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Abstract

We examine evidence for the hypothesis that language could have passed through a stage when words
were combined in structured linear segments and these linear segments could later have become the
building blocks for a full hierarchical grammar. Experiments were carried out on the British National
Corpus, consisting of about 100 million words of text from different domains and transcribed speech.
This work extends and supports the results of our previous work based on a smaller corpus reported pre-
viously. Measuring the entropy of the texts we find that entropy declines as words are taken in groups
of 2, 3 and 4, indicating that it is easier to decode words taken in short sequences rather than individu-
ally. Entropy further declines when punctuation is represented, showing that appropriate segmentation
captures some of the language structure. Further support for the hypothesis that local sequential pro-
cessing underlies the production and perception of speech comes from neurobiological evidence. The
observation that homophones are apparently ubiquitous and used without confusion also suggests that
language processing may be largely based on local context.

1 Introduction

Hypotheses on the evolution of language can some-
times be supported, or undermined, by an investi-
gation into underlying characteristics of present day
language. Information theory provides some effec-
tive tools for carrying out such investigations, and is
employed here as a tool for examining the hypothe-
sis that the underpinnings of modern human language
may lie in sequential processing phenomena, (though
we also find that simple observations of every day
speech can also be illuminating.)

1.1 Overview of the investigations

The core of the work described in this paper is an
investigation into the statistical characteristics of spo-
ken and written language which can help explain why
language was likely to evolve with a certain structure.
We take a large corpus of written text and transcribed
speech and see whether the efficiency of encoding
and decoding the stream of language is improved by

processing a short sequence of words rather than in-
dividual words. To do this we measure the entropy of
the word sequence, comparing values when we take
single words, pairs, triples and quads. A decline in
entropy indicates an increase in predictability, facili-
tating an improvement in decoding efficiency.

We also measure the entropy with and without
punctuation, to see whether communication is more
efficient if the stream of words is broken into seg-
ments that usually correspond to syntactic compo-
nents. Our experiments (reported below) show that
entropy does indeed decline as word sequences up
to length three are processed, and thus supports the
hypothesis that local sequential processing under-
pins communication through language. Entropy also
declines further with the inclusion of punctuation.
As there is a strong correlation between punctuation
and prosodic markers in speech (Fang and Huckvale
(1996); Taylor and Black (1998)) this decline indi-
cates that there is an advantage in taking language in
the segments that prosodic markers provide, since it
is then easier to decode.



This suggests that there could be an intermedi-
ate stage in the development of a full hierarchical
grammar. Processing a linear stream of words that
is appropriately segmented is more efficient for the
decoder than taking unsegmented, continuous strings
of words. Such segments can then be the components
of a hierarchical grammar.

Experiments have been carried out with the
British National Corpus, BNC, about 100 million
words of text and transcribed speech from many dif-
ferent domains (BNC).

1.2 Related work

We point to recent work on the “small world” phe-
nomenon that investigates possible universal patterns
of organization in complex systems (i Cancho and
Sole (2001)). This effect, which is evident in natu-
ral language, picks up on the dominance of local de-
pendencies, and research is going on into how robust
complex systems can emerge, Section 5.

We also draw attention to other work that supports
our hypotheses: neurobiological, computer mod-
elling, and simple observation of everyday speech.

2 Background to this work

2.1 Co-operative communication

A number of scenarios have been used to intro-
duce hypotheses on the evolution of language, and
methods of communication between different animal
species in different situations have been studied ex-
tensively. This has included a range of possibilities
such as “gossip, deceit, alliance building, or other
social purposes” (Bickerton (2002)). The work de-
scribed here is based on those scenarios where pro-
ducers and receivers are co-operating, sharing infor-
mation. In the past little work in behavioural ecology
had been done to make systematic comparisons of
co-operative and non-cooperative signals (Krebs and
Davies (1993)). A typical scenario for co-operative
communication would be in group hunting or fishing
situations, where deceit would be counter-productive.
Even with manipulative communication a degree of
co-operation is required to enable understanding. We
look at modes of communication that are most effi-
cient for producers and receivers. To investigate this
we take a large corpus of spoken and written language
and apply an analytic tool from information theory,
the entropy measure, to help determine which pos-
sible characteristics of communication can make it
more or less efficient.

2.2 Entropy indicators

The original concept of entropy was introduced by
Shannon (1993)[1951]. Informally, it is related to
predictability: the lower the entropy the better the
predictability of a sequence of symbols. Shannon
showed that the entropy of a sequence of letters de-
clined as more information about adjacent letters is
taken into account; it is easier to predict a letter if the
previous ones are known. Entropy is represented as
H , and we measure

• H0 : entropy with no statistical information,
symbols equi-probable.

• H1 : entropy from information on the probabil-
ity of single symbols occurring.

• H2 : entropy from information on the probabil-
ity of 2 symbols occurring consecutively.

• Hn : entropy from information on the proba-
bility of n symbols occurring consecutively.

More precisely, Hn measures the uncertainty of a
symbol, conditional on its n − 1 predecessors. (For
n > 0, this is called the conditional entropy.)

For an introductory explanation of the concept
of entropy, see (Lyon et al., 2003, page 170). The
derivation of the formula for calculating entropy is
in Appendix B. For many years Automated Speech
Recognition developers have used entropy metrics to
measure performance (Jelinek (1990)).

2.3 Using real language

A significant amount of language analysis in this field
has not been done with real language. Well known
examples include Elman’s experiments with recur-
rent nets (Elman (1991)), which use a 23 word vo-
cabulary: 12 verbs 10 nouns and a relative pronoun.
Sentences like boy sees boy are considered grammat-
ical, because there is number agreement between the
subject and verb, though this sentence would be con-
sidered ungrammatical in real language with deter-
miners missing. Elman himself is careful to say that
this language is artificial, but this is not the case with
many of his followers, who claim it is is a subset of
natural language.

In fact many, sometimes most, of the words most
people utter are function words. Though in any model
we have to abstract out the features we consider most
significant, we suggest that the common focus on
content words introduces distortions. For example, to
jump from words to syntactic combinations of nouns



and verbs without considering the intermediate stage
of phrase development leads to unrealistic conclu-
sions. In our work we need to take language as it
is.

3 The British National Corpus

Other recent work in this field has been done on
a comparatively small corpus of 26,000 words of
transcribed speech, annotated with prosodic markers
(Lyon et al. (2003, 2004)). However, using the large
BNC corpus enables us to confirm those results, and
extend them.

The BNC corpus is composed of a representa-
tive collection of English texts; about 10% of the to-
tal is transcribed speech. As we want to investigate
the processing of running language, headlines, titles,
captions and lists are excluded from our experiments.
Then adding in punctuation marks leads to a corpus
of about 107 million symbols.

In order to carry out an analysis on strings of
words it is necessary to reduce an unlimited number
of words to a smaller set of symbols, and so words are
mapped onto parts of speech tags. As well as making
the project computationally feasible this approach is
justified by evidence that implicit allocation of parts
of speech occurs very early in language acquisition
by infants, even before lexical access to word mean-
ings (Morgan et al. (1996)).

The BNC corpus has been tagged, with a tagset
of 57 parts of speech and 4 punctuation markers. We
have mapped these tags onto our own tagset of 32
classes, of which one class represents any punctua-
tion mark (Appendix A). Tag sets can vary in size
but our underlying aim is to group together words
that function in a similar way, have similar neigh-
bours. Thus, for example, lexical verbs can usually
have the same type of predecessors and successors
whether they are in the present or past tense:

We like swimming / We liked swimming

so in our tagset they are in one class. This maintains
a good degree of discriminability while moving to a
smaller, fairly natural tagset. Moreover, another rea-
son for mapping the BNC tagset onto our smaller set
is that the entropy measures are more pronounced for
the smaller set, while a larger tagset would require
even larger corpora to avoid undersampling errors in
entropy estimates.

4 Experiments

We have run the following experiments. First, we
have processed the whole corpus of 107 million parts
of speech tags, with punctuation, and found H1, H2,
H3, and H4 as shown in Table 1. We also ran exper-
iments over each of the 10 directories in which the
corpus material is placed to see if there was much
variation. In fact, variations between the directories
is small: the results cluster round a central tendency
shown by the measure for the whole corpus. An ex-
ample is shown in Table 1.

We also process a comparable set of randomly
generated numbers, in order to ensure that distor-
tions do not occur because of undersampling. With
32 tags the number of possible sequences of length 5
are 33,554,432. If too small a sample is used the en-
tropy appears lower than it should, since, e.g. not all
the infrequent cases have occurred. A simple empir-
ical test on sample size is through a random number
sequence check. For a random sequence, the entropy
should not decline as more of the information over
preceding numbers is taken into account, since they
are generated independently. Thus H for a sequence
of random numbers in the range 0 to 31 should stay at
5.0. Sequences of random numbers are produced by
the Unix random number generator. The results show
that for the whole corpus we can be fully confident up
to the H4 figure, but H5 should be treated with cau-
tion. For the 10 subdirectories, H4 should be treated
with caution, and H5 is omitted.

Secondly, we process the whole BNC corpus, but
omitting punctuation marks, as shown in Table 2.
This time there will be 31 tags, as the punctuation
symbol is omitted. The number of words is reduced,
as punctuation marks are counted as words.

4.1 Analysis of results

The results in Table 1 show that entropy declines as
processing is extended over the 1, then 2 and then 3
preceding consecutive parts of speech tags. There is
a small further decline when 4 consecutive tags are
taken. The results for 5 consecutive tags are not con-
sidered fully reliable, in view of the random sequence
check for 107 million symbols.

Compare these results with those in Table 2. This
time there is one less tag symbol, so we expect unpre-
dictability to decrease compared to that for the cor-
pus tagged with 32 symbols, and entropy to be less.
This is what we find for H0 and for H1. However,
as we take words 2, 3 and 4 at a time we find that
entropy is slightly greater than in the first case. This



Corpus H0 H1 H2 H3 H4 H5

107 million words + punctuation 5.0 4.19 3.27 2.94 2.84 (2.75)
32 tags

107 million random words 5.0 5.0 5.0 5.0 5.0 4.8
32 tags

10 million words, subdirectory F 5.0 4.18 3.25 2.91 (2.79)
32 tags

10 million random words 5.0 5.0 5.0 5.0 4.93 3.05
32 tags

Table 1: Entropy measures for the BNC corpus, mapped onto 32 parts of speech tags. 3-grams, 4-grams and
5-grams that span a punctuation mark are omitted. Figures in brackets are to be treated with caution.

Corpus H0 H1 H2 H3 H4 H5

94 million words, no punctuation 4.95 4.16 3.29 3.14 3.07 (3.01)
31 tags

94 million random words, 4.95 4.95 4.95 4.95 4.95 4.72
31 tags

Table 2: Entropy measures for the BNC corpus, mapped onto 31 parts of speech tags, omitting punctuation. The
figure in brackets should be treated with caution.

indicates that punctuation captures some of the struc-
ture of language, allowing the next parts of speech
tag to be be better predicted, and that by removing
punctuation (corresponding to prosodic marking in
speech) we increase the uncertainty. Paraphrasing
Shannon we can say that a string of words between
punctuation marks is a cohesive group with internal
statistical influences, and consequently the n-grams
within such phrases, clauses or sentences are more re-
stricted than those which bridge punctuation ((Shan-
non, 1993, page 197)).

These results indicate that a stream of language
is easier to decode if words are taken in short se-
quences rather than as individual items, and supports
the hypothesis that local sequential processing under-
lies communication through language.

5 Other evidence for local pro-
cesses

5.1 Computer modelling and the “small
world” effect

In consider local processing, it is instructive to look at
syntactic models based on dependency grammar and
related concepts. Dependency grammar assumes that
syntactic structure consists of lexical nodes (words)
and binary relations (dependencies) linking them.
Though these models are word based, phrase struc-
ture emerges. An online practical example is the
Link Parser (Sleator et al. (2005)) where you can
parse your own texts and see how the constituent tree
emerges. Now, it is reported (i Cancho (2004)) that,
in experiments in Czech, German and Romanian with
a related system, about 70% of dependencies are be-
tween neighbouring words, 17% at a distance of 2.



This is one of the characteristics of the small world
effect. A significant amount of syntactic knowledge
is available from local information, even before our
grammatical capability is enhanced by the addition
of long range dependencies associated with phrase
structure hierarchies.

From this one could also suggest that an inter-
mediate stage in the development of a fully fledged
grammar could have been based on local syntactic
constraints.

Returning to another computer model, Elman’s
recurrent networks, we note that they could have
a useful role to play in modelling short phrasal
strings, but there are inherent obstacles to modelling
longer dependencies (Bengio (1996); Hochreiter et al.
(2001)).

5.2 Neurobiological evidence

Our hypothesis is also supported by the fact that prim-
itive sequential processors in the basal ganglia play
an essential role in language processing (Lieberman
(2000, 2002)). The neural substrate that regulates
motor control includes the control of articulatory acts,
and this part of the brain seems to have extended its
role to manage the sequencing of linguistic elements.
An overview of the evidence that language and motor
abilities are connected is given in a special edition of
Science (Holden (2004)).

5.3 Simple observations of everyday
speech

Any hypothesis on the evolution of language needs to
explain why all languages seem to have homophones
(Lyon et al. (2004)). In English some of the most
frequently used words have more than one meaning
such as to / too / two. Even young children seem able
to disambiguate them without difficulty. In an ag-
glutinative language such as Finnish they are rarely
used by children, but occur in adult speech (Warren
(2001)).

Their prevalence undermines the theories based
on the assumptions that words in evolutionarily ad-
vanced language have a single meaning, that “the
evolutionary optimum is reached if every word is
associated with exactly one signal” ((Nowak et al.,
1999, page 151)) and that there is a “loss of com-
municative capacity that arises if individual sounds
are linked to more than one meaning” ((Nowak et al.,
2002, page 613)). While such theories and models
may appear to be logically attractive, they do not rep-
resent real language.

However, if we accept the hypothesis that local
sequential processing underlies our language capabil-
ity then there is not a problem accounting for the ho-
mophone phenomenon: homophones can be disam-
biguated by the local context.

6 Conclusion

When we look for clues to the evolution of language
we can examine the state humans are in now and rea-
son about how we could have arrived at the present
position. This may take the form of brain studies, but
it can also include the sort of analysis of language
that we are doing. Chomsky once famously claimed
that “One’s ability to produce and recognize gram-
matical structures is not based on notions of statisti-
cal approximation and the like” (Chomsky (1957)).
However, statistics can illuminate the way in which
language processing has been carried out, and inves-
tigations on large corpora can now be done that were
not possible a few decades back.

Our experiments suggest that utterances are pro-
cessed in segments of a few words. We go on to hy-
pothesize that these segments could be the elements
out of which a hierarchical grammar is built.
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Appendix A

The tagset of the British National Corpus is mapped
onto our tagset. Each of the BNC tags is mapped
onto an integer, as shown below, so that functionally
similar tags are grouped together.

Tag Code for our mapping

AJ0 1
Adjective (general or positive) (e.g. good, old, beau-
tiful)

AJC 1
Comparative adjective (e.g. better, older)

AJS 1
Superlative adjective (e.g. best, oldest)

AT0 2
Article (e.g. the, a, an, no)

AV0 3
General adverb: an adverb not subclassified as AVP
or AVQ (see below) (e.g. often, well, longer (adv.),
furthest).

AVP 3
Adverb particle (e.g. up, off, out)

AVQ 3
Wh-adverb (e.g. when, where, how, why, wherever)

CJC 4
Coordinating conjunction (e.g. and, or, but)

CJS 4
Subordinating conjunction (e.g. although, when)

CJT 4
The subordinating conjunction that

CRD 2
Cardinal number (e.g. one, 3, fifty-five, 3609)



DPS 5
Possessive determiner-pronoun (e.g. your, their, his)

DT0 2
General determiner-pronoun: i.e. a determiner-
pronoun which is not a DTQ or an AT0.

DTQ 2
Wh-determiner-pronoun (e.g. which, what, whose,
whichever)

EX0 6
Existential there, i.e. there occurring in the there is
... or there are ... construction

ITJ 7
Interjection or other isolate (e.g. oh, yes, mhm, wow)

NN0 8
Common noun, neutral for number (e.g. aircraft,
data, committee)

NN1 9
Singular common noun (e.g. pencil, goose, time,
revelation)

NN2 10
Plural common noun (e.g. pencils, geese, times, rev-
elations)

NP0 11
Proper noun (e.g. London, Michael, Mars, IBM)

ORD 1
Ordinal numeral (e.g. first, sixth, 77th, last) .

PNI 12
Indefinite pronoun (e.g. none, everything, one [as
pronoun], nobody)

PNP 13
Personal pronoun (e.g. I, you, them, ours)

PNQ 14
Wh-pronoun (e.g. who, whoever, whom)

PNX 15
Reflexive pronoun (e.g. myself, yourself, itself, our-
selves)

POS 16
The possessive or genitive marker ’s or ’

PRF 17
The preposition of

PRP 18
Preposition (except for of) (e.g. about, at, in, on, on
behalf of, with)

PUL 0
Punctuation: left bracket - i.e. ( or [

PUN 0
Punctuation: general separating mark - i.e. . , ! , : ;
- or ?

PUQ 0
Punctuation: quotation mark - i.e. ’ or ”

PUR 0
Punctuation: right bracket - i.e. ) or ]

TO0 19
Infinitive marker to

UNC 7
Unclassified items which are not appropriately con-
sidered as items of the English lexicon.

VBB 20
The present tense forms of the verb BE, except for
is, ’s: i.e. am, are, ’m, ’re and be [subjunctive or
imperative]

VBD 20
The past tense forms of the verb BE: was and were

VBG 21
The -ing form of the verb BE: being

VBI 22
The infinitive form of the verb BE: be

VBN 23
The past participle form of the verb BE: been

VBZ 24
The -s form of the verb BE: is, ’s

VDB 20
The finite base form of the verb DO: do

VDD 20
The past tense form of the verb DO: did

VDG 21
The -ing form of the verb DO: doing

VDI 22
The infinitive form of the verb DO: do

VDN 23
The past participle form of the verb DO: done

VDZ 24
The -s form of the verb DO: does, ’s

VHB 20
The finite base form of the verb HAVE: have, ’ve

VHD 20
The past tense form of the verb HAVE: had, ’d

VHG 21
The -ing form of the verb HAVE: having

VHI 22
The infinitive form of the verb HAVE: have

VHN 23
The past participle form of the verb HAVE: had

VHZ 24
The -s form of the verb HAVE: has, ’s

VM0 25
Modal auxiliary verb (e.g. will, would, can, could,
’ll, ’d)

VVB 26
The finite base form of lexical verbs (e.g. forget,
send, live, return) [Including the imperative and
present subjunctive]



VVD 26
The past tense form of lexical verbs (e.g. forgot,
sent, lived, returned)

VVG 27
The -ing form of lexical verbs (e.g. forgetting, send-
ing, living, returning)

VVI 28
The infinitive form of lexical verbs (e.g. forget, send,
live, return)

VVN 29

The past participle form of lexical verbs (e.g. forgot-
ten, sent, lived, returned)

VVZ 30
The -s form of lexical verbs (e.g. forgets, sends,
lives, returns)

XX0 31
The negative particle not or n’t

ZZ0 7
Alphabetical symbols (e.g. A, a, B, b, c, d)

Appendix B

The derivation of the formula for calculating conditional entropy

This is derived from Shannon’s work on the entropy of symbol sequences. He produced a series of approximations
to the entropy H of written English, taking letters as symbols, which successively take more account of the
statistics of the language.

H0 represents the average number of bits required to determine a symbol with no statistical information. H 1

is calculated with information on single symbol frequencies; H2 uses information on the probability of 2 symbols
occurring together; Hn, called the n-gram entropy, measures the amount of entropy with information extending
over n adjacent symbols. As n increases from 0 to 3, the n-gram entropy declines: the degree of predictability is
increased as information from more adjacent symbols is taken into account. If n − 1 symbols are known, H n is
the conditional entropy of the next symbol, and is defined as follows.

bi is a block of n − 1 symbols, j is an arbitrary symbol following b i

p(bi, j) is the probability of the n-gram consisting of b i followed by j

pbi(j) is the conditional probability of symbol j after block b i, that is p(bi, j) ÷ p(bi)

Hn = −
∑

i,j

p(bi, j) ∗ log2 pbi(j)

= −
∑

i,j

p(bi, j) ∗ log2 p(bi, j) +
∑

i,j

p(bi, j) ∗ log2 p(bi)

= −
∑

i,j

p(bi, j) ∗ log2 p(bi, j) +
∑

i

p(bi) ∗ log2 p(bi)

since
∑

i,j p(bi, j) =
∑

i p(bi).

N.B. This notation is derived from that used by Shannon. It differs from that used, for instance, by Bell et al.
(1990).


