
Inferring dependencies in Embodiment-based modular

reinforcement learning

David Jacob, Daniel Polani, Chrystopher L. Nehaniv
Adaptive Systems Research Group, University of Hertfordshire

College Lane, Hatfield, Herts AL10 9AB, UK
D.Jacob, D.Polani, C.L.Nehaniv@herts.ac.uk

Abstract

The state-spaces needed to describe realistic
physical embodied agents are extremely large,
which presents a serious challenge to classical re-
inforcement learning schemes. In previous work
(Jacob et al., 2005a, Jacob et al., 2005b) we in-
troduced our EMBER (for EMbodiment-Based
modulaR) reinforcement learning system, which
describes a novel method for decomposing agents
into modules based on the agent’s embodiment.
This modular decomposition factorises the state-
space and dramatically improves performance
in unknown and dynamic environments. How-
ever, while there are great advantages to be
gained from a factorised state-space, the ques-
tion of dependencies cannot be ignored. We
present a development of the work reported in
(Jacob et al., 2004) which shows, in a simple ex-
ample, how dependencies may be identified us-
ing a heuristic approach. Results show that the
system is able quickly to discover and act upon
dependencies, even where they are neither simple
nor deterministic.

1. Introduction

The state-spaces needed to describe realistic physical
embodied agents are extremely large. This presents
a serious challenge to classical reinforcement learn-
ing schemes, which model the agent and environ-
ment as a monolithic entity with every variable defin-
ing the state represented as a separate dimension in
the state-space. In previous work (Jacob et al., 2005a,
Jacob et al., 2005b) we introduced our EMBER (for
EMbodiment-Based modulaR) reinforcement learning
system, which describes a novel method for decomposing
agents into modules based on the agent’s embodiment.
The modules are able to sense, act and generate rein-
forcement reward locally, and to learn from this reward.

The factorisation of the state-space which this decom-
position induces has several advantages:

1. the agent is now represented independently of the en-
vironment, so the combined state space is |SA|+ |SE |

rather than |SA| × |SE |, where SA and SE are the
states needed to represent the agent and the envi-
ronment respectively

2. the agent’s own state-space is similarly the sum of the
state-spaces of its modules, which greatly reduces the
agent representation size

3. rather than learn only a single task, as in classical
reinforcement learning, the agent also learns about
the world at the same time from its interactions with
the environment: this knowledge becomes incorpo-
rated in the agent and is available to help with the
learning of new tasks as required. By contrast, clas-
sical reinforcement learning learns every task tabula
rasa, and no transferable knowledge is acquired: ev-
erything has to be learned from scratch every time.

4. as a result, performance in dynamic environments
and on new tasks is greatly improved: the modu-
lar agent is able to generalise to previously unvisited
states from locally-similar states already experienced.
Thus it is able to avoid actions it suspects to be bad
without having to try them first, which gives advan-
tages both in quality of performance and in learning
speed.

However, while there are great advantages to be gained
from a factorised state-space, the question of dependen-
cies cannot be ignored. It is possible to an extent to treat
the modules as independent agents, selecting actions on
the basis that similar local observations require similar
local actions irrespective of global state; but it is clear
that where the modules do not sense and act orthogo-
nally with respect to one another, this assumption must
be modified. It remains, however, a central tenet of the
EMBER framework that dependencies are generally low-
dimensional, and that even allowing for the complexity
of identifying them and taking them into account, the
advantages of the modular approach remain substantial.

We present a development of the work reported in
(Jacob et al., 2004) which shows, in a simple example,
how dependencies may be identified and acted upon. To
avoid having to perform unguided search through po-
tentially very large agent state-spaces, which would be

both unscalable and against the spirit of the modular
decomposition, a heuristic approach is taken. Results
show that the system is able quickly to discover and act
upon dependencies, even where they are neither simple
nor deterministic.

2. Related Work

2.1 Reducing the size of the state-space

Because the sheer size of the state space in classical
RL formulations makes learning slow, many methods
have been proposed for reducing the size of this state-
space. This has often been done by exploiting task
structure: for example, McCallum’s utile distinctions
(McCallum, 1993) distinguishes between states on the
basis of their utility in the context of the current task,
and to that extent generalises between spatially-distinct
states with the same utility. The process used however is
computationally expensive and does not make use of any
intrinsic properties of the problem under consideration.
It starts with no distinction between states and its early
learning is therefore entirely random. As a consequence
it is too general in application to be particularly suited to
embodied systems; further, being explicitly task-based,
it cannot help us when the task is changed.

2.2 Multiple sources of reinforcement reward

The principle of combining multiple sources of reinforce-
ment reward is treated in (Shelton, 2000), but this differs
from the current work in that the sources are themselves
considered to be agents, competing to influence the out-
comes of an overall policy. Shelton’s work therefore fits
better within the established framework of multi-agent
RL, for example (Hu and Wellman, 1998).

2.3 Reward shaping through multiple rewards

Multiple sources of reward are also used in the form of
subsidiary rewards to bias system behaviour, so-called
‘reward shaping’ (Ng et al., 1999). However, the authors
here are aiming more towards the introduction of heuris-
tic reward to provide dense reward functions, which al-
though difficult to construct may give performance ad-
vantages (Smart and Kaelbling, 2002). Although super-
ficially similar to some aspects of the current work, there
is no direct intervention in the action selection process
of the learning algorithm, and thus no a priori generali-
sation between unvisited global states.

2.4 Hierarchical task decomposition

Hierarchical RL is another area which has attracted
much research. The term “Modular Reinforcement
Learning” is often used in this context: a large overall
task is decomposed into smaller tasks which can be
individually learned, for example (Dietterich, 2000),

the module-based RL of (Kalmár et al., 1998), and the
options framework introduced by (Sutton et al., 1999).
This approach can give benefits in speed of learning
and the availability of training examples for sub-tasks
which occur multiple times. Unfortunately the decom-
position is hard to achieve autonomously, although
some success has been attained by state occupation
frequency analysis (McGovern and Barto, 2001) and,
in certain situations, by dimensional discrimination
(Hengst, 2002). In general, however, it appears that
domain or world knowledge may be required: the Hierar-
chy of Autonomous Machines (Parr and Russell, 1997)
is an example. Also notable are sequential decomposi-
tions (Morimoto and Doya, 1998), where intermediate
sub-goals assist in the performance of larger tasks by
effectively limiting divergence from a desired trajectory.

EMBER, the framework for reinforcement learning
of which this work forms a part, differs from much of
the above in that it is explicitly designed for embodied
agents acting in the physical world, or models thereof.
The factoring out of the agent from the world, and the
modules in turn from the agent, attacks the problem
of the combinatorial explosion of state spaces by main-
taining a separation between learning a particular task
and learning basic competences which facilitate any
task. In addition, by using the tools of reinforcement
learning but augmenting them with logical inference
and manipulation of the learning process using the
novel algorithms Factor-Q (Jacob et al., 2004) and
Hard Constraint Modular Learning (HCML) introduced
here, it becomes possible to make use of heuristics
and to predict outcomes through generalisation. This
substantially reduces the quantity of examples required,
leading to faster and more efficient learning.

3. Description and purpose of experi-
ments

The experiments were based on an eight-connected grid-
world, a small section of which is shown in figure 1(a).
The agent is octagonal, and can move in eight directions:
its orientation is constant.

The agent is decomposed into eight modules, whose
internal structure is shown in figure 1(b), together with
(c) their configuration within the agent. Each module
is equipped with a pair of sensors: a proximity sensor,
which outputs 1 if an obstacle (or the wall) occupies the
adjacent cell, otherwise 0, and an impact sensor, which
outputs 1 only when hit. The actuator within the mod-
ule, when fired, attempts to move the agent one cell in
the direction of the arrow. (The sensors may be imple-
mented within one physical sensor, and actuators may
not be physically separate, but for the purposes of ex-
planation it is helpful to think of them as described).

Figure 2 illustrates which actions succeed or fail. Re-
ferring to the diagram, action 1 fails; the impact sensor

Figure 1: Part of the gridworld, one module, and the layout

of the modules within the agent

in module NW registers a hit. Action 2 succeeds; a clear
cell along a row or column of the grid can always be
moved into. Action 4 fails; only an obstacle where B is
will cause this action to fail. 5 fails, but for a different
reason from 1; obstacles in the same places as B and D
together will always prevent a diagonal action such as
this one from succeeding, irrespective of whether obsta-
cle C is present. In these circumstances, exactly one of
module E and module S will register a hit with equal
probability: module SE is not hit. By contrast, action 3
succeeds since there is only one cell occupied (by obstacle
B) next to the destination cell.

The agent therefore has to learn that “diagonal” ac-
tions, that is, actions by modules NE, SE, SW and NW,
will fail in cases 1 and 5 (and 5 also where obstacle C is
not present) but will succeed in case 3, whether or not
B is present. Further, in case 1 module NW sustains the
hit; in case 5, where the local observation is the same,
module SE is not hit (although the action fails).

We need a system which is capable of learning de-

Figure 2: Showing the dependency rules which govern the

gridworld. Action 5 fails whether or not obstacle C is present.

See text for details.

pendencies of this kind, quickly and using a minimum
of data, since every positive example costs one collision,
and we wish to minimise these.

We will describe the principle of operation of the mod-
ules ignoring inter-module dependencies before explain-
ing how the system is extended to allow dependencies to
be identified and acted upon.

4. Modular learning using HCML

We make the standard assumptions that states, actions
and time are discrete, and that the sets of states and
actions are finite.

Modules learn to predict the local effect of their ac-
tions as follows. Each module m in the set of modules
M maintains a table of predicted immediate local re-
ward Erm(sm, a) being the expected immediate reward
for m under agent’s action a. If a is not an action as-
sociated with m, this reward is defined as zero. Here,
sm is the internal state of module m ∈ M correspond-
ing to the current modular observation om, and “local”
rewards are those generated internally by the agent, in
this case from the impact sensors. ~ρ is the vector of pro-
jected immediate local reward summed over the modules
such that

ρa =
∑

m∈M
Erm(sm, a). (1)

At the same time, the world external to the agent is
represented by a set of states S. The agent, which for
current purposes we assume knows which state it is in,
maintains a table of utility q(s, a) for each action a in
each state s ∈ S. Here, the rewards r relate only to the
fulfilment of the current task and are administered exter-
nally - they constitute the means by which the agent is
directed, exactly as in conventional reinforcement learn-
ing.

The vector ~Q(s◦) of combined expected future dis-
counted reward on which the agent will base its action

selection is given by:

~Q(s◦) = F~q(s) + G~ρ (2)

where F ∈ {0, 1} and G is a normalisation factor.
F and G are calculated as follows:

We first find the lowest world q-value qmin:

qmin = min
a

q(s, a).

Similarly, we find the lowest projected local reward ρmin:

ρmin = min
a

ρa.

Now, to detect unvisited states whilst allowing for the
effects of noise,

if qmin > −η, F = 0

.
In this case we use only the locally-predicted reward to
select an action, setting G to 1. Similarly,

if ρmin > −η, G = 0

.
Here, only the world q-values are used in action selection,
with F = 1. In the case where F = 0 and G = 0,
no information about future rewards is available and an
action is selected at random.
In all other situations,

F = 1 and G =
(qmin − η)

ρmin
. (3)

A value of η = 0.1 has been found by experiment to work
well, but the algorithm does not appear sensitive to the
particular value chosen, so long as it is large enough to
confer reasonable immunity from noise by ignoring small
value fluctuations.

After action we update the world reward table, but
this time using the same combined reward calculation as
is used for action selection:

q(s, a) ← (1− α)q(s, a) +

α
[
r + γ max

a′

(
F ′.q(s′, a′) + G′ρa′

)]
(4)

The modules’ reward tables too are updated:

∀m ∈M, Er(sm, am)← (1− αm)Er(sm, am) + αmrm

(5)
where αm is the module’s learning rate, am is the modu-
lar action corresponding to a, the action taken (if there
is no corresponding action, m’s null action is updated),
sm was the module’s internal state prior to action, and
rm is the immediate local reward received.

In this way, HCML is able to base its action selection
on both the world (task-based) and the learned modular
reward functions.

5. Discovering dependencies

To avoid having to perform an exhaustive factorisation
of the observation vector, an operation whose time com-
plexity increases exponentially with the vector’s length,
we adopt a heuristic approach. There are several stages
to this, each of which may yield a partial or total solu-
tion, depending on the problem. The heuristics are as
follows, assuming no sensor and actuator noise:

1. Any sensor which registers a reading prior to a suc-
cessful action cannot on its own be responsible for
the failure of that action on other occasions

2. Observations collectively predicting failed actions are
likely to occur a similar number of times prior to
action failure.

3. The more frequently an observation occurs before
action failure, the more likely it is to be a factor
in predicting that failure. Observation vectors col-
lected under action failure may be analysed for co-
occurrence of these high-frequency observations to
assess whether this is the case. In a search for fac-
tors, ordering observations by frequency can greatly
reduce mean search times by allowing combinations
of the most frequent observations to be checked first.

4. The local reward vector identifies the source of pun-
ishment: punishments received from different mod-
ules may represent different dependencies.

Together these heuristics should narrow the search for
the relevant dependencies. Of course other statistical
methods could be used, but where heuristics are avail-
able, but not a lot of data, such methods may not be the
best choice. Where fast learning is required, heuristics
are indispensable to reduce the search space.

5.1 Dependencies and Modularity

Modularity in itself constitutes a means of reducing the
amount of search which has to be done to identify de-
pendencies.

First, the modules may be assembled into a system
with a logical topology which matches the physical lay-
out of the agent. In our example we visualise the whole
agent’s observation vector as a ring, to reflect the layout
of the modules. Each module is “plugged into” this ob-
servation vector, so that for each, its own sensor reading
is in position 0, the reading of the sensor to its right is in
position -1 and to its left is in position +1, and so forth.
In this way the fact that for our agent there is no exter-
nal privileged “front” direction or any other distinction
made between modules is reflected in the internal logical
layout. By representing the sensors “as they are”, such
logical contiguities can help to represent the world “as it
is”. This reduction in the arbitrariness of the represen-
tation in itself constitutes a powerful heuristic.

Second, identifying similarities and symmetries among
modules may lead to a reduction in the amount of learn-
ing required by each. In the current experiments, four
modules have identical dependencies. By determining
that each behaves like the others, we increase the num-
ber of examples available to each; further, we can infer
that all should have the same reward function, which
gives immunity from spurious asymmetries introduced
by noise.

Third, it is likely that different actions will have differ-
ent dependencies. By assembling the data separately for
each action we reduce search complexity. To the extent
that there is overlap in dependencies, this may increase
space complexity, but by pre-sorting the data it should
reduce the dimensionality of the space to be searched.
In a search for factors in a list of data, the search time
is exponential in the dimensionality of the data, so it is
necessary to keep this as small as possible.

Finally, a modular dependency structure in conjunc-
tion with a reward vector also reduces search effort in a
high-dimensional space, by identifying factors which may
be relevant in a given situation. It is likely, for instance,
that rewards received from different modules may result
from different dependencies (although this will not nec-
essarily be the case, as in these experiments).

Although these heuristics may appear somewhat
vague, a comprehensive analysis of dependencies in
any realistically-sized agent is intractable, and anything
which gives us an indication of where answers may lie
must be preserved and explored. Moreover, since EM-
BER agents hold their learning within themselves, and
learn about the world irrespective of task, this learning
can be a gradual process. It is unlikely ever to be pos-
sible to learn complex dependencies quickly and easily,
but any method holding out the possibility of learning
them at all would be an advance over the “monolithic
agent” approach, let alone the global state descriptions
of classical reinforcement learning.

6. Method

We present a method for finding dependencies and sym-
metries in and between modules, making use of the
heuristics outlined above. Although the method works,
it is not so much the details which are important, as
the ideas which it implements. As already noted, any
available statistical methods could be used to analyse
dependencies, but the use of the heuristics is important
in narrowing the search for factors. In a small system like
the current one we could manage perfectly well without
them, but the modular approach then becomes largely
fictitious, since unguided global state analysis suffers the
curse of dimensionality and does not scale.

For a given action a by module Ma, a short list L of
up to 5 different examples of past observation vectors Op

is maintained. Each time a fails, the prior observation is
recorded in this list, together with its frequency and the

module Ms which provided the punishment. A second
short list P contains similar data, already processed, for
use in action selection. In addition, each module has
two sets of bins, one bin in each set corresponding to
each element of the agent’s observation vector. In these
experiments, the vectors have 8 elements, representing
the 8 proximity sensors.

The sets of bins hold, respectively,

1. the number of times each observation element has
appeared in vectors which cause a to fail (bins F)

2. the number of times each element has appeared in
vectors where a has succeeded (bins S).

When a collision is sensed in module Ms following
module Ma’s action, it generates a reward r and the
agent’s observation vector ~o is recorded. Module Ma

deals with it in the following way:

• the observation is added to bins F

• if the ‘1’ bits in ~o are a superset of those in any vector
Op in P , Op’s count is incremented, and r is added
to its reward.

• if not, ~o is entered in list L, together with its reward
r and source module Mr.

When L contains 5 items, it is processed.
First, simple dependencies are identified. If an obser-

vation o from another single module can predict success
or failure, this is a simple dependency. Every acting
module Ma collects the prior observation in bins S fol-
lowing successful actions, so an empty bin (noise effects
excluded) suggests a corresponding simple dependency.
Any observations in L containing this element have their
rewards and frequencies summed, and are replaced by a
vector representing this dependency placed in P . If no
simple dependencies have been identified, or if they do
not account for all the rewards received, then any re-
maining dependencies must be complex, i.e. they must
arise from combinations of other modules’ observations.
The simple dependency test is crucial because although
observation o may be the only one to appear in every
vector which predicts punishment, it may in fact form
part of several multiple dependencies whose other mem-
bers do not overlap, and this would be hard to detect
otherwise.

The next easiest test is for universal multiple depen-
dencies. Any two or more observations which form a
subset of all the examples remaining in L constitute such
a dependency. Since we bin all the relevant observations
in F , these should (subject to noise effects) contain the
same number of each of the components of the depen-
dency. If this is found to be so, then it is recorded in
P , together with the reward sum and frequency for each
module Ms which has registered the dependency.

If there are still some examples to be processed, two
heuristics remain. First, it is likely that the same de-
pendencies give rise to reward from the same modules;

to put it the other way around, if we have more than one
observation with the same Mr, the two may be related
by a common dependency. Second, because the time
taken to find common factors in a set of vectors scales
exponentially with the length of the vectors, which in re-
alistic agents might be quite large, a heuristic to reduce
the mean time of this process is required. This again is
obtained from the observation bins: the more frequently
an observation occurs, the more likely it is to be a factor.
Combinations of the most frequent observations can be
checked first, which tends to yield results very quickly.

As each observation is processed, it is deleted from L.
Similarly, all observations prior to successful actions are
checked against the list, and identical vectors deleted.
In this way, large numbers of examples do not build up,
and search times and noise effects are minimised. It also
allows learning to be continuously updated.

6.1 Action Selection

The learned dependencies are used in action selection
by comparing the current observation vector with the
vectors in P . If the current vector is a superset of any of
the vectors, the projected reward for that action is the
average reward of the relevant entries in P . This value
then becomes an Erm(sm, a) term in eq. (1), and action
selection takes place as described in section 4. above.

7. Experimental Details

Experiments were carried out on a simulated 10 × 10
flat gridworld with a boundary wall. The start and goal
positions were at opposite corners of this grid. 20 ob-
stacles were placed on the grid. For the static world
experiments, these were always set in the same cells, but
for the dynamic world, their locations were changed ran-
domly every 5 time steps. The only constraint on their
positions was that the agent should not be unable to
move as a result.

The experiments compared two versions of EMBER,
with and without the dependency mechanism in place.
For the purposes of a benchmark comparison, Q-learning
(Watkins, 1989) was used, with Q(s, a) initialized to zero
for all s, a. Where all rewards are less than zero, this
provides sufficient exploration without the need for occa-
sional random moves (Brafman and Tennenholtz, 2001):
accordingly, all action selection was greedy. For both
Q-Learning and HCML, the discount factor γ was 0.9,
and the learning rate α = 1

κ where κ is the number of
times a particular action has been taken at the time of
the update. Where present, sensor and actuator noise
were each modelled at 3%.

Rewards: For Q-Learning, the reward was−1 for every
move except the move to the goal position, when it was 0.
An additional reward of −1 was given for every collision,
either with the wall or with an obstacle. In HCML,
the same task rewards were used; the collision reward is
internally generated by the modules as described above.

7.1 Performance Tests

Ten series of 100 episodes each were run for eight sce-
narios. These varied according to whether the world was
static or dynamic, and whether sensor or actuator noise,
neither, or both, were present. The world collision model
was as shown in figure 2.

After each series of 100 episodes, the world reward ta-
bles were re-initialised. The EMBER agents’ modular
tables were not reset - it is a central tenet of the EM-
BER framework that the agent is able to use experience
gained from one task to perform another, and that it
need not therefore start from scratch every time. How-
ever, this was not the reason for the wide discrepancy in
performance.

7.2 Discrimination Tests

After the tests above, the world model was altered so
that the dependencies in the four diagonal sensors were
different from one another. Moving NW, the rules were
the same as before; to the SW, the agent was still blocked
by obstacles to W and S, but the reward always came
from the W module (instead of being stochastically dis-
tributed between S and W). To the SE, movement was
blocked iff an obstacle stood to the E – here, punishment
always came from the NE module. Finally, a more com-
plex situation for the NE module: movement was blocked
if either N and SE, or NW and E, were occupied. In this
last case, punishments for both situations were received
from the same module, making it even more difficult to
discriminate between the two.

8. Results

8.1 Performance Tests

The results of the performance tests are summarised in
figure 7.2. These show, above, the mean steps taken per
100 episodes in ten runs of 100 episodes each, and be-
low, on a logarithmic scale, the total number of collisions
made by the agent during the same period. The cate-
gories, from left to right, alternate between the static
and dynamic worlds, and noise increases from no noise
on the left through sensor noise and actuator noise sep-
arately, ending on the right with both types of noise
simultaneously.

Figure 4 shows the mean episode length (averaged
over ten runs) for a sample scenario, the static world
with sensor noise, to show the respective convergence of
Q-Learning and EMBER (with dependencies) learning
methods.

8.2 Discrimination Tests

Printouts of the contents of the modules at the end of
sample runs of the EMBER agent are shown in figure 5.
The left example shows how the modules look when the

Figure 3: Results summary of the performance experiments,

showing length of episode and hit statistics. Error bars are

one standard deviation.

system is working correctly: the binary number shows
the dependency as an observation vector, each module’s
observation being represented by a bit. For each module
in the list, the rightmost bit (0) represents that module’s
own observation, and bits 1 and 7 the adjacent modules’.
Other bits represent the other modules in order. The re-
maining numbers are the index of the module associated
with this reward, followed by the reward sum and the
number of instances recorded.

The similarities between the modules are clear to see,
reflecting the symmetry of the world in this case. The
modules N,E, S,W do not have dependency tables, al-
though they possess the mechanism: there are no depen-
dencies for these modules to learn.

The table in the centre is from a static world, where
there are no open corners for the agent to learn from -
it cannot learn satisfactorily without relevant examples,
which are abundant in the dynamic world. These two ex-
ample printouts are from the scenario where both sensor
and actuator noise were present.

The third table shows a specimen printout obtained
from a dynamic world, with sensor noise, for the different

Figure 4: Mean episode lengths for a sample task to show

convergence.

Figure 5: Contents of the modules at the end of sample runs

of the EMBER agent: Left and Centre - original world rules,

Right, asymmetric world rules

rules described in section 7.2 above. Here each module
has detected the rule correctly, even the NE module,
which had a difficult discrimination to make between
overlapping dependencies.

9. Discussion and Conclusions

The differences between the two EMBER agents are sig-
nificant. This is best shown in the hits score for the
noise-free cases, where the effect is not masked by sen-
sor noise. Without dependency detection, the agent has
many more collisions when moving in diagonal direc-
tions. It therefore learns that it has a generally lower
probability of success taking diagonal actions, so the fre-
quency of these moves decreases. This in turn increases
mean path lengths.

The better task-length performance of the EMBER
agents in worlds where sensor noise is present is due to
the increased variety of observation examples generated,
which stimulates dependency detection. In realistic sce-

narios, where noise will be a significant factor, a method
whose performance does not degrade at significant noise
levels has obvious advantages. An increase in hit rate un-
der noisy conditions is unavoidable, however, since any
system must rely on sensor data to select appropriate
actions. In these experiments, sensor noise is at 3%, a
rate which implies that about one observation vector in
every four will err in at least one element.

EMBER outperforms Q-Learning on every measure
in every situation tried. The poor performance of
Q-Learning, in dynamic environments in particular, is
due to the extremely large state-spaces which are re-
quired to represent this simple problem, approximately
60 times the size of the EMBER representation. In
the static worlds, the difference is accounted for only
by the generalisation abilities of EMBER, and this is
particularly reflected in the hit statistics. The combina-
tion of reinforcement learning in small state spaces with
predictive generalisation and heuristically-guided logical
strategies allows EMBER to learn quickly and with a
minimum of examples.

In this paper we have presented an approach to the
automatic determination of dependencies in a modular
agent. We have shown that it is possible to learn such
dependencies relatively quickly and efficiently in a small
example, and we have tried to make use only of methods
which would scale to more realistic scenarios. Results
show that agents with this capability are able to learn
and perform a simple task more quickly than by the use
of conventional reinforcement learning.

More complex agents would undoubtedly require more
flexible systems that that presented, and a larger concept
of the structure of the body which perhaps divides it
into regions connected by linkages such as limbs. It may
be possible to generalise whole remote sections of the
body, to reduce the representation burden. However,
since an EMBER agent has only to learn once and can
subsequently apply its acquired abilities in new tasks, a
fairly gradual learning process would be acceptable.

These experiments present different arbitrary rules for
an agent to learn. However, the ultimate aim is to
have agents which can learn about themselves in the real
world, where the rules for a given embodiment are largely
fixed. Once an agent discovers how to act in the world,
it will possess a physical intelligence, as a result of which
many superficially different tasks may become very much
easier to accomplish.

References

Brafman, R. I. and Tennenholtz, M. (2001). R-max – a
general polynomial time algorithm for near-optimal re-
inforcement learning. In International Joint Conference
on Artificial Intelligence, pages 953–958.

Dietterich, T. G. (2000). Hierarchical reinforcement learning
with the maxq value function decomposition. Artificial
Intelligence Research, 13:227 – 303.

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with hexq. In Nineteenth International Confer-
ence on Machine Learning.

Hu, J. and Wellman, M. P. (1998). Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Fifteenth International Conference on Machine Learn-
ing, pages 242 – 250.

Jacob, D., Polani, D., and Nehaniv, C. L. (2004). Improving
learning for embodied agents in dynamic environments
by state factorisation. In TAROS 2004, Towards Au-
tonomous Robotic Systems.

Jacob, D., Polani, D., and Nehaniv, C. L. (2005a). Faster
learning in embodied systems through characteristic
attitudes. In 6th IEEE International Symposium on
Computational Intelligence in Robotics and Automation,
Helsinki, Finland.

Jacob, D., Polani, D., and Nehaniv, C. L. (2005b). Legs
that can walk: Embodiment-based modular reinforce-
ment learning applied. In 6th IEEE International Sym-
posium on Computational Intelligence in Robotics and
Automation, Helsinki, Finland.

Kalmár, Z., Szepesvári, C., and Lorincz, A. (1998). Module-
based reinforcement learning: Experiments with a real
robot. Machine Learning, 31:55 – 85.

McCallum, A. (1993). Overcoming incomplete perception
with utile distinction memory. In International Confer-
ence on Machine Learning, pages 190–196.

McGovern, A. and Barto, A. G. (2001). Automatic discov-
ery of subgoals in reinforcement learning using diverse
density. In Eighteenth International Conference on Ma-
chine Learning, pages 361–368.

Morimoto, J. and Doya, K. (1998). Reinforcement learn-
ing of dynamic motor sequence: Learning to stand up.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pages 1721 – 1726.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy in-
variance under reward transformations: Theory and ap-
plication to reward shaping. In Sixteenth International
Conference on Machine Learning.

Parr, R. and Russell, S. (1997). Reinforcement learning with
hierarchies of machines. In Advances in Neural Informa-
tion Processing Systems, volume 10.

Shelton, C. R. (2000). Balancing multiple sources of re-
ward in reinforcement learning. In Advances in Neural
Information Processing Systems, pages 1082–1088.

Smart, W. D. and Kaelbling, L. P. (2002). Effective rein-
forcement learning for mobile robots. In International
Conference on Robotics and Automation.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between
mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112:181–211.

Watkins, C. J. C. H. (1989). Learning from Delayed Re-
wards. PhD thesis, Cambridge University.

