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Abstract—The extensive use of video surveillance along with 

advances in face recognition has ignited concerns about the 

privacy of the people identifiable in recorded documents. Prior 

research into face de-identification algorithms has successfully 

proposed k-anonymity methods that guarantee to thwart face 

recognition software. However, there has been little investigation 

into the preservation of the data utility such as gender and 

expression in the original images. To address this challenge, a 

new algorithm based on the Active Appearance Model is 

proposed here. The main attraction of the approach is that of the 

preservation of the data utility in terms of facial expression, 

whilst maintaining privacy protection. The former includes not 

only the preservation of the expression category (e.g. happy or 

sad), but also the details of the original expression (e.g. the 

intensity of a smile and movements of the lips). This is considered 

to be of significant value in real applications of face de-

identification, where the given video contains facial images of the 

same expression with various degrees of intensity. 

Keywords—privacy protection, face de-identification, facial 

expression transfer, active appearance model, linear discriminant 

analysis, k-anonymity. 

I. INTRODUCTION 

Due to the extensive applications of surveillance systems 
and consequently the rising concern about the privacy of the 
individuals identifiable in the captured videos, various methods 
have been proposed for the de-identification of faces in still 
and moving images. These methods can be divided into two 
categories: the ad hoc methods (such as masking, pixelation 
and blurring [1-3] and the k-anonymity based methods (such as 
k-Same [4]). The ad hoc methods are usually simple to 
implement. However, they fail to serve their purpose as they 
are unable to thwart the existing face recognition software [4, 
5]. To achieve privacy protection, the concept of k-anonymity 
was introduced by Sweeney in 2002 [6]. All k-anonymity based 
methods de-identify a face image by replacing it with the 
average of k face images from a given gallery and hence 
achieve privacy protection by guaranteeing a recognition rate 
lower than 1/k. Within the k-anonymity family the most widely 
used algorithms for face de-identification is the k-Same family. 
However, the original k-Same solutions (i.e. k-Same-Pixel and 
k-Same-Eigen [4]) were not designed for preserving data 
utility. As a result, the de-identified version of a male face 
might look feminine and a happy face may lose its smile. In 
addition, k-Same is appearance based, operating entirely in the 
image space. As a result, ‘ghosting’ artefacts tend to appear 
due to the misalignments of the k images involved, even when 
images are aligned based on a small number of facial 

landmarks (e.g. the corners of the eyes and the tip of the nose). 
Finally, k-Same-Pixel/-Eigen and all their extensions achieve 
decent privacy protection at the cost of large k’s, which in turn 
lead to the demand for a large image gallery or otherwise lack 
of discrimination among the de-identified faces (number of 
distinctive faces in the de-identified face set is equal to or less 
than size of the gallery divided by k). 

To address the limitations of k-Same-Pixel/-Eigen, various 
approaches have been proposed. To remove ghosting artefacts, 
the k-Same-M algorithm [7] models each of the k closest 
images as an Active Appearance Model (AAM) [8] and then 
performs averaging on the AAM model parameter vectors. To 
truly protect privacy, a new member named k-Same-furthest 
has been introduced to the k-Same family [9]. Like k-Same-M, 
k-Same-furthest is model based and represents face images as 
AAMs. In contrast to the k closest images used in the other k-
Same algorithms, it averages the k most different images to the 
original and hence the name k-Same-furthest. 

The most cited attempt on integrating utility preservation 
into face de-identification was k-Same-Select [10]. It partitions 
its image gallery into mutually exclusive subsets using data 
utility functions such as an expression or a gender classifier 
and then applies the standard k-Same algorithm merely to the 
subset which the probe image belongs to. Obviously, k-Same-
Select requires a large image gallery as there must be an image 
for each individual in every utility subset. Furthermore, the 
algorithm is extremely inflexible. Each time a new subset (e.g., 
another expression) is added to the application, the utility 
classifier would have to be re-trained to identify the new class. 
Nearly all cultures recognise facial expressions of six basic 
emotional categories, namely: joy, sadness, anger, disgust, fear 
and surprise [11]. To accommodate all six categories of facial 
expression, k-Same-Select would require a large image gallery 
and a rather complicated expression classifier. Even worse, k-
Same-Select demands exclusivity among its utility subsets 
while categories of facial expression are not mutually 
exclusive. This means that k-Same-Select would fail its 
purpose of preserving data utility when facing, for example, a 
happily surprised face. Finally, k-Same-Select preserves only 
one aspect of each data utility (i.e. the category) and relies on 
accurate classification of the probe image. The level of data 
utility preservation achieved by k-Same-Select is equal to the 
accuracy of its utility classifier. 

The algorithm proposed here takes a completely different 
approach to preserving data utility. It recovers the data utility 
by transferring/cloning the facial expression from the original 
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to the de-identified face. The proposed algorithm does not 
require complicated classifiers or high-level semantic 
information describing facial expressions and therefore avoids 
the above-mentioned limitations of k-Same-Select. 

The remainder of the paper is structured as follows. Section 
2 describes the two key techniques of AAM and k-Same-
furthest, which are adopted in the proposed algorithm. Section 
3 reviews facial expression transfer using AAMs and Section 4 
presents the proposed algorithm together with example results. 
Section 5 evaluates the proposed algorithm’s ability to protect 
privacy as well as preserve data utility. Finally, the findings 
and overall conclusions of this work are given in Section 6. 

II. SUPPORTING METHODS 

A. Active Appearance Models 

In an AAM, the shape and texture data of an object are 
separated and can be manipulated independently. The shape of 
an object is defined by the coordinates of a pre-determined set 
of landmarks. The landmarks of an object are allocated using 
an iterative fitting process, where the texture of the object is 
warped to the current fitted shape and the result appearance is 
compared with the original appearance of the object. If the 
difference is acceptable, the current fitted shape returns the 
locations of the landmarks. Otherwise, the fitted shape is 
updated through changing its Principal Component Analysis 
(PCA [12]) parameters and the process iterates. To isolate 
texture of an object from its shape, the face appearance in the 
original image (bound by the object’s shape) is reshaped into 
the AAM mean shape using piece-wise affine warping. Then 
the shape and the texture data is projected independently to 
their own PCA feature spaces for a more efficient 
representation. The shape and texture PCA parameters can be 
kept separate as in independent AAMs. Alternatively, they can 
be concatenated to produce a combined set of object 
parameters, with the addition of shape weights to allow the 
concatenated parameters to have a common set of units. PCA 
can then be applied to produce a new set of appearance 
parameters that are a combined representative model of both 
the shape and the texture. This is the case of combined AAMs. 

The shape of a 2D AAM is defined by a triangulated mesh 
and in particular the vertex locations of the mesh, i.e. the 
positions of the landmarks. The proposed face de-identification 
algorithm uses 64 landmarks to define the shape of a human 
face (Fig. 1). The piece-wise affine warping achieves its goal 
by transferring image pixels from the mean-shape based texture 
image to the corresponding mesh triangles in the target shape 
mesh. The ghosting artefacts in k-Same are due to the 
misalignments between the k closest face images; while the 
shapes and the texture images represented in the AAM PCA 
space are all aligned to the mean shape and therefore with each 
other. In AAM, alignment between two shapes is achieved 
through Procrustes analysis, where the shape landmarks are 
scaled, rotated and translated, to minimise the total sum of 
distances between landmark pairings of the two shapes. 

A more recent reassessment of the performance of standard 
AAMs by Mathews et al. [13] resulted in the development of 
the more efficient Inverse Compositional AAM (ICAAM). The 
ICAAM approach has become popular in the area of assessing  

 

 Facial landmarks used in this work. Fig. 1.

the performance of AAM on fitting and analyzing faces [14, 
15]. In addition, an ICAAM is an independent AAM that 
models shape and texture separately. The separate and hence 
simpler handling of shape and texture was ideal for the 
expression transfer presented in this paper, allowing different 
strategies for the shape and the texture transfer. Furthermore, 
combined AAM does no longer assume the orthogonality 
between the shape and texture parameters and therefore 
restricts the fitting algorithm. 

B. The k-Same-furthest Algorithm 

The newly introduced member of the k-Same family, k-
Same-furthest [9], is a model-based approach, representing 
faces as AAM features to avoid ghosting artefacts. It identifies 
the k faces that are furthest away from a given probe face 
image, calculates the average of these faces, and returns this 
average as the de-identified face of the probe. The k-Same-
furthest algorithm guarantees that face de-identified by it can 
never be recognised as the original face as long as the identity 
distance measure used to recognise the de-identified faces is 
the same as that used by k-Same-furthest [9]. If the de-
identified faces are recognised by Eigenface technique [16] 
which represents faces in their PCA space rather than AAM, k-
Same-furthest offers a recognition rate very close to zero [9]. 

III. REVIEW OF EXPRESSION TRANSFER USING AAMS 

There have been various attempts to use AAM for Facial 
Expression Transfer (FET). This can be straightforward when 
source and destination face shapes and appearances are similar, 
such as in the case of the animation of human faces [17]. 
However, when geometric dissimilarity exists between the 
source and the destination, a more complicated process is 
needed to ensure the transferred expression merges naturally 
with the destination face. 

The study in [18] presents an effective AAM-based 
approach to FET between two known subjects, where one 
AAM is trained for each subject. Each source AAM base 
vector is expressed as a weighted sum of all the base vectors of 
the destination AAM space. The mapping between a source 
vector and each of the destination vectors is computed by their 
inner products. This mapping is then used to transfer 
appearance of the source subject to the destination subject via 
the AAM feature spaces. The mapping proposed in [18] is 
simple, allowing FET in real-time. The relevant work of Hunty 
et al. [19] built on other research into FET using AAMs. The 
proposal assessed how a fitted expression from one AAM 
could be used to synthesize the same expression realistically 
onto another person or animated character in a separate AAM. 
The ‘combined’ shape and appearance parameters were 
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transferred by linearly representing the expressions as the 
combination of the mean appearance and associated expression 
deviations. These expression variations were transferred from 
one AAM to the other, either directly or by converting those 
variations to the possible variations in the destination AAM. 
Although the work presented here has some similarities with 
the studies in [18] and [19], it involves a fundamentally 
different approach. This is due to the fact that the proposed 
FET process must focus on using a single generic AAM to 
transfer expressions between subjects, rather than using 
separate person-specific AAMs as in [18] and [19]. Person 
specific AAMs would provide more accurate AAM fitting, but 
this requires new AAMs to be trained for each new subject. In 
k-Same framework, the de-identified face image is obtained by 
averaging k images. Expression can be retained on the average 
face image by first transferring the expression from the source 
to each of the k subjects in concern and then taking the average. 
This means, to support k-same de-identification per subject, the 
processes in [18, 19] would require the training of k additional 
AAMs and perform FET between the source AAM and each of 
the k additional AAMs. Furthermore, preparing training images 
for AAM is usually a lengthy manual process, as they must be 
annotated as accurately and consistently as possible to prevent 
shape and appearance noise between the facial training images 
being included in the model. In [18] it is stated that the subject-
specific AAMs require 15-20 training images per subject and 
images across subjects must display similar expressions; while 
the training of a generic AAM accepts training images from 
various subjects displaying unlimited expressions. For the 
above reasons, the FET process proposed here makes use of a 
single generic AAM across subjects and can be applied to any 
source subject without the need of additional AAM training. 

IV. THE PROPOSED ALGORITHM 

A. Overall Process Flow 

As the proposed algorithm employs k-Same-furthest for 
privacy protection and model-based FET for data utility 
preservation, it is named k-Same-furthest-FET. Fig. 2 
summarizes its process flow. The input to the algorithm is an 
expression face image to be de-identified. The k-Same-furthest 
process generates a new identity for the input face, which is 
also the destination subject of the FET process. Since no 
subject-specific AAM is employed, the proposed FET process 
requires a common initial expression between the original and 
the new destination identities. Neutral expressions have been 
chosen to serve this purpose. As shown in Fig. 2, the proposed 
process achieves expression preservation by transferring the 
differences between the original identity’s neutral and 
expression faces to the neutral face of the new identity. The 
adjustments before and after the tranfer of expression 
difference are explained in the next subsection. The FET 
process begins with fitting three face images by the trained 
generic AAM. The same AAM is shared by the k-Same-
furthest and the FET processes. To facilitate independent and 
hence possible parallel processing, shape and texture data of 
each face are kept separated after the AAM fitting. When the 
expression transfer is completed with the shape and the texture 
data independantly, the output expression appearance of the 
new identity is generated by warping the transferred texture to 
the transferred shape. 

In practice, the neutral face of the original identity may or 
may not be available explicitly. If not, it can be retrieved from 
a gallery using standard Eigenface technique [16] or model-
based Eigenface technique. This work assumes the neutral face 
of the original identity is not available explicitly. To avoid 
additional training, the proposed k-Same-furthest-FET uses 
AAM-based Eigenface to identify the neutral face of the 
original identity. When the Eigenface technique returns a face 
of a wrong identity, this identity difference between the 
expression and the neutral faces will be transferred from the 
original subject to the generated faces of the new subject. 
However, the visual quality of the generated faces of the new 
subject do not degrade (see Fig. 3 for an example). The study 
in [20] reports a rank-1 recognition rate of 73% by basic 
Eigenface technique for 2D expression images and an 
expression-invariant recognition technique is able to produce a 
recognition rate higher than 90% (e.g. [21]), meaning faces of 
the same subject will display an identical identity in most 
cases. 

 

 Process flow of the proposed algorithm, k-Same-furthest-FET. Fig. 2.
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 Impact of a wrong neutral face of the original identity on the output Fig. 3.

expression face of the new identity. In this and following figures, face have 
been cropped for display purpose. 



B. AAM Training 

The proposed FET demands no control over the identity or 
the expression in the source image and therefore requires its 
AAM to be capable of fitting and synthesizing any identity for 
any facial movements that the FET process would be expected 
to handle. To meet this requirement, the AAM has to be trained 
with enough examples of each type of expected facial 
expression and from a variety of unrelated, but representative 
set of subjects. The proposed independent manipulation of the 
shape and texture data means the AAM implementation has to 
be an ‘independent’ AAM, such as an ICAAM. The PCA 
thresholds must be set to a level so that any shape or 
appearance inaccuracies in the training set do not cause the 
AAM fitting process to become unstable. An unstable fitting 
process leads to poor synthesized representations of the FET 
faces, resulting in poor generated expressions. The PCA 
thresholds of 75% for shape and 90% for appearance were 
found to provide stable ICAAM fitting and face synthesis for 
the dataset used in this work, even though the synthesized faces 
contain smoother facial shapes and skin textures than the 
original images. 

C. Expression Transfer between Face Shapes 

1) Notation 
For a convenient notation distinguishing different faces and 

persons, the shape for a face expression � of identity � is 
denoted as ��

� . Therefore, the goal of expression transfer across 
face shapes can be expressed as that for a given shape ��	


���	
 of 

an orignal identity 
�� generate a plausible ����
���	

 of a new 
identity ��� such that it presents the same expression features 

as ��	

���	

. This paper uses the same notation for face textures ��
�
. 

2) Scaling of input face shapes 
Considering the geometric differences of face shapes 

among individuals, the face shapes of the original identity are 
normalized to the shape of the new identity. The normalization 
is applied independently in the horizontal and vertical 
directions. The horizontal scaling factor is based on the widest 
facial landmarks (��	to	�� and ���	to	���) and determined by 

aligning ��	

����	�  to ����

����	�  using Procrustes analysis; while 
the vertical scaling factor is based on the highest and lowest 
landmarks (���	to	���, ��!	to	��" and �!	to	�"). 

3) Transfer of expression in the PCA space 

Intuitively, the output ����
���	

 can be calculated using (1). 

 ����
���	# ����

����	� $ ��	

���	 % ��	


����	� 

# ∑ '�(���
����	� $ �(�	


���	 % �(�	

����	� )*(

 
(+� ,

 (1) 

where ∆��	
 #	��	

���	 % ��	


����	� . As expressed in (1), each 
face shape can be represented in terms of its Cartesian 
coordinates or its projection in the AAM feature space. 
Calculation of (1) in the two spaces would derive identical 
result. This is due to the fact that (1) only involves an addition 
and a subtraction while PCAs are linear combinations of the 
original Cartesian coordinates. Despite the same results, the 
PCA space is much more efficient than the Cartesian space 
since firstly, it deals with much fewer data (e.g. 6 vs.64x2 

shape features and 35 vs. 197x178x3 texture features for the 
dataset and AAM PCA thresholds used in this work); and 
secondly, no shape alignment is necessary. For these reasons, 
the proposed algorithm calculates (1) in the AAM PCA space 
for both shape and texture data. Fig. 4 shows the identical 

results of ����
���	

 calculated in the Cartesian and the AAM 
feature spaces for an example set of input shapes. 

An important consideration when calculating (1) is that 

output ����
���	

 might go too far from the mean shape and cause 
implausible appearances (e.g. the upper and lower lip 
boundaries intersect). To avoid this, a constraint is imposed on 

the PCA parameters {�(���
���	} of ����

���	
 to ensure each �(���

���	 .
/312( where 2( is the 3th PCA eigenvalues and measures the 

variance of parameter �(  across the AAM training images. 

4) Extra expression preservation of the eyes and the mouth 
The degrees of mouth and eye opening and the overall 

shape of the mouth plays an important role in the 
communication of emotion [22]. However, a direct transfer of 

∆��	
 using (1) may cause ����
���	

 to display a different state 

than ��	

���	

. Fig. 5 demonstrates an example, where ����
���	

 

calculated using (1) (Fig. 5 (d)) has a small mouth opening and 

different mouth shape than that of ��	

���	

. This is simply 

because ��	

����	�  has a slightly opened mouth while ����

����	�  is 
tightly closed. To address this issue, this work prioritizes the 
preservation of the mouth and eye opening and the overall 
mouth shape. 

For a given facial component (the mouth or an eye), first 
translate the component to have the midpoint of its corners 
over the origin of the Cartesian reference frame and then rotate 
the translated facial component with respect to the origin to 
have its corners in horizontal. This step will enable a pose-and-
position invariant expression transfer. Second, determine the 4 
coordinate of each landmark on the component in ����

���	
 using 

 4���
���	

( # 4�	

���	

( ∙ ����
����	� /	��	


����	�  (2) 

where 4�
�
( denotes the 4 coordinate of the ith landmark 7( of 

shape ��
�
 and ��

�
 the width of the component. Width of a 

component is defined as the Euclidean distance between its 
corners. Third, determine the 8 coordinates of the landmarks 
that define the opening of the component (i.e. landmarks on the 
eye lids: 14 to 21 and 22 to 29 in Fig. 1, or landmarks on the 
inner lip boundaries: 48 to 53 in Fig. 1) using (2) but with ratio 
between the component height instead of width. Forth, if the 
component is the mouth use (2) to calculate the desired lip 

thickness of ����
���	

 at each landmark on the outer lip boundaries 
(landmarks 40 to 47 in Fig. 1) and determine the 8 coordinates  
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 Results of expression transfer derived in the Cartesian and the AAM Fig. 4.

spaces, for given inputs (a), (b) and (d). 



of these landmarks to achieve the desired lip thickness values. 
Here, lip thickness at a landmark is the distance between itself 
and its corresponding landmark on the inner lip. For example, 
lip thickness at landmark 41 in Fig. 1 is the distance between 
itself and landmark 48. Finally, restore the position and rotation 
of the component as those generated using (1). The third step 

ensures that the mouth and both eyes of ����
���	

 present the same 

degrees of opening as those of ��	

���	

. The forth step with the 

landmarks on the outer lip boundaries together with the third 

step ensures that ����
���	

 has identical mouth shape as ��	

���	

. Fig. 

5 (c) shows the result of these steps, where the degrees of 

mouth and eye opening and the overall mouth shape of ��	

���	

 is 

preserved in ����
���	

. 

D. Expression Transfer between Face Textures 

Like shape, ����
���	

 is calculated using (1) in the PCA space 

with the limit of /312( applied to each PCA parameter. 

However, ����
∗  often has a different skin tone than ��	


∗ , 

making the skin tone of ��	

∗  to be transferred to output ����

���	
 

through calculation of (1). As a result, the output ����
���	

 appears 

to have a different skin tone than ����
����	�  even when they have 

identical illumination. Here ��
∗  denotes any texture of person �. 

To avoid this, the skin tone of ��	

∗  are align to that of ����

����	�  
through histogram equalization. To allow ����

���	
 to blend in 

naturally with the original background of ��	

���	

, illumination of 

��	

���	

 is cloned to the generated ����
���	

. In this work, all neutral 

face images display a similar evenly lit face area, allowing the 
following steps to produce a good cloning result of the 

illumination. First, align ��	

���	

 to ��	

����	�  using histgram 

equalization. Then calculate the difference between the 

equalized and the original ��	

���	

. Finally, add this difference to 

����
���	

. Fig. 6 displays visual results of these steps. 
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original textures. First row: the mean-shape face textures. Second row: the 

face appearances with textures being warped to their corresponding shapes. 

V. EXPERIMENTS 

A. Dataset 

Experiments in this work were conducted with the IMM 
dataset [23], which contains images of 40 subjects. Only 
images with a near-frontal pose were used. These include a 
neutral, a happy and an arbitrary expression face images per 
subject. There is variation in head pose among the neutral as 
well as the happy faces. There is variation in both pose and 
lighting among the arbitrary expression faces. 

B. Evaluation of Privacy Protection 

Privacy protection ability of the proposed algorithm is 
measured through recognition experiments using Eigenface 
technique in the AAM space [16]. Cropped face images 
showing only the region inside the outline of the AAM-fitted 
shape are used in the experiments. 70% of the subjects were 
randomly selected and used for training the Eigenface space 
with cropped original images. In testing, all cropped original 
images with various expressions were used as the gallery and 
the de-identified expression images as the probes. All results 
reported are based on randomly selecting ten different training 
and gallery/probe sets and computing the average recognition 
rate over all configurations. 

Fig. 7 shows the rank-1 recognition rates for the cropped 
original faces and the faces de-identified using AAM-based k-
Same-Select and k-Same-furthest with and without FET. The 
recognition rates of k-Same-M-Select faces stay slightly below 
the theoretical maximum of 1/;. As proved and tested in [9], 
k-Same-furthest without the FET process produces a 
recognition rate of zero regardless of the value of k. The 
recognition rates of the k-Same-furthest-FET faces is nearly 
zero regardless of k, indicating that the expression transfer 
process after k-Same-furthest de-identification has hardly any 
impact on the privacy protection performance. 

C. Evaluation of Data Utility  

Following the work on k-Same-Select [10] which also aims 
to preserve data utility, data utility preservation ability of the 
proposed k-Same-furthest-FET algorithm is measured in terms 
of the accuracy of a facial expression classifier. Here Linear 
Discriminant Analysis (LDA) is employed as the classifier. 
The LDA classifier is trained with the original cropped neutral 
and happy faces and tested with happy faces de-identified 
using AAM-based k-Same-Select and the proposed k-Same-
furthest-FET. Fig. 8 presents the classification accuracy 
obtained. Some happy faces in the IMM dataset display an 
ambiguous smile. When any of these faces is one of the k 
closest happy faces to an original happy face, it will make the 
de-identified face by k-Same-Select (the average of the k 
closest) display an even more ambiguous smile that an 
expression classifier cannot detect. In contrast, the proposed 
algorithms transfer the original expression after the de-
identification process, aiming to generate a face with an 
identical expression to the original. Hence, when the output 
faces are classified with a classifier trained with the original 
expressions, it is more likely for the classifier to detect the 
expression cloned by k-Same-furthest-FET. Fig. 8 confirms 
that k-Same-furthest-FET preserves expressions more than k-
Same-Select. 



 

 Recognition rates for cropped original and de-identified faces. Fig. 7.

 

 Data uility preservation ability as measured by facial expression Fig. 8.

classification accuracy. 

VI. CONCLUSION 

This paper presents a novel algorithm named k-Same-
furthest-FET, performing facial expression transfer after the k-
Same-furthest face de-identification. Despite the fact that the 
FET process of the proposed k-Same-furthest-FET does not 
satisfy k-anonymity, experimental results show that it has 
hardly any negative impact on the recognition rate, achieving 
nearly perfect privacy protection for all faces with any value of 
k. In addition, the FET process enables the expression of the 
original face to be effectively cloned on the de-identified face. 
As confirmed by the experimental results from data utility 
evaluation, k-Same-furthest-FET preserves expression better 
than k-Same-Select. Furthermore, visual results of the output 
faces demonstrate that k-Same-furthest-FET is able to preserve 
not only the category but also dynamic details of various facial 
expressions. This is of significant value in face de-
identification in videos, which inevitably contains various 
dynamic expressions with various degrees of intensity. 
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