J153947-5532		U			n,n,n
AX J154122-5522	ChI J154122-5522_1	ASC/PMS		1	T,T,N
AX J154233–5519		U			n,n,n
AX J154557–5443	ChI J154557–5443_1	U		1	n,n,n
	ChI J154557–5443_2	U		1	n,n,n
A 37 1154005 5400	ChI J154557–5443_3	U	G22(0(, 0 02	1	n,n,n
AX J154905–5420	ChI J154905–5420_(1-11)	HII	G326.96+0.03	1	I,n,N
AX J154951–5416 AX J155035–5408	ChI J155035-5408_1	U ASC/PMS		1	F,n,n n,T,N
AA J155055-5406	ChI J155035–5408_1 ChI J155035–5408_3	MS/ASC		1	n,T,N
AX J155052–5418	CIII J155055=5408_5	Magnetar	1E 1547.0–5408	6,7	n,n,n
AX J155331–5347	ChI J155331-5347_1	ASC/PMS	1E 1547.0-5408	1	T,T,N
AX J155644–5325	Chr9100001 001/_1	KOIIIe	TYC 8697-1438-1	8	n,n,n
AX J155831–5334	ChI J155831-5334_1	U		1**	n,R,n
AX J161929-4945	· · · · · · · · <u>-</u>	HMXB	IGR J16195–4945	9,3**	n,n,n
AX J162011-5002	ChI J162011-5002_1	CV		5	n,n,N
AX J162046-4942	ChI J162046-4942_1	MS/ASC		1**	T,T,N
AX J162125–4933		U			n,n,n
AX J162138–4934		U			n,n,n
AX J162155–4939		K3III	HD 147070	2*	n,n,n
AX J162208–5005	ChI J162208–5005_(1-3)	Нп	G333.6–0.2	1	I,n,N
AX J162246-4946		Magnetar	PSR J1622–4950	10,10	I,n,n
AX J163159–4752 AX J163252–4746	ChI J163252-4746_2	HMXB CWB	IGR J16320–4751	11,12 4,4	n,n,n I,I,n
AX J163252–4740 AX J163351–4807	CIII J103232-4740_2	Of?p	HD 148937	4,4 13,3*	
AX J163524–4728		U	HD 146937	15,5	n,n,n F,n,n
AX J163555–4719		SNR/PWN	SNR G337.2+0.1	14	n,n,n
AX J163751–4656	ChI J163751-4656_1	U	5111 0557.210.1	1	n,R,n
AX J163904-4642		SyXB	IGR J16393-4643	15,15	n,n,n
AX J164042-4632		PWN	SNR G338.3-0.0	16*	n,n,n
AX J165105-4403	ChI J165105-4403_1	U		1	n,n,n
AX J165217-4414	ChI J165217-4414_1	U		1	n,R,n
AX J165420-4337	ChI J165420-4337_1	U		1**	n,R,n
AX J165437–4333		Binary Star	HD 152335	2,3*	n,n,n
AX J165646–4239	ChI J165646-4239_1	ASC/PMS		1	n,T,N
1 11 11 (5000 4055	ChI J165646–4239_2	U		1	n,R,n
AX J165707-4255	ChI J165707-4255_1	ASC/PMS		1	T,T,N
AX J165723-4321		U		**	n,n,n
AX J165901–4208 AX J165904–4242		U Be star	V921 Sco	17,3	F,n,n
AX J165922–4234		U	v 921 300	17,5	n,n,n n,n,n
AX J165951–4209		ND			F,n,n,
AX J170006–4157		CV	AX J1700.1-4157	18,18	n,n,n
AX J170017–4220	ChI J170017-4220_1	HMXB		19	T,T,N
AX J170047-4139		HMXB	OAO 1657-415	20,20*	n,n,n
AX J170052-4210	ChI J170052-4210_1	ASC/PMS		1	T,T,N
AX J170112-4212	_	U			F,n,n
AX J170349-4142		SNR	SNR G344.7-0.1	21*	n,n,n
AX J170444-4109	ChI J170444-4109_1	ASC/PMS		1	n,T,N
	ChI J170444-4109_2	U		1	n,n,n
AX J170506-4113		U		-	n,n,n
AX J170536–4038	ChI J170536–4038_1	ASC/PMS		1	T,T,N
AX J170555–4104		U			F,n,n
AX J171715–3718		U	SND C240 7.0.2	22*	F,n,n
AX J171804–3726	ChI 1171010 2652 2	SNR ASC/PMS	SNR G349.7+0.2	22*	n,n,n T T N
AX J171910–3652 AX J171922–3703	ChI J171910–3652_2 ChI J171922–3703_1	ASC/PMS U		1	T,T,N
AX J171922–3703 AX J172050–3710	ChI J171922=3705_1 ChI J172050-3710_1	ASC		1 5	n,n,n T,T,N
AX J172030–3710 AX J172105–3726	Cin J1/2030-3/10_1	SNR	SNR G350.1–0.3	23	1,1,1N n,n,n
AX J172550–3533	ChI J172550-3533_1	AGN or HMXB	5111 0550.1-0.5	1	n,T,N
	ChI J172550–3535_1 ChI J172550–3533_2	CV	V478 Sco	1	n,I,n
		(,)	V 4 / 6 GUU		

50

 Table 12
 Continued

AGPS ID	ChIcAGO ID ^a	Type ^b	ID ^c	Reference ^d	Flag ^e
AX J172623–3516	ChI J172623-3516_1	ASC/PMS		1**	T,T,N
AX J172642–3504	ChI J172642-3504_1	U	CD 25 115(5	1	n,n,n
AX J172642–3540	ChI J172642-3540_1	K2V SNR	CD-35 11565 SNR G352.7–0.1	1 24*	I,I,n
AX J172743–3506 AX J173441–3234		CWB	HD 159176	24** 25,3*	n,n,n
AX J173518–3234		SNR	SNR G355.6–0.0	25,5*	n,n,n n,n,n
AX J173548–3207	ChI J173548-3207_1	U	5111 655510 0.0	1	n,n,n
AX J173628-3141		U			F,n,n
AX J175331-2538		ND			F,n,n
AX J175404–2553	ChI J175404-2553_3	U		1	n,n,n
AX J180225–2300		OB and PMS stars	Triffid Nebula (HD 164492)	27	n,n,n
AX J180800–1956		U			n,n,n
AX J180816–2021 AX J180838–2024		ND Magnatar	SGR 1806–20	28,29**	F,n,n
AX J180857–2024 AX J180857–2004	ChI J180857–2004 1	Magnetar U	SOK 1800–20	1	n,n,n n,n,n
1119100037 2001	ChI J180857–2004_2	WR		1	n,T,N
AX J180902-1948		SNR	SNR 10.5-0.0	30	I,n,n
AX J180948-1918		PWN	PSR J1809–1917	31**	n,n,n
AX J180951–1943		Magnetar	XTE J1810–197	32,33	n,n,n
AX J181033–1917		U			F,n,n
AX J181116–1828	ChI J181116–1828_2	U		1 **	n,R,n
AX J181120–1913 AX J181211–1835		U SNR	SNR G12.0-0.1	26*	F,n,n
AX J181211–1835 AX J181213–1842	ChI J181213-1842_7	U	SINK 012.0=0.1	20.	n,n,n n,R,n
AA J101215-1042	ChI J181213–1842_7 ChI J181213–1842_9	ASC/PMS		1	n,T,N
AX J181705-1607	Chr9101213 1012_)	U		1	F,n,n
AX J181848-1527		U			n,n,n
AX J181852-1559	ChI J181852-1559_2	Magnetar		34	n,n,N
AX J181915–1601	ChI J181915-1601_2	ŴR		1**	n,T,n
	ChI J181915-1601_3	U		1	n,n,n
AX J181917–1548		U CNID (DWA)	OND C1(7,01	25*	F,n,n
AX J182104–1420		SNR/PWN	SNR G16.7+0.1	35*	n,n,n
AX J182216–1425 AX J182435–1311	ChI J182435-1311_1	U MS-O		1	F,n,n T,T,N
AX J182442–1253	CIII J182433-1311_1	U U		1	n,n,n
AX J182509–1253	ChI J182509-1253_1	ASC/PMS		1	T,T,N
	ChI J182509-1253_3	U		1	n,n,n
AX J182530-1144	ChI J182530–1144_2	U		1	n,n,n
AX J182538-1214	ChI J182538-1214_1	ASC/PMS		1	T,T,N
AX J182651–1206	ChI J182651-1206_4	MS-O		1	T,T,N
AX J182846–1116		U		26.1	n,n,n
AX J183039–1002 AX J183114–0943		AGN U		36,1	n,n,n
AX J183114–0943 AX J183116–1008	ChI J183116-1008_1	CWB		37,37	n,n,n n,n,n
AX J183206–0938	ChI J183206-0938_1	CWB		37,37	n,n,N
AX J183206-0940		U		- ,	n,n,n
AX J183221-0840		CV	AX J1832.3–0840	18,18	n,n,n
AX J183231-0916		U			n,n,n
AX J183345–0828		PWN	PSR B1830–08	38*	n,n,N
1 11 11 00057 0000	ChI J183345-0828_1	WR		1	n,T,N
AX J183356–0822	ChI J183356-0822_2	U		1	n,n,n
AX J183440-0801	ChI J183356-0822_3	MS-O U		1	n,T,N
AX J183440-0801 AX J183506-0806		U			n,n,n n,n,n
AX J183518–0754		Ŭ			F,n,n
AX J183528-0737		SyXB	Scutum X-1	39,39	n,n,n
AX J183607-0756		ŇD			F,n,n
AX J183618-0647		U			n,n,n
AX J183800–0655		PSR/PWN	PSR J1838–0655	40	n,n,n
AX J183931–0544		LBV	G26.47+0.02	41,41	n,n,n
AX J183957-0546		U			n,n,n
AX J184004–0552 AX J184008–0543		U U		**	n,n,n
AX J184008-0545 AX J184024-0544		UU			F,n,n
AX J184024-0544 AX J184121-0455		Magnetar/SNR	1E 1841-045/SNR G27.4+0.0 (Kes 73)	42*	n,n,n n,n,n
AX J184355–0351		SNR	SNR G28.6–0.1	43	n,n,n
AX J184400–0355		U		-	F,n,n
AX J184447-0305		U			F,n,n
AX J184600-0231		U			n,n,n
AX J184610–0239		U			n,n,n
AX J184629–0258	CLI 1194652 0240 1	SNR/PWN	SNR G29.7-0.3(Kes 75)/PSR J1846–0258	44*	n,n,n
AX J184652-0240	ChI J184652–0240_1 ChI J184738_0156_1	MS-O CWP	WP101	1	T,T,N
AX J184738–0156 AX J184741–0219	ChI J184738–0156_1 ChI J184741–0219_3	CWB AGN	WR121a	4,4 1	I,I,n I,I,N
AX J184741-0219 AX J184848-0129	CIII J 104/41-0219_3	Globular cluster	GLIMPSE-C01	45	1,1,1N n,n,n
		SNR	SNR G31.9+0.0 (3C 391)	46*	n,n,n
AX J184930–0055					

AGPS ID	ChIcAGO ID ^a	Type ^b	ID ^c	Reference ^d	Flag ^e
AX J185240+0038		SNR/PSR	SNR G33.6+0.1 (Kes 79)/PSR J1852+0040	48*	n,n,n
AX J185551+0129		SNR/PWN	SNR G34.7-0.4 (W44)/PSR B1853+0.1	49	n,n,n
AX J185608+0218	ChI J185608+0218_1	ASC/PMS		1**	T,T,N
AX J185643+0220	ChI J185643+0220_2	U		1	n,n,n
AX J185651+0245		U			n,n,n
AX J185721+0247		U			n,n,n
AX J185750+0240	ChI J185750+0240_1	U		1	n,R,n
AX J185905+0333		Galaxy cluster	AX J185905+0333	50	n,n,n
AX J190007+0427		Ū			n,n,n
AX J190144+0459		U			n,n,n
AX J190534+0659	ChI J190534+0659_1	MS/ASC		1	T,T,N
AX J190734+0709		SNR	SNR G41.1-0.3 (3C 397)	51*	n,n,n
AX J190749+0803	ChI J190749+0803_1	U		1	n,R,n
AX J190814+0832	ChI J190814+0832_2	MS/ASC		1	T,T,N
AX J190818+0745	ChI J190818+0745_1	U		1	n,R,n
AX J191046+0917		HMXB	AX J1910.7+0917	52	n,n,N
AX J191105+0906		SNR	SNR G43.3-0.2 (W49B)	53*	n,n,n
AX J194152+2251	ChI J194152+2251_2	U		1	n,R,n
AX J194310+2318	ChI J194310+2318_5(1-4,6-10)	O7V((f)) and H II	G59.5–0.2	1*	I,I,N
AX J194332+2323	ChI J194332+2323_(1-8)	H II	G59.5–0.2	1*	I,n,N
AX J194622+2436		U			F,n,n
AX J194649+2512		$H\alpha$ Star	EM* VES 52	54*	n,n,n

Table 12 — Continued

References. — 1: This paper; 2: Sugizaki et al. (2001); 3: Skrutskie et al. (2006); 4: Anderson et al. (2011); 5: Degenaar et al. (2012); 6: Bernardini et al. (2011); 7: Israel et al. (2009); 8: Torres et al. (2006); 9: Tomsick et al. (2006); 10: Anderson et al. (2012); 11: Rodriguez et al. (2006); 12: Walter et al. (2006); 13: Nazé et al. (2008); 14: Combi et al. (2006); 15: Bodaghee et al. (2006); 16: Funk et al. (2007); 17: Hamaguchi et al. (2005); 18: Kaur et al. (2010); 19: Markwardt et al. (2010); 20: Chakrabarty et al. (2022); 21: Combi et al. (2010); 22: Lazendic et al. (2005); 23: Gaensler et al. (2008); 24: Giacani et al. (2009); 25: De Becker et al. (2004); 26: Yamauchi et al. (2008); 27: Rho et al. (2004); 28: Mereghetti et al. (2005); 29: Israel et al. (2005); 30: Brogan et al. (2006); 31: Kargaltsev & Pavlov (2007); 32: Gotthelf & Halpern (2007); 33: Israel et al. (2004); 34: Mereghetti et al. (2012); 35: Helfand et al. (2003a); 36: Bassani et al. (2009); 37: Motch et al. (2010); 38: Kargaltsev et al. (2012); 39: Kaplan et al. (2007); 40: Gotthelf & Halpern (2008); 41:(Paron et al. 2012); 42: Morii et al. (2003); 43: Bamba et al. (2001); 44: Helfand et al. (2003b); 45: Pooley et al. (2007); 46: Chen et al. (2004); 47: Yamaguchi et al. (2004); 48: Gotthelf & Halpern (2005); 49: Petre et al. (2002); 50: Yamauchi et al. (2011); 51: Safi-Harb et al. (2005); 52: Pavan et al. (2011); 53: Hwang et al. (2000); 54: Kohoutek & Wehmeyer (1997); 55: Zolotukhin & Chilingarian (2011)

CV

U

Ηп

a The equivalent ChIcAGO name of the AGPS source. All ChIcAGO sources with > 20 X-ray counts are listed. In a few cases there is more than one ChIcAGO source listed for a given AGPS source. For a given identified H II region, all of the ChIcAGO sources contributed to the X-ray emission originally detected with ASCA in the AGPS. In these cases the ChIcAGO source name suffixes are listed in parentheses. If a suffix is listed before the parentheses then this ChIcAGO source corresponds to an X-ray source whose stellar type is listed in column three, before the H II classification.

^b The source type abbreviations are ASC: active stellar corona, AGN: active galactic nucleus, CV: cataclysmic variable, CWB: colliding-wind binary, H II: young and massive stars in the H II region named in the "ID" column; HMXB: high-mass X-ray binary, LBV: luminous blue variable, LMXB: low-mass X-ray binary, Magnetar: magnetar, MS: massive star, MS-O: massive O-type star, ND: no ChIcAGO sources detected in the Chandra observation (no detection), PMS: pre-main sequence star, PSR: X-ray emission from a rotationpowered pulsar, PWN: pulsar wind nebula, SNR: supernova remnant, SyXB: symbiotic X-ray binary, U: unknown, and WR: Wolf-Rayet star. The other abbreviations are the spectral type of the stellar counterpart.

^c The most commonly used name

AX J194939+2631

AX J194951+2534

AX J195006+2628

ChI J194939+2631_1

ChI J195006+2628_(1-5)

^d The * and ** symbols indicate those AGPS sources that were correctly and incorrectly identified by Sugizaki et al. (2001), respectively. Those archival AGPS sources and identified ChIcAGO sources used in the statistical analysis in Section 4.2 have two references in this Table, the first being the paper describing an X-ray fit from which we derived an absorbed X-ray flux, and the second being the paper from which the NIR counterpart (J, H, and Ks magnitudes) information was obtained. All the longer-wavelength IR counterpart information $(3.6, 4.5, 5.8, and 8.0 \,\mu m$ magnitudes) was gathered from the GLIMPSE catalogs and archives.

^e Flags that correspond to the identification properties of the AGPS and ChIcAGO sources. One flag is listed for each of the first three columns. I: Identified sources through work in the ChIcAGO survey, T: Tentatively identified sources using the X-ray and infrared population statistics in Section 4.2, F: AGPS sources for which only ChIcAGO sources with ≤ 20 X-ray counts were detected. These include AGPS sources where no sources were detected in the corresponding ChIcAGO Chandra observations but excludes those AGPS sources that have been identified as H II regions, R: Figure 8 Region iv sources; N: Unconfirmed classification type; n: no flag.

55

1

G62.9+0.1

n,n,N

F.n.n

I,n,N

Table 13
<i>Chandra</i> point sources with > 20 X-ray counts detected between $3' - 5'$ from the AGPS
position

AGPS Source ^a	wavdete	ct Position	Position ^b	Offset ^c	Net Counts ^d	Predicted Counts ^e	Total Counts ^f	2MASS Name
AX	RA (J2000)	Dec (J2000)	Error ('')	from ASCA (')	0.3-8 (keV)		< 3'	2MASS J
J150436-5824	15:04:13.54	-58:25:07.4	0.84	3.0	47.7 ± 8.0	139	154	
J154557-5443	15:46:09.08	-54:39:12.9	0.89	4.2	48.0 ± 8.1	147	96	15460913-5439128
	15:45:54.60	-54:38:49.6	0.94	4.3	38.9 ± 7.4			
J154905-5420	15:49:12.40	-54:16:30.2	0.94	4.1	31.8 ± 6.8	178	84	15491237-5416301
	15:49:14.67	-54:24:54.6	1.03	4.6	20.2 ± 5.7			15491463-5424549
J155035-5408	15:50:19.25	-54:11:27.3	0.89	3.6	35.5 ± 7.1	152	242	15501925-5411271
	15:50:05.97	-54:07:23.1	1.07	4.5	22.8 ± 6.0			
J170444-4109	17:04:26.88	-41:07:34.9	0.95	3.9	26.7 ± 6.3	95	170	17042687-4107351
J172642-3504	17:26:27.79	-35:07:27.2	0.88	4.5	72.1 ± 9.6	206	120	17262781-3507281
J181213-1842	18:12:29.26	-18:45:21.6	1.02	4.7	21.9 ± 5.8	92	172	18122923-1845222
J181915-1601	18:19:29.65	-16:04:33.3	0.95	4.6	30.0 ± 6.5	201	132	
J184738-0156	18:47:52.81	-01:59:57.9	0.89	4.8	96.5 ± 10.9	150	120	18475281-0159575
J184741-0219	18:47:32.53	-02:22:23.8	0.93	4.0	34.2 ± 7.0	211	53	
J194332+2323	19:43:29.97	+23:20:52.3	0.88	3.1	28.4 ± 6.5	143	64	19432997+2320524

^a The AGPS source for which one or two X-ray point sources with > 20 counts were detected in the corresponding ChIcAGO *Chandra* observation between 3' - 5'.

^b The total 95% position error circle (in arcseconds) of the *Chandra* point source taking into account the wavdetect position error and the absolute astrometric accuracy of *Chandra*. ^c The offset, in arcminutes, between the AGPS position published in Sugizaki et al. (2001) and the wavdetect position of the *Chandra* point source.

^d The net number of counts in the 0.3-8.0 energy range. The source counts were calculated using a source region with a radius equal to 95% of the PSF at 1.5 keV. The total counts have been background subtracted and the error corresponds to the upper 1σ confidence limit calculated using Gehrels (1986) statistics.

^e The number of X-ray counts that *Chandra* PIMMS predicts should be detected in the ChIcAGO *Chandra* observation based on the power law spectral fits measured by Sugizaki et al. (2001).

f The total number of X-ray counts (rounded to the nearest count) from all the sources detected in the ChIcAGO Chandra observations within 3' of the AGPS position.