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Abstract

We extend existing models and methods for the informational
treatment of the perception-action loop to the case of goal-
oriented behaviour and introduce the notion of relevant goal
information as the amount of information an agent necessar-
ily has to maintain about its goal. Starting from the hypoth-
esis that organisms use information economically, we study
the structure of this information and how goal-information
parsimony can guide behaviour. It is shown how these meth-
ods lead to a general definition and quantification of sub-goals
and how the biologically motivated hypothesis of information
parsimony gives rise to the emergence of behavioural proper-
ties such as least-commitment and goal-concealing.

Introduction
The world is a complex place. Millions of years of evo-
lution have created an environment with intricate relation-
ships, structure and many things that an organism living in
it has to look out for. It is no surprise then that organisms
invest a lot of energy in the processing of all the informa-
tion available to them. For instance, the retina of a resting
blowfly accounts for 10% of its energy consumption and for
the human brain this amount is estimated to be 20% (Laugh-
lin et al., 1998).

It is unlikely that an organism would spend all this energy
if it is not crucial; individuals that limit their information in-
take and processing to the necessary minimum and allocate
the rest of their energy to behaviour that is more relevant to
survival or reproduction will outperform ones that waste en-
ergy on useless information processing. Also, even though
this means an organism uses information economically, it
is plausible that an organism still often operates at the limit
of its information processing bandwidth and that there is an
evolutionary drive to do away with unused capacity, simi-
lar to the degeneration of useless eyes in cave-dwelling fish
(Jeffery, 2001). We will refer to these assumptions as the
information parsimony hypothesis.

We are interested in the necessary principles of life and
lifelike behaviour. The hypothesis of information parsimony
hints that information acquisition and processing capabili-
ties are part of these fundamental requirements. In the vein

of the Alife motto “life as it could be”, we use minimal mod-
els of agents and their informational properties to study these
basic requirements of life. The substantial history of this ap-
proach shows that clear statements can be made about in-
formation processing bounds and how these influence the
structure of sensory and behavioural systems and embodi-
ment (Barlow, 1961; Brenner et al., 2000; Nehaniv et al.,
2007; Pfeifer et al., 2007; Polani, 2009).

The information parsimony hypothesis has given rise
to a body of research on the informational treatment of
the perception-action loop of agents and the interactions
with their environment. It has been shown that this can
lead to global, fundamental insights in necessary bounds
on behaviour (Polani et al., 2006), evolution of coordina-
tion (Sporns and Lungarella, 2006), intrinsic drives (Klyu-
bin et al., 2008), successful search strategies for tasks with
sparse information (Vergassola et al., 2007), and behaviour
structuring (van Dijk et al., 2009). These results are general
in the sense that they do not require a specific model of brain
mechanics. In this paper we will extend this previous work
to the more specialised, though sufficiently general case of
goal-oriented behaviour.

Goals
There are many cases, both in biological and in artificial set-
tings, where the environment can be seen as offering rewards
for certain types of behaviour. These rewards can range from
as clear-cut as a treat given by a dog trainer to as diffuse as
persistence. When such a reward measure is available to an
agent, it can often be regarded as performing a certain task
with an accompanying end-goal (Montague et al., 2004).

Although successful behaviour that appears goal-oriented
is achieved, note that we do not want to imply that the or-
ganism or agent necessarily maintains an explicit represen-
tation of this goal. However, there is evidence for the case
that human adults encode actions in terms of their outcomes
(Hommel et al., 2001). Furthermore, brain structures have
been located where activity is highly correlated to the goal
of observed behaviour (Hamilton and Grafton, 2006), indi-
cating an evolutionary drive towards goal-centred thought.
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Moreover, recent research is beginning to show evidence for
neural correlates of an individual’s own goals, not limited to
human brains, e.g. Saito et al. (2005); Spiers and Maguire
(2006). Therefore we will adopt the viewpoint that certain
behaviour, or in any case episodes of behaviour, can be seen
as being driven by a concrete, identifiable goal.

Goal Information
We extend methods for informational treatment of the
perception-action loop to explicitly include goal-directed
behaviour. Here an agent needs to actively maintain infor-
mation about its current goal. In the case of human beings
it has been consistently argued that this is performed by the
pre-frontal cortex (Montague et al., 2004). As any informa-
tion processing this takes effort and consumes energy, thus,
following the information parsimony hypothesis, it is ex-
pected that organisms attempt to optimise this process. Here
therefore we study the necessary bounds of goal-information
that has to be maintained at a given time. We show how
these bounds can guide behaviour and that they can give rise
to the emergence of certain behaviour properties, such as
least-commitment planning, which traditionally is explicitly
designed into computational approaches (Weld, 1994), and
goal-concealing.

In the following two sections we will give a short intro-
duction to concepts and notation used in this paper and an
overview of the informational methods used to study the
perception-action loop. Next, we introduce the main concept
of the research presented here: relevant goal information.
The effects of this quantity on behaviour and interpretations
of these effects are then presented using a navigation-task
example. Subsequently, we show how relevant goal infor-
mation gives rise to a natural notion of transition points. Fi-
nally, we will relate our results to previous work and give a
general discussion in the last section.

Concepts and Notation
When we talk about information, we refer to the
information-theoretical formalism introduced by Shannon
(1948). Here, the main elements are random variables,
which we denote with capital letters, e.g. X . Such a variable
can assume a specific value (small letter, x) from a given al-
phabet (curved capital, X ), subject to a probability distribu-
tion over the possible values:

∑
x∈X Pr(X = x) = 1. To

improve legibility we will, by abuse of notation, write p(x)
for both the entire distribution and for the probability that
variable X assumes the value x, determined by the context.
We use p(x, y) and p(y|x) for joint and conditional proba-
bilities, respectively.

A probability distribution implies an ‘uncertainty’ about
the value of a random variable. This uncertainty is quan-
tified as the entropy H(X) = −

∑
x p(x) log p(x). We

take 2 as the base of the logarithm, so that the unit of en-
tropy is bits. Alternatively, the entropy can be seen as

how much information on average is gained when learn-
ing the value of a random variable. The conditional en-
tropy H(Y |X) = −

∑
x,y p(x, y) log p(y|x) determines the

amount of uncertainty left about Y when the value of X is
know.

The amount of information that on average is available
both in X and Y can be calculated with the mutual infor-
mation I(X;Y ). The mutual information can be defined as
I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ), which
leads to the interpretation that it is the decrease in uncer-
tainty about one variable when the value of the other one is
known.

Finally. the expected value of a random variable is writ-
ten as E[X], or E[X|θ] when the value is conditioned on
some parameters θ. The expected value is equal to the
sum of the possible values, weighed by their probability:
E[X] =

∑
x p(x)x. Similarly, we can for instance write the

conditional expected value of a function as E[fθ(X, y)|θ] =∑
x p(x|y, θ)fθ(x, y).
For a more elaborate background on the information-

theoretical concepts and notation used in the current paper
see Cover and Thomas (1991).

The Perception-Action Loop
An agent is embodied and situated in an environment; it has
direct contact to the environment through its sensors and ac-
tuators. Information about the world is obtained through
the sensors and influence the agent’s actions, which in turn
can affect the environment. This results in a Perception-
Action loop (PA-loop) and, following Klyubin et al. (2004),
we model this loop as a causal Bayesian network (CBN), as
shown in Fig. 1(a). Such a network represents the relation-
ship between the agent and the environment. At each time
step t the agent perceives part of the state of the world wt,
resulting in a sensor state st ∈ S. A fully reactive agent
chooses its action at ∈ A based solely on this state. Its
policy π defines the probability of performing these actions:
π(at|st) = p(at|st). When the agent performs an action,
the world state is changed according to the state transition
probability distribution Patwt,wt+1

= p(wt+1|wt, at).
Without loss of generality, in the rest of this paper a sim-

plified version of this model is used. It is assumed that the
world is fully accessible to the agent, i.e. the sensor state
reflects the full state of the world. For the CBN, this means
that the world and sensor nodes can be collapsed, resulting
in the network shown in Fig. 1(b). Consequently, we will
use the term ‘state’ interchangeably for both world and sen-
sor state.

As outlined in the introduction, we consider agents that
operate in an environment that rewards certain behaviour.
We are interested in how in this case the combined structure
of the world and rewards can influence the structuring of
behaviour. We assume that the reward that the agent receives
is quantifiable. For instance, in a food-searching task the
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Figure 1: Causal Bayesian network of the perception-action
loop, unrolled in time, showing (a) the complete model and
(b) the case when the world is fully accessible.

agent can be presented a reward related to the nutritional
value of the food when it is found. Another commonly used
scheme is to represent the energy spent to perform a task as a
penalty or negative reward for each time step that the goal is
not reached. We will use the first model, as detailed further
on.

These rewards are modelled by an immediate-reward
function (Sutton et al., 1999) which gives the immediate
reward that an agent will receive for performing action at
when in state st and consequently finding itself in state st+1:
Ratst,st+1

∈ R. Given this function we can define the state-
action value function (or utility function) Uπ(st, at) which
gives the expected future reward of taking action at when in
state st and subsequently following policy π (Sutton et al.,
1999):

Uπ(st, at) =∑
st+1

Patst,st+1

[
Ratst,st+1

+ γE[Uπ(st+1, At+1)|π]
]
, (1)

where γ ∈ [0, 1] is a discount factor to model preference for
short term (low γ) or long term reward (high γ).

In this setting, a rational agent that performs goal-directed
behaviour will try to gather as much reward as it can as fast
as possible, effectively attempting to find an optimal policy
π∗ maximising the expected value of (1):

π∗ = argmax
π

E [Uπ(St, At)|π] (2)

= argmax
π

∑
st,at

p(st, at)U
π(st, at) (3)

= argmax
π

∑
st,at

π(at|st)p(st)Uπ(st, at). (4)

Information in the PA-Loop
With the formalisms outlined in the previous sections in
place, we can look at the informational properties of the PA-
loop. The arrows in the CBNs of Fig. 1 can be regarded as

St−1

At−1

St

At

St+1

G

Figure 2: Causal Bayesian network of the perception-action
loop, extended with the goal node.

channels; the world ‘transmits’ information which the agent
receives through its sensors and in turn the agent ‘injects’
information into the world through its actuators. The well
established field of information theory then provides us with
the tools to answer questions about the PA-loop in a concrete
way in the terms of Shannon information (Shannon, 1948).

For instance, we can determine the amount of informa-
tion that an agent on average takes in through its sensors to
determine its actions using the mutual information between
sensor states and actions I(St;At). Not all information that
is available in St is relevant to its current task and, following
the hypothesis of information parsimony as discussed in the
introduction, we assume that the agent will aim to minimise
this quantity. The lower bound of the necessary amount of
information intake to be able to achieve a certain level of
utility can be quantified using the paradigm of relevant in-
formation (Polani et al., 2006), and is done by solving the
following problem:

min
π(at|st)

[
I(St;At)− βE [Uπ(St, At)|π]

]
. (5)

The solution is a policy which minimises the state-
information used to select actions while maximising the ex-
pected utility achieved by this policy. The parameter β can
be varied to trade-off utility and information requirement;
low β promotes information parsimony, high β puts more
weight on utility. When β goes to infinity, the policy found
will become optimal and the minimum amount of state in-
formation needed to act optimally is given by I(St;At). As
shown by Polani et al. (2006), the problem of (5) can be
solved with an iterative algorithm that interleaves traditional
algorithms of information theory (rate-distortion (Blahut,
1972)) and reinforcement learning (value iteration (Sutton
and Barto, 1998)). This algorithm has the important prop-
erty that the solution of (5) simultaneously fulfils (1).

Relevant Goal Information
The methods for relevant information are generally appli-
cable to any case where a reward function can be defined.
However, it is restricted to the analysis of a single task. Here
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Figure 3: Grid world example for relevant goal information. Walls are denoted with a brown, hashed background. The
remaining free cells comprise the set of states S. The goal G is uniformly distributed and its alphabet G consists of the empty
cells within the six rooms. The agent can perform four actions: move north, east, south or west. When such an action would
move the agent to an occupied cell the action has no effect. The shading of the background of the free cells indicates (a) the
total amount of relevant goal information for each cell and (b) the amount of new relevant goal information when arriving in a
cell. Dark blue shading for high amount, light blue or white for low amounts The meaning of the asterisk and letter marks is
explained in the text.

we will extend the model of the PA-loop to enable us to han-
dle an agent that could perform different tasks. To do so, we
focus on the common case where this task can be determined
by reaching a distinct goal. Here we do not discern how the
current goal of an agent is selected; it can be imposed exter-
nally, such as a command given to a dog by its master, or it
may be an intrinsically determined goal, as in the case of a
hungry predator that decides to catch a certain prey. Instead,
we only are concerned about the decision making process
once a goal is given.

We introduce the new random variable G. The value of
this variable, g, represents the current goal of an agent. Fig-
ure 2 shows how the CBN of the PA-loop is extended with
this new variable. Note that we do not aim to study the case
of an agent having several simultaneous goals. Rather, we
concentrate on agents that select a specific goal from a dis-
crete set of possible goals G. After this selection the goal is
fixed, until the goal is achieved or abandoned.

The new CBN shows that the policy now also depends
on the current goal: π(at|st, g) = p(at|st, g). Also, each
separate goal gives rise to a distinct immediate reward func-
tion and thus to a separate goal-dependent utility function
Uπ(s, g, a).

This extension of the model introduces an additional in-
formation source; apart from sensory information the agent
now also needs to maintain and process goal information to
guide its actions. Per the information parsimony hypothesis
this is assumed to be costly and therefore we are interested

in determining lower bounds on this amount of information
needed to achieve a given performance. Analogous to the
sensory case we term this the relevant goal information. In
contrast, we will denote the traditional relevant information
with relevant sensory information.

Whereas the relevant sensory information determines the
minimum amount of sensory information necessary for a
certain goal, we can also determine the minimum goal in-
formation necessary on average to achieve a certain utility,
given the current state. By analogy to (5), this is done by
solving the following minimisation problem:

min
π(at|st,g)

[
I(G;At|St)− βE[U(St, G,At)|π]

]
(6)

The solution to this problem, which is a policy trading off
goal information parsimony with utility, controlled by the
trade-off parameter β, can be found using the same itera-
tive procedure used for relevant sensory information as de-
scribed in (Polani et al., 2006).

As an example we use a navigation task in the grid world
shown in Fig. 3(a). The set of states S and the set of goals
G both consist of all unoccupied cells, and the goal variable
G is assumed to be uniformly distributed; any of the goals is
as likely as another. The agent is rewarded when it achieves
the current goal (Ratst,st+1

= 1 if st+1 = g, 0 otherwise) and
a discount factor of γ = 0.9 is used.

As with relevant sensory information, we can study the
trade-off between utility and relevant goal information by
varying the value of β in (6). Figure 4 shows that the results
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Figure 4: Trade-off between goal information (horizontal
axis, bits) and expected utility (vertical axis).
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Figure 5: Trade-off between goal information (horizontal
axis, bits) and sensory information (vertical axis, bits) for
different values of α ∈ [0, 1], which controls preference for
goal (low α) or sensory (high α) information parsimony.

of this trade-off are similar to that found for relevant sen-
sory information; expected utility rises monotonically with
higher goal information bandwidth, but the agent can still
achieve a performance close to 90% of the maximum with
as little as half of the optimal amount of information.

Besides utility, goal information may also have to be
traded off against sensory information; a policy that min-
imises relevant goal information could require a higher av-
erage bandwidth for the sensors. We can combine equations
(5) and (6) to take into account both costs:

min
π(at|st,g)

[
(1− α)I(G;At|St) + αI(St;At|G)−

βE[U(St, G,At)|π]
]
, (7)

where α can be varied from 0 to 1 to reflect the relative
cost of each process; low α promotes goal information par-
simony, high α indicates sensor information is deemed to be
more costly. Figure 5 shows that generally more relevant

goal information is linked to an increase in sensory informa-
tion, but that different weights result in different trade-offs.

We can extract the relevant goal information for each state
separately, I(G;At|st), as is shown in Fig. 3(a) for the
policy achieving maximum expected utility. This example
shows some interesting properties of relevant goal informa-
tion. Firstly, in central states the agent tends to require more
goal information than in more remote states or states close to
walls. This is easily explained by the fact that in the central
states the a priory probability of the direction the goal is in is
roughly uniformly distributed; the goal can be on any side.
When in the more distant states, however, the goal tends to
be in a single direction. Only in exceptional cases does the
agent need to deviate from going in this default direction and
thus use extra goal information. Directly next to the walls
the agent even only has to choose from the limited set of ac-
tions that do not make it run into a wall. Here the relevant
goal information is bounded from above by the cardinality
of this limited set. This also explains why the amount of
relevant information in doorways is found to be often lower
than in neighbouring states; here only two actions are useful.

Another observation is that local peaks in relevant goal in-
formation, marked with an asterisk in Fig. 3(a), can be found
in front of doorways, even several cells away, most notably
at ‘crossing points’ between different doorways. Trajecto-
ries of the agent tend to go from one of these peak cells to
another. We will give an interpretation and explanation for
this effect in the global discussion at the end of this paper.

Goal Information Transitions
In the example of the previous section we have only looked
at single step scenarios. It shows that in different states the
amount of goal information needed can vary. An interesting
question is whether there is also a qualitative difference be-
tween the relevant goal information in different states. For
instance, a bee flying out to search for food at first only has
to consider which patch in its habitat is its target. Only when
arrived at this patch it has to take into account the several in-
dividual resources (Bell, 1990). As another example, in our
grid world, when the agent is in front of a doorway, it has
to take into account whether the goal is in the neighbouring
room or not. However, when it has just entered the room,
this information is no longer relevant and it now has to fo-
cus on where exactly in the room the goal is. The model of
relevant goal information given here can be used to analyse
this development of goal information through time.

Given the single-step goal-information parsimonious pol-
icy as found in the previous section, we can determine how
much of the relevant goal information in a certain state was
not needed during the sequence leading to that state:

I(G;At|At−1
0 , st) = H(G|At−1

0 , st)−H(G|At
0, st),

(8)



Proc. of the Alife XII Conference, Odense, Denmark, 2010 181

where At
0 = (A0, . . . , At) denotes the sequence of actions

from the start of the task to time step t. This amount of new
relevant goal information is shown for our grid world case
in Fig. 3(b), averaged over sequences of up to 5 time steps.

As one would expect, some of the cells where the total
amount of relevant goal information is high (those marked
in Fig. 3(a)) also stand out here; if in a cell more goal infor-
mation is required than in the neighbouring cells, naturally
a relatively high amount of this information is new. How-
ever, there are some notable differences: although the states
where much new goal information is needed also require
much total goal information, the opposite argument does not
hold.

For instance, the cells marked a and b in Fig. 3(b) are
shaded darkest in Fig. 3(a) and so require the most amount
of information, with only a small difference between them.
But there is a clear difference in how much of this informa-
tion is new and different from the goal information that on
average is required in the past before arriving in these cells.
At cell b, in front of the doorway, the qualitative transition
in goal information is much more pronounced. This same
difference can be seen in the cells marked c and d; again,
the total amount of relevant information for these cells is ap-
proximately the same, but for cell cmore of this information
is the same as already maintained by the agent in previous
steps, showing a much less defined transition. All in all, we
can note that the largest transitions are at doorways and at
corners.

Discussion
Two Viewpoints
The result of minimisation of goal information is a policy
where the agent often takes the same action, regardless of
the goal; e.g. if going north works for all goals and go-
ing east only for a part of them the agent can always select
going north and it can disregard all goal information. This
leads to two complementary viewpoints for relevant goal in-
formation.

One is what we call the least-commitment (in the sense of
least-commitment planning (Weld, 1994)) viewpoint. Be-
cause the actions taken by the agent are optimal for as many
goals as possible, the amount of goals excluded by the ac-
tions are minimal. Although, in the methods described here,
the goal does not change during a single run, because of the
least-commitment property of the agent’s policy, the agent
will have a higher probability of still having behaved opti-
mal if such a change does happen. The policy of the agent
can be seen as keeping as many options open as possible.
Thus, minimisation of relevant goal information causes the
emergence of a least-commitment strategy.

This shows the relatedness of relevant goal information
to empowerment (Klyubin et al., 2008). This quantity de-
fines the maximum amount of possible observable control
an agent has on its environment and is based on the same

kind of informational treatment of the PA-loop as put for-
ward in this paper. In a task-less setting empowerment leads
to an intrinsic drive to least-commitment behaviour, whereas
relevant goal information gives rise to such a drive in a goal-
oriented agent.

The least-commitment viewpoint leads to the interpreta-
tion of states where relevant goal information is high as nec-
essary decision points. If the goal can be in either of two
rooms, the agent will not move towards one or the other un-
til it has no other option. This occurs at the crossing points
between doorways, where the agent has to make a decision
and commit to one of the rooms.

Such an approach to delay decision making may not al-
ways be optimal, such as a driver who risks an accident by
steering for a corner at the last moment at high speed. How-
ever, here these risks are assumed to be contained in the re-
ward function, rendering such policies suboptimal and thus
no longer considered by the agent.

Another interpretation arises from the goal-concealing
viewpoint. This viewpoint is obtained by noting that the
mutual information between goal and action can not only
be seen as how much goal information is needed to decide
on an action, or how much information the goal gives about
the action, but also how much information the actions give
about the goal (a similar viewpoint for sensory relevant in-
formation is taken by Salge and Polani (2010)). This means
that by minimising relevant goal information the agent gives
away as little information as possible about its goal to an
external observer. This observer could see this as the emer-
gence of a goal-hiding strategy.

From this viewpoint the peaks in relevant goal informa-
tion at crossing points can be explained by noting that the
actions taken here give away a lot of information about the
goal of the agent. When the agent is at a crossing point be-
tween two rooms, the observer does not know in which room
the goal is, but after seeing the action he can exclude all the
cells in the room the agent moved away from.

Sub-Goals
In the field of Reinforcement Learning (RL) there has been a
lot of recent activity on the subject of higher level behaviour
structuring, task decomposition and automatic sub-goal dis-
covery (Barto and Mahadevan, 2003). A large amount of al-
gorithms for automatic behaviour structuring have resulted
from this. For instance, the intuition that so called ‘bottle-
neck’ or ‘funnel’ states in an environment, such as door-
ways, are salient sub-goals has led to methods being devel-
oped based on visitation count (McGovern and Barto, 2001;
Kretchmar et al., 2003; Asadi and Huber, 2005) and graph-
theoretical techniques (Şimşek et al., 2005; Kazemitabar and
Beigy, 2009; Şimşek and Barto, 2009). Other approaches
that are also based on assumptions about the structure of
the world, but using less strict definitions of what may
constitute a ‘good’ sub-goal, include state space segmen-
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tation/clustering (Bakker and Schmidhuber, 2004; Mannor
et al., 2004), relative novelty (Şimşek and Barto, 2004),
sensation/action co-occurrence (Digney, 1996) or transitions
(Hengst, 2002; Kozlova et al., 2009), causal-graph decom-
position (Jonsson and Barto, 2006) and the use of data-
mining techniques (Kheradmandian and Rahmati, 2009). Fi-
nally, a separate class of algorithms does not focus on struc-
ture of goals, but on segmentation, clustering and abstracting
common state-action sequences (Sun and Sessions, 2000;
Pickett and Barto, 2002; Girgin et al., 2006).

All these methods indicate their usefulness by showing
increased learning performance in certain RL tasks. Also,
they show that skill transfer, made possible by task segmen-
tation, can be highly beneficial (Perkins and Precup, 1999;
Konidaris and Barto, 2007). However, hardly any compari-
son of the performance of different approaches has yet been
done. This is not surprising, since the methods can differ
greatly and, more importantly, they are based on different,
designer imposed, assumptions about what is a good way to
structure a task. In these papers the structural properties of
a sub-goal or sub-task are defined for a particular domain of
interest, after which a solution is engineered for these spe-
cific properties.

The results of the current paper, however, suggest a more
fundamental, biologically/Alife motivated definition of sub-
goals: a sub-goal is achieved when a significant qualitative
change of the task at hand occurs, which is when the actions
of an agent are guided by a new component of, or new in-
formation about, the goal not taken into account earlier. As
shown earlier, the notion of relevant goal information can be
used to identify such transitions. Note that the informational
treatment of the PA-loop is independent of domain, archi-
tecture and particular implementations and therefore we do
not need any of the assumptions made in the engineering
solutions. The biologically plausible hypothesis of informa-
tion parsimony is sufficient for the treatment of emergence
of sub-goals.
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