
Memory Management in Output-Buffering Packet-
Switch Design

Jun Xu, Rezrt Sotudeh
School of Electrical, Communication and Electronic Engineering

University of Hertfordshire, UK
x.iun(L$herts.ac.uk. r.sotudeh@herts.ac.uk

Abstract-The most pressing problem in design of +
synchronous buffer-memory system in high-speed packet switches
is memory bandwidth IC there are multiple packets headmg for
the same buffer while the buffer cannot consume them
simultaneously, some of the packets will have to be dropped. Two
approaches are e x p l o d to resolve this problem @ this paper.
One is via improving the buffer-memory architecture, and the
other is via repladng clock-based synchronous technology with
handshaking-based asynchronous technotogy. Both approaches
are implemented and the results of experiments run to evaluate
several aspects of the implementations are compared.

1. INTRODUCTION
Input buffering, centralised (shared) buffering and output

buffering are the'three best known buffering strategies in
packet-switch design. Under input buffering, packets are stored
in an independent buffer associated with each input port, at
which they amve. Under centraIised buffering, packets are
stored in a centralised memory shared by all input ports and
output ports. Under output buffering, packets are stored in an
independent output buffer dedicated to output port that is their
destination.

In a conventional input-buffering packet-swi tch design,
each buffer is implemented as a single FIFO queue and only
the packet at the head of such a queue can be transmitted. If
the packet at the head of the queue is blocked, all packets
behind it have to be blocked wherever their destinations are,
which is known as the Head Of Line (HOL) problem. Input

I buffcring packet switches with the HOL problem can only
achieve a masimum throughput of around 60% [11.

Output buffering and centralised buffering packet-switches
can achieve throughput of around 80%. However,
blockageldata loss can still occur when packets from different
input ports head for the same buffer. If the buffer cannot
consume all the incoming packets at the same time, some of
the packets will have to be dropped. The conventional solution
to this problem is to increase memory-access-speed or
widening data-path. However, it can be observed that in recent
years, the bandwidth of links used for interconnection has
continued to increase [2]. To further extend the bandwidth of
the memory has therefore become increasingly Impractical,

In this paper, two approaches are presented to eliminate the
bandwidth problem for output buffering packet-switches. One
is via adding pipelines prior to each output buffer, and each
pipeline is dedicated to one input port. Provided-that multiple

0-7803-9029-6/05/$20.00 02005 I EEE

packets head to the same output.buffer simultaneously, the
contention is resolved while they are rippling through the
pipelines. To avoid data loss, the minimum depth of each
pipeline must be N+1, in which N is the number of input ports.
Buffer in such a system is constituted by multiple memory
banks. Memory addresses are assigned to packets in sequence
and on demand. Once memory addresses are assigned, packets
from different input $rts can be uploaded to their associated
memory banks concurrently and independently. Unlike Prizma
[3], at whch the dock speed in control logic has to be N times
faster than the clock speed in data path, the newly proposed
system is synchronised by a single clock signal.

Having seen that clock-based buffer-memory systems are
struggling to meet modern packet-switch design, a question
arises: can a nonclocked syspm,. namely an asynchronous
buffer-memory system, avoid the bandwidth. problem? The
second contribution' of this paper i s therefore to explore the
possibility of implementing an asynchronous buffer-memoy
system. Under asynchronous operations, synchronisation is
devolved to local control signals: hndshaking signals, instead
of using clocks. As a nature of asynchronous technology, data
transfers between two circuits are based on a Point-to-Point
flow control protocol, which guarantees that no data loss will
occur. The asynchronous approach in this paper shares most of
buffer-memory archtecture with the synchronous pipeline
approach. However, unlike the synchronous approach,
contention is resolved b y an arbiter [4] rather than in pipelines.
The arbiter only allows one request to pass through at a t h e ;
the one that arrives first is selected. When two requests arrive
simultaneously, it arbitrarily selects one to go through.

The rest of this paper is organiied as follows: in Section 2,
the architecture o f a buffer-memory system that is shared by
both approaches is presented; the implementation detail by
asynchronous technology is presented in Section 3 and the
implementation detail by synchronous technology is presented
in Section 4, respectively; simulation results are presented in
section 5; finally conclusions are drawn in Section 6.

II. ARCHITECTURE OF MEMORY MANAGEMENT IN .
OUTPUT-BU'FFERING PACKET-SWITCHES

Fig.] ilhstrates the structure of the proposed buffer-
memory system for a 2by2 output-buffering packet switch. The
memory in such packet-switches is constituted by multiple
memory banks (only two memory banks are illustrated in the
figure though more banks could be accommodated if required).

391

http://x.iun(L$herts.ac.uk
mailto:r.sotudeh@herts.ac.uk

!
Each memory bank is logically independent from others and is
designed to store om packet. Each memory bank has two 2-to-
1 multiplexers in front of it: one for data, and the other for
control signals.

The control unit interacts with both input ports and assigns
memory banks to incoming packets on demand. It builds up
links between input ports and memory banks by setting up the
associated 2-to-1 multiplexers. Once a link is built up, the
control signals and data from the associated input port can
directly communicate with the assigned memory W. A
circular counter, implemented in the control unit, records
memory bank addresses and determines which pair of 2-to-I
multipIexers should be configured. Although the control unit
processes memory-arrangement re,quests sequentially, once
memory banks are assigned to packets, data transfers between
the memory banks and their associated input ports can be
conducted concurrently and independently:

Figure 1 Ovaview of the Ropoaod Memory-management Syatcm

IU IMPLEMENTATION
A. Asynchronous implementation

The asynchronous circuits in this paper are based on a
Speed-Independent model, whew delays on wires are regarded
as zero or negligible while delays on gates are unbunded [5]. '
Data encoding is based on bundled-data protocol. In the case
that data value is n-bit wide, n+2 wires, i.e., n bits for data, I
bit for request, I bit for acknowledgement, are required in
transferring each data. Encoding for handshaking signals are
based on a 4-phase level signalling protocol (retum-to-zero).
After each transfer, the channel signalling system returns to the
same state as it was in before the next transfer can start.

The asynchronous memory-management is described as the
format of STG (State Transition Graph) [6] presented in Fig.2.
R-baO and R-bal are the request signals from Input PortO and
Input Portl respectively. They are asserted to demand the
control unit.in, the buffer-memory to arrange memory before
packets can be uploaded. Unlike the synchronous pipeline
approach, the asynchronoui system resolvhg contention relies
on an arbiter. The arbiter only allows one request to pass

through at a time; the one that amves first is selected. When
two requests amve simultaneously, it arbitrarily selects one to
go through The arbiter is communicated by using the
handshaking pair, R-arbiter0 and A-arbiferO, for packets from
Input PortO, and R-arbiter1 and Aarbiterl. for packets from
Input Portl respectively. Once granted by the arbiter, setting
up, the associated 2-to-1 multiplexers is conducted via using
handshaking pairs, R-stO and A-stO, for packets from Input
PortO and R-sll and A-ssll for packets from Input Block1
respectively. The counter, whch provides memory bank
addresses, is incremented as soon as a memory bank has been
assigned. To ensure that packets from different input ports are
not uploaded to the same memory bank, the arbiter must not be
released until after the counter has been incremented. The
counter is driven by the handshaking pair R-counter and
&counter. A-baO and A-bal ate the acknowledge signals
corresponding to R-bd and R - b d respectively, notifying the
input ports after the associated memory-arrangement jobs have
been done.

A-b,Nl- A R - b k A A-ia l .

R-mrbncrOt A-arbberO- A-vbrterl- R-ubiterl+

I 1 1 I

Figure 2 STG far Aaynchmous Memory-management

Figure 3 Timing af ~ ~ c h r o n o u s Memny-management

Further explanation on how the asynchronous system
manages its memory when two packets head for the same
buffer simultaneously is illustrated in Fig.3. The arbiter
randomly grants the request (R-baU) from Input PortO first,

3 92

and as a result, a memory-bank is assigned to the packet from
Input Fort0 prior to the one from Input Port1

B. Syichronous implemenlaiion
In the synchronous approach, the memory bandwidth

problem is resolved by using N pipelines before each buffer (N
is the number of input-ports) as shown in Fig4 (Si in the figure
represents the ith stage of pipetine). Each pipeline is dedicated
to one input port. Provided that multiple packets head to the
same output buffer simuItaneously , the contention is resolved
while they are rippling through the pipelines. In order to avoid
data loss, the minimum depth of each pipeline must be N+1. A
token alternating between "0" to "N-I", implements a fair
policy for sequencing requests when there is contention: when
the token is "i", the packet from Input Porti will proceed first,
and the packet from Input Porti+l will proceed in the second
place and the packet from Input Forti-] will proceed at last.

The period from t35 to tS8 shows how the system manages
memory and resolves contention when two packets . from
different input ports .head for the same output port
simultaneously. Both packets are detected by the control unit
in the first stage of their pipelines between t35 and t36 when
R-bo0 and R-bai are both high. Since the token is "0", the
control unit builds up the Iink (by setting up the associated.2-
to-1 multiplexers) for the, packet from Input PokO between t36
and t37, and built up another link for.the packet from Input
Portl between t37 and t38. The token is switched to " 1 " once the
contention is resolved at t36. Uploading the packet from Input
PortO into its assigned memory bank starts &om the third clock
cycle (t3,) and the packet from Input Port1 from the fourth
clock cycle (tjg) respectively.

Figure 5 Tuning of Synchronous Memoty-management

gum 4 Synchronous Pipelines
IV. EXPERIMENTAL RESULTS

To reduce the latency that the pipelines introduced, bypass
paths are implemented in each pipeline. Packets only have tu
ripple through the number of pipeline stages that are enough
for the control unit to settle down their memory banks. Once
their memory banks are arranged, packets can be directly
uploaded from any stage of pipelines. The first packet that
wins contention is propagated to its assigned memory bank
after rippling through its second stage of pipeline; the second
packet is propagated to memory after its third stage of pipeline
and the Nth packet will be done after its N+lth stage of
pipeline.

For a 2by2 packet-switch, three stages are involved in each
pipeline and it takes one clock cycle for packets to ripple
through each stage. The token alternates between "0" to "1".
Once the token has been used to make such a decision, its
value is changed. The counter recording memory-bank address
is incremented in the same clock cycle as a link is built up.

An example showing how the synchronous system
manages memory is presented in Fig.5. The period from tll to
t i 4 illustrates the scenario when packets reach their associated
pipelines at different clock cycles. Same as the asynchronous
approach, R-baO and R b o i are asserted by Input Port0 and
Input Portl respectively to demand the control wit to arrange
memory before packets can be uploaded. The associated links
and memory banks are assigned between tI2 and t13 by using
R-slO and' behveen ti3 and ti4 by using R-stl respectively.
A-600 and A b o l are flagged high after the memory-
arrangement for the associated packets has been done.

A. Simulation environment
A synchronous and an asynchronous 2by2 output buffering

switches are implemented for the evaluation of each proposed
buffer-memory system. The switches consist of four blocks,
i.e , two input blocks and two output blocks The input blocks
identify the destination of packets, and the buffer-memory
systems are allocated at output blocks. The asynchronous
control circuits and synchronous circuits are synthesized using
Petrify' and SIS respectively with 0 . 5 ~ CMOS technology
The minimum clock cycle for the synchronous circuit based on
PSPICE simulation is 61x3. Typically, trmsmitG one flit
through a synchronous switch takes six or seven clock cycles:
one clock cycle for receivlng the flit at an input block; two or
three clock cycles for the flit rippling through its associated
pipeline, which depends on if there is contention; and three
clock cycles for the flit to be loaded into memory and then
forwrded to next switchldestination. A packet in this paper
consists of two parts: header and payload. Headers conkin
routing information while payloads only containdata.

B. Simulation results
The simulation waveform generated by MicroSim Design
Centre for the asynchronous approach is presented in Fig.6.
Two 8-flits packets from differtmt input ports head to the same
buffer-memory simultaneously. As shown in the figure, once
memory banks were sequentially assigned, the two packets
were concurrently and independently propagated into their

' h t t p ; / / w . I s i . u p c . ~ / - i o r d i o / ~ ~ v / u e ~ f v . h ~ l .

393

associated addresses2. R-dutuU/AdutaO and R-dutui/A-dutal
are the associated handshaking signals for uploading packets
into assigned memory banks (refer to Fig. 1).

R-bal

R - W

R - h l
A - h l

A-bd

6% l o b aam
Figure 6 Simulation waveform of propagating two packets into the same

buffer-memory

U Async ___

100 -=Sync __

an 8-flits packet MA-1 . . MA-2

Figum 7 Processing time of the pmpmed buffer-memory systems and their
. associated switches

Fig7 presents another two results. The first result shows
that the asynchronous buffer-memory system only consumes
half of the time (equivalent to one clock cycIe) in managing
memory for one packet (MA-1) and two thirds of the time
(equivalent to two clock cycles) in managing and resolving
contention than the synchronous pipeline approach (MA-2).
The second result shows that the synchronous switch
outperformed -thz _asynchronou$ switch and the synchronous
switch only spent -tliirteex dock cycles (six clock cycles for
header-transmission, and one clock cycle for each fl it of
payload) in routing through a packet. The result suggests that
although the synchronous pipelines introduce extra latency, the
impact on the overall performance of a switch is limited. If
flits in a packet are transmitted consecutively in the
synchronous approach, the extra latency consumed in the
pipelines only applies to te f i r s t flit of a packet (header) while
the latency of the subsequent flits can be'overlapped by their
preceding. In the case that packets are transmitted non-
consecutively, the latency on pipelines can be reduced by
bypassing packets from the'pipelines.

' I1 woks in the same way as in the synchronous approach, in which Once
mmory-banks are sequentially sssigncd, packets can be concurrently and
independently pmpagated into their associated addresses.

0 Recovery time

HTransmlasion time

u a l

3 10

0

header payload (1 -flit)

Figure 8 Contibution of the recovery time in the asynchronous transmission
cycle for a header and one flit of payload respsctively

Fig.8 explains why the asynchronous switch failed to win
over the synchronous switch the asynchronous circuits wasted
a lot of time in recovering handshaking signals. As mentioned
in the asynchronous implementation section, for a circuit ruled
by return-to-zero signalling protocol, after each transfer, the
channel signalling system must return to the same state as it
was in before the next transfer can start. Fig.8 shows that
despite that transmitting a header and one flit of payload
through a swtch only took about 21ns and 12ns, respectively,
the asynchronous approach spent another 9ns each in returning
to the same slate as it was. The performance of the
asynchronous approach can be improved by replacing the 4-
phase signalling protocol with a 2-phase signalling protocol.
Traditionally, 2-phase signalling, protocols do not have the
recovery-time problem.

V. SUMMARIES AND CONCLUSIONS

In this paper, two approaches were explored to resolve
the memory bandwidth problem for output buffering packet-
switches. One is via improving .the buffer-memory
architecture, and the second approach is via replacing dock
signals with handshaking signals. In the former case,
contention is resolved while packets are tippling through their
associated pipelines. In the latter case, contention is resolved
by an arbiter. Both approaches xe implemented and compared.
The experimental results suggest both buffer-memory
management systems can resdve the bandwidth problem. The
experimental results also showed that the asynchronous buffer-
memory management system outperforms its synchronous
counterpart, but the asynchronous switch lost to the
synchronous switch due to its recovery time.

REFERENCES
[I] M. 1. KamL M. G. Hluchyj, and S,. P. Morgan, Input versus outpul queuing
on a space division packet switch, IEEE Transactions on Communioations.
COM-35 (12): 1347-1356, Deoember 1987.
121 C.B. Stunkel, "Challenges in the design of contemporary routers".
Proceedings of the ZUd parallel computer Routing and communication
workshop, pp 139-152, June 1997.
[3] Minkenberg, C ; Engberaen. T.; "A combined input and output queued
packet switched aygtem based 0". PRIZMA switch on a chip technology"
Communications Magazine, IEEE, Vol. 38, Issue: 12. Dec. 1,000 PP:7D- 77.
141 C. L. Seitz, System Timing. In C A Mead and L.A Conway, editors.
Introduciion to VLSI Systems, chapter 7. Addison-Wesley, 1980.
[5] Scott Hawk, Asynchronous Design Methodologies: An Overview.
Proceedings ofthe IEEE, Vo1.83, No.], pp69-93, lanuruy 1995.
[6] T.-A. Chu, Synthesis of Self-timed VLSI Circuit :from Graph-theoretic
Specifications, PhD Thesis, MIT, June 1987.

394

