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ABSTRACT The torus has been a popular topology for 
multicomputers due to its ease of implementation. Existing 
networks, such as the torus, are graph topologies, where a 
channel connects exactly two nodes This paper argues that 
hypergraph topologies, where a chandel connects any 
number of d e s .  are potential candidates for future high- 
performance multicomputer networks. The paper assesses 
the support of a multi-dimensional hypergdph, referred to 
as the Distributed Crossbar Switch Hypermesh (DCSH), 
and the torus for communication locality. The results show 
that DCSH is a more general structdre as it supports more 
efficiently a wide range of traffic patterns. 

Keyrvordv: Interconnection Topology, Graph, Hypermesh, 
Hypergraph, Torus, Latency, Performance Analysis. 

1. INTRODUCTION 
Multicomputers are commonly organised as a set of 

nodes that communicate over an interconnection network. 
Each node contains a processing element (PE), and 
switching element (SE) responsible for routing. The 
success of these systems is highly dependent on the 
efficiency of their underlying networks [3, 20, 231. 

The network topology, which defines the way nodes 
are connected, has a great impact on performance. 
Implementation feasibility of topologies in various 
technologies has been researched extensively in the past [ l ,  
2, 7, 221. Feasibility studies are of crucial significance 
since any practical implementation will be subject to 
technology-specific limitations that may exclude certain 
desirable graphs. For example, implementation technology 
places bandwidth constraints on network channels, and 
these are an important factor in determining how well the 
theoretical properties of a given topology can be esploited. 

On a single VLSI-chip, the network wiring densiry 
determines its overall system cost and performance For 
example, Dally [7] has shown that for a fixed wiring 
density, the 2-dimensional torus (or torus for short) 
outperforms the high-dimensional hypercube. because of its 

wider channels. His results have greatly influenced the 
design of current multicomputers. The lowdiameter 

usled in the iPsC/Z [17] and Cosmic 
replaced by the highdiameter torus 

(and its variation the mesh) in recent machines, such as the 

a single chip will not be achiwable for 

count) as the constraint applicable to current multichip 
technology, and reported that under such constraint, it is 
the hypercube which exhibits the superior performance. 

have ignored switching delays 
e the fact that these remain 

important in current technology [6, 221. Furthermore, both 
have considered a uniform traffic pattern only, 
disfavouring the torus a!; it is inherently unsuitable for such 
communication patterns. 

The torus has been popular because of its efficient 
support for local communication, and its perceived 
jnodrtlarrty; it can be exlpanded simply by adding nodes and 
channels without any change to the existing node structure. 
Since torus nodes can be used as elementary building 
blocks, they are potentially marketable components. 
Unfortunately, this modularity is at the ejrpense of 
performance; for in a fixed-degree network, as the network 
size grows the channels must be increased in bandwidth to 
maintain the same performance [20]. The numbet'of pins 
on a torus node must, therefore, be increased With the 
system size, a fact that is obvious in a topology like the 
hypercube whose degree increases as the number of nodes 
grows, but less apparent for the torus. 

Common multicomputer network topologies, such as 
the torus and cube, can be formally modelled as graphs of 
the form G = (!',E), defined over a set of vertices V and a 
set of edges E Each vertex typically represents a node, and 
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each edge between two vertices represents a channel 
connecting the two nodes. A fundamental constraint of the 
graph model is that each edge joins exactly two vertices. If 
a network channel can connect any number of nodes, a new 
class of topologies emerge. Using a graph-theoretical 
framework, members of this class can be modelled as 
hypergraph [4], which are generalisations of the 
conventional graph in which individual edges are able to 
join an arbitrary number of vertices. 

In previous work, we have shown that a particular 
class of regular multidimensional hypergraph topologies, 
known as the Distributed Crossbar Switch Hypermesh 
(DCSH), has several desirable topological properties that 
encompass those of the torus, mesh, and hypercube [14, 
181. This paper compares the DCSH to the most common 
graph topology, namely the torus, when implemented in 
VLSI and multiple-chip technology. Although many 
existing network evaluation studies assume the uniform 
reference model, it is not always true in practice as there 
are several real-world applications that exhibit non- 
uniform patterns [2, 10, 201. Typical non-uniform t r a c  
patterns include communication locality where the 
likelihood of communication to different nodes decreases 
with distance. This study assesses the support of the DCSH 
and torus for various degrees of communication locality. 
The comparison for the uniform case can be found in [ 181. 
The analysis makes realistic assumptions, ignored by 
previous studies [1,T], such as including delays due to 
decision time and the use of pipelined-bit transmission to 
lower lhe effects of long wires. 

The remainder of the paper is organised as follows. 
Section 2 introduces the hypermesh and the DCSH. Section 
3 outlines queueing models for the DCSH and torus under 
both uniform and non-uniform traffic distributions, and 
compares their performance. Finally, Section 4 concludes 
this study. 

11. DISTRIBUTED CROSSBAR SWITCH 
HYPERMESH (DCSH) 

The hypermesh is a regular k-ary n-dimensional 
hypergraph which has N = k"nodes, and is a Cartesian n- 
product of a fundamental cluster, consisting of k nodes that 
are directly connected [4], A network of this kind has 
extremely desirable properties [14, 18, 25, 261. Firstly, 
their diameter grows much more slowly as the system size 
is scaled up, compared to most graph networks. Secondly, 
they can host applications that map naturally on tori, 
hypercubes, and binary trees. Thirdly, they can emulate all 
SIMD permutations of the Omega and inverse Omega 
multi-stage networks. Finally, they are effective at 
broadcast and multicast operations. 

A typical example of the hypermesh is the spanning- 
bus hypercube 1271, where nodes in a cluster are connected 

by means of a single shared-bus. Other hypermeshes are 
based on either crossbar switches 111, 261 or complete- 
connections 161. However, all these implementations suffer 
from bandwidth limitations as the system size is scaled up 

The hypermesh structure is ideally suited for optical 
implementations given a sufficiently advanced transceiver 
technology bandwidth 19, 21, 251. Nonetheless, optical 
systems also have problematical aspects. As integrated 
singlc-chip nodes became feasible, it will be necessary to 
develop optoelectronic transmitters and receivers, that are 
capable of operating at a rate of hundreds of GHz, and 
sufficiently small so as not to cause a substantial increase 
in the site area occupied by a node. Commercial 
technologies with such parameters appear to be some way 
off [MI. 

A k" node DCSH is an n-dimensional hypermesh 
where the k nodes a given cluster are connected by 
means of a distributed crossbar switch; the 

1111. 

owned channel that connects it to the 
n the cluster At each of these k-1 

destinations, there is a (k - 1) -to-1 multiplexer with 
buffered inputs 
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Fig. 1: A DCSH cluster. 

Let dimensions be numbered n to 1. A node, v,  can 
then be labelled by an n x 1 address vector with U, being 
the node's position in its dimension i cluster. Each node is 
connected to n(k -1) other nodes with which it differs in 
only one address digit, i.e. v = v,,. . .v,+,~,v~-~...v, is 
connected to v' = v, .. . V ~ + ~ V ~ V ~ - ~  .. , v1 for all 1 S i  n ,  
I l ;vi ,v;Sk andv, # v i .  

The most interesting cases of the DCSH are those of 
low dimension (w=2 or 3), which not only have a low 
diameter, but map naturally into the physical space. 
Furthermore, low-dimensional DCSHs can exploit an 
efficient layered implementation scheme that alleviates the 
most critical bandwidth constraints that the torus, 
hypercube, and other hypermesh implementations suffer 
from [ 141. instead of aiming to integrate a node on a single 
chip, the DCSN implementation employ a functional 
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partitioning to separate processing and switching functions 
into physical layers, thereby increasing the available wiring 
density and reducing the pin-out requirements. 

111. ANALYSIS 
Although the torus can have either uni-directional or 

bidirectional channels, we will concentrate on the latter 
case since it is more popular in current multicomputers. 
Detailed derivations of the models, presented below, can be 
found in [ 181. 

The models assume that messages are transmitted 
between SEs using wormhole routing [24]. A message is 
broken intoflits (a few bytes each) for transmission and 
flow control. The header flit, containing routing 
information, governs the route. As the header advances 
along a specified route, the remaining flits follow in a 
pipeline fashion. If the header encounters a busy channel, it 
is blocked until the channel is freed; the flow control 
within the network blocks the trailing flits. Wormhole 
routing has been widely used in multicomputers as it 
considerably reduces buffering requirements, and allows 
the implementation of simpler and faster SEs (6, 161 

Nodes generate trafiic independently of each other at a 
rate which follows a Poisson process, with a mean of nt 
messagedcycle. Messages are B flits long, each flit 
requiring one-cycle transmission time. 

Deadlock during message routing is avoided by using 
the virtual channel algorithm, proposed by Dally & Seitz 
[8]. Restricted routing, where messages visit network 
dimensions in a predefined order, is a special case of this 
algorithm, and ensure deadlock-free routing in the DCSH. 
In the torus, however, in addition to restricted routing, each 
physical channel is divided into two virtual channels to 
avoid deadlock. Restricted routing has been popular in 
multicomputers [13, 16, 19, 241 because it requires a 
minimal number of virtual channels, and thus allows the 
design of faster SEs [6, 161. Let dimensions in the DCSH 
and torus be numbered from 1 to n, with the destination 
node at the fictive dimension 0, and messages visit higher- 
numbered dimensions first. 

The SE’s decision time takes D, cycles. Previous 
studies of k-ary n-cubes have ignored the effects of decision 
time on performance and stressed those of long wires. This 
is unrealistic given current and foreseeable technology. 
Delays through SEs due to decision time are still 
significant and much higher than wire delays. Delays due 
to long wires can be made less of an issue by using bit- 
pipeline transmission [22]. 

The following analysis uses the sphere of locality 
model (the conclusions drawn apply equally to the other 
models [20]). A k“ node network is divided into disjoint 
groups of N ,  = kS nodes each. All nodes within a group 

share the same sphere of locality (composed of the nodes 
within that group). A )message is destined for a node within 
the same sphere of locality as the source node (a sphere 
messoge) with a probability, ,O, and to a node in a different 
sphere (a non-sphere message) with probability (1-p). 
Destinations of sphere messages are equiprobable, as are 
destinations of non-sphere messages. if 
p = (N, - 1) / (N - 1) the traditional uniform tratfic model 
is obtained. 

Let the channels be divided into two classes: sphere 
channels and non-sphere channels. Sphere channels are 
associated with the s lower dimensions while non-sphere 
channels are associated with the (n-s) higher dimensions. 
Sphere messages visit sphere channels only. Non-sphere 
messages, on the other hand, visit both sphere and non- 
sphere channels. 

A. The DCSH Model 

The average number of sphere and non-sphere 
channels visited by sphere and non-sphere messages 
respectively are given by 

(k - 1) 
k 

a,, = s- 

(k-1) N a,,, = (n  - s)--- 
k ( N - N , )  

The factor ( N I  N - I U S )  accounts for the fact that non- 
sphere message have it0 be destined to a different sphere 
from that of the source 

Under light traffic, the mean latency as latency, L, in a 
k-ary n-dimensional DCSH can be approximated by 

L=a,D, +(l-P)nnscDr + B  (3) 

The first term in the: above equation accounts for the 
average number of SEs that a header flit visits while the 
second is the transmission time of the data flits. 

Under increased traffic however, message encounters 
blocking over network. channels All the dimensions are 
considered when determining the mean latency since the 
latency at dimension i (1 5 i S n) depends on dimensionsj 
(1 < I ) .  Latency is determined first at the destination 
(dimension 0), and then propagated back to tot the source 
(dimension n). 

Since both sphere and non-sphere messages visit 
dimension i (1 I 1 5 s) , the traffic rate (m, ) at dimension 
i is given 

insc = ni (4) 

Only non-sphere messages visit dimension i (s < i < n), the 
traffic rate (mnSc )at dimension i is therefore given by 



N 
N - N ,  

mnsc = (1 - p )m - 

Since flits are serviced as m n  as they arrive at the 
destination, the latency at dimension 0 IS given by 

L, = B  (6 )  

Let us now determine the message latency seen by 
entering dimension i (1 i s s) belonging to the sphere of 
locality. The probability that a message skips a dimension 
is a = I /  k .  Given that a message has either passed 
through skipped dimension ;+I,  the rates of trait that 
either pass through or skip dimension i are (the first 
subscript is for dimension i+l and the second for i )  

(7) m = ( 1 - a )  m, 2 
scPP 

inscps =mscsp =a(l-a)m, (8) 

(9) 
2 

mscss = a  msc 

Only messages that pass through dimension r 
encounter blocking at multiplexer i The increase in latency 
seen by a message at multiplexer i is found to be 

The latency seen by a message entering dimension i 
(12i Ss), taking into account the various traflic 
components that pass and skip the dimension, can be 
written as 

Similarly, for dimension i (s < i I n), equations 10 and I 1  
become 

( k  -2 ) (1 -a )mnscL t sc l  

4?scl+l = D, +Lnscl + ( ~ - - a ) ~ n s c 1  f 

a(1-a) mnsc(Lnscl +LECl  )2  
+a 3 ( 1 - ~ ) m n ~ c ~ ~ q  

(12) LKC( = 2(k  - 1) 
M 

(13) 
3 

A sphere message sees a latency of Lscs while non- 
sphere one sees &.., . Assuming that the message 
service time at the source node follows an exponential 
distribution, with a mean pLSc, + (1 - p)L,,scn , h4/M/l 

queueing theory [I21 givcs the mean latency as 

L =  (14) 
[Pr;,, + ( 1 - PI 4,scn 1 

1 - ' W S C ,  i- ( 1 - P )  Lnsc, 1 

B. The Torus Model 

Although the torus can have either uni-directional or 
bidirectional channels, the discussion here will 
concentrate on the latter case since it is more popular in 
multicompu ters. 

For simplicity, the model presented here does not take 
into account the effects of multiplexing the virtual channels 
onto the physical channels, and therefore underestimates 
the mean message latency. Nonetheless, it is sufficient for 
our comparative study because it provides an upper bound 
to the torus performance. A more detailed model would be 
more complicated to manage. Furthermore, it has been 
found that the general conclusions drawn from this study 
using the torus model are identical to those provided 
through simulation. 

The derivation which foltows for wormhole latency in 
the torus is similar to that in Section 3.1 and, for brevity, 
only differences are shown. A sphere of locality in a k" 
node torus is a s-dimensional torus with ksS along a 
dimension. The average message distances for sphere and 
non-sphere messages are given by 

( k  - 1) N 
a,,, = (n - s) -~ 

4 (N-N.1 

The traffic rates (m, and mnsc) arriving at a given 
direction at dimension i (lgi 2 s) and ( s < i  In) 
respectively can be written as 

ni N m = -- 
2 ( N - I j  

m N  
/%sc = (l-p)-- 

2 N - N s  

The traffic arriving at a direction at dimension i 
(1 5 i 5 s) is composed of eight streams, four Streams 
coming from each direction of the previous dimension. 
Given that the probability that a message skips dimension i 
(1 I i S s) is asc = 1 / k , ,  the latency seen by a message 
entering dimension i through a given direction is found to 
be 

259 



' 2  
LSCi + (19) 3 2 a;c(l+2asc -2asc)msc,- 

The routing latency seen by a message that passes through 
dimension i is found to be 

l-.J1-2mscc((k, - 2 ) / 4 ) 4  + L ,  1 
L,, = (21) 

msc, 

Given that a non-sphere message skips dimension i 
( s c i I n )  with probability a = l / k ,  equations 20. 22 ,  23 
for dimension i (s < i i n) can be written as 

Lnscl+L = ~t + ~ c ,  + (1 - 0 ) ~ : ~ ~ -  + 
I 

2 
Lnsc, 

a2(1+ 2a - 2a2)mnsc --y- + (24) 

C. Results and Discussions 
Due to the limited channel width, a message is broken 

intophits (i.e., channel words), each of which is transferred 
in one cycle. If the channel width is W bits, a message 
length A4 bits is broken up into B = M I W  phits, each 
containing W bits. A flit, which is a unit of transfer for 
wormhole routing, can be composed of one or more phits. 
The results presented below assume that a flit is equal to 
one phit. 

This section compares the 2-dimensional DCSH to the 
torus with fixed network size N and implementation cost. 
In a pure VLSI implementation, the bisection width [7], 
that is the number of wires that cross the middle of the 
network, is an approximate measure of wiring density. 
Assuming that a network is implemented in the 2- 
dimensional space with fi  nodes in a dimension, the 
bisection widths of the DCSH and torus, with channel 

In multi-chip implementations, where a node is 
implemented on a single chip, the node pin-out [l], i.e. 
node degree x channel width, is a more suitable cost 
metric. The node pin-out of the DCSH and torus can be 
written as 

pDCSH =2kWLJCSH (29) 

p T m f  = swTms (30) 

If the bisection width is fised, the channel width of the 
torus in terms of that of the DCSH is given by 

In multiple-chip technology, assuming constant node pin- 
out, the same channel width relationship as equation 31 is 
obtained. Therefore, under both constant bisection width 
and node pin-out constraints, the torus has k/4 wider 
channels than the DCSH. 

To investigate whether the torus can take advantage of 
its wider channels to ouitperform the DCSH, let the network 
size be N = 1024 nodles, which is a moderately large 
system. Furthermore, k t  us set W x w  to 1 (DCSH) phit 
(or phit for short), and consider a message length of M = 
61 (DCSH) phits. 

Fig. 2 depicts latency results that reveal the relative 
performance of DCSH and torus when traffic patterns 
contains an element of locality. The decision time is set as 
low as 1 cycle, which i!; an optimistic figure given current 
implementation technology [6, 16, 221. The x-axis in the 
figure represents the trrflic rate; the rate at which a node 
injects messages into tlhe network in a cycle. The y-axis 
gives the mean message latency to cross from the source to 
destination. 

Performance improves when communication locality is 
exploited [IO]. This is because sphere messages go through 
fewer channels, and thus go through fewer blocking stages, 
and non-sphere messages experience less blocking because 
the traffic at non-sphere channels is reduced. Due to its 
interconnection structure, the torus relies on local 
communication to achieve good performance. This section 
investigates to what extent the torus needs to exploit 
locality in order to take advantage if its wider channels. 

Figs. 2-a, b, and c show latency for three degrees of 
locality; high @=75?4), moderate (~?=50%), and low 
(p=20%). The sphere size in the DCSH is one cluster (i.e., 
the whole row); smaller sphere sizes than one cluster does 

260 



other hand, a sphere contains eight nodes along the row. 
This means that a local message travels, on average. two 
hops only in either direction. 

When applications generate traffic with strong degrees 
of locality, the torus uses its wider channels effectively, and 
provides better performance than the DCSH. As the degree 
of locality decreases, the torus performance degrades; when 
20% of messages are local, the torus latency is higher at 
moderate to heavy t r S c  loads. 

Figs. 3-a and b reveal that when the decision time is 
increased to 2 cycles, the torus is outperformed by the 
DCSH at early lraffic loads, even when communication 
locality is as high as 75%. The torus is extremely sensitive 
to the effects of decision time, especially as the sphere size 
increases or the locality decreases since the message 
distance increases. Therefore, decision time in torus-based 
multicomputers has to be carefully engineered, and kept as 
low as possible to take advantage of any locality exhibited 
by the application. 

Lmtency 
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.+- _ _ _ - - - -  
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IV. CONCLUSIONS 
When compared to the toms, the DCSH is fUnCtiOMlly 

a more general topology as it supports more efficiently a 
wider range of traffic patterns. Although the torus has 
wider channels than the DCSH, for equal implementation 
cost in VLSI and multiplechip technology, its high 
sensitivity to decision time offsets this advantage. The 
performance cf the torus degrades sharply even with 
optimistic figures for decision time. This is because a 
message in the torus visits, on average, a greater number of 
nodes to reach its destination, and thus encounters higher 
blocking in the network. 

The results, presented here, have revealed the decision 
time in the torus must be kept as low as possible (at 1 
cycle) to take m y  performance advantage from exploiting 
strong communication locality. Moderate and low degrees 
(<=SO%) of locality do not favour the torus. When the 
decision time is increased to 2 cycles, which is still a 
realistic figure given current technology. the torus has no 
perfonnance advantages aver the DCSH even when locality 
is as strong as 75y0. 

REFERENCES 
S. Abraham 8i K. Padmanabhan, Performance of 
multicomputer networks under pinsut constraints, 
JPDC 12, 1992,237-248. 
A. Agrawal, Limits on interconnection network 
performance, IEEE Trans. Par. & Dist. Syst. 2, 
1991.398412. 
W.C. Athas & C.L. Seitz, Multicomputers: 
Message-passing concurrent computers, IEEE 
Computer 21(8), 1988, 9-24. 
C. Berge, Graphs and hypergraphs, North-Holland, 
1977. 
L.M. Bhuyan & P.D. Agarwal, Generalised 
hypercube and hyperbus structures for a computer 
network, IEEE Trans. Comp. C33 (4). 1984, 323- 
333. 
A.A. Chien, A Cost and performance model for k- 
ary n-cubes wormhole routers, Proc. Hot 
lnterconnects Work&op, August 1993. 
W.J. Dally, Performance analysis of k-ary n-cubes 
interconnection networks, IEEE Trans. Comp. 

W.J. Dally, Deadlock-free message routing in 
multiprocessor interconnection Networks. IEEE 
Trans. Comp. C36(5), 1987, 547-553. 
P.W. Dowd, High-performance interprocessor 
communication through optical wavelength division 
multiple access channels, Inf. Synp. Confp. Arch., 

G.C. Fox et al. Solving problems on concurrent 

C39(6), 1990.775-785. 

1991, %-105. 

processors, Prentice Hall, 1988. 
W.K. Giloi & S. Montenegro, Choosing the 
interconnect of dlistributed-memory systems by cost 
and blocking behaviour, IEEE Parallel Processing 
s[vrrtp., 1991, 438-414. 
L. Kleinrock, Queueing Systems 1, John Wiley, 
New York, 1975. 
D. Lenoski, J. Liaudon, K. Gharacholoo. A. Gupta, 
J. Hennessy, M. Horowitq and M. Lam, The 
Stanford DASH Multiprocessor, IEEE Computer, 
March 1992,63-'19. 
L. Mackenzie et al, COBRA: A High-Performance 
Interconnection Network for Large Multicomputers, 
Tech-Rep. 119R19, Comp. Sci. Dept., Glasgow 
Khiv., 1991. 
L.M. Ni & D.K. Panda, Sea of interconnection 
networks: What's your choice, A report of the ICPP 
'95 Pannel, P r a .  ICPP, 1994, 
M .  Noakes & W.J. Dally, System design of the J- 
machine, Advanced Research in VUI,  MIT Press, 

S.F. Nugent, The iPSCI2 directconnect 
communicatioq technology, Proc. Con$ Hypercube 
Concurrent Conipufers &Applications, 1989.5 1-60 
M .  Ould-Khaoua, Hypergraph-based interconnection 
networks for large multicomputers, Ph.D. 
dissertation. Comp. Sci. Dept., Glasgow rlhiversity, 
1994. 
C. Peterson et td, iWarp: a 100-MOPS VLIW 
microprocessor for multicomputers, IEEE Micro 

D.A. Reed & R.M. Fujimoto, Multicomputer 
networks: Message-based parallel processing, 
A.B. Ruighaver, A decoupled multicomputer with 
full interconnecticin, Proc. CONPAR-VIPP 92, Lyon, 

S.L. Scott & J.R. Goodman, The impact of pipelined 
channel on k-ary n-cube networks, IEEE Trans. Far. 
& Disf. Sysr. 31). 1994, 2-16. 
C.L. Seitz, The GDsmic Cube. Comm. A C M  28, Jan. 

C.L. Seitz et al. The hypercube communication chip, 
Dept. Comp. Sci., CalTcch, Display 
FileS182:DF:S. 1985. 
T. Szymanski, Hyper-meshes: Optical 
Interconnection Networks for Parallel procesSing, 
JPDC 26, Jan. 1995. 
N. Tanabe et a/, Base-m n-cube: high performance 
interconnection networks for highly parallel 
computer PRODIGY, Proc. ZCPP. 1991,509-516. 
L.D. Wittie, Colnmunication structures for large 
networks of microcomputers, IEEE Tmns. Comp. 

1990, 179-192 

11(13), 1991, 26-37. 

1992, 250-257. 

1985, 22-33. 

C30 (4), 1981,264-273. 

262 


