
Input-Dependency Analysis for Hard Real-Time Software

Jan Gustafsson and Björn Lisper
Department of Computer Science and Engineering,

Mälardalen University, Västerås, Sweden.�
jan.gustafsson,bjorn.lisper � @mdh.se

Raimund Kirner and Peter Puschner
Institut für Technische Informatik

Technische Universität Wien, Austria�
raimund,peter � @vmars.tuwien.ac.at

Abstract

The execution time of software for hard real-time sys-
tems must be predictable. Further, safe and not overly pes-
simistic bounds for the worst-case execution time (WCET)
must be computable. We conceived a programming strategy
called WCET-oriented programming and a code transfor-
mation strategy, the single-path conversion, that aid pro-
grammers in producing code that meets these requirements.
These strategies avoid respectively eliminate input-data de-
pendencies in the code. The paper describes the formal
analysis, based on abstract interpretation, that identifies
input-data dependencies in the code and thus forms the ba-
sis for the strategies provided for hard real-time code devel-
opment.

1 Introduction

One of the central demands on a real-time system is that
it meets all timing requirements imposed by the application
under guarantee. In order to give such a guarantee about
the temporal correctness, engineers use specific design, im-
plementation, and verification techniques. These techniques
have to ensure the correct timing of entire applications down
to the level of single tasks.

At the single-task level, a development framework has to
aid the real-time programmer in a number of ways. Most es-
sentially, the programmer needs to be provided with strate-
gies for developing code with timing that is both predictable
and easy to analyze. Further, techniques and tools for as-
sessing the timing (e.g., WCET) of the code are needed.
These tools need to provide the programmer with high-
quality feedback about the temporal properties of the code.

We worked out a strategy for real-time task develop-

ment that includes the above-mentioned services to the pro-
grammer: Tool support for WCET-oriented programming
[Pus03] advises the programmer to write code that avoids
algorithms or coding that produces code with a heavily
input-data dependent control flow. Further, the single-path
conversion [PB02, Pus02] converts the remaining or un-
avoidable input-data dependent alternatives in the control
flow into code with a unique execution trace. The remain-
ing code has a fully predictable timing and is easy to analyze
for its WCET.

This paper describes techniques that can be used to im-
plement tool support for WCET-oriented programming and
the single-path conversion. Both WCET-oriented program-
ming and single-path conversion rely on an effective anal-
ysis of input-data dependencies in control decisions in the
code. We show how this analysis is realized by abstract in-
terpretation and present the formal framework of the analy-
sis in detail.

The paper is structured as follows: Section 2 gives a
summary on WCET-oriented programming and single-path
conversion. Section 3 introduces abstract interpretation
and Section 4 describes the While language, a simple pro-
gramming language that we use to define the semantics of
our interpretation. Section 5 defines the abstract domain,
states, and rules of the interpretation used for the input-
dependency analysis. Section 6 illustrates our approach
with an example, and Section 7 concludes the paper.

2 WCET-Oriented Programming and Single-
Path Conversion

In previous work [Pus03] we argued that the algorithms
and code structures used for hard real-time systems need to
be very different from those algorithms and structures that
are traditionally used. The basic argument against using tra-

ditional, non real-time code for hard real-time systems was
that this code is written to achieve a good average-case per-
formance and strongly relies on input-data dependent opti-
mizations. We demonstrated, however, that the worst-case
execution time of code with data-dependent control flow is
typically higher than that of code that avoids data dependent
control decisions. Based on this observation we introduced
the concept of WCET-oriented programming [Pus03]:

WCET-oriented programming (i.e., program-
ming that aims at generating code with a good
WCET) tries to produce code that is free from
input-data dependent control flow decisions or, if
this cannot be completely achieved, restricts the
number of operations that are only executed for a
subset of the input-data space to a minimum.

The restrictive use of input-data dependent alternatives
as found in WCET-oriented code does not only keep the
WCET down. It also keeps the total number of different
execution paths through the code low. Identifying and op-
erating on a smaller number of paths for WCET analysis
is easier and therefore much less error-prone than dealing
with a big number of alternatives. In this way, WCET-
oriented programming does not only produce code with
better WCETs but also yields more dependable WCET-
analysis results than traditional programming.

As we mentioned above, WCET-oriented programming
does not guarantee to produce code that is completely free
of input-data dependent control decisions. In some cases,
the semantics of a given problem or the limitations of the
programming language used make it impossible to treat all
input scenarios identically. As the remaining data depen-
dencies may still impose a problem for WCET analysis, we
conceived single-path programming [PB02] and the single-
path conversion [Pus02] that removes input-data dependent
control flows from the code.

The single-path conversion transforms the code for hard
real-time systems into code with a unique execution trace.
This is achieved by removing all input-data dependent
branching operations from the code. To this end, both al-
ternatives and loops with input-dependent control decisions
are translated into deterministic code. Alternatives are con-
verted by if-conversion [AKPW83]. Loops with input-data
dependent control conditions are transformed by a more
complex transformation that yields loops with constant it-
eration counts [Pus02].

3 Abstract Interpretation

Our aim is to calculate the run-time behavior of a pro-
gram without having to run it on all input data, and while
guaranteeing termination of the analysis.

One such technique for program analysis is abstract in-
terpretation [CC77, Gus00], which means to calculate the
program behavior using value descriptions or abstract val-
ues instead of real values. The price to be paid is loss of in-
formation; the calculation will sometimes give only approx-
imate information. Abstract interpretation has three impor-
tant properties:

1. It yields an approximate and safe description of the
program behavior.

2. It is automatic, i.e., the program does not have to be
annotated.

3. It works for all programs in the selected language.

It is important that the approximations for the concrete val-
ues are selected to reduce the necessary calculations in each
step. But, in general, loss of precision is often the conse-
quence of less calculation effort.

4 The While Language

For the sake of simplicity, we use the While language
[NN92], with a syntax and semantics similar to common
imperative languages like C and Pascal. We have added
arrays to the language. This extension examplifies how the
syntax and semantics of While can be extended with further
constructs to form a complete language.

Syntax. The While language is built from the following
syntactic sets:� the set of statements, STATEMENT.� the set of arithmetic expressions, AEXP;� the set of boolean expressions, BEXP;� the set of variables in the program, VARIABLE ��������	�	�
����

;� the set of numerals, NUM; and� the truth values, ��� ���������� ;
We use the following meta-variables when we describe the
semantics of While:���	����� VARIABLE;��� � NUM;��!"� AEXP;��#$� BEXP; and��%&� STATEMENT.

We use the following syntactical formation rules for pro-
grams written in While (where typewriter text represents

source text, and italics represents meta-variables):

AEXP ��� � ��� �	����� �	����� !��	�	!�
� !�����!�
�� !��
BEXP ��� � ������� ��� ����� � �	!�
 � !����	!�
�� !����

!
 � � ! � �$!
�� ! � �	!
 � � ! � �
!#" �%$ #'& �	#
(# �

STATEMENT ��� � �	��� � � !)� �	����� !
 � � � ! � �* � # ��+�� ! %
 � ��� � % � �
, + * � � #.-�" %/��%	
10 %%��� ��2 *43

State. The state 5 is a mapping from variables to values
(integers). Each element in an array is regarded as a separate
variable. We use the notation 5 � � x 6798 � to denote a state
where x is assigned the value 0. Since 5 is a mapping from
variables to values, the expression 5.$ x & will give the result
0. With 5
 �:5 � x 67 ; � we denote the updated state 5

where x is re-assigned to the value 1.

Semantics. We will use a structural operational semantics
for While as defined in [NN92], Chapter 2.2, as shown in
Figure 1. We have added rules for arrays.
�=< defines the meaning of numerals ��� NUM;�=> the meaning of arithmetic expressions ! � AEXP;

and�/? the meaning of boolean expressions # � BEXP.

The meaning of a program (i.e., a sequence of state-
ments) is defined as the final state that can be reached af-
ter a number of transitions. Each transition has the form@ % � 5%ACB9D where D is either an intermediate state

@ %.E � 5 E A
or a final state 5 E .

The rules in Figure 2 define the transition B . The Assign
rules update the state with the values of the right hand sides.
The If rules select the true or false alternative, depending on
the value of the condition. The While rule repeats the state-
ment until the condition is false, when it terminates with a
skip statement. The Seq(1) rule is used when the the first
statement in a sequence goes to an intermediate statement
and state (which is the case for the If, While and Sequence
rules). The Seq(2) rule is used when the first statement ter-
minates immediately (which is the case for the Assign and
Skip rules). The Skip rule does nothing.

4.1 The Control Flow Graph and Data Flow Func-
tions

Since the While language is deterministic, the transitions
can be used to define functions from states to states. By � � %F� �
we denote the function that can be created from the transi-
tion of statement % . These functions can be visualized in
control graph structures, see Figure 3. For compound state-
ments, we get the structured constructs sequence, selection

and iteration. Since the language is structured, it is possible
to build any control flow structure possible in the language
by recursively combining these structures.

Example. The simple example below shows the applica-
tion of the semantics. The meaning of a statement is the
final state after a sequence of transitions. We also show the
flow graph of the example.

Statement:G
= while x>0 do

G%H
,

where
G H

= (a[2]:=a[x]; x:=x-1)

Initial state:I�JLK/M x NOQP , a[1] NOSRUT a[2] NOQVXW
Transition sequence:Y
while x>0 do (a[2]:=a[x]; x:=x-1) T IZJ[%\Y
if x>0 then (

GFH
;
G
) else skip T I J [\

(since] M M x>0W W I J K tt)Y G H
;
G T^ J_[\

(since ` M M a[2]:=a[x]W W IaJ \bI�J�M a[2] NOcR'W and
` M M x:=x-1 W W IaJ�M a[2] NOdR'W \dI�JXM a[2] NOdRUT x NOde�Wgf

Y
while x>0 do (a[2]:=a[x]; x:=x-1),I J M a[2] NOdRhT x NOie'W [%\
Y
if x>0 then (

G H
;
G
) else skip,I J M a[2] NOdRhT x NOde�W [%\

(since] M M x>0W W I�JLK ff)Y
skip T I J M a[1] NOdRUT x NOde�W [%\
I J M a[2] NOdRhT x NOce'W K
[x NOde , a[1] NOdRUT a[2] NOSR'W KjIUk

S = while b do S’

b = x > 0
σ

1

σ
2

b S’
tt

ff

S’ = S1; S2
S1 = a[2] := a[x]

S2 = x := x - 1
S

1
S

2

S:

S’:

� M M � W W I K �/M M � W W� M M������ W W I K I
	������ f� M M�����XM � W W W I K I
	�������M � M M � W W I Wgf� M M ��J���� k W W I K � M M ��J W W I�� � M M � k W W I� M M � J�� �1k W W I K � M M � J W W I � � M M �1k W W I

] M M ������� W W I K����] M M � ��!�"�� W W I K$#
] M M � J K%�1k W W I K � M M � J W W I K � M M �1k W W I
] M M ��J'&(� k W W I K � M M ��J W W I)& � M M � k W W I
] M M ��J*& K+� k W W I K � M M ��J W W I), � M M � k W W I
] M M � J'- �1k W W I K � M M � J W W I - � M M �1k W W I
] M M � J*- K+�1k W W I K � M M � J W W I). � M M �1k W W I
] M M /�0���	�1 f W W I K 2] M M 1 W W I
] M M 1 J�3 1 k W W I K] M M 1 J W W I�4] M M 1 k W W I

Figure 1. Semantics of expressions

Assign to variable:
Y �����5 K6� T I�[\dIZM����� NO � M M � W W I W

Assign to array:
Y �����M �#J W 5 K6� k T I�[\dIZM�������M � M M ��J W W I W�NO � M M � k W W I W

If(t):
Y�7 ��18��9���/ G J ��!�"�� G k T I�[\ Y G J T I�[if] M M 1 W W I K tt

If(f):
Y�7 ��18��9���/ G J ��!�"�� G k T I�[\ Y G k T I�[if] M M 1 W W I K ff

While:
Y�: 9 7 !��'18; 0 G T I�[\ Y�7 ��1<��9���/=	 G?> : 9 7 !��?1<; 0 G f ��!�"��'"�@ 7�A T I�[

Seq(1):

Y G J T I�[\ Y G%HJ T I H [Y G J > G k T I�[\ Y G HJ > G k T I H [

Seq(2):

Y G J T I�[\dI H
Y G J > G k T I�[\ Y G k T I H [

Skip:
Y "�@ 7�A T I�[\dI

Figure 2. Transitions

Sσ
1

σ
2
 = S σ

1 σ
2

Data Flow Function Control Flow GraphStatement

S

if b then S1
else S2 σ

2
 = if B b σ

1
 then S

1
σ

1
 else S

2
σ

1

S
1

σ
1

S
2

σ
2

b

while b do S σ
2
 = if B b σ

1
 then while b do S (S σ

1
) else σ

1 σ
1

σ
2

b

tt

ff

S
tt

ff

S1; S2
σ

2
 = S’; S

2
 (S

1
σ

1
) -- Seq(1)

σ
1

σ
2

S
1

S
2σ

2
 = S

2
(S

1
σ

1
) -- Seq(2)

1

Figure 3. Data flow functions and control flow graphs for statements

5 Abstract Interpretation of While Programs
to find Input Dependencies

The purpose of the program analysis is to find the prop-
erties of conditions in programs. A condition is defined to

depend on input data if any of the variables included in the
condition is input dependent. This means that the analysis
first calculates input data dependencies for variables, then

draws conclusions about the conditions. We differ between
two cases:

1. The condition (e.g., in if, switch and loop-statements)
is not depending on input data.

2. The condition may depend on input data.

For the first case, the code generation may generate ordi-
nary code, while for the second case, single path conversion
using predicated instructions [Pus02] has to be used to as-
sure single path behavior.

5.1 Abstract Program

The analysis is a semantics-based abstract interpreta-
tion. We will, as a preparation to the abstract interpretation,
transform a program to a corresponding abstract program.
Interpretation of this abstract program, using abstract se-
mantic rules and abstract values, will yield a final value for
the variables in each program point, which is a safe approx-
imation of the corresponding concrete values. “Safe” in this
context means that all real executions are always “covered”
by the abstract executions.

We can use this information to, in a safe way, deter-
mine whether ordinary or predicated instructions should be
generated for the conditions in the program. For the two
cases mentioned above, safety means that ordinary code is
always correctly generated for input data dependent condi-
tions. Sometimes, however, predicated instructions may be
generated for non-input dependent conditions due to over-
estimations by the abstract interpretation.

5.2 Abstract Domain

All abstract variables in the program will be mapped to
the abstract domain below This mapping is called the ab-
stract state and is denoted with �5 .

���

�����

The values in the Hasse diagram have the following ex-
planation:
� ID marks a value that may be input dependent;� NID marks a value that is not input dependent.

The order in the diagram represents the information con-
tent of the value. Also, the order defines the effect of the
least upper bound (���
	
�) operation, used for disjunctions of
variable values. For example, if a value is ID or NID, the re-
sult will be the safe (over)approximation ���� ��	
��� �� ���� .

The least upper bound for abstract states (�) is defined
as � ��	
� for each variable. Formally

$
�5
 ���5 ��& $ ��� �1& ���5
 $ ��� �h& � ��	�� �5 � $ �	���h&

for all variables �	��� in the resulting state.

5.3 Initial Abstract State of a Program

In the initial abstract state of a program, the abstraction
function � will set all input data dependent variables (cor-
responding to e.g., input parameters to C functions) to ID,
and the rest of the variables to NID.

Arrays are abstracted in a special way. For each concrete
array (e.g. a[�], � � ; �	���	�
� �) there is one abstract vari-
able a[] representing all values in a. The reason for this is
simplicity - the simple abstract domain means that we can-
not keep track of the indeces in arrays. At initialization,
we first for each of its elements a[i] calculate the abstract
value � (a[i]) as for ordinary variables. Then we set a[]
��������
 $�� (a[�]) & .

We also add an extra variable to the state, flow, repre-
senting the data dependency of the control flow in the pro-
gram at the current program point. We will set flow to
NID at the beginning of the program. Actually, it will stay
set to NID until the control flow is somehow controlled by
an input data dependent variable.

5.4 Abstract Semantic Rules

The rules defines in Figure 5 the abstract transition �B .
The rules in the figure need some explanation.
� Assign to variable is similar to concrete assign.� Assign to array assigns a value to a[] which is a safe

overestimation of all possible values in the array.� If(NID) describes the case when the value of the condi-
tion b is not input dependent (NID), Then we analyze
both possible edges and form the least upper bound of
the results.� If(ID) is the most complex rule. If the value of the
condition b may be input dependent (ID), we analyze
both possible edges and form the least upper bound
of the results. Note that flow is set to �! for both
edges. When the analysis of the expression is finished,
the value of flow is reset to its original value. The
reason for this handling of flow is illustrated by the
example in Section 6.� The While, Seq and Skip rules are similar to the con-
crete case.

5.5 Abstract Data Flow Equations

The abstract transitions in Figure 5 can be used to define
abstract transition functions. This is possible since the the
transitions are deterministic. For a given program, a system
of abstract data flow equations can be set up based on the
control graph of the program (see Figure 3). Each abstract

�� M M � W W �I�K �������
if

�I 	 flow f K NID���
otherwise�� M M������ W W �I K � �I 	����� f if

�I
	 flow f K NID���
otherwise

�� M M������XM � W W W �I K
	� � �I 	�����'M W f if
�I
	 flow f K NID

and
�� M M � W W �I K NID���

otherwise�� M M � J ���1k W W �I K �� M M � J � �1k W W �I K �� M M � J W W �I� �� M M �1k W W �I

�� M M ������� W W �I K �� M M � ��!�"�� W W �I K �������
if

�I 	 flow f K NID���
otherwise�� M M ��J K6� k W W �I K �� M M ��J &+� k W W �I K �� M M ��J',6� k W W �I�K�� M M ��J - � k W W �I K �� M M ��J .+� k W W �I K�� M M � J W W �I� �� M M �1k W W �I�� M M 2 1 W W �I�K �� M M 1 W W �I�� M M 1 J 4 1 k W W �I K �� M M 1 J W W �I� �� M M 1 k W W �I

Figure 4. Abstract semantics of expressions

Assign to variable:
Y �����5 K6� T �I�[�\ �IZM������ NO �� M M � W W �I W

Assign to array:
Y ����'M � J W 5 K6�1k T �I�[�\ �IZM������M W�NO 	 �� M M �1k W W �I� �I
	�����'M Wgf f W

If(NID):

Y G J T �I�[�\ �I H H Y G k T �I�[�\ �I H H H �I H K �I H H �I H H H
Y�7 � 1<��9���/ G J ��!�"�� G k T �I�[�\ �I H ��� �� M M 1 W W �I�K �����

If(ID):

Y G J T �IZM � !�0 : NO ��� W [�\ �I H H Y G k T �IZM � !�0 : NO ��� W [�\ �I H H H �I H K �I H H �I H H H
Y�7 ��18��9���/ G J<��!�"�� G k T �I�[�\ �I H M � !�0 : NO �I 	�� !�0 : f W ��� �� M M 1 W W �I�K ���

While:
Y�: 9 7 !��?1?; 0 G T �I�[�\ Y�7 ��1<��9���/�	 G?> : 9 7 !��?1<; 0 G f ��!�"�� "�@ 7�A T �I�[

Seq(1):

Y G J T �Ia[�\ Y G%HJ T �I H [Y G J > G k T �Ia[�\ Y G HJ >G k T �I H [
Seq(2):

Y G J T �Ia[�\ �I H
Y G J > G k T �Ia[�\ Y G k T �I H [

Skip:
Y "�@ 7�A T �Ia[�\ �I

Figure 5. Abstract transitions

state corresponds to an edge in the the control graph, and
each equation is based on an abstract transition function of
a node (statement) in the graph. The initial abstract state is
assigned to the input edge of the program.

Primitive transition functions. First we define the ab-
stract transition functions for the primitive (i.e., not com-
pound) statements, corresponding to the first line of Fig-
ure 3.

Assign to variable (��� � � � !):
�5 � � �5
 � ��� � 67 �� � � !1� � �5
 �

Assign to array (�	����� !
 � � � ! �):
�5 � � �5
4� ��� ��� � 67 $ �� � � !�� � � �5
 ���5
 $ �	����� � & & �

Skip:
�5 � ���5

Compound transition functions. The compound func-
tions are built up from the primitive functions. For the if

and while statements we also need to define what happens
in the merge point.

If (
* � # ��+�� ! %
 � ��� � % �):

S
1

σ
1

S
2

σ
4

b
tt

ff

σ
1

σ
1

σ
2

σ
3

~~

~

~

~

~

�5�� �

������������ �����������

$
�5 � � �5�� &'� � � "U, 67 �5
 $ � � "U,�& � � � �! � � # � � �5
 ���! "$#�%'&(%
�5 � � � � � %
 � � � �5
 � � � "U, 67 � ��)+*�,
�5�� � � � � % � � � � �5
 � � � "U, 67 � �

�5 � ���5�� � � �! � � # � � �5
 �.- �! "$#�%'&(%
�5 � � � � � %	
 � � � �5
/)0*�, �5 � � � � � %%� � � � �5

While (, + * � � # -#" %):

σ
1

σ
2

b S
tt

ffσ
2 σ

2
σ

3

~

~~~
~

�5 � �

���������� ���������

$
�5 
 ���5 � &�� � � "U, 67 �5 � $ � � "U,�& � � � �! � � # � � �5 � ���! "$#�% & %
�5 � � � � � % � � � �5 �1� � � "U, 67 �  �

�5 
 ���5 � � � �! � � # � � �5 � �.- �! "$#�% & %
�5�� � � � � % � � � �5 �

Seq ( %	
10 %%� ):
� %�� $ ; & � �5 � � � � � % E
 0 % � � � � $ � � � % 
 � � � �5 
 &� %�� $�� & � �5 � � � � � % � � � � $ � � � % 
 � � � �5 
 &

where � � � % � � � denotes the abstract transition function of % .

Solution. We can solve the system of data flow equations
by using Jacobi iteration, i.e., by iteration until a fixpoint
is reached. Given a set of data flow equations � � so that
�5 � ��� � $��5 
 ���	����� �5 � & �	� & � �
� ���$���	� � and defining  as

)$
�5 
 �	�	����� �5 � & � $	� 
 �	���	��� � � & "$#�% & % � 
 ���5�� )0*�,
� � � � � $
�5 
 �	���	�
� �5 � & ��� & � ��� ��� �	��� �

we can obtain the least fixed point of  as
the least upper bound of the ascending chain� �  $ � & �  $� $ � & & � �	� �  � $ � & . The chain is finite since
the domain used is finite. Therefore, we are guaranteed to
find a solution with a finite number of steps.

6 Example.

A simple example will show the use of the rules, espe-
cially the handling of the flow variable. Let’s analyze the
following program:
% = if x = 1 then z := 1 else z := 2;

if y = 1 then x := 1 else x := 2

with the initial state

�5�� � � � 67 �! 
��� 67 - �  � � 67 - �  � � � "U, 67 - �! � �

For this example, using the rules in Figure 5, we get the
flow equations as shown in Figure 7. We have simplified
some of the expressions by using rules from Figure 4. The
abstract states in the equations refer to the corresponding
states in Figure 6, which shows the control flow graph of
the program.

Solution of the example. The Jacobi iteration of the sys-
tem of flow equations in Figure 7 will reach a fixpoint after
9 iterations. The abstract states for two interesting program
points are:

�5�� � � � 67 �  
��� 67 - �! ��� 67 �  

� � � "U, 67 - �  �
The result of the analysis of the first if-statement is that z
is set to ID. The reason for this is that the first condition
if x = 1 is input dependent (since x is). Therefore, z is
regarded as input dependent (even if z is assigned constants
in both edges!).

�5 
X
 � � � 67 - �! ��� 67 - �! ��� 67 �! 
� � � "h, 67 - �! �

The result of the analysis of the entire program is that z is
set to ID (as described above) and that x is set to NID due
to the second condition if y = 1 is not input dependent
(since y is not). For the code generation, this means that the
first if-statement must generate predicated code, while the
second can generate ordinary code.

7 Conclusions and Future Work

In this paper we described an analysis technique that
identifies input-data dependent control conditions in loops
or branching statements of real-time code. This analysis is
needed for two purposes.

First, tools using the analysis support the programmer in
writing code that avoids input-data dependent control flow
as far as possible.

Second, the single-path conversion technique relies on
this analysis to remove input-data dependent control de-
pendencies from the code. Both, avoiding and eliminat-
ing input-data dependent control flow are important to pro-
duce good real-time code, i.e., code with a small execution-
time jitter for which safe and tight upper bounds on the
execution-time can be computed.

The analysis of input dependencies is based on abstract
interpretation. The While language was used to provide a
formal description of the abstract-interpretation framework
and demonstrate how it finds input dependencies. A number
of examples was used to illustrate the approach.

As a next step we plan to extend the simple semantics
used in this paper to a real imperative programming lan-
guage like C.

Further, we will develop a tool that implements the anal-
ysis and analyzes real code. The tool will be realized as part
of a compiler.

References

[AKPW83] J. Allen, K. Kennedy, C. Porterfield, and
J. Warren. Conversion of Control Dependence



S1 = if b1 then S3 
else S4

b1 = x = 1

S3 = z := 1

S4 = z := 2

S = S1; S2 S
1

S
2

S1:

S:

S
3

σ
1

S
4

σ
6

tt

ff

σ
1

σ
11

S2 = if b2 then S5 
else S6

b2 = y = 1

S5 = x := 1

S6 = x := 2

S2: S
5

σ
6

S
6

σ
11

b
2

tt

ff

b
1

σ
2

σ
4

σ
3

σ
5

σ
7

σ
9

σ
8

σ
10

~ ~

~~

~ ~

~ ~

~ ~

~

~~

~

Figure 6. Control flow graphs for the example

�I�J K �I���I k K
� �I J ��� �� M M � K�� W W �I J K ������I J M � !�0 : NO ��� W ��� �� M M � K�� W W �I J K ����I�� K �IUk�M 	 NO �� M M P W W �IUk W�I�
 K
� �I�J ��� �� M M � K�� W W �I�JFK ������I�JM � !�0 : NO ��� W ��� �� M M � K�� W W �I�J K ����I�� K �I�
�M 	 NO �� M M V W W �I�
 W�I�� K
� 	 �I��  �I�� f M � !�0 : NO �I J 	�� !�0 : f W ��� �� M M �CK� W W �I J K ����I��/ �I�� ��� �� M M � K�� W W �I J K �����

�I�� K
� �I�� ��� �� M M �CK� W W �I��LK � ����I � M � !�0 : NO ��� W ��� �� M M �CK� W W �I � K ����I�� K �I���M � NO �� M M P W W �I�� W�I�� K
� �I � ��� �� M M �CK� W W �I � K � ����I���M � !�0 : NO ��� W ��� �� M M �CK� W W �I�� K ����I J�� K �I���M � NO �� M M VXW W �I�� W�I J J K
� 	 �I��  �I�J�� f M � !�0 : NO �I���	�� !�0 : f W ��� �� M M �CK� W W �I��.K ����I��  �I�J�� ��� �� M M � K�� W W �I�� K � ���

Figure 7. Data flow equations for the example program

to Data Dependence. In Proc. 10th ACM Sym-
posium on Principles of Programming Lan-
guages, pages 177–189, Jan. 1983.

[CC77] P. Cousot and R. Cousot. Abstract interpre-
tation: A unified model for static analysis of
programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM Sym-
posium on Principles of Programming Lan-
guages, pages 238–252, 1977.

[Gus00] J. Gustafsson. Analyzing Execution-Time of
Object-Oriented Programs Using Abstract In-
terpretation. PhD thesis, Department of Com-
puter Systems, Information Technology, Upp-
sala University, May 2000.

[NN92] H. R. Nielson and F. Nielson. Semantics with
Applications. John Wiley & Sons, 1992.

[PB02] Peter Puschner and Alan Burns. Writing tem-
porally predictable code. In Proc. 7th IEEE
International Workshop on Object-Oriented
Real-Time Dependable Systems, pages 85–91,
Jan. 2002.

[Pus02] Peter Puschner. Transforming execution-time
boundable code into temporally predictable
code. In Bernd Kleinjohann, K.H. (Kane) Kim,
Lisa Kleinjohann, and Achim Rettberg, edi-
tors, Design and Analysis of Distributed Em-
bedded Systems, pages 163–172. Kluwer Aca-
demic Publishers, 2002.

[Pus03] Peter Puschner. Algorithms for dependable
hard real-time systems. In Proc. 8th IEEE
International Workshop on Object-Oriented
Real-Time Dependable Systems, Jan. 2003.


