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ABSTRACT 

The addition of noise to the deterministic 
Hopfield network, trained with one shot Hebbian 
leaming, is known to bring benefits in the 
elimiaation of spurious attractors. This paper 
extends the analysis to leaming rules that have a 
much higher capacity. The relative energy of desired 
and spurious attractors is reported and the affect of 
adding noise to the dynamics is empirically 
investigated. It is found that the addition of noise 
brings even more benefit in the case of the higher 
capacity d e s .  

stochastic; they differ in the way the weights are 
calculated. The variations of learning rule are 
described in Section 3. 

2 NETWORKDYNAMICS 

AU the high capacity models studied here are 
modifications to the standard Hopfield network. The 
net input, or localfield, of a unit, is given by: 

hi = C wijS, 
j ti 

where wv is the weight on the connection from 
Keywords Associative memory, Attractor ,,"it ; ," ,,,,it i~ ----, -- -. 

basins, Hopfield neural networks, Learning rules, 
Perceptron, Petformane measures, Pseudwinverse. 

The deterministic dynamics of the network is 
given by: 

1 INTRODUCTION 

In this paper we examine how a variety of high 
capacity associative memory models respond to 
noise in the dynamics. The networks are all 
variations on the standard Hopfield model, differing 
in the weight mahix that is used to embed the set of 
training patterns. 

All models of this type function as associative 
memories. The leamt pattems act as attractors in the 
state space of the network, so that network states that 
are near to leamt patterns may move towards a leamt 
pattem, under the network dynamics. However the 
leamt pattems are not the only attractors, there may 
be many others: either correlated with mixtures of 
the training patterns, or otherwise. These spurious 
attractors are normally unhelpful. 

In the standard stochastic model the addition of 
noise to the dynamics can be beneficial [I]: the free 
energy landscape is changed so that, spurious local 
minima of the energy function may no longer be 
stable; the probability that the network ends in a 
leamt pattem can he increased. 

The work presented here empirically investigates 
whether similar benefits can arise in the high 
capacity versions. All the networks examined share 
the same dynamics, either deterministic or 

I i f k > O  
S:= -1 i f k c 0  I si i fk=O 

Unit states may be updated synchronously or 
asynchronously. Here we use asynchronous, random 
order updates. A symmetric weight ma& and 
asynchronous updates ensures that the network will 

evolve to a fixed point. If a training pattern 5 is 
one of these fmed points then it is said to he a 
fundamental memory, and is successfully stored. 

In the stochastic case the update rule is 
generalised to be probabilistic: whenever a unit is 
chosen for updating its next state is given by: 

1 
Prob(Sj = 3) = 

I+  

where T is the temperature of the network. 

Now a symmetric weight matrix and 
asynchronous updates guarantee that the network 
reaches equilibrium. That is the average over time 
of the state of each unit in the network ( S i ) ,  
eventually hewmes constant. 

With deterministic dynamics (T= 0) a network 
state is stable if, and only if, all the local fields are of 
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the same sign as the corresponding unit, equivalently 
the aligned localfields, h,S,, should be positive. 

In the stochastic case a sufficiently high 
temperature will result in ergodic dynamics, in which 
there are no attractors: all states are equally likely 
( ( S ) = O ) .  At lower temperatures, however the 
network can be in equilibrium with a non-zero, mean 
state vector. If this vector has a large overlap with a 
particular network state then it is sensible to say that 
the network has converged on that state. Thus if 
(S)& > 1 --E then the training pattern p is; once 
again a fundamental memory. 

3 LEARNINGRULES 

In the basic Hopfield model the weights are given 
by a one-shot Hebbian rule: ws = CSiTr. The 

resulting network (with deterministic dynamics) 
performs reasonably at low loading but ils the 
loading increases performance becomes 
progressively worse, until at a loading of above 
0.14N, the network will no longer store the ttaining 
patterns. Moreover correlation of the training 
pattems significantly worsens performance. Two 
other types of training can be used with this type of 
network, both of which give much higher capacity 
and performance than the one-shot d e .  The first is 
to use learning rules that find approximations to the 
projection weight matrix, in which any linearily 
independent set of pattems can be learnt. The 
second is to use pemptron like training, continuing 
until fl  the local fields are correctly aligned. The 
capacity of this rule is at least 2N (for large N). 

3.1 Psuedo-Inverse Learning (PI) 

II 

The projection weight matrix  is^ given by: 
W = 9 a' where E is the matrix whose columns are 
the 6''. and ?-'is its pseudo-inverse, the matrix 

with the property that: E-' Z =I (E-' exists if the 
patterns have no linear dependencies). IC is a 
symmetric matrix. 

A variety of iterative methods are availahle for 
approximating W, some of which are in the spirit of 
neural computational methods [2,3]. 

Here we use the Blatt and Vergini algorithm [3]: 
Beginning with a zero weight matrix 
For eachpanem in tum 

Clamp the pattem onto the network and sets := 0 
Repeat until 11 - hi%![ < E 

i .  p 

Increments 
For each processing element in him 

Update incoming weights according tu: 

Aw.- 'I = [ k ; ' ]  - (sr - hi)@ -h i )  

The parameter k can be any value that satisfies 1 < 
k 5 4. Since the larger the value of k the faster the 
d e  converges, we set k to 4. 

3.2 Repeated Hebbian Learning (SLL) 

It is also possible to use the perceptron leaming 
rule to fmd a set of weights that will produce 
correctly aligned local fields. Originally suggested 
in this context by Forest[4], the rule in its simplest 
form is: 
Begin with a zero weight matrix 
Repeat until all aligned localfields are correct 
Set the state of network to one of the 5''. 

For each unit, i, in rum 
Calculate hjT;,  Zfless than M 

then set Awii = bv I' .. - -I N ET' 

M (> 0) is the leaming threshold (or margin). 
The larger M the better the amactor performance of 
the network is likely to be. Earlier work [5] has 
shown that a value of 10 is suitable for networks of 
the size used here. 

The symmetric form of the weight update ensures 
that the final weight matrix is symmetric. 

4 ANALYSING PERFORMANCE 

4.1 Energy of Attractors 

The energy of a state, S, in a network with 
symmehic weights is: 

E I S ] =  - ~ ~ ~ v i j s i s j  = -:E& 
i,j i 

With deterministic dynamics the energy of the 
network always decreases when a unit changes state. 
The stable points of the dynamics are therefore 
(local) minima of the energy, and the actual minima 
reached is largely determined hy the initial state of 
the network. 

With stochastic updates the network minimises its 
free energy[ll, which is a function of the probability 
distribution of the network at any time: 
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If a, : {S} + [OJ] is a probability distribution of states, double average over sets of training pattems and 
then the free energy is: 

F(o, )=  ( E @ } )  - T.H(o, )  

where H ( u , )  is the entropy of the distribution. 
This means that the network is minimising its mean 
energy whilst maximising its entropy, with the 
balance mediated by the temperature of the network. 

The effect of noise on the dynamics of these 
networks can be beneficial if the desired attractors 
(the trained pattems) have lower (more negative) 
energy than the spurious ones. So even when the 
network passes close to a local minima in the energy 
function the presence of noise may prevent this from 
becoming dominant, in equilibrium. 

The first analysis undertaken is of the average 
energy of random attractors in the network. The 
network is started in a random state and allowed to 
relax, under noiseless dynamics, into an attractor, 
which is then identified as one of the training 
pattems or otherwise. Its energy is calculated and 
fmally the mean of these energies is reported. 

4.2 Affect of Noise 

The second analysis seeks to ascertain how the 
addition of noise affects the probabiiity of a random 
state arriving at one of the training patterns. When 
the network is stochastic it will never actually 
converge to a specific state. To estimate its 
asymptotic behaviour we allow the network to 
evolve from its starting state and after a specific, 
large number of updates, fmd the maximum overlap 
of the final state with each of the stored pattems. 

calculated. Whenever this is 
P 

larger than a prespecified threshold the network is 
designated as having converged on a stored pattem. 

The network is staxted in a number of random 
initial states, at a variety of temperatures and the 
nature of its final states are then identified. 

4 3  Basins of Attraction 

We use, R, the normalised mean radius of the 
basins of attraction[6], as a measure of attractor 
performance in these networks. It is defined as: 

where m, is the minimum overlap an initial state 
must have with a fundamental memory for the 
network to converge (in the sense described above) 
on that fundamental memory, and m, is the largest 
overlap of the initial state with the rest of the 
fundamental memories. The angled braces denote a 

initial states. D e t a i l s  of the algorithm ;sed can IX 
found in [7]. 

5 RESULTS 

5.1 Energy of Attractors 

As described above the energy of the attractors in 
the networks was estimated by taking 10,ooO 
randomly chosen initial states and allowing the 
network to relax to an auractor, whose energy is then 
calculated. The absolute values of the energies are 
dependent on the size of the network weights, so that 
it is not sensible to compare energies across different 
types of network. Rather we are interested in the 
relative values of the attractor states mmsponding 
to mined pattems and all other spurious attractors. 

We take @ = + . As the energies are 

negative a value of @ above 1 shows the trained 
amactors to have lower energy than the spurious 
ones. 

Table 1 shows the results for networks trained 
with uncorrelated random pattems. The results are 
averages of 10 different runs. 

For both of the high capacity rules the energy of 
the fundamental memories is lower than that of the 
spurious amactors. As the loading increases the 
difference in energies is decreased with both SLL 
and PI showing very similar values. It is therefore 
possible that under noisy conditions the higher 
energy spurious attractors maybe destabilised, whist 
the desired attractors remain. This possibility is 
investigated next. 

\ 

ESWO", a", 

0.85 1.24 

30 1.19 1.19 

40 1.14 1.15 
Table 1: @ values for one hundred unit networks 

trained with uncorrelated random pattems. The 
trained networks are started in 10,ooO random initial 
states and allowed to relax to an attractor under 
deterministic dynamics. The results are averages of 
10 different training sets, at each loading. Results 
are not repofled for the Hopfield learning rule at 
loadings higher than 20 as the trained pattem 
attractors appear very rarely. 

5.2 Effect of Noise 

In this experiment trained networks are tested 
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Figure 1: A selection of100 unit networks trained with 10, 20, and 30 paltems, the P.I. and SLL weight marrix 
are used. The standard Hopfield net with a loading of 10 patterns is also shown for reference. loo0 random 
initi$states arc allowed to relax over l0,OOO unit updates. The number of fundamental memories reached is 
shown as well as the number of correct fundamental memories. Results are averages over 10 different NIIS. The 
upper line is the number of fundamental memories reached, the lower is the number of correct memories 
reached 
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Fi$& 2: TheR values for the pseudo inverse weight matrix at varying loadings and temgrakres. Resu1ts.v 
aierages over 50 mns for each data point. 
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under a variety of temperature settings for the 
dynamics. Again the networks are statted in a 
number (1OOO) of random states and allowed to 
evolve, in this case for a large, fixed number of unit 
updates. All results are for 10,000 individual unit 
updates, or equivalently, for these 100 unit networks, 
100 epochs. At the end of this process the final state 
is compared with all naining pattems; if the overlap 
with any training pattern is more than 0.9 then the 
network is designated as having evolved to one of 
the fundamental memories. When the final 
fundamental memory is the one that was originally 
closest to the initial state then the network is said to 
have reached the correct amactor. 

Figure I shows the results at a variety of loadings 
and temperatures for both SLL and PI leaming; the 
results for the standard rule iwe also shown at a 
loading of 10 patterns. The results for both SLL and 
PI are similar: the addition of noise produces a 
dramatic increase on the number of fundamental 
memories found. This can be seen very clearly in 
the SLL 0.2 loading results. With deterministic 
dynamics 0.17 of the initial states reaches a 
fundamental memory. When the temperature is 0.3, 
0.99 reach a fundamental memory - spurious 
attractors have been almost completely eliminated. 

The affect on the number of correct fundamental 
memories found is not as dramatic, although a small 
increase is present in all cases. 

As loading increases the best temperature for 
destabilising spurious attractors decreases, 
suggesting that the phase diagram, for this network, 
in the temperature-loading plane is similar to the one 
derived for the standard learning rule [SI. 

5.3 Basins of Attraction 

In these experiments the mean normalised radii of 
the basins of attraction, associated with fundamental 
memories is estimated. 

Figure 2 shows how R varies with loading and 
temperature, for the pseudo inverse weight ma&. 
The SLL results are very similar. It can be seen that 
R is not raised by an increasing temperature. In fact 
above a fairly low noise level there is a rapid fall in 
the value of R. 

6 CONCLUSIONS 

The first set of results showed that, for both types 
of high capacity weight matrix, the energy of the 
fundamental memories was lower than that of the 
spurious attractors. This is potentially helpful and 
suggests that introducing noise to the dynamics 
could be beneficial. The second set of results 
coniiied this conclusion. The addition of noise, at 

relatively low loadings, completely eliminated the 
unwanted attractors and at higher loadings caused a 
significant reduction in their relative frequency. 
However the results showed that whilst random 
initial states were more likely to evolve into one of 
the leamed pattems the probability that this learned 
pattern was the one closest to the initial state was not 
increased. This is a consequence of the noisy 
dynamics: in comparison with the deterministic case 
the dynamic process is less determined by the initial 
conditions. The fmal set of results confums this 
view. There is no noise level which produces an 
enlargement in the basins of attraction, in fact as the 
amount of noise in the system increases the attractor 
basins decrease in size. 

Oespite this the addition of noise is of great 
benefit. Deterministic associative memory models 
are handicapped by the number of spurious attractors 
and their proclivity to find these attractors from 
many starting states, so that reducing their 
frequency, by the addition of noise, makes the 
models much more attractive both as computational 
artefacts and as neurophysiological models. 
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