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Abstract

To every directed graph E one can associate a graph inverse semigroup G(E),
where elements roughly correspond to possible paths in E. These semigroups generalize
polycyclic monoids, and they arise in the study of Leavitt path algebras, Cohn path
algebras, graph C∗-algebras, and Toeplitz C∗-algebras. We investigate topologies that
turn G(E) into a topological semigroup. For instance, we show that in any such
topology that is Hausdorff, G(E) \ {0} must be discrete for any directed graph E. On
the other hand, G(E) need not be discrete in a Hausdorff semigroup topology, and for
certain graphs E, G(E) admits a T1 semigroup topology in which G(E) \ {0} is not
discrete. We also describe, in various situations, the algebraic structure and possible
cardinality of the closure of G(E) in larger topological semigroups.
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1 Introduction

Given any directed graph E, one can construct a graph inverse semigroup G(E) (to be
defined precisely below), where vaguely speaking, the elements correspond to possible paths
in E. This class of semigroups was first introduced by Ash/Hall [3], in order to show that
every partially ordered set can be realized as the partially ordered set of nonzero J -classes
of a semigroup. (Two elements in a semigroup are J -equivalent if they generate the same
ideal.) Polycyclic monoids, which were first defined by Nivat/Perrot [18], are a particularly
well-studied class of graph inverse semigroups (e.g., [12, 16]). These monoids (with zero)
have presentations by generators and relations of the following form:

Pn = 〈e1, . . . , en, e
−1
1 , . . . , e−1

n : e−1
i ej = δij〉,

where δij is the Kronecker delta, and P1 is known as the bicyclic monoid. Graph inverse
semigroups also arise in the study of rings and C∗-algebras. More specifically, for any field K
and any directed graph E, the (contracted) semigroup ring KG(E) is called the Cohn path K-

algebra of E. The quotient of a Cohn path algebra by a certain ideal is known as the Leavitt

path K-algebra of E. These rings were introduced independently by Abrams/Aranda Pino [1]
and Ara/Moreno/Pardo [2], and they have attracted much attention in recent years. Cohn
path algebras and Leavitt path algebras are algebraic analogues of Toeplitz C∗-algebras and
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graph C∗-algebras (see [10, 11]), respectively. For more on the connection between graph
inverse semigroups and C∗-algebras see [19]. These semigroups have also received much
attention in their own right recently [5, 8, 9, 13, 15, 17].

In this article we study topologies that turn the graph inverse semigroups G(E) into
topological semigroups, i.e., topologies on G(E) in which the multiplication operation of
G(E) is continuous. We show, among other things, that with respect to any such Hausdorff
topology, G(E) \ {0} must be discrete for all directed graphs E (Theorem 3), but that G(E)
admits a non-discrete metrizable semigroup topology for “most” choices of E (Proposition 6).
Moreover, for certain directed graphs E, G(E) admits a T1 semigroup topology in which
G(E) \ {0} is not discrete (Example 4). However, if E is a finite graph, then the only locally
compact Hausdorff semigroup topology on G(E) is the discrete topology (Theorem 10).
We also show, for any E, that if G(E) is the closure of G(E) in a Hausdorff topological
inverse semigroup (i.e., one where in addition to the multiplication, the inversion operation
is continuous), and µ ∈ G(E)\G(E) is any idempotent, then µ(G(E)\G(E))µ\{0} is either
the trivial group or a group that contains a dense cyclic subgroup (Theorem 18). Along the
way to proving this result, we characterize all inverse subsemigroups S of G(E) such that
µν 6= 0 for all µ, ν ∈ S \{0} (Theorem 13). In the final section, we give several results about
the possible cardinalities of the complements of polycyclic monoids in their closures within
larger topological semigroups.

Some of the aforementioned results generalize similar facts about the bicyclic monoid
proved by Eberhart/Selden [6], though our proofs are generally quite different.
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2 Preliminaries

2.1 Semigroups and Topology

A semigroup S is an inverse semigroup if for each x ∈ S there is a unique element x−1 ∈ S
satisfying x = xx−1x and x−1 = x−1xx−1. If S is a semigroup and O is a topology on S,
then we say that S is a topological semigroup with respect to O, or that O is a semigroup

topology on S, if the multiplication operation ∗ : S×S → S on S is continuous with respect
to O, where S × S is endowed with the product topology. If S is an inverse semigroup that
is a topological semigroup, then S is a topological inverse semigroup if the inverse operation
·−1 : S → S on S is continuous.

Next we recall some standard topological concepts and notation. Let X be a topological
space. Then we say that X is T1 if for any two points x, y ∈ X there is an open neighborhood
of x that does not contain y. Also, X is said to be T2, or Hausdorff, if for any two points
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x, y ∈ X there are open neighborhoods U and V of x and y, respectively, such that U∩V = ∅.
If Y ⊆ X , then we denote the closure of Y in X by Y . Also, if d : X ×X → R is a metric
(where R is the set of the real numbers), x ∈ X , and m > 0, then we let B(x,m) = {y ∈
X : d(x, y) < m}.

A basic fact about topological semigroups that will be useful is that if G is a semigroup
with zero element 0, and G is dense in a larger T1 topological semigroup S, then 0 · µ = 0
and µ · 0 = 0 for all µ ∈ S. To show the first equality (the second follows similarly), suppose
that 0 · µ 6= 0. Since the topology is T1, there must be an open neighborhood U of 0 ·µ such
that 0 /∈ U . By the continuity of multiplication, we can then find an open neighborhood W
of µ such that 0 ·W ⊆ U . But, since G is dense in S, W must contain some ν ∈ G, implying
that 0 · ν = 0 ∈ U , contrary to assumption. Hence 0 · µ = 0.

We shall denote the cardinality of a set X by |X|. The set of all natural numbers
(including 0) will be denoted by N.

2.2 Graphs

A directed graph E = (E0, E1, r, s) consists of two sets E0, E1 (containing vertices and
edges, respectively), together with functions s, r : E1 → E0, called source and range, respec-
tively. A path x in E is a finite sequence of (not necessarily distinct) edges x = e1 . . . en
such that r(ei) = s(ei+1) for i = 1, . . . , n − 1; in this case, s(x) := s(e1) is the source of x,
r(x) := r(en) is the range of x, and |x| := n is the length of x. If x = e1 . . . en is a path
in E such that s(x) = r(x) and s(ei) 6= s(ej) for every i 6= j, then x is called a cycle. A
cycle consisting of one edge is called a loop. We view the elements of E0 as paths of length
0 (extending r and s to E0 via r(v) = v = s(v) for all v ∈ E0), and denote by Path(E) the
set of all paths in E. A directed graph for which both E0 and E1 are finite sets is called a
finite directed graph. From now on we shall refer to directed graphs as simply “graphs”.

Given a graph E = (E0, E1, r, s), the graph inverse semigroup G(E) of E is the semigroup
with zero generated by the sets E0 and E1, together with a set of variables {e−1 : e ∈ E1},
satisfying the following relations for all v, w ∈ E0 and e, f ∈ E1:
(V) vw = δv,wv,
(E1) s(e)e = er(e) = e,
(E2) r(e)e−1 = e−1s(e) = e−1,
(CK1) e−1f = δe,fr(e).
We define v−1 = v for each v ∈ E0, and for any path y = e1 . . . en (e1 . . . en ∈ E1) we
let y−1 = e−1

n . . . e−1
1 . With this notation, every nonzero element of G(E) can be written

uniquely as xy−1 for some x, y ∈ Path(E), by the CK1 relation. It is also easy to verify that
G(E) is indeed an inverse semigroup, with (xy−1)−1 = yx−1 for all x, y ∈ Path(E).

Informally speaking, we start with a graph E, add for each edge e ∈ E1 a “ghost” edge
e−1 going in the opposite direction of e (between the same two vertices), and then turn E
into a semigroup where the elements correspond to possible paths in our extended graph.
(Products of edges that do not occur consecutively along a possible path are 0.)

If E is a graph having only one vertex v and n edges (necessarily loops), for some integer
n ≥ 1, then G(E) is known as a polycyclic monoid, and we shall denote it by Pn. In
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particular, Pn can be viewed as the monoid with zero presented by

〈e1, . . . , en, e
−1
1 , . . . , e−1

n : e−1
i ej = δij〉,

if we identify the one vertex in E with the identity element 1 of this monoid. We note that
the bicyclic monoid P1, as traditionally discussed in the literature, does not have a zero
element. To allow for uniformity of treatment, however, we shall assume that a zero element
has been adjoined, whenever referring to P1.

2.3 Connections With Rings

In the Introduction we mentioned that graph inverse semigroups arise in the study of
certain rings and C∗-algebras. Having defined these semigroups, we can state their connec-
tion with the rings in question explicitly. The reader unfamiliar with rings may safely skip
this subsection.

Let K be a field and E a graph. Then the contracted semigroup ring KG(E) (i.e., the
semigroup ring resulting from identifying the zero element of G(E) with the zero in the
semigroup ring KG(E)) is known as the Cohn path K-algebra CK(E) of E. Letting N
denote the ideal of CK(E) generated by elements of the form v −

∑

e∈s−1(v) ee
∗, where

v ∈ E0 is a regular vertex (i.e., one that emits a nonzero finite number of edges), the ring
CK(E)/N is called the Leavitt path K-algebra LK(E) of E.

Many well-known rings arise as Leavitt path algebras. For example, the classical Leavitt
K-algebra LK(n) for n ≥ 2, introduced in [14] (which is universal with respect to an iso-
morphism property between finite-rank free modules), can be expressed as the Leavitt path
algebra of the “rose with n petals” graph pictured below.

•v e1gg

e2

ss

e3

��

en

QQ...

The full d×d matrix algebra Md(K) is isomorphic to the Leavitt path algebra of the oriented
line graph with d vertices, shown below.

•v1
e1 // •v2 •vd−1

ed−1 // •vd

Also, the Laurent polynomial algebra K[x, x−1] can be identified with the Leavitt path
algebra of the following “one vertex, one loop” graph.

•v x
gg

3 Hausdorff Topologies

Our first goal is to show that, with the possible exception of 0, every element of G(E)
must be isolated in any Hausdorff semigroup topology on G(E). We begin with two lemmas.

Lemma 1. The following hold for any graph E.
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(1) If x, y ∈ Path(E) are such that r(x) = r(y) = v, then G(E)xy−1G(E) = G(E)vG(E).

(2) For any µ, ν ∈ G(E) \ {0}, the sets {ρ ∈ G(E) : µρ = ν} and {ρ ∈ G(E) : ρµ = ν}
are finite.

Proof. (1) This follows from the equations x−1(xy−1)y = v2 = v and xy−1 = xvy−1.

(2) Write µ = pq−1, ν = tu−1, and ρ = xy−1, where p, q, t, u, x, y ∈ Path(E). If µρ = ν,
then there must be a path z ∈ Path(E) such that either x = qz or q = xz (for, otherwise
q−1x = 0). In the first case,

µρ = pq−1xy−1 = pq−1qzy−1 = pzy−1,

implying that t = pz and u = y, which determines ρ uniquely as ρ = qzu−1 = qp−1tu−1. In
the second case,

µρ = pq−1xy−1 = pz−1x−1xy−1 = pz−1y−1,

implying that t = p and u = yz. That {ρ ∈ G(E) : µρ = ν} is finite now follows from the
fact that only finitely many choices of x, y, z can satisfy q = xz and u = yz.

The finiteness of {ρ ∈ G(E) : ρµ = ν} can be shown by a similar argument.

Lemma 2. Let E be a graph, and suppose that G(E) is a topological semigroup with respect

to a T1 topology O.

(1) Suppose that µ ∈ G(E) \ {0} is a limit point, and let ν ∈ G(E). If µν 6= 0, then µν is

a limit point, and if νµ 6= 0, then νµ is a limit point.

(2) If v ∈ E0 is a limit point, then |{e ∈ E1 : s(e) = v}| = 1.

(3) Suppose that v ∈ E0 is a limit point and z = e1 . . . en ∈ Path(E) is a cycle (e1, . . . , en ∈
E1) such that s(z) = v = r(z). Then there is an open neighborhood of v consisting

entirely of elements of the form zle1 . . . eke
−1
k . . . e−1

1 z−m (k, l,m ∈ N, k < n), where we

understand z0 to be v and zle1 . . . eke
−1
k . . . e−1

1 z−m = zlz−m when k = 0.

(4) Suppose that v ∈ E0 is a limit point, and for all p ∈ Path(E) with source v, r(p) is

not the source of a cycle. Then there exists a sequence e1, e2, . . . of edges and an open

neighborhood of v consisting entirely of nonzero elements of the form e1 . . . ene
−1
n . . . e−1

1

(n ∈ N), where we understand e1 . . . ene
−1
n . . . e−1

1 to be v when n = 0.

Proof. (1) Suppose that µν 6= 0, and let U be an open neighborhood of µν. By the continuity
of multiplication, there is an open neighborhood V of µ such that V ν ⊆ U . Since µ is a limit
point, V must be infinite, and hence U must be infinite as well, by Lemma 1(2). Thus, µν
is also a limit point, and, by a similar argument, so is νµ (in case it is nonzero).

(2) First suppose that v is a sink, i.e. that |{e ∈ E1 : s(e) = v}| = 0. Since O is T1, we
can find an open neighborhood U of v such that 0 /∈ U . Since vv = v, by the continuity of
multiplication, there must be an (infinite) open neighborhood V of v such that V V ⊆ U .
But, since v is a sink, for any µ ∈ G(E) \ {v} either vµ = 0 or µv = 0. Hence either 0 ∈ µV
or 0 ∈ V µ, which implies that 0 ∈ U , contrary to our assumption. Thus v cannot be a sink.
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Now suppose that |{e ∈ E1 : s(e) = v}| ≥ 2. Suppose also that there is an open
neighborhood U of v and an edge e ∈ E1 such that for all µ ∈ U \ {v}, µ = eν for some
ν ∈ G(E). By assumption, we can find some f ∈ E1 \ {e} such that s(f) = v, and since the
topology is T1, there is an open neighborhood W of f−1 such that 0 /∈ W . Since f−1v = f−1

and multiplication is continuous, there must be an open neighborhood U ′ of v such that
f−1U ′ ⊆ W , and hence f−1(U ∩U ′) ⊆ W . But, for all µ ∈ U \{v} we have 0 = f−1µ, by our
choice of U , and hence 0 ∈ W (since U ∩ U ′ is infinite, by the fact that v is a limit point),
contrary to assumption. Thus for any open neighborhood U of v and e ∈ E1 there is some
µ ∈ U \ {v} such that µ 6= eν for all ν ∈ G(E).

Next, let e, f ∈ E1 be distinct edges having source v. Since O is T1, we can find open
neighborhoods Ue, Uf , Ue−1 of e, f , and e−1, respectively, such that 0 /∈ Ue ∪ Uf ∪ Ue−1 .
Since ve = e, vf = f , and e−1v = e−1, by the continuity of multiplication we can find open
neighborhoods Ve, Vf , and Ve−1 of v such that Vee ⊆ Ue, Vff ⊆ Uf , and e−1Ve−1 ⊆ Ue−1 .
Let V = Ve ∩ Vf ∩ Ve−1. Then V e ⊆ Ue, V f ⊆ Uf , and e−1V ⊆ Ue−1 , which implies that
0 /∈ V e∪V f ∪e−1V . Since e 6= f , 0 /∈ V e∪V f implies that V ⊆ Path(E). Since V is infinite,
by the previous paragraph, this in turn implies that there is some µ ∈ V \ {v} such that
µ ∈ Path(E) and µ 6= eν for all ν ∈ G(E). But then e−1µ = 0, and hence 0 ∈ e−1V ⊆ Ue−1 ,
contradicting our choice of Ue−1. Therefore we cannot have |{e ∈ E1 : s(e) = v}| ≥ 2, and
hence |{e ∈ E1 : s(e) = v}| = 1.

(3) Let v ∈ E0 and z = e1 . . . en be a cycle as in the statement. By (2), we have
|{e ∈ E1 : s(e) = v}| = 1. We note also that if p ∈ Path(E) is such that s(p) = v, then
r(p) must be a limit point. For, since p = vp, by (1), p must be a limit point, and since
r(p) = p−1p, by the same statement, r(p) must be a limit point. It follows, by (2), that the
only paths having source v are of the form zle1 . . . ek (k, l ∈ N, k ≤ n). Since O is T1, we
can find an open neighborhood V of v such that 0 /∈ V . Since vv = v, by the continuity of
multiplication, we can find an open neighborhood W of v such that WW ⊆ V . Thus, letting
µ ∈ W be any element, we see that vµ 6= 0 6= µv. Writing µ = pq−1 for some p, q ∈ Path(E),
it follows that s(p) = v = s(q). But, by the above description of such paths, this means that
p = zle1 . . . ek and q = zme1 . . . ej for some j, k, l,m ∈ N, with j, k < n. Since µ = pq−1 6= 0,
it must be the case that j = k, and hence p = zle1 . . . ek and q = zme1 . . . ek. Therefore W
consists entirely of elements of the desired form.

(4) Suppose that v = v1 ∈ E0 is a limit point. By (2), there is a unique edge e1 ∈ E1

having source v1. By hypothesis, e1 is not a loop, and hence v2 = r(e1) 6= v1. Since e1 = v1e1,
by (1), e1 must be a limit point, and since v2 = e−1

1 e1, v2 must be a limit point. Letting
e2 ∈ E1 be the unique edge having source v2, by hypothesis, r(e1e2) /∈ {v1, v2}. Repeating
this argument, we conclude that E must have the following subgraph, where for each i ≥ 1,
ei ∈ E1 is the only edge with source vi.

•v1
e1 // •v2

e2 // •v3
e3 // ...

It follows that the only paths having source v1 are of the form e1 . . . en (n ∈ N).
By the same argument as in the proof of (3), we can find an open neighborhood W of

v1 such that vµ 6= 0 6= µv for every µ ∈ W . Thus, for every µ ∈ W , writing µ = pq−1
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(p, q ∈ Path(E)), we must have s(p) = v = s(q). Therefore, p = q = e1 . . . en for some n ∈ N

(since r(p) = r(q)), and hence W consists entirely of elements of the form e1 . . . ene
−1
n . . . e−1

1

(n ∈ N), as desired.

We are now ready to prove the main result of this section. It generalizes [6, Corollary I.2],
which says that the bicyclic monoid (without zero) is discrete in any semigroup topology,
though our proof uses a very different approach.

Theorem 3. Suppose that E is a graph, and that G(E) is a topological semigroup with

respect to a Hausdorff topology O. Then G(E) \ {0} must be discrete.

Proof. Suppose that µ ∈ G(E) \ {0} is a limit point. By Lemma 1(1), we can find some
ν, τ ∈ G(E) such that νµτ ∈ E0. Hence, by Lemma 2(1), there must be some vertex v ∈ E0

that is a limit point. We shall show that this leads to a contradiction.
If there is some p ∈ Path(E) such that s(p) = v and r(p) is the source of a cycle, then

by Lemma 2(1), r(p) must be a limit point (since r(p) = p−1vp). Thus, upon replacing
v with r(p) if necessary, we may assume that either v is the source of a cycle, or that for
all p ∈ Path(E) with s(p) = v, r(p) is not the source of a cycle. Then, in either case,
by Lemma 2(3,4), there is an edge e1 ∈ E1 and an open neighborhood W of v such that
every element of W \ {v} either begins with e1 or ends with e−1

1 . Since O is Hausdorff, we
can find open neighborhoods V and U , of v and e1e

−1
1 , respectively, such that U ∩ V = ∅.

Since e1e
−1
1 v = e1e

−1
1 and ve1e

−1
1 = e1e

−1
1 , upon passing to a subneighborhood of V , we may

assume that e1e
−1
1 V, V e1e

−1
1 ⊆ U , using the continuity of multiplication. Upon intersecting

with W , we may assume that every element of V \{v} either begins with e1 or ends with e−1
1

(and since v is a limit point, V must be infinite). But then, taking any µ ∈ V \ {v}, either
e1e

−1
1 µ = µ or µe1e

−1
1 = µ, which violates U ∩ V = ∅, giving the desired contradiction.

Let us next give an example showing that the conclusion of Theorem 3 no longer holds
if the Hausdorff assumption is dropped. More specifically, we shall construct a graph E and
a T1 (but not Hausdorff) topology, with respect to which G(E) is a topological semigroup
and G(E) \ {0} is not discrete.

Example 4. Let E be the following graph.

•v1
e1 // •v2

e2 // •v3
e3 // ...

For all n ∈ N, and for all p, q ∈ Path(E) such that r(p) = r(q), let

Upq−1,n = {pxx−1q−1 : x ∈ Path(E), s(x) = r(p) = r(q), |x| > n} ∪ {pq−1}.

Let O be the topology on G(E) generated by the subbase consisting of {0} and the sets
Upq−1,n. We claim that with this topology G(E) is a T1 topological semigroup, and that
G(E) \ {0} is not discrete.

To show that O is T1, let p, q, t, z ∈ Path(E) be such that pq−1 6= tz−1 (and r(p) = r(q),
r(t) = r(z)). Also, let n ∈ N be such that n ≥ max{|t|, |z|}. Then tz−1 /∈ Upq−1,n, giving the
desired conclusion.

To prove that G(E) \ {0} is not discrete we shall show that any nonempty finite inter-
section of sets (other than {0}) in our subbase contains infinitely many elements. Thus let
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n1, . . . , nm ∈ N and p1, . . . , pm, q1, . . . , qm ∈ Path(E) be such that r(pi) = r(qi) for each i,
and suppose that Up1q

−1
1 ,n1

∩ · · · ∩Upmq−1
m ,nm

6= ∅. Then there are x1, . . . , xm ∈ Path(E) such

that p1x1x
−1
1 q−1

1 = · · · = pmxmx
−1
m q−1

m , where pixix
−1
i q−1

i ∈ Upiq
−1
i ,ni

for each i. It follows that

r(p1x1) = · · · = r(pmxm), and therefore if we take any y ∈ Path(E) such that s(y) = r(p1x1)
and |y| > max{n1, . . . , nm}, then

p1x1yy
−1x−1

1 p−1
1 ∈

m
⋂

i=1

Upiq
−1
i ,ni

.

But, by our choice of E, there are infinitely many possibilities for y, giving the required
conclusion.

It remains to show that G(E) is a topological semigroup, i.e. that multiplication is con-
tinuous in O. Thus let µ, ν ∈ G(E), and let U be an open neighborhood of µν. We wish to
find open neighborhoods V and W of µ and ν, respectively, such that VW ⊆ U . If either
of µ or ν is 0, then taking the corresponding neighborhood to be {0}, the desired result is
clear. Thus let us assume that 0 6= µ = pq−1 and 0 6= ν = tz−1 for some p, q, t, z ∈ Path(E).
If µν = 0, then Upq−1,0Utz−1,0 = {0}, again gives the desired result. Let us therefore suppose
that µν 6= 0, in which case we may also assume that U = Uab−1,n for some n ∈ N and
a, b ∈ Path(E). Then there must be some x ∈ Path(E) such that either q = tx or t = qx.
Let us assume that the latter holds, as the former case can be handled similarly. Thus

µν = pq−1tz−1 = pq−1qxz−1 = pxz−1.

To conclude our construction, it is enough to show that τθ ∈ Upxz−1,n (= Uab−1,n) for all
τ ∈ Upq−1,n and θ ∈ Utz−1,n. Write τ = pyy−1q−1 and θ = tww−1z−1 for some y, w ∈ Path(E),
where |y| and |w| are each either 0 or greater than n. Then

τθ = pyy−1q−1tww−1z−1 = pyy−1xww−1z−1.

Since µν 6= 0, we also have τθ 6= 0, and thus, either y = xwv or xw = yv for some
v ∈ Path(E). Again, let us assume that xw = yv, since the other case can be dispatched
similarly. Thus,

τθ = pyy−1yvw−1z−1 = pyvw−1z−1 = pxww−1z−1 ∈ Upxz−1,n,

as desired, since |w| is either 0 or greater than n.

The next result is a generalization of [6, Theorem I.3] to arbitrary graph inverse semi-
groups.

Theorem 5. Let E be a graph, and suppose that G(E) is a dense subsemigroup of a Hausdorff

topological semigroup S. Then the following hold.

(1) G(E) \ {0} is open in S.

(2) (S \G(E)) ∪ {0} is an ideal of S.

8



Proof. (1) By Theorem 3, the topology on G(E)\{0} inherited from S must be discrete. Thus
for any µ ∈ G(E) \ {0}, there must be an open subset U ⊆ S such that U ∩ (G(E) \ {0}) =
{µ}. Since G(E) is dense in S, U ∩ G(E) is dense in the closure U of U in S. Hence
U = U ∩G(E) ⊆ {µ, 0}, and so either U = {µ} or U = {µ, 0}. But, since the topology on
S is Hausdorff, in either case we conclude that {µ} is open in S, from which the statement
follows.

(2) Let µ ∈ (S \ G(E)) ∪ {0} and ν ∈ S be any elements. We wish to show that
µν ∈ (S \G(E))∪{0} (that νµ ∈ (S \G(E))∪{0} can be shown similarly). We may assume
that µ 6= 0 6= ν, since otherwise the claim follows from the fact that 0 · S = {0} = S · 0,
mentioned in Subsection 2.1. Seeking a contradiction, suppose that µν ∈ G(E) \ {0}. Since
G(E) \ {0} is open (by (1)) and hence discrete in S (by Theorem 3), we can find open
neighborhoods U of µ and V of ν such that UV = {µν}. Also, U ∩G(E) must be infinite,
since µ is a limit point of G(E)\{0}, and there must be a point τ ∈ V ∩ (G(E)\{0}). Hence

{µν} = UV ⊇ (U ∩ (G(E) \ {0})) · (V ∩ (G(E) \ {0})) ⊇ (U ∩ (G(E) \ {0}))τ 6= ∅,

which implies that (U ∩ (G(E) \ {0}))τ = {µν}, in contradiction to Lemma 1(2). Therefore,
µν ∈ (S \G(E)) ∪ {0}, as desired.

We next show that while G(E)\{0} must be discrete in any Hausdorff semigroup topology,
G(E) admits a non-discrete metrizable topology, as long as E has paths of arbitrary length.
(This is the case, for instance, for any graph having cycles or an infinite path.)

Proposition 6. Let E be a graph having paths of arbitrary (finite) length, define d′(0, 0) = 0
and

d′(pq−1, 0) = d′(0, pq−1) =
1

min{|p|, |q|} + 1

for all p, q ∈ Path(E), and extend d′ to a map d : G(E) ×G(E) → R via

d(µ, ν) =

{

d′(µ, 0) + d′(ν, 0) if µ 6= ν
0 if µ = ν

.

Then d is a metric that induces a non-discrete semigroup topology on G(E).

Proof. It is clear that for all µ, ν ∈ G(E) we have d(µ, ν) ≥ 0, d(µ, ν) = d(ν, µ), and
d(µ, ν) = 0 if only if µ = ν. It is also easy to see that d satisfies the triangle inequality, and
hence d is a metric on G(E). As E has paths of arbitrary length, the topology on G(E)
induced by d is not discrete, since B(0, 1/n)\{0} 6= ∅ for every positive n ∈ N. To verify that
this topology is a semigroup topology, let µ, ν ∈ G(E) be any elements, and let U be an open
neighborhood of µν. We may assume that U = B(µν, 1/n) for some positive n ∈ N, and we
wish to find open neighborhoods V and W of µ and ν, respectively, such that VW ⊆ U .

We begin by noting that if µ 6= 0, then B(µ, d(µ, 0)) = {µ}, and therefore {µ} is an
open set. It follows that if µ, ν 6= 0, then we may take V = {µ} and W = {ν} above. Next
suppose that µ = 0 = µν but ν 6= 0. Write ν = pq−1 for some p, q ∈ Path(E), let W = {ν},
and let V = B(0, 1/(|p| + n)). Then for all ρ = tz−1 ∈ V \ {0} (t, z ∈ Path(E)) we have

d(ρ, 0) = d(tz−1, 0) =
1

min{|t|, |z|} + 1
<

1

|p| + n
,
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and hence min{|t|, |z|} > |p| + n − 1. It follows that either z−1pq−1 = 0 or (z−1pq−1)−1 =
qp−1z ∈ Path(E) and |(z−1pq−1)−1| > n− 1. Thus, either ρν = 0 or, otherwise,

d(ρν, 0) = d(tz−1pq−1, 0) =
1

min{|t|, |(z−1pq−1)−1|} + 1
<

1

n
,

from which we see that ρν ∈ B(0, 1/n) = B(µν, 1/n) = U , and hence VW ⊆ U . A similar
argument shows that if ν = 0 = µν but µ 6= 0, then we can find open neighborhoods V and
W of µ and ν, respectively, such that VW ⊆ U .

Finally, suppose that µ = ν = 0, and let V = W = B(0, 1/n). Then for all θ = pq−1 ∈
B(0, 1/n)(= V ) and ρ = tz−1 ∈ B(0, 1/n)(= W ), with p, q, t, z ∈ Path(E), either θρ = 0, or

d(θρ, 0) = d(pq−1tz−1, 0) ≤
1

min{|p|, |z|} + 1
<

1

n
.

Therefore θρ ∈ B(0, 1/n) = U , as desired.

Corollary 7. Let E be a finite graph having at least one cycle, and suppose that G(E) is a

subsemigroup of a Hausdorff topological semigroup S. If G(E) inherits from S the topology

induced by the metric d from Proposition 6, then G(E) = G(E).

Proof. Assume, to the contrary, that there exists µ ∈ G(E) \ G(E). Since our topology is
Hausdorff, there are open neighborhoods U ′ and V ′ (in S) of 0 and µ, respectively, such that
U ′ ∩ V ′ = ∅. Let m ∈ N be such that

BG(E)(0, 1/m) := {ν ∈ G(E) : d(0, ν) < 1/m} ⊆ U ′ ∩G(E).

Since 0 · µ = 0 = µ · 0 (as discussed in Subsection 2.1), by the continuity of multiplication,
there are open subneighborhoods U ⊆ U ′ and V ⊆ V ′, such that

(U ∩G(E)) · (V ∩G(E)), (V ∩G(E)) · (U ∩G(E)) ⊆ BG(E)(0, 1/m)

(and BG(E)(0, 1/m)∩V = ∅). Let n ∈ N be such that n ≥ m and BG(E)(0, 1/n) ⊆ U ∩G(E).
Since µ is a limit point of G(E) and E is finite, it follows that V ∩G(E) is infinite, and there
exists xy−1 ∈ V ∩ G(E) such that |x| ≥ n or |y| ≥ n. We may assume that |y| ≥ n, since
the case where |x| ≥ n leads to an analogous argument. Then xy−1 = xy−1yy−1. But,

d(0, yy−1) =
1

|y| + 1
<

1

n
,

and hence yy−1 ∈ BG(E)(0, 1/n) ⊆ U ∩G(E). Therefore

xy−1 = (xy−1)(yy−1) ∈ (V ∩G(E)) · (U ∩G(E)) ⊆ BG(E)(0, 1/m),

contradicting BG(E)(0, 1/m) ∩ V = ∅. Thus G(E) = G(E).
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4 Local Compactness

A Hausdorff space X is locally compact if for every x ∈ X there exists an open set U
such that x ∈ U and U is compact. The main result of this section is that for finite graphs
E, the discrete topology is the only possible locally compact Hausdorff semigroup topology
on G(E).

We begin with two short lemmas. The first is a well-known fact, but we provide a proof
because we did not find a suitable reference.

Lemma 8. Every countable locally compact Hausdorff space is metrizable.

Proof. Let X be a locally compact Hausdorff space. According to [7, Theorem 3.3.1], X is
completely regular. (A topological space X is completely regular or Tychonoff if it is T1,
and given any closed subset Y ⊆ X and any point x ∈ X \ Y , there is a continuous function
f : X → [0, 1] ⊆ R such that f(x) = 1 and f(Y ) = {0}.) Moreover, letting w(X) denote
the weight of X (that is, the minimal cardinality of a base of X), [7, Corollary 3.3.6] says
that w(X) ≤ |X|. Now, by Tychonoff’s theorem [7, Theorem 2.3.23], X is homeomorphic to
a subspace of [0, 1]w(X). Hence, if X is countable, then it is homeomorphic to a subspace of
[0, 1]N, which is metrizable. It follows that every countable locally compact Hausdorff space
is metrizable.

Lemma 9. Let E be a finite graph, and suppose that {xn : n ∈ N} is an infinite subset of

Path(E). Then there exist an infinite subset I of N and µ ∈ G(E) such that µxn ∈ Path(E)
and |µxn| > |xn| for all n ∈ I.

Proof. Since E is finite, there are p, t ∈ Path(E), where p is a cycle that is not a vertex, and
an infinite subset I ⊆ N, such that for all n ∈ I we have xn = tpun, for some un ∈ Path(E).
Letting µ = tpt−1, we see that

|µxn| = |tpt−1tpun| = |tppun| > |tpun| = |xn|

for all n ∈ I.

Theorem 10. If E is a finite graph, then the only locally compact Hausdorff semigroup

topology on G(E) is the discrete topology.

Proof. Seeking a contradiction, suppose that G(E) has a locally compact Hausdorff semi-
group topology which is not discrete. Since E is finite, G(E) is countable, and hence there
is a metric d that induces this topology on G(E), by Lemma 8. Furthermore, by Theorem 3,
G(E) \ {0} must be discrete, and thus 0 is the unique limit point in G(E). Since G(E) is
locally compact, there exists N ∈ N such that B(0, 1/n) is compact for all n ≥ N . Thus
B(0, 1/n) \B(0, 1/(n+ 1)) is compact for all n ≥ N , since it is a closed subset of a compact
set, and so it is finite, being a subset of a discrete space. Therefore if X is any infinite subset
of B(0, 1/N) \ {0} and the elements of X are arbitrarily enumerated as {x0y

−1
0 , x1y

−1
1 , . . .}

(xn, yn ∈ Path(E)), then the sequence (xny
−1
n )n∈N converges to 0.

There are three cases to consider.
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Case 1: No sequence of elements in Path(E) or Path(E)−1 converges to 0. Suppose that
there exists y ∈ Path(E) such that the set

Xy = {x ∈ Path(E) : 0 < d(xy−1, 0) < 1/N}

is infinite, say Xy = {x0, x1, . . .}. But then xny
−1 → 0 as n → ∞, and so xn = xny

−1y → 0 as
n → ∞, contradicting the assumption of this case. Therefore Xy is finite for all y ∈ Path(E).
Similarly, if there is x ∈ Path(E) such that the set

Yx = {y ∈ Path(E) : 0 < d(xy−1, 0) < 1/N}

is infinite, say Yx = {y0, y1, . . .}, then xy−1
n → 0 as n → ∞, and so y−1

n = x−1xy−1
n → 0 as

n → ∞, contradicting the assumption of this case. Therefore Yx is finite for all y ∈ Path(E).
Since B(0, 1/N) \ {0} is infinite, Xy 6= ∅ for infinitely many y ∈ Path(E), and we

denote these by y0, y1, . . .. For every n ∈ N, let xn ∈ Xyn be of maximal length. Then
{xny

−1
n : n ∈ N} is an infinite subset of B(0, 1/N) \ {0}, and hence xny

−1
n → 0 as n → ∞.

Since, for each xn, Yxn
is finite, {xn : n ∈ N} must be infinite. Therefore, by Lemma 9 there

exists an infinite subset I of N and µ ∈ G(E) such that |µxn| > |xn| for all n ∈ I. Hence
µxn 6∈ Xyn, by the choice of xn, and so d(µxny

−1
n , 0) ≥ 1/N for all n ∈ I. It follows that

the sequence (µxny
−1
n )n∈I does not converge to 0 whereas (xny

−1
n )n∈I does, contradicting the

continuity of the multiplication in G(E).

Case 2: There exists a sequence (xn)n∈N of elements in Path(E) that converges to 0. Since
E is finite, we may assume that for all n,m ∈ N we have r(xn) = r(xm), d(xn, 0) < 1/N ,
and |xn| < |xn+1|, upon passing to a subsequence if necessary. In particular, |xn| ≥ n for all
n ∈ N. We start by showing that 0 is not a limit point of {x−1

n : n ∈ N}. Supposing that 0 is
a limit point, there exists a subsequence (xk(n))n∈N of (xn)n∈N such that x−1

k(n) → 0 as n → ∞.

But then, by the continuity of multiplication, r(xk(n)) = x−1
k(n)xk(n) → 0, a contradiction.

Since B(0, 1/n) \B(0, 1/(n + 1)) is finite for all n ≥ N , it follows that the set

{|x| + |y| : xy−1 ∈ G(E), 1/p ≤ d(xy−1, 0) < 1/N}

is finite for all p ≥ N . We denote the maximum of this set by l(p). Let p > N be arbitrary,
and let n(p) ∈ N be such that n(p) > l(p) and xn(p) ∈ B(0, 1/p). Since 0 is not a limit
point of {x−1

n : n ∈ N}, it follows that (xn(p)x
−1
m )m∈N does not converge to 0 as m → ∞.

(Note that xn(p)x
−1
m 6= 0 since r(xn) = r(xm) for all n,m ∈ N.) Since |xn| < |xn+1| for

all n ∈ N, the set {xn(p)x
−1
m : m ∈ N} is infinite, and so there are infinitely many m

satisfying d(xn(p)x
−1
m , 0) ≥ 1/N . Fix m(p) ∈ N such that d(xn(p)x

−1
m(p), 0) ≥ 1/N , and write

x−1
m(p) = e1(p)−1 · · · ek(p)(p)−1, where e1(p), . . . , ek(p)(p) ∈ E1, Also let j(p) ≤ k(p) (possibly

j(p) = 1) be such that

d(xn(p)e1(p)−1 · · · ej(p)−1(p)−1, 0) <
1

N
and d(xn(p)e1(p)−1 · · · ej(p)(p)−1, 0) ≥

1

N
.

But then
|xn(p)| + |ej(p)−1(p) · · · e1(p)| ≥ |xn(p)| ≥ n(p) > l(p),
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and so

d(xn(p)e1(p)−1 · · · ej(p)−1(p)−1, 0) <
1

p
.

It follows that xn(p)e1(p)−1 · · · ej(p)−1(p)−1 → 0 as p → ∞. But, since E is finite, some
edge e occurs infinitely many times as ej(p)(p) in the above construction. Thus as p → ∞,
xn(p)e1(p)−1 · · · ej(p)−1(p)−1e−1 does not converge to 0, since only finitely many of the terms
of this sequence are in B(0, 1/N), which contradicts the continuity of multiplication.

Case 3: There exists a sequence (x−1
n )n∈N of elements in Path(E)−1 that converges to 0.

This can be handled analogously to Case 2.

After an earlier version of this paper was circulated, Bardyla/Gutik [4, Proposition 3.4]
proved that the conclusion of Theorem 10 also holds for graphs E consisting of one vertex and
infinitely many loops (i.e., infinitely-generated polycyclic monoids). However, the question
of whether the theorem can be generalized to all graphs E remains open.

5 Idempotents

The goal of this section is to characterize the inverse subsemigroups S of G(E) such that
µν 6= 0 for all µ, ν ∈ S \ {0}. This characterization will be useful in subsequent sections.

Recall that an element µ of a semigroup S is an idempotent if µµ = µ.

Lemma 11. The following hold for any graph E.

(1) Every nonzero idempotent of G(E) is of the form xx−1 for some x ∈ Path(E).

(2) If µ, ν ∈ G(E) are two idempotents, then µν ∈ {0, µ, ν}.

Proof. (1) It is a standard fact that if S is an inverse semigroup and µ ∈ S is an idempotent,
then µ = µ−1. (For, µµµ = µ implies that µ = µ−1, by the uniqueness of inverses.)
Applying this to the inverse semigroup G(E), suppose that xy−1 ∈ G(E) is an idempotent
(x, y ∈ Path(E)). Then xy−1 = (xy−1)−1 = yx−1, from which the desired statement follows.

(2) We may assume that µ 6= 0 6= ν, since otherwise the claim is clear. By (1), we can
write µ = xx−1 and ν = yy−1 for some x, y ∈ Path(E). If µν 6= 0, then either x = yz or
y = xz for some z ∈ Path(E). In the first case,

µν = xx−1yy−1 = yzz−1y−1yy−1 = yzz−1y−1 = xx−1 = µ.

In the second case,

µν = xx−1yy−1 = xx−1xzz−1x−1 = xzz−1x−1 = yy−1 = ν.

Thus, µν ∈ {0, µ, ν} for all idempotents µ and ν.

Lemma 12. Let E be a graph, and suppose that S is an inverse subsemigroup of G(E) such
that µν 6= 0 for all µ, ν ∈ S \ {0}. Then the following hold.
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(1) Let x ∈ Path(E), and set S ′ = S ∩ xG(E)x−1. Then S ′ and x−1S ′x are inverse

subsemigroups of G(E) satisfying the above hypothesis on S, and f(µ) = x−1µx defines

an isomorphism f : S ′ → x−1S ′x.

(2) Suppose that S∩ (Path(E)\E0) 6= ∅, and let x ∈ S∩ (Path(E)\E0) be such that |x| is
minimal. Then all nonzero elements of S are of the form xnyy−1x−m, where n,m ∈ N,

and y ∈ Path(E) satisfies x = yp for some p ∈ Path(E).

Proof. (1) We note that xG(E)x−1 is an inverse semigroup, since for all µ, ν ∈ G(E),
xµx−1xνx−1 = xµνx−1 and (xµx−1)−1 = xµ−1x−1. As an intersection of inverse semigroups,
S ′ must be one as well. Since S ′ is a subsemigroup of S, clearly it has no zero-divisors.

Suppose that yz−1, uv−1 ∈ x−1S ′x \ {0}, for some u, v, y, z ∈ Path(E). Then xyz−1x−1,
xuv−1x−1 ∈ S ′ \ {0}, and since

xyz−1uv−1x−1 = xyz−1x−1xuv−1x−1 ∈ S ′,

it follows that yz−1uv−1 ∈ x−1S ′x. Also, since xzy−1x−1 ∈ S ′, we have zy−1 ∈ x−1S ′x,
showing that x−1S ′x is an inverse semigroup.

To show that S ′ and x−1S ′x are isomorphic, let f : S ′ → x−1S ′x be as in the statement.
This map is clearly a bijection. Letting µ, ν ∈ S ′ be any elements, we can write µ = xyz−1x−1

and ν = xuv−1x−1 for some u, v, y, z ∈ Path(E) ∪ {0}. Then

f(µν) = f(xyz−1uv−1x−1) = yz−1uv−1 = f(µ)f(ν),

and hence f is an isomorphism.

(2) Let µ ∈ S \ {0} be any element, and write µ = uv−1 (u, v ∈ Path(E)). Let n,m ∈ N

be maximal such that x−nu, (v−1xm)−1 ∈ Path(E). Since by hypothesis, x−1u, v−1x 6= 0,
it follows that u = xny and v = xmz for some y, z ∈ Path(E), where |y|, |z| < |x|. Since
x−nµxm = yz−1 ∈ S, by our choice of x and the fact that S is closed under inverses, either
both y, z ∈ E0, or both y, z /∈ E0. In the first case, µ = xnx−m, giving µ the desired form.
Let us therefore assume that y, z /∈ E0. Then x−1yz−1x 6= 0 implies that x = yp = zq for
some p, q ∈ Path(E) \ E0, since |y|, |z| < |x|. Using the fact that S is an inverse semigroup,
and replacing yz−1 by zy−1, if necessary, we may assume that |p| ≤ |q|. Now,

0 6= x−1yz−1x = p−1y−1yz−1zq = p−1q

implies that q = pt for some t ∈ Path(E), where |t| < |q| < |x|. But, then p−1q = p−1pt =
t ∈ S implies that t ∈ E0, by the minimality of |x|. Hence p = q, and therefore also y = z,
from which we obtain µ = uv−1 = xnyz−1x−m = xnyy−1x−m, as required.

Theorem 13. Let E be a graph, and suppose that S is an inverse subsemigroup of G(E)
such that µν 6= 0 for all µ, ν ∈ S \ {0}. Then there exists an element µ ∈ S such that S is

generated as a semigroup by µ and the idempotents of S.

Proof. Let us assume that S does not consist entirely of idempotents, since otherwise there
is nothing to prove. Also, we may assume that S ∩ (Path(E) \ E0) = ∅, since otherwise the
desired conclusion follows from Lemma 12(2).
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Let µ = yx−1 ∈ S (x, y ∈ Path(E)) be a non-idempotent such that |x| is minimal and |y|
is minimal for the chosen x. Since S is an inverse semigroup, xy−1 ∈ S, and hence |x| ≤ |y|.
Therefore 0 6= yx−1yx−1 implies that y = xp for some p ∈ Path(E) \ E0. Hence µ = xpx−1,
where x /∈ E0, since S ∩ (Path(E) \ E0) = ∅.

Now, let vw−1 ∈ S be any non-idempotent (v, w ∈ Path(E)). Again, by assump-
tion, v, w /∈ E0, and since S is an inverse semigroup, our choice of x implies that |x| ≤
|v|, |w|. Thus, from 0 6= xpx−1vw−1xp−1x−1 we see that vw−1 ∈ S ′ := S ∩ xG(E)x−1.
By Lemma 12(1), x−1S ′x is an inverse semigroup satisfying the hypothesis on S. Since
p ∈ x−1S ′x ∩ (Path(E) \ E0) and |p| is minimal (by our choice of y), Lemma 12(2) implies
that x−1S ′x is generated by p and some set of idempotents. By Lemma 12(1), x−1S ′x is
isomorphic to S ′, via an isomorphism that sends p to µ, and therefore S ′ is generated by
µ and some set of idempotents. Since all the non-idempotents of S are elements of S ′, the
desired conclusion follows.

It is not hard to see that if the µ = xpx−1 above is not an idempotent, then S is generated
by µ and idempotents of the form uu−1 (u ∈ Path(E)), where uq = xp for some q ∈ Path(E).

6 Closures

Thus far we have considered all possible Hausdorff topologies on G(E) which made mul-
tiplication continuous. Now we restrict our attention to topologies with respect to which
inversion is also continuous. More specifically, using the theory developed above we shall
describe the complement of G(E) in the closure G(E) of G(E) in any topological inverse
semigroup that contains it. We begin by recalling a couple of basic facts about topological
inverse semigroups. The second, which will be crucial for us, relies heavily on the assumption
that inversion (and not just multiplication) is continuous.

Proposition 14 (Proposition II.2 in [6]). Let S be a topological inverse semigroup and T
an inverse subsemigroup of S. Then T and T are topological inverse subsemigroups of S.

Proposition 15 (Proposition II.3 in [6]). Let S be a topological inverse semigroup and T a

dense inverse subsemigroup of S. Also, let I denote the set of all idempotents of S. Then

I = I ∩ T .

The next result is a generalization of [6, Proposition III.1], which says that, letting P1

denote the closure of the bicyclic monoid P1 in a Hausdorff topological semigroup, P1 \P1 is
a group.

Proposition 16. Let E be a graph, and suppose that G(E) is a subsemigroup of a Hausdorff

topological inverse semigroup. Set T = G(E) \ G(E), and let I denote the subset of all

idempotents of G(E). Then the following hold.

(1) For all ρ ∈ T there are idempotents µ, ν ∈ I ∩ T such that ρ ∈ µTν.

(2) For all µ, ν ∈ I ∩ T , if µ 6= ν, then µν = 0.

(3) For all µ ∈ I ∩ T the set µTµ \ {0} is a group with identity µ.
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(4) For all µ ∈ I ∩ T , µG(E)µ is dense in µG(E)µ = µTµ ∪ {0}.

Proof. (1) Let µ = ρρ−1 and ν = ρ−1ρ. Then µ, ν ∈ I, and ρ = ρρ−1ρρ−1ρ = µρν ∈ µTν.
Also, since ρρ−1ρ = ρ 6= 0 and ρ−1ρρ−1 = ρ−1 6= 0, Theorem 5(2) implies that µ, ν ∈ T .

(2) Suppose that µ, ν ∈ I ∩ T are such that µν 6= 0. Suppose further that µ 6= µν (so
in particular, µ 6= ν). Then there exist open neighborhoods U of µ, V of ν, and W of µν
such that 0 /∈ U ∪ V ∪ W , U ∩ W = ∅, and UV ⊆ W (by continuity of multiplication
and the fact that the topology is Hausdorff). By Proposition 15, I = I ∩G(E), from
which it follows that U ∩ (I ∩ G(E)) and V ∩ (I ∩ G(E)) are infinite. By Lemma 11(1),
every idempotent of G(E) is of the form xx−1 for some x ∈ Path(E). Hence, there are
xx−1 ∈ U ∩ (I ∩G(E)) and yy−1 ∈ V ∩ (I ∩G(E)), for some x, y ∈ Path(E). Since 0 /∈ W ,
we have xx−1yy−1 ∈ {xx−1, yy−1}, by Lemma 11(2). Since U ∩ (I ∩ G(E)) is infinite, and
xx−1yy−1 = yy−1 for only finitely many values of x (namely, x satisfying xp = y for some
p ∈ Path(E)), we may choose x such that xx−1yy−1 = xx−1. This, however, contradicts
U ∩W = ∅. Thus, µ = µν, and by a similar argument, µν = ν. Therefore, µ = ν.

(3) Let ρ, τ ∈ µTµ \ {0} be any elements. Then ρρ−1, ρ−1ρ ∈ I ∩ T , and since µρρ−1 =
ρρ−1 6= 0 and ρ−1ρµ = ρ−1ρ 6= 0, (2) implies that µ = ρρ−1 = ρ−1ρ. By similar reasoning
µ = ττ−1, and hence µ = µµ = ρ−1ρττ−1, implying that ρτ 6= 0. Thus, by Theorem 5(2),
ρτ = µρτµ ∈ µTµ \ {0}. Also,

ρ−1 = (µρµ)−1 = µ−1ρ−1µ−1 = µρ−1µ ∈ µTµ \ {0}.

It follows that µTµ \ {0} is a group with identity µ.

(4) By Theorem 5(2), T ∪ {0} is an ideal in G(E), and hence µG(E)µ ⊆ T ∪ {0}. Since
G(E) = T ∪G(E), it follows that µG(E)µ = µTµ∪{0}. Also, µG(E)µ is dense in µG(E)µ,
which contains µG(E)µ, by the continuity of multiplication, and hence µG(E)µ is dense in
µG(E)µ.

Lemma 17. Let E be a graph, suppose that G(E) is a subsemigroup of a Hausdorff topological

semigroup, and let µ ∈ G(E) be an idempotent. Then there is a vertex v ∈ E0 such that

vµ = µ = µv.

Proof. First, suppose that v, w ∈ E0 are such that vµ = µ = µw. Then µ = µµ = µwvµ
implies that v = w (since 0 · G(E) = {0} = G(E) · 0), and hence vµ = µ = µv. In
particular, the statement clearly holds for idempotents µ in G(E). Let us therefore assume
that µ ∈ G(E) \G(E) and find v, w ∈ E0 such that vµ = µ = µw.

Let U be an open neighborhood of µ such that 0 /∈ U . Since µµ = µ, by the continuity
of multiplication we can find an open neighborhood V of µ such that V µ ⊆ U . Since µ is a
limit point of G(E), we can find some ρ = xy−1 ∈ V ∩G(E) (x, y ∈ Path(E)). Since 0 /∈ U ,
we have ρµ 6= 0, and hence s(y)µ 6= 0. By a similar argument, there must be some v ∈ E0

such that µv 6= 0.
Now, suppose that vµ = ν 6= 0 for some v ∈ E0 and ν ∈ G(E) \ {µ}. Then we can find

open neighborhoods U and V of µ and ν, respectively, such that vU ⊆ V , U ∩ V = ∅, and
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0 /∈ V . Again, there must be some element ρ ∈ U ∩G(E), and necessarily vρ 6= 0. It follows
that ρ = vρ ∈ U ∩V ; a contradiction. Hence if vµ 6= 0, then vµ = µ, and similarly if µv 6= 0,
then µv = µ.

The following is a generalization of [6, Corollary III.3], which says that, again letting P1

denote the closure of the bicyclic monoid P1 in a Hausdorff topological inverse semigroup,
the group P1 \ P1 contains a dense cyclic subgroup.

Theorem 18. Let E be a graph, and suppose that G(E) is a subsemigroup of a Hausdorff

topological inverse semigroup. Set T = G(E) \G(E), and let µ ∈ T be an idempotent. Then

either the group µTµ \ {0} is trivial, or it contains a dense cyclic subgroup.

Proof. Let A = {ν ∈ G(E) : µν = νµ 6= 0}. By Lemma 17, we can find v ∈ E0 such that
vµ = µv = µ, which implies that A 6= ∅. We wish to show that A is an inverse semigroup.
Let ν, γ ∈ A. Then µν = µνµ ∈ µTµ\{0}, by Theorem 5(2), and since µTµ\{0} is a group,
we have µνγ = (µνµ)(µγµ) ∈ µTµ \ {0}. Therefore µνγ 6= 0, and since µνγ = νµγ = νγµ,
this implies that νγ ∈ A. Also, for any ν ∈ A we have

µν−1µ = (µ−1νµ−1)−1 = (µνµ)−1 = (µν)−1 = (νµ)−1.

Thus µν−1 = ν−1µ 6= 0, and therefore ν−1 ∈ A, showing that A is an inverse semigroup.
Also, since νγ 6= 0 for all ν, γ ∈ A, by Theorem 13 there is an element τ ∈ A such that A
is generated by τ and the set I of idempotents of A. Note that I 6= ∅, since as mentioned
above, A must contain a vertex.

Now, define f : A → µTµ \ {0} by ν 7→ µν (= µνµ). Then

f(νγ) = µνγ = µνµγ = f(ν)f(γ)

for all ν, γ ∈ A, and hence f is a homomorphism. Since there is only one idempotent in
any group, f(I) = {µ}, and hence f(A) is the subgroup of µTµ \ {0} generated by f(τ).
Thus, either f(A) = {µ}, or f(A) is a cyclic subgroup of µTµ \ {0}. Therefore, to prove the
theorem we need only show that f(A) is dense in µTµ \ {0}.

Let ρ ∈ µTµ \ {0} be any element, and let U be an open neighborhood of ρ. Since our
topology is Hausdorff, we may assume that 0 /∈ U . Since µρ = ρ = ρµ, by the continuity
of multiplication, we can find an open neighborhood V of ρ such that µV µ ⊆ U . Let
δ ∈ V ∩ G(E) be any element. Since µδ 6= 0 6= δµ, by Theorem 5(2) we have µδ, δµ ∈
T \ {0}. By Proposition 16(1), there are idempotents θ, η ∈ T such that µδ ∈ θTη. But,
since µ(µδ)µ 6= 0, by Proposition 16(2), this can only happen if µ = θ = η. Therefore,
µδ ∈ µTµ \ {0}, and similarly δµ ∈ µTµ \ {0}. Hence, µδ = µδµ = δµ, from which it follows
that δ ∈ A, and therefore µδ ∈ f(A) ∩ U . Thus f(A) is dense in µTµ \ {0}.

7 Polycyclic Monoids

Recall that if E is a graph having only one vertex v and n edges (necessarily loops), for
some integer n ≥ 1, then G(E) is known as a polycyclic monoid, and we denote it by Pn.

We conclude this article with some observations on the possible sizes of the closures of
Pn inside larger topological semigroups.
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Proposition 19. Let n ≥ 2 be an integer, and suppose that Pn is a subsemigroup of a

Hausdorff topological semigroup. Then Pn \ Pn is either empty or infinite.

Proof. Suppose that Pn \ Pn 6= ∅, and let µ ∈ Pn \ Pn. Letting e1, . . . , en be the generators
of Pn as an inverse semigroup with zero, we have

Pn = {0, 1} ∪
n
⋃

i=1

eiPn ∪
n
⋃

i=1

Pne
−1
i ,

and hence

Pn = {0, 1} ∪
n
⋃

i=1

eiPn ∪
n
⋃

i=1

Pne
−1
i .

Since {0, 1} = {0, 1}, either µ ∈ eiPn or µ ∈ Pne
−1
i for some i. Let us assume that µ ∈ e1Pn,

as the other cases can be handled analogously. We wish to show that ej2µ 6= ek2µ for all distinct
j, k ∈ N. The desired result will then follow, since by Theorem 5(2), ej2µ ∈ (Pn \ Pn) ∪ {0}
for all j. (It is easy to see that Pn is a topological semigroup.)

Suppose, on the contrary, that ej2µ = ek2µ for some j > k, and hence that µ = ek−j
2 µ.

Since µ ∈ e1Pn, by the continuity of multiplication, it follows that µ = ek−j
2 µ ∈ ek−j

2 e1Pn.
But ek−j

2 e1 = 0, and hence µ = 0 (since 0 · Pn = {0} = Pn · 0), contradicting our choice of µ.
Thus, ej2µ 6= ek2µ for all distinct j, k ∈ N, as required.

In contrast to the above result, P1 can be embedded in a metrizable semigroup S, such
that P1 = S and |S \ P1| = 1, as the next example shows.

Example 20. Let S = P1 ∪ {δ}, and extend the multiplication operation of P1 to S as
follows. For all µ ∈ P1 \ {0} let µδ = δµ = δ, set 0δ = δ0 = 0, and let δδ = δ. Then S
is clearly an inverse semigroup (with δ−1 = δ). Define d : S × S → R by d(µ, ν) = 1 if
(µ, ν) ∈ (P1 × P1) ∪ {(0, δ), (δ, 0)} with µ 6= ν, set

d(δ, ene−m) = d(ene−m, δ) =
1

min{n,m} + 1

for all n,m ∈ N, where e is the generator of P1 as an inverse semigroup with zero, and let
d(µ, ν) = 0 whenever µ = ν. It is easy to check that d is a metric, and that P1 = S.

It remains to show that the multiplication in S is continuous with respect to the topology
induced by d. Letting µ, ν ∈ S be any elements and U an open neighborhood of µν, we wish
to find open neighborhoods V and W of µ and ν, respectively, such that VW ⊆ U . First
suppose that µν = 0. Then either µ = 0 or ν = 0. Let us assume that µ = 0, as the other
case can be handled analogously. Then taking V = {0} and W = S, we have VW ⊆ U . We
may therefore assume that µν 6= 0, and hence that µ 6= 0 6= ν. Now, view P1 as a topological
semigroup, using the topology constructed in Proposition 6. Then defining F : S \{0} → P1

by F (τ) = τ for τ 6= δ and F (δ) = 0, gives a homeomorphism. It follows that there are open
neighborhoods V and W of µ and ν, respectively, such that VW ⊆ U , when µ, ν, µν 6= 0.
Hence multiplication is continuous on all of S.

Returning to Pn with n ≥ 2, we next construct a metrizable topological semigroup S
containing a dense copy of P2, such that |S \ P2| = ℵ0 and P2 is not discrete.
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Example 21. Let S be the monoid with zero element defined by the presentation:

〈e, f, e−1, f−1, X : e−1f = f−1e = 0, e−1e = f−1f = 1, eX = Xf−1 = X, e−1X = Xf = 0〉.

Let 〈e, f〉 denote the subsemigroup of S generated by {e, f}, and set

A = {xe : x ∈ 〈e, f〉} ∪ {1} and B = {xf : x ∈ 〈e, f〉} ∪ {1}.

It is easy to show that every element of S is of the form: uemf−nv−1 or uXv−1, where
m,n ∈ N, u ∈ B, and v ∈ A. In particular, S contains a copy P2 of the polycyclic inverse
monoid on two generators. Note that

X2 = Xf−1eX = 0, Xe = Xf−1e = 0, f−1X = f−1eX = 0.

So that every element of S can be written in the form uemf−nv−1, we make the conventions
X = 1 · e∞f−∞ · 1 and 0 = 0 · e∞f−∞ · 0.

Given any σ ∈ S, write σ = uσe
mσf−nσv−1

σ , with mσ, nσ ∈ N ∪ {∞}, where uσ ∈ {0, 1}
or uσ = ea0fa1 · · · eak(σ)−1fak(σ), and vσ ∈ {0, 1} or vσ = f b0eb1 · · · f bl(σ)−1ebl(σ), for some
k(σ), l(σ) ≥ 1, a0, b0 ∈ N and a1, . . . , ak(σ), b1, . . . , bl(σ) ∈ N \ {0}. Using this notation, define
Ξ : S → N ∪ {∞} by

Ξ(σ) =











0 if uσ = 1 or vσ = 1

∞ if σ = 0

min{k(σ), l(σ)} otherwise.

Note that Ξ(στ) ≥ min{Ξ(σ),Ξ(τ)} for all σ, τ ∈ S. Using the same notation, define
∆ : S × S → R by

∆(σ, τ) =







0 if (uσ, vσ) = (uτ , vτ )
1

1 + min{Ξ(σ),Ξ(τ)}
if (uσ, vσ) 6= (uτ , vτ ),

and define Φ : S × S → R by

Φ(σ, τ) =







0 if (mσ, nσ) = (mτ , nτ )
1

1 + min{mσ, nσ, mτ , nτ}
if (mσ, nσ) 6= (mτ , nτ ).

Finally, define d : S × S → R by

d(σ, τ) = ∆(σ, τ) + Φ(σ, τ).

It can be shown easily that d is a metric, using the fact that ∆ and Φ are symmetric and
satisfy the triangle inequality.

Since every element of S \ P2 is of the form ue∞f−∞v−1 for some u ∈ B and v ∈ A,

d(uenf−nv−1, ue∞f−∞v−1) = Φ(uenf−nv−1, ue∞f−∞v−1) =
1

1 + n
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holds for all n ∈ N, and so P2 is dense in S. Also, if σ = uσe
mσf−nσv−1

σ ∈ P2 \{0} and τ ∈ S
are any elements, then mσ, nσ ∈ N and

d(σ, τ) ≥ Φ(σ, τ) ≥
1

1 + min{mσ, nσ}
,

and hence P2 \ {0} is discrete in S. Keeping σ = uσe
mσf−nσv−1

σ ∈ P2 \ {0} as before, we also
see that

d(σ, 0) =
1

1 + Ξ(σ)
+

1

1 + min{mσ, nσ}
,

which implies that 0 is a limit point, since Ξ(σ), mσ, and nσ can be made arbitrarily large
by choosing σ appropriately. Also,

d(σ, τ) = ∆(σ, τ) ≥
1

1 + Ξ(σ)

for all distinct σ, τ ∈ S \ P2, and so S \ P2 is discrete in S \ P2. Finally, it is clear that
|S \ P2| = ℵ0.

It remains to show that S is a topological semigroup with respect to the topology induced
by d. We shall do so by proving that for arbitrary σ, τ ∈ S and n ∈ N \ {0}, there exists
m ∈ N\{0} such that B(σ, 1/m)B(τ, 1/m) ⊆ B(στ, 1/n). There are several cases to consider;
those not covered below follow by symmetry.

Case 1: σ = 0 and τ = 0. Set m = 2n, and let µ, ν ∈ B(0, 1/m) be arbitrary. If µν = 0,
then µν ∈ B(0, 1/n) = B(στ, 1/n). Let us therefore assume that µν 6= 0. Then µν =
(uµe

mµf−nµv−1
µ )(uνe

mνf−nνv−1
ν ), and hence either µν = uµe

mµwemνf−nνv−1
ν for some w ∈ B

or µν = uµe
mµf−nµw−1f−nνv−1

ν for some w ∈ A. In either case,

d(µν, 0) = ∆(µν, 0) + Φ(µν, 0) ≤
1

1 + Ξ(µν)
+

1

1 + min{mµν , nµν}

≤
1

1 + min{Ξ(µ),Ξ(ν)}
+

1

1 + min{mµ, nµ, mν , nν}

≤ ∆(µ, 0) + ∆(ν, 0) + Φ(µ, 0) + Φ(ν, 0)

= d(µ, 0) + d(ν, 0) <
1

m
+

1

m
=

1

n
,

and hence µν ∈ B(0, 1/n) = B(στ, 1/n).

Case 2: σ = 0 and τ ∈ S \ {0}. As usual we write τ = uτe
mτ f−nτv−1

τ . If τ ∈ P2 \ {0},
then, since P2 \ {0} is discrete, we can choose m > Ξ(τ) + 2n such that B(τ, 1/m) = {τ}.
If τ ∈ S \ P2, we choose m > Ξ(τ) + 2n so that ν = uτe

mνf−nνv−1
τ for all ν ∈ B(τ, 1/m).

(Note that for all ν ∈ S, if (uν, vν) 6= (uτ , vτ ), then ∆(ν, τ) ≥ 1/(1 + Ξ(τ)).)
Now, in either situation

d(µ, 0) = ∆(µ, 0) + Φ(µ, 0) ≤
1

1 + Ξ(µ)
+

1

1 + min{mµ, nµ}
<

1

m
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holds for all µ ∈ B(0, 1/m) \ {0}, which implies that min{nµ, mµ} ≥ m > 2n and Ξ(µ) ≥
m > Ξ(τ). From the latter we also see that |vµ| > |uτ |. Thus, for all µ ∈ B(0, 1/m) and ν ∈
B(τ, 1/m), either µν = 0, or vµ = uτe

mνw for some w ∈ A and µν = uµe
mµf−nµw−1f−nνv−1

τ .
In the latter case, Ξ(µν) ≥ Ξ(µ) ≥ m > 2n, and

Φ(µν, 0) ≤
1

1 + min{mµν , nµν}
≤

1

1 + min{mµ, nµ}
<

1

2n

(since mµ, nµ > 2n), from which it follows that

d(µν, 0) = ∆(µν, 0) + Φ(µν, 0) <
1

2n
+

1

2n
=

1

n
.

Thus µν ∈ B(0, 1/n) = B(στ, 1/n) for all µ ∈ B(0, 1/m) and ν ∈ B(τ, 1/m), as required.

Case 3: σ, τ ∈ P2 \ {0}. Since P2 \ {0} is discrete, {σ} and {τ} are open in S, and hence
we can find an m ∈ N \ {0} such that {σ} = B(σ, 1/m) and {τ} = B(τ, 1/m). Then
B(σ, 1/m)B(τ, 1/m) ⊆ B(στ, 1/n).

Case 4: σ ∈ P2 \ {0} and τ ∈ S \ P2. Write σ = uσe
mσf−nσv−1

σ and τ = uτXv−1
τ . Let

m ∈ N be such that m > max{n, |vσ| + nσ}, B(σ, 1/m) = {σ}, and ν = uτe
mνf−nνv−1

τ for
all ν ∈ B(τ, 1/m). Note that as before, mν , nν ≥ m for all ν ∈ B(τ, 1/m).

If στ 6= 0, then uτ = vσf
nσw for some w ∈ 〈e, f〉 ∪ {1} (since e−1X = 0 = f−1X), and

hence στ = uσe
mσwXv−1

τ and

σν = (uσe
mσf−nσv−1

σ )(uτe
mνf−nνv−1

τ ) = uσe
mσwemνf−nνv−1

τ

for all ν ∈ B(τ, 1/m). This implies that

d(σν, στ) = ∆(σν, στ) + Φ(σν, στ) = 0 +
1

1 + min{mσν , nσν}
≤

1

1 + min{mν , nν}
<

1

m

for all ν ∈ B(τ, 1/m), and hence B(σ, 1/m)B(τ, 1/m) ⊆ B(στ, 1/m) ⊆ B(στ, 1/n).
If στ = 0, then either f−nσv−1

σ uτ = 0 or vσf
nσ = uτwf for some w ∈ 〈e, f〉 ∪ {1}. In the

former case,
σν = (uσe

mσf−nσv−1
σ )(uτe

mνf−nνv−1
τ ) = 0

for all ν ∈ B(τ, 1/m). In the latter case,

σν = (uσe
mσf−1w−1u−1

τ )(uτe
mνf−nνv−1

τ ) = uσe
mσf−1w−1emνf−nνv−1

τ

for all ν ∈ B(τ, 1/m), and since mν ≥ m > |vσ| + nσ ≥ |w| + 1, we see that f−1w−1emν =
0. Either way, σν = 0 ∈ B(0, 1/n) = B(στ, 1/n) for all ν ∈ B(τ, 1/m), and hence
B(σ, 1/m)B(τ, 1/m) ⊆ B(στ, 1/n).

Case 5: σ, τ ∈ S \ P2. Again, write σ = uσXv−1
σ and τ = uτXv−1

τ . Note that στ = 0,
by the presentation of S, regardless of the values of v−1

σ and uτ . Now let m ∈ N be such
that m > |vσ| + |uτ |, µ = uσe

mµf−nµv−1
σ for all µ ∈ B(σ, 1/m), and ν = uτe

mνf−nνv−1
τ

for all ν ∈ B(τ, 1/m). Then as usual, mµ, nµ, mν , nν ≥ m for all µ ∈ B(σ, 1/m) \ {σ} and
ν ∈ B(τ, 1/m)\{τ}. In particular, nν , mν ≥ m > |vσ|+|uτ |, and therefore f−nµv−1

σ uτe
mν = 0.

Hence µν = 0 ∈ B(0, 1/n) = B(στ, 1/n) for all µ ∈ B(σ, 1/m) and ν ∈ B(τ, 1/m).
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We conclude with an example of a metrizable topological semigroup T containing a dense
copy of P2, where |T \ P2| = 2ℵ0 and P2 is discrete.

Example 22. Let e, f be the generators of P2 as an inverse semigroup, and let A denote
the set of sequences p = (p1, p2, . . .), and B denote the set of sequences q = (. . . , q−1

2 , q−1
1 ),

where pi, qi ∈ {e, f} for all i. Define S to be the set of pairs σ = (p, q) ∈ A × B such that
the lower asymptotic density of e in p is more than 1/2 and the upper asymptotic density
of e−1 in q is less than 1/2, that is

lim inf
n→∞

|{1 ≤ i ≤ n : pi = e}|

n
>

1

2
and lim sup

n→∞

|{1 ≤ i ≤ n : q−1
i = e−1}|

n
<

1

2
.

It is clear that |S| = 2ℵ0 . Also, if (p, q), (x, y) ∈ S are any elements, with p = (p1, p2, . . .),
q = (. . . , q−1

2 , q−1
1 ), x = (x1, x2, . . .), and y = (. . . , y−1

2 , y−1
1 ), then (p1, p2, . . .) 6= (y1, y2, . . .).

For the sake of brevity, we shall denote such elements σ = (p, q) ∈ S by σ = p1p2 · · · q
−1
2 q−1

1 .
We define our Hausdorff topological semigroup as T := P2 ∪ S, with multiplication

extending the usual multiplication on P2, where στ = 0 for all σ, τ ∈ S, and where for all
x ∈ {e, f} and σ = p1p2 · · · q

−1
2 q−1

1 ∈ S,

x · σ = xp1p2 · · · q
−1
2 q−1

1

σ · x−1 = p1p2 · · · q
−1
2 q−1

1 x−1

σ · x =

{

p1p2 · · · q
−1
2 if x = q1

0 if x 6= q1

x−1 · σ =

{

p2 · · · q
−1
2 q−1

1 if x = p1

0 if x 6= p1.

So that we can express all elements of T in the form p1p2 · · · q
−1
2 q−1

1 , we make the fol-
lowing convention. Given p1, . . . , pn, q1, . . . , qm ∈ {e, f}, let p = (p1, . . . , pn, 1, 1 . . .) and
q = (. . . , 1−1, 1−1, q−1

m , . . . , q−1
1 ). Also let 1 = (1, 1, . . .), 1

−1 = (. . . , 1, 1), 0 = (0, 0, . . .),
and 0

−1 = (. . . , 0, 0). Then we identify p1 . . . pnq
−1
m . . . q−1

1 = (p, q), p1 . . . pn = (p, 1−1),
q−1
m . . . q−1

1 = (1, q), 1 = (1, 1−1), and 0 = (0, 0−1).
Next, define d : T × T → R by

d(σ, τ) =







0 if σ = τ
1

min{i : pi 6= xi or qi 6= yi}
if σ 6= τ,

where σ = p1p2 · · · q
−1
2 q−1

1 and τ = x1x2 · · · y
−1
2 y−1

1 . It is not hard to verify that d is a metric.
For any element σ = p1p2 . . . q

−1
2 q−1

1 ∈ S and any n ∈ N \ {0} we have

d(σ, p1 . . . pnq
−1
n . . . q−1

1 ) = d(p1p2 . . . q
−1
2 q−1

1 , p1 . . . pnq
−1
n . . . q−1

1 ) =
1

n + 1
,

from which it follows that P2 is dense in T . Also for all

σ = p1 . . . pmq
−1
n . . . q−1

1 = p1 . . . pm11 . . . 1−11−1q−1
n . . . q−1

1 ∈ P2 \ {0}
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and all τ ∈ T \ {σ}, we see that

d(σ, τ) ≥
1

min{n + 1, m + 1}
,

while for all τ ∈ T \ {0}, clearly d(0, τ) = 1, from which we see that P2 is discrete in T .
It remains to show that T is a topological semigroup with respect to the topology induced

by d. To do so, let σ, τ ∈ T be arbitrary elements, and let U be an open neighborhood of στ .
We wish to find open neighborhoods V and W of σ and τ , respectively, such that VW ⊆ U .

If σ, τ ∈ P2, then we simply take V = {σ} and W = {τ}. Next, suppose that σ, τ ∈ S,
and write σ = x1x2 · · · y

−1
2 y−1

1 , τ = p1p2 · · · q
−1
2 q−1

1 . By the definition of S, there must be
some n ∈ N such that yn 6= pn. Thus taking V = B(σ, 1/n) and W = B(τ, 1/n), we see that
µν = 0 for all µ ∈ V and ν ∈ W . Since στ = 0, it follows that VW ⊆ U .

We may therefore assume that σ ∈ P2 and τ ∈ S (for, the case where σ ∈ S and
τ ∈ P2 can be handled analogously). If σ = 0, then taking V = {σ} and W to be any
open neighborhood of τ gives the desired result. Let us therefore assume that σ 6= 0, and
write σ = xy−1 (x, y ∈ 〈e, f〉 ∪ {1}) and τ = p1p2 · · · q

−1
2 q−1

1 . If στ = 0, then y 6= 1 and
y−1p1p2 . . . p|y| = 0, implying that σµ = 0 for all µ ∈ B(τ, 1/|y|). Hence, letting V = {σ}
and W = B(τ, 1/|y|), we have VW = {0} ⊆ U . Thus let us suppose that στ 6= 0. We may
also assume that U = B(στ, 1/m) for some m ∈ N. Let n ≥ |y| + m be arbitrary, and set
V = {σ} and W = B(τ, 1/n). Then for all µ ∈ W , we can write

µ = p1p2 · · · pntn+1tn+2 · · · z
−1
n+2z

−1
n+1q

−1
n · · · q−1

2 q−1
1

for some ti, zi ∈ {e, f} ∪ {1}. Hence for all such µ,

σµ = xy−1µ = xp|y|+1p|y|+2 · · · pntn+1tn+2 · · · z
−1
n+2z

−1
n+1q

−1
n · · · q−1

2 q−1
1 ,

since n > |y|. Therefore |xp|y|+1 · · · pn| > n − |y| ≥ m, and so σµ ∈ B(στ, 1/m) = U . It
follows that VW ⊆ U , as desired.
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