Memory Management in Output-Buffering Packet-
Switch Design

Jun Xu, Reza Sotudeh
School of Electrical, Communication and Electronic Engineering
University of Hertfordshire, UK

x Jun(@herts.ac.uk, r.sotudeh(@herts. ac.uk

Abstract-The most pressing problem in design of a
synchronous buffer-memory system in high-speed packet switches
is memory bandwidth. If there are multiple packets heading for
the same buffer while the buffer cannot consume them
simultaneously, some of the packets will have to be dropped. Two
approaches are explored to resolve this problem in this paper.
One is via improving the buffer-memory architecture, and the
other is via replacing clock-based synchronous technology with
handshaking-based asynchronous technology. Both approaches
are implemented and the results of experiments run to evaluate
several aspects of the implementations are compared.

1. INTRODUCTION

Input buffering, centralised (shared) buffering and output
buffering are the ‘three best known buffering strategies in
packet-switch design. Under input buffering, packets are stored
in an independent buffer associated with each input port, at
which they arrive. Under centralised buffering, packets are
stored in a centralised memory shared by all input ports and
output ports. Under output buffering, packets are stored in an
independent output buffer dedicated to output port that is their
destination.

In a conventional input-buffering packet-switch design,
each buffer is implemented as a single FIFO queue and only

" the packet at the head of such a queue can be transmitted. If
the packet at the head of the queue is blocked, all packets
behind it have to be blocked wherever their destinations are,
which 1s knewn as the Head Of Line (HOL) problem. Input

" buffering packet switches with the HOL problem can only
achieve a maximum throughput of around 60% [1].

Output buffering and centralised buffering packet-switches
can achieve throughput of around 80%. However,
blockage/data loss can still occur when packets from different
input ports head for the same buffer. If the buffer cannot
consume all the incoming packets at the same time, some of

_ the packets will have to be dropped. The conventional solution
to this problem is to increase memory-access-speed or
widening data-path. However, it can be observed that in recent
years, the bandwidth of links used for interconnection has
continued to increase [2]. To further extend the bandwidth of
the memory has therefore become increasingly umpractical.

In this paper, two approaches are presented to eliminate the
bandwidth problem for output buffering packet-switches. One
is via adding pipelines prior to each output buffer, and each
pipeline is dedicated to one input port. Provided that multiple

0-7803-9029-6/05/$20.00 ©2005 IEEE

packets head to the same output buffer simultaneously, the
contention is resolved while they are rippling through the
pipelines. To aveid data loss, the minimum depth of each
pipeline must be N+1, in which N is the number of input ports.
Buffer in such a system is constituted by multiple memory
banks. Memory addresses are assigned to packets in sequence
and on demand. Once memory addresses are assigned, packets
from different input ports can be uploaded to their associated
memory banks concurrently and independently. Unlike Prizma
[3], at which the clock speed in control logic has to be N times
faster than the clock speed in data path, the newly proposed
system is synchronised by a single clock signal.

Having seen that clock-based buffer-memory systems are
struggling to meet modern packet-switch design, a question
anises: can a non-clocked systemy, mamely an asynchronous
buffer-memory system, avoid the bandwidth problem? The
second contribution” of this paper is therefore to explore the
possibility of implementing an asynchronous buffer-memory
system. Under asynchronous operations, synchronisation is
devolved to local control signals: handshaking signals, instead
of using clocks. As a nature of asynchronous technology, data
transfers between two circuits are based on a Point-to-Point
flow control protocol, which guarantees that no data loss will
occur. The asynchronous approach in this paper shares most of
buffer-memory architecture with the synchrenous pipeline
approach. However, unlike the synchronous approach,
contention is resolved by an arbiter {4] rather than in pipelines.
The arbiter only allows one request to pass through at a time;
the one that arrives first is selected. When two requests arrive
simultaneously, it arbitrarily selects one to go through.

The rest of this paper is organized as follows: in Section 2,
the architecture of a buffer-memory system that is shared by
both approaches is presented; the implementation detail by
asynchronous technology is presented in Séction 3 and the
impleméntation detail by synchronous technology is presented
in Section 4, respectively; simulation results are presented in
sectioni 3; finally conclusions are drawn in Section 6.

. ARCHITECTURE OF MEMORY MANAGEMENT IN
OUTPUT-BUFFERING PACKET-SWITCHES
Fig.] illustrates the structure of the proposed buffer-
memory system for a 2by2 output-buffering packet switch. The
memory in such packet-switches is constituted by multiple
memory banks (only two memory banks are illustrated in the
figure though more banks could be accommodated if required).

391

http://x.iun(L$herts.ac.uk
mailto:r.sotudeh@herts.ac.uk

!

Each memory bank is logically independent from others and is
designed to store one packet. Each memory bank has two 2-to-
1 multiplexers in front of it: one for data, and the other for
control signals. ’

The control unit interacts with both input ports and assigns
memory banks to incoming packets on demand. It builds up
links between input ports and memory banks by setting up the
associated 2-to-1 multiplexers. Once a link is built up, the
control signals and data from the associated input port can
directly communicate with the assigned memory bank. A
circular counter, implemented in the control unit, records
memory bank addresses and determines which pair of 2-to-1
multiplexers should be configured. Although the control unit
processes memory-arrangement requests sequentially, once
memory banks are assigned to packets, data transfers between
the memory banks and their associated input ports can be
conducted concurrently and independently.

R_ba0 |
A_ba0
R_bal |
A_bal

Control Unit

R_st0 R_st}

=== —p

Data_in from
Input Port0

R_data0
(wnte control
signals fiom
mput Port0)

Data out to
output port

R_datsl
{write control
rig nals from
Input Portl)

|
|
!
|
[
Data_in from 4
|
|
T
|
|

fnput Port]
‘ E ! i 1| MBI
"Da:a Path [

e — - - —

* Figure 1 Overview of the Proposcd Memory-management System

IL IMPLEMENTATION
A. Asynchronous implementation

The asynchronous circuits in this paper are based on a

Speed-Independent model, where delays on wires are regarded
as zero or negligible while delays on gates are unbounded [5].
Data encoding is based on bundled-data protocol. In the case

" that data value is n-bit wide, n+2 wires, i.e., n biis for data, 1
bit for request, 1 bit for acknowledgement, are required in
transferring each data. Enceding for handshaking signals are
based on a 4-phase level signalling protocol (return-to-zero).
After each transfer, the channel signalling system returns to the
same state as it was in before the next transfer can start.

The asynchronous memory-management is desctibed as the
format of STG (State Transition Graph) [6] presented in Fig.2.
R_bal and R_bal are the request signals from Input Port0 and

- Input Portl respectively. They are asserted to demand the
control unit.in the buffer-memory to arrange memory before
packets can be uploaded. Unlike the synchronous pipeline
approach, the asynchronous system resolving contention relies
on an arbiter. The arbiter only allows one request to pass

through at a time; the one that amives first is selected. When
two requests arrive simultaneously, it arbitranly selects one to
go through, The arbiter is communicated by using the
handshaking pair, R_arbiter0 and 4A_arbiter0, for packets from
Input Port0, and R_arbiter! and A_arbiter!, for packets from
Input Portl respectively. Once granted by the arbiter, setting
up the associated 2-to-] multiplexers is conducted via using
handshaking pairs, R_st0 and A_st0, for packets from Input
Port0 and R st] and A st for packets from Input Blockl
respectively, The counter, which provides memory bank
addresses, 1s incremented as scon as a memory bank has been
assigned. To ensure that packets from different input ports are
not uploaded to the same memory bank, the arbiter must not be
released until after the counter has been incremented. The
counter is driven by the handshaking pair R counter and
A counter. 4 bal) and A bal are the acknowledge signals
comresponding to R_baft and R_bal respectively, notifying the
mnput ports after the associated memory-arrangement jobs have
been done. ' -

A_ba0- R_ba0+ R_bak A_bal

R_wat0- R_arbiterQ+ A_arbiter0- A_arbiter]- R_erbiterl+ A -
[I I |

R_wt0- A_arhiger0+ == R_grbiter0- R_arbiterl- #~ A_arbiter+ R_s#tl-

R_bal- R_stO+ R_sth R_bai-
' A_counter- !

A_baQ+ e A gt0+ A_gtl+ =—s A _babl

Figure 2 STG for Asynchronous Memory-management

R_tal

R_wrbiterd

A_wb terd
R_st0 . \

A_st0

A_bad

R_coumter

A_counter
T X

R_bal l \

R_arber

A_srbierl

R_stk

A_stl

A_bal

Figure 3 Timing of Asynchronous Memory-management

Further explanation on how the asynchromous system
manages its memory when two packets head for the same
buffer simultaneously is illustrated in Fig3. The arbiter
randomly grants the request (R_baf)) from Input PortQ first,

392

and as a result, a rnerhory~bank is assigned to the packet from
Input PortQ prior to the one from Input Port1.

B. Synchronous implementation

“In the synchronous approach, the memory bandwidth
prob]em 15 resolved by using N pipelines before each buffer (N
is the number of input-ports) as shown in Fig.4 (S, in the figure
represents the ith stage of pipeline). Each pipeline is dedicated
to one input port. Provided that multiple packets head to the
same output buffer simultaneously, the contention is resolved
while they are rippling through the pipelines. In order to avoid
data loss, the minimum depth of each pipeline must be N+1. A
token altemating between "0" to "N-1", implements a fair
policy for sequencing requests when there is contention: when
the token s “i", the packet from Input Porti will proceed first,
and the packet from Input Porti+1 will proceed in the second
place and the packet from Input Porti-1 will proceed at last.

Control
Unit
Packets from | - | . | | @1
Input pert@ . m]

Packets from l . | . I
Input port/ . E E: Data[™ | Mem | _
Path Banks
Packets frem . | . |
Input portV-/ . E ':: * " -
i

gure 4 Synchronous Pipelines

To reduce the latency that the pipelines introduced, bypass
paths are implemented in each pipeline. Packets only have to
ripple through the number of pipeline stages that are enough
for the control unit to settle down their memory banks. Once
their memory banks are arranged, packets can be directly
uploaded from any stage of pipelines. The first packet that
wins contention is propagated to its assigned memory bank
after rippling through its second stage of pipeline; the second
packet is propagated 1o memory after its third stage of pipeline
and the Nth packet will be done after its N+1th stage of
pipeline.

For a 2by2 packet-switch, three stages are mvolved in each
pipeline and it takes one clock cycle for packets to ripple
through each stage. The token alternates between "0" to "1".
Once the token has been used to make such a decision, its
value is changed. The counter recording memory-bank address
is incremented in the same clock cycle as a link is built up.

An example showing how the synchronous system
manages memory 1s presented in Fig 5. The peried from ty; to
ti4 1llustrates the scenario when packets reach their associated
pipelines at different clock cycles. Same as the asynchronous
approach, R_ba@ and R bal are asserted by Input Port0 and
Input Portl respectively to demand the control unit to arrange
memory before packets can be uploaded. The associated links
and memory banks are assigned between ty; and t;2 by using
R_st0 and between t); and ti, by using R st! respectively.
A ba0® and A bal are flagged high after the memory-
arrangement for the associated packets has been done.

. The period from t35 to tzz shows how the systemn manages
memery and resolves contention when two packets - from
different input ports -head for the same output port
simultanecusly. Both packets are detected by the control unit
in the first stage of their pipelines between tis and ty; when
R_ball and R_bai are both high. Since the token is "0", the
control unit builds up the link (by setting up the assoc1ated 2-
to-1 multiplexers) for the packet from Input Port0 between ty
and t3;, and built up another link for.the packet from Input
Portl between t;; and t35. The token is switched to "1" once the
contention is resolved at t35. Uploading the packet from Input
Port0 mnto its assigned memory bank starts from the third clock
cycle (t;7) and the packet from Input Portl from the fourth
clock cycle (tas) respectively.

11 12 ul tl4 35 36 87 138
CLK] 7

R_bad ; -

R_bal |

R_st0_°

Rstl

Token |

A_bat_*
Abal

Figure § Timing of Synchronous Mcmory-t;ianggcment

Iv. EXPERIMENTAL RESULTS

A Simulation environment

A synchronous and an asynchronous 2by2 output buffering
switches are implemented for the evaluation of each proposed
buffer-memory system. The switches consist of four blocks,
L.e., two input blocks and two output blocks. The input blocks
identify the destination of packets, and the buffer-memory
systems aré allocated at output blocks. The asynchronous
control circuits and synchronous circuits are synthesized using
Petrlfy and SIS respectively with 0.5um CMOS technology.
The minimum clock cycle for the synchronous circuit based on
PSPICE simulation is 6ns. Typically, transmitting one flit
through a synchronous switch takes six or seven clock cycles:
one clock cyele for receiving the flit at an input block; twe or
three clock cycles for the flit rippling through its associated
pipeline, which depends cn if there is contention; and three
clock cycles for the flit to be loaded into memory and then
forwarded to next switch/destination. A packet in this paper
consists of two parts; header and payload. Headers contain
routing information while payloads only contain data.

B. Simulation resuits

The simulation waveform generated by MicreSim Design
Centre for the asynchronous approach is presented in Fig.6.
Two 8-flits packets from different input ports head to the same
buffer-memory simultanecusly. As shown mx the figure, once
memory banks were sequentially assigned, the two packets
were concurrently and independently propagated into their

! hltp://www.lsi.upc.cs/mjordic/ml:lifxn’pet;‘ify.html. :

393

associated addresses’. R datal/A_data® and R_datal/A_datal
are the associated handshaking signals for uploading packets
into assigned memory banks (refer to Fig.1).

07} SR e B
A bad .
R_bal i

Abal n__

R_dutal) i T o Y Y (o RN N o O
A_dataD) B O g I N O Y T o
R_datall M.t n._nmn m.n
A_datal r-|: . rrn n: mn_n

L] b L]

6Tns 100ns 200ns

Figure 6 Simulation waveform of propagating two packets into the same
buffer-memory

140 -

1268
120 +— [J Async
100 +—] . i.SyﬂC
4 78
80
60 +—
a0 — .
20 | o 12 128 &

an 8-flits packet MA<1 - MA-2

Figure 7 Pmcessmg time of the proposed buffer-memory systems and their
associated switches

Fig.7 presents another two results. The first result shows
that the asynchronous buffer-memory system only consumes
half of the time (equivalent to one clock cycle) in managing
memory for one packet (MA-1) and two thirds of the time
(equivalent to two clock cycles) in managing and resolving
contention than the synchronous pipeline approach (MA-2).

~The second result shows that the synchronous switch
outperformed _the asynchronous switch and the synchronous
switch only spenl “thirteefl clock cycles (six clock cycles for
header-transmission, and one clock cycle for each flit of
payload) in routing through a packet. The result suggests that
although the synchronous pipelines introduce extra latency, the
impact on the overall performance of a switch is limited. If
flits in a packet are transmitted consecutively in the
synchronous approach, the extra latency consumed in the
pipelines only applies to the' first flit of a packet (header) while
the latency of the subsequent flits can be overlapped by their
preceding. In the case that packets are transmitted non-
consecutively, the latency on pipelines can be reduced by
bypassing packets from the pipelines.

* It works in the same way as in the synchronous approach, in which once
memory-banks are sequentially assigned, packets can be concurrently and
independently propagated into their associated addresses.

[Recovery time ™

header

payload (1-flit)

Figure 8 Contribution of the recovery time in the asynchronous transmission
cyele for a header and one flit of payload respectively

Fig.8 explains why the asynchronous switch failed o win
over the synchronous switch: the asynchronous circuits wasted
a lot of time in recovering handshaking signals. As mentioned
in the asynchronous implementation section, for a circuit ruled
by return-to-zero signalling protocol, after each transfer, the
channel signalling system must return to the same state as it
was in before the next transfer can start. Fig.8 shows that
despite that transmtting a header and one flit of payload
through a switch only took about 21ns and 12ns, respectively,
the asynchronous approach spent another 9ns each in retuming
to the same state as it was. The performance of the
asynchronous approach can be improved by replacing the 4-
phase signalling protocol with a 2-phase signalling protocol.
Traditionally, 2-phase signalling protocols do not have the
recovery-time problem.

V. SUMMARIES AND CONCLUSIONS

In this paper, two approaches were explored to resolve
the memory bandwidth problem for ocutput buffering packet-
switches. One 1s via. improving .the buffer-memory
architecture, and the second approach is via replacing clock
sipnals with handshaking signals. In the former case,
contention is resolved while packets are rippling through their
associated pipelines. In the latter case, contention is resolved
by an arbiter. Both approaches are implemented and compared.
The experimental results suggest both buffer-memory
management systems can reso:ve the bandwidth problem. The
experimental results also showed that the asynchronous buffer-
memory management system outperforms its synchronous
counterpart, but the asynchronous swiich lost to the
synchroncus switch due to its recovery time.

REFERENCES

{11 M. 1. Karol, M. G. Hluchyj, and S. P. Morgan, Input versus oulput quening
on a space division packet switch, IEEE Transactions on Communications.
COM-35 (12): 1347-1356, December 1987,

2] C.B. Stunkel, "Challenges in the design of contemporary routers”,
Proceedings of the 2™ parallel computer Routing and communication
workshop, pp 139-152, June 1997.

[3] Minkenberg, C.; Engbersen. T “A combined input and output queued
packet switched system based on PRIZMA switch on a chip technology”
Communications Magazine, IEEE, Vol. 38, Issue: 12, Dec. 2000 PP:70- 77.
[4] C. L. Seitz, System Timing. In C.A. Mead and L.A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[$] Scott Hauck, Asynchronous Design Methodologies: An Overview,
Proceedings of the IEEE, Vol .83, No.1, pp69-93, January] 595,

[6} T.-A. Chu, Synthesis of Self-timed VLSI Circuits :from Graph-theoretic
Specifications, PhDD Thesis, MIT, June 1987.

394

