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ABSTRACT

We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in
a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P = 10.5 yr,
and a minimum mass m sin i of 0.48 MJup; HD 154857c has P = 9.5 yr and m sin i = 2.6 MJup. These new data
confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have
performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable
on timescales of at least 108 yr. These results highlight the continued importance of “legacy” surveys with long
observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs,
and hence of those planetary systems with architectures most like our own solar system.
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1. INTRODUCTION

A major theme that has unified exoplanet searches for more
than 20 yr is the question of how common (or rare) our own solar
system is. The Kepler spacecraft, which continuously monitored
over 100,000 stars for tiny eclipses caused by orbiting planets
(Borucki et al. 2010), has provided exquisite data which have
revolutionized our understanding of the frequency of Earth-size
planets in short-period orbits (Howard et al. 2012; Fressin et al.
2013). However, Kepler alone cannot give us a complete picture
of the occurrence rate of planetary systems like our own, with
rocky inner planets and one or more gas giant planets (“Jupiter
analogs”) at orbital distances a � 3 AU. There is more to
a system being solar system-like than having a single planet
in a potentially habitable orbit. The detection of a Jupiter
analog is a second key component in determining whether an
exoplanetary system is solar-system-like. Over the years, many
arguments have been put forth to suggest that such external
giant planets might be a necessity for a potentially habitable
exo-Earth to be a promising location for the development of
life (Horner & Jones 2010). Although the role of such planets
acting as a shield from an otherwise damaging impact regime
has come into question (e.g., Horner & Jones 2008; Horner
et al. 2010; Lewis et al. 2013), a number of other potential
benefits are thought to accrue from the presence of Jupiter-
analogs. For example, Jupiter-like planets have been proposed
as a solution to the question of the origin of Earth’s water.
Current models of planetary formation suggest that the Earth
formed in a region of the proto-planetary disk that was far too
warm for water to condense from the gas phase. As such, it is
challenging to explain the origin of our planet’s water without
invoking an exogenic cause. The formation and evolution of the
giant planets, beyond the snow line, offers a natural explanation

for the delivery of volatiles from the cold depths of a planetary
system to planets that move on potentially habitable orbits (e.g.,
Horner et al. 2009; Horner & Jones 2010 and references therein).
The detection of a Jupiter-analog is therefore both a second key
component in determining whether an exoplanetary system is
solar-system-like, and a potential marker that the planets in that
system might be promising targets for the future search for life
beyond the solar system.

The Anglo-Australian Planet Search (AAPS) has been in
operation for 15 yr, and has achieved a long-term radial-velocity
precision of 3 m s−1 or better since its inception, which is
enabling the detection of long-period giant planets. To date, the
AAPS has discovered six Jupiter analogs: HD 70642b (Carter
et al. 2003), HD 160691c (McCarthy et al. 2004), HD 30177b
(Butler et al. 2006), GJ 832b (Bailey et al. 2009), HD 134987c
(Jones et al. 2010), HD 142c (Wittenmyer et al. 2012c). Here,
we have defined a Jupiter analog as a giant planet which has
ended up near its formation location, beyond the ice line, with
a > 3 AU. Recently, the AAPS has shifted its priority to the
detection of these Jupiter analogs. The observing strategy and
target list have been modified, with the aim of producing an
accurate and precise determination of the frequency of Jupiter-
like planets in Jupiter-like orbits (Wittenmyer et al. 2011b,
2013b). The modified target list includes stars with long-term
velocity stability such that Jupiter analogs can be robustly
excluded (e.g., Wittenmyer et al. 2006, 2011a), as well as
those stars with as-yet-incomplete orbits suggestive of long-
period giant planets. In this paper, we report the discovery of
two such Jupiter analogs with complete orbits. HD 154857 is
already known to host a 1.8 MJup planet with an orbital period of
about 400 days (McCarthy et al. 2004); a residual velocity trend
indicated a much longer-period object, as noted in the discovery
work and in O’Toole et al. (2007).
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This paper is organized as follows: Section 2 briefly describes
the observational details and stellar parameters, and Section 3
details the orbit fitting process and gives the parameters of the
two new planets. In Section 4, we present a dynamical stability
analysis of the HD 154857 two-planet system, and we give our
conclusions in Section 5.

2. OBSERVATIONS AND STELLAR PARAMETERS

AAPS Doppler measurements are made with the UCLES
echelle spectrograph (Diego et al. 1990). An iodine absorption
cell provides wavelength calibration from 5000 to 6200 Å. The
spectrograph point-spread function (PSF) and wavelength cali-
bration are derived from the iodine absorption lines embedded
on the spectrum by the cell (Valenti et al. 1995; Butler et al.
1996). The result is a precise Doppler velocity estimate for
each epoch, along with an internal uncertainty estimate, which
includes the effects of photon-counting uncertainties, residual
errors in the spectrograph PSF model, and variation in the un-
derlying spectrum between the iodine-free template and epoch
spectra observed through the iodine cell. All velocities are mea-
sured relative to the zero-point defined by the template obser-
vation. For HD 114613, a total of 223 Anglo-Australian Tele-
scope (AAT) observations have been obtained since 1998 Jan 16
(Table 1) and used in the following analysis, representing a data
span of 5636 days (15.4 yr). The mean internal velocity un-
certainty for these data is 0.94 m s−1. HD 154857 has been
observed 42 times since 2002 April (Table 2), for a total time
span of 4109 days (11.3 yr) and a mean internal uncertainty of
1.71 m s−1.

HD 114613 (HR 4979; HIP 64408) is an inactive G-type star,
listed as a dwarf by Torres et al. (2006), though its surface gravity
is more indicative of a slightly evolved subgiant (Table 3).
It is a nearby and bright star (V = 4.85) with a somewhat
super-solar metallicity [Fe/H] ∼ 0.19. HD 154857 has been
classified as a G5 dwarf (Houk & Cowley 1975). However,
all recent measurements of its surface gravity show that this
star is a subgiant (Table 4). There is some confusion as to
the mass: Valenti & Fischer (2005) give two disparate mass
estimates, 2.10 ± 0.31 M� derived from spectroscopic analysis,
and 1.27+0.35

−0.29 M� from interpolation on a grid of Yonsei–Yale
isochrones. For most stars in their sample, the two mass
estimates agreed within ∼10%, but for HD 154857, they differ
by almost a factor of two. The more recent analysis by Takeda
et al. (2007) yields an intermediate value of 1.718+0.03

−0.022 M�,
which we adopt in this paper.

3. ORBIT FITTING AND PLANETARY PARAMETERS

3.1. HD 114613

HD 114613 has been observed by the AAPS for the full 15 yr
of its operation. A long-period trend had been evident for several
years, and in 2011, the trend resolved into a complete orbital
cycle. We have since continued to observe HD 114613 to verify
that the ∼11 yr orbit was indeed turning around. Figure 2 shows
the generalized Lomb–Scargle periodogram (Zechmeister
& Kürster 2009) of the 223 AAT observations. This type
of periodogram weights the input data by their uncertainties,
whereas the traditional Lomb–Scargle method (Lomb 1976;
Scargle 1982) assumes uniform, Gaussian distributed uncer-
tainties. To assess the significance of any signals appearing in
these periodograms, we performed a bootstrap randomization
process (Kürster et al. 1997). This randomly shuffles the veloc-
ity observations while keeping the times of observation fixed.

Table 1
AAT/UCLES Radial Velocities for HD 114613

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

50830.25655 4.0 1.2
50833.22381 1.9 0.8
50915.08074 0.6 1.4
50917.08662 −7.5 1.6
50970.91681 −11.8 1.1
51002.86733 −5.6 1.8
51212.26513 5.6 1.4
51236.21281 −5.5 1.4
51237.18130 −7.5 1.8
51274.21875 −1.8 2.0
51276.08909 −0.2 1.3
51382.92476 −3.9 1.2
51386.85182 1.8 1.2
51631.24051 −1.9 1.3
51682.84034 1.3 1.4
51684.05975 −2.8 1.4
51717.83623 −0.1 1.3
51919.25519 −0.8 1.8
51920.26898 −1.7 1.5
51984.11127 0.3 1.7
52061.03012 5.0 1.4
52062.09081 3.8 1.5
52092.95741 3.6 1.1
52127.88681 0.4 1.7
52359.20083 2.3 1.0
52387.02810 4.4 1.4
52388.06604 3.4 1.5
52509.86723 13.4 1.3
52510.86704 11.2 1.5
52654.26882 4.6 1.4
52710.14699 8.8 1.0
52710.95867 6.4 2.0
52745.09064 16.9 1.3
52751.11506 9.0 1.4
52752.07289 11.6 1.1
52783.95975 11.8 1.2
52785.05762 9.3 1.7
52785.97105 15.2 1.4
52857.87314 0.6 1.3
53008.22116 11.7 1.3
53041.22754 8.0 1.3
53042.22343 4.2 1.2
53046.15053 5.2 1.5
53051.15875 −0.3 1.0
53214.87828 10.8 1.0
53215.88215 9.6 1.2
53242.89915 4.5 0.8
53245.84896 14.4 1.5
53399.27632 5.5 0.6
53405.20308 2.0 0.7
53482.95081 −1.3 0.8
53484.04090 −4.9 0.7
53485.02218 −0.9 0.7
53485.94007 0.0 0.7
53486.06578 −0.8 0.7
53488.12718 1.2 0.7
53489.07405 −0.4 0.7
53506.95930 1.5 0.7
53507.88240 0.4 0.7
53509.07069 −4.2 0.7
53516.02470 2.0 1.0
53517.00282 6.4 0.8
53518.95553 6.2 0.7
53520.02670 6.0 0.8
53521.01119 7.7 0.8

2



The Astrophysical Journal, 783:103 (9pp), 2014 March 10 Wittenmyer et al.

Table 1
(Continued)

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

53521.93055 4.4 0.9
53522.97922 4.0 0.8
53568.93024 1.4 0.7
53569.89040 −2.5 0.8
53570.93229 −0.1 0.7
53571.92818 4.4 0.7
53572.93960 3.5 0.6
53573.86024 2.8 0.7
53575.86501 4.8 0.6
53576.83855 1.5 0.6
53577.85712 0.4 0.9
53578.87161 1.6 0.6
53840.18077 −2.4 0.9
53841.14463 2.1 0.8
53843.11871 0.4 0.8
53844.06189 1.7 0.7
53937.92281 −1.6 0.7
53938.90015 1.4 0.6
53943.85615 −4.9 0.6
53944.87540 −7.3 0.6
53945.86861 −4.3 0.8
53946.86415 −7.3 0.6
54111.19771 3.5 0.6
54112.20754 4.7 0.8
54113.22282 3.5 0.8
54114.24651 2.6 0.9
54115.25260 3.5 1.2
54120.20490 7.7 0.7
54121.19705 3.8 0.6
54123.22186 9.1 0.6
54126.18385 2.7 0.7
54127.18893 5.0 0.5
54128.18767 4.0 0.8
54129.18497 −0.7 0.5
54130.17738 0.9 0.7
54131.18561 2.0 0.6
54132.19227 2.1 0.8
54133.25166 1.4 1.1
54134.21614 4.1 0.6
54135.18151 −1.1 0.7
54136.20085 0.8 0.6
54137.19842 1.3 0.6
54138.17883 0.1 0.9
54139.17104 3.0 0.8
54140.17481 −0.1 0.8
54141.20213 −1.6 0.8
54142.19235 0.6 0.5
54144.12894 −3.4 0.6
54145.15798 −2.9 0.6
54146.17863 −0.3 0.6
54147.19558 −3.5 0.6
54148.22623 −2.7 0.6
54149.16439 −2.0 0.6
54150.19348 −1.7 0.6
54151.20779 −3.0 0.6
54152.22033 −2.7 0.7
54154.19334 −5.2 0.6
54155.19519 −3.2 0.7
54156.16473 −1.3 0.6
54223.10365 1.9 0.9
54224.14365 1.1 0.8
54225.07630 1.8 0.7
54226.00805 1.9 1.0
54227.04258 5.5 0.8
54252.96645 9.5 0.9

Table 1
(Continued)

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

54254.00991 9.0 0.8
54254.91285 5.6 0.9
54255.97533 3.7 0.9
54257.06303 5.6 0.9
54333.85357 3.5 0.9
54334.87415 2.6 0.9
54335.86542 2.5 0.7
54336.85846 6.7 0.8
54543.05240 0.0 0.8
54544.14396 −0.8 0.8
54550.09556 −1.0 1.4
54551.09203 −1.9 0.9
54552.13245 3.0 1.1
54553.10244 −3.6 1.1
54841.25120 −0.4 1.0
54897.20442 −8.4 1.0
54900.18137 −12.3 1.2
54901.15823 −6.8 0.9
54902.20552 −10.1 1.0
54904.19780 −6.0 1.0
54905.26523 −1.6 0.8
54906.21006 −5.8 1.0
54907.19989 −6.8 0.9
54908.20498 −6.8 0.8
55014.94187 −6.2 1.0
55015.86595 −4.9 0.8
55018.84451 1.4 1.9
55019.87410 −5.8 0.7
55020.84762 −6.3 0.7
55021.87399 −7.7 0.8
55022.88779 −10.4 0.8
55023.86739 −11.0 0.9
55029.84869 −6.6 0.6
55030.83778 −4.0 0.7
55031.90051 −3.4 0.7
55032.91264 −3.6 0.6
55036.84785 −6.2 0.7
55037.83638 −2.9 0.7
55040.84113 −6.1 0.8
55041.85626 −6.0 0.9
55043.88548 −3.7 0.6
55044.85993 −4.9 0.6
55045.85496 −5.0 0.5
55046.90149 −6.5 0.7
55047.88023 −4.0 0.5
55048.86964 −5.4 0.5
55049.85230 −4.1 1.0
55050.85220 −7.8 0.8
55051.84966 −5.0 0.5
55053.85289 −8.7 0.6
55054.84736 −8.0 0.6
55055.88706 −6.2 0.5
55058.87417 −4.9 0.6
55206.19055 −2.4 0.8
55209.20056 −1.9 0.8
55253.19939 −6.9 0.9
55254.28349 −9.6 1.0
55310.06142 2.1 0.8
55312.07035 −2.4 0.8
55317.03644 −5.0 0.9
55370.94153 3.1 1.0
55374.90773 0.7 1.0
55397.89284 −6.3 1.0
55402.84315 −5.0 0.7
55586.21266 0.8 0.9
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Table 1
(Continued)

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

55603.27577 3.8 1.1
55604.27940 −0.2 1.1
55663.95088 0.5 1.1
55666.06790 2.5 0.9
55692.08906 0.5 1.1
55692.97915 5.8 0.9
55750.89289 −3.6 0.8
55751.87344 −2.2 1.3
55753.84964 −3.0 1.0
55756.87098 −1.2 1.1
55785.90110 2.3 1.0
55786.86812 4.9 1.5
55787.92128 5.1 1.1
55961.17818 −0.1 0.8
55964.22153 6.2 0.8
55996.09776 −3.3 0.9
56049.03768 2.1 1.1
56051.03503 −0.1 1.1
56084.99567 9.3 1.3
56085.98717 3.6 1.1
56134.98050 6.9 1.2
56138.89373 3.4 1.1
56379.13086 2.6 1.3
56382.21632 10.6 1.9
56383.07275 1.5 0.8
56464.91329 10.2 1.1
56465.92701 9.3 0.9
56466.91347 8.0 0.9

The periodogram of this shuffled data set is then computed
and its highest peak recorded. The longest-period peak near
4000 days is well-defined and highly significant, with a boot-
strap false-alarm probability less than 10−5. The next-highest
peaks are at 122 and 1400 days, respectively. We fit these data
with a single, long-period Keplerian using the GaussFit (Jef-
ferys et al. 1988) nonlinear least-squares minimization routine.
Jitter of 3.42 m s−1 (Wright 2005; O’Toole et al. 2009a) was
added in quadrature to the uncertainties at each epoch prior to
orbit fitting. A single-planet fit yields a period P = 3825 ±
106 days, K = 5.4 ± 0.4 m s−1, and e = 0.25 ± 0.08 (Ta-
ble 5), making this planet a Jupiter analog (Wittenmyer et al.
2011b), with a minimum mass m sin i of 0.5 MJup, and an orbital
period of 10.7 yr (Figure 1). The rms about the one-planet fit
is 3.9 m s−1, and the periodogram of the residuals to this fit is
shown in the right panel of Figure 2, showing a number of peaks
ranging from 28 to ∼1500 days.

There is structure evident in this residual periodogram
(Figure 2, right panel), so we examined the residuals for ad-
ditional Keplerian signals. One way of determining the veracity
of such signals is to examine the data by seasons or subsets. This
can disentangle true planetary signals (which would consistently
appear in all subsets) from stochastic signals such as stellar ro-
tational modulation (Dumusque et al. 2012; Hatzes 2013). We
divided the residuals to the one-planet fit into two eight-season
chunks. HD 114613 was observed intensely in 2007 and 2009
as part of the AAT “Rocky Planet Search” campaigns (O’Toole
et al. 2009a, 2009b), in which 24–30 bright stars were observed
nightly for 48 continuous nights in search of short-period plan-
ets. It is possible that such a density of observational data may
skew the false-alarm probabilities when evaluating potential

Table 2
AAT/UCLES Radial Velocities for HD 154857

JD-2400000 Velocity Uncertainty
(m s−1) (m s−1)

52389.23580 −3.3 1.7
52390.21223 −4.9 1.5
52422.13713 −17.3 1.5
52453.01957 −14.2 1.4
52455.02535 −13.7 1.9
52455.97664 −12.2 1.9
52509.94853 −16.3 2.1
52510.91619 −6.6 1.8
52711.24602 63.7 2.8
52745.24271 66.4 1.9
52747.21175 58.7 1.8
52750.17761 52.7 1.5
52751.22944 47.2 1.4
52784.12626 −11.5 1.3
52857.02974 −28.4 2.7
52857.98599 −31.9 1.4
52942.91225 −18.1 1.7
53217.01252 −41.2 1.5
53246.03809 −53.3 1.9
53485.15229 21.5 1.5
53510.15968 25.9 1.4
53523.10133 33.2 1.5
53570.02945 32.9 2.3
53843.23961 −7.0 1.6
53945.03237 49.6 1.0
54008.89626 −21.4 0.9
54037.88134 −39.5 1.4
54156.28808 −17.5 1.9
54226.21678 −2.3 1.2
54254.99229 5.5 1.6
54372.93185 61.1 1.3
54552.23398 −9.0 2.2
54901.28209 −7.9 2.1
55101.89348 54.8 1.7
55313.23386 2.5 1.4
55317.13834 1.1 1.7
55399.04324 17.8 1.4
55429.91942 23.9 1.3
56049.24780 1.1 2.1
56465.07924 −22.4 1.9
56467.06137 −20.2 1.7
56498.02816 −40.6 3.0

additional signals. We thus removed the 66 epochs from the
two “Rocky Planet Search” campaigns—this resulted in the
8 yr halves containing 77 and 80 observations, respectively.9

Periodograms of the two halves are shown in Figure 3; visual
inspection reveals that they are markedly different.

Table 6 shows the false-alarm probabilities obtained from
10,000 such realizations on each half of the one-planet residuals.
No periodicity is consistently significant in both subsets, with
the possible exception of that near 27–29 days—however, this
is worryingly close to both the 33 day rotation period of the star
(Saar & Osten 1997) and the lunar month (at which the sampling
of radial-velocity observations is well-known to impart spurious
periodicities, e.g., Dawson & Fabrycky 2010; Wittenmyer et al.
2013b). While it is tempting to consider a second planet near
1400 days, as found in the raw-data periodogram (Figure 2),

9 Fitting a single planet with this shortened data set gives parameters within
1σ of those given in Table 5, showing that the exclusion of those data do not
affect our conclusions about the long-period planet.
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Table 3
Stellar Parameters for HD 114613

Parameter Value Reference

Spec. type G4IV Gray et al. (2006)
G3V Torres et al. (2006)

Mass (M�) 1.364 Sousa et al. (2008)
Distance (pc) 20.67 ± 0.13 van Leeuwen (2007)
V sin i (km s−1) 2.7 ± 0.9 Saar & Osten (1997)
log R′

HK −5.118 Gray et al. (2006)
[Fe/H] 0.19 ± 0.01 Sousa et al. (2008)

0.18 Maldonado et al. (2012)
[O/H] 0.03 ± 0.01 Bond et al. (2008)
[Cr/H] 0.09 ± 0.04 Bond et al. (2008)
[Mg/H] −0.04 ± 0.06 Bond et al. (2008)
[Zr/H] 0.17 ± 0.04 Bond et al. (2008)
[Eu/H] −0.17 ± 0.04 Bond et al. (2008)
[Nd/H] 0.05 ± 0.01 Bond et al. (2008)
[Si/H] 0.19 ± 0.06 Bond et al. (2006)
Teff (K) 5729 ± 17 Sousa et al. (2008)

5574 Gray et al. (2006)
5550 Saar & Osten (1997)

log g 3.97 ± 0.02 Sousa et al. (2008)
3.90 Gray et al. (2006)

Table 4
Stellar Parameters for HD 154857

Parameter Value Reference

Spec. type G5V Houk & Cowley (1975)
Mass (M�) 1.718+0.03

−0.022 Takeda et al. (2007)
Distance (pc) 64.2 ± 3.1 van Leeuwen (2007)
V sin i (km s−1) 1.4 ± 0.5 Butler et al. (2006)
log R′

HK −5.00 Jenkins et al. (2006)
−5.14 Henry et al. (1996)

[Fe/H] −0.31 Holmberg et al. (2009)
−0.30 Ghezzi et al. (2010)
−0.22 Valenti & Fischer (2005)
−0.20 Casagrande et al. (2011)

[O/H] −0.15 ± 0.03 Bond et al. (2008)
[Cr/H] −0.20 ± 0.04 Bond et al. (2008)
[Mg/H] −0.20 ± 0.03 Bond et al. (2008)
[Zr/H] −0.08 ± 0.04 Bond et al. (2008)
[Eu/H] −0.27 ± 0.07 Bond et al. (2008)
[Nd/H] −0.01 ± 0.02 Bond et al. (2008)
[C/H] −0.28 ± 0.07 Bond et al. (2006)
[Si/H] −0.28 ± 0.11 Bond et al. (2006)
Teff (K) 5605 Dodson-Robinson et al. (2011)

5508 Holmberg et al. (2009)
5548 Ghezzi et al. (2010)

log g 3.95+0.05
−0.03 Takeda et al. (2007)

3.82 Ghezzi et al. (2010)
3.99 ± 0.06 Valenti & Fischer (2005)

Radius (R�) 2.31+0.17
−0.10 Takeda et al. (2007)

1.760 ± 0.057 Torres et al. (2010)

we see that this signal is simply not evident in the first 8 yr of
observations. As suggested by Hatzes (2013) for the proposed
planet orbiting Alpha Centauri B, we rephrase his sentiments to

Figure 1. Keplerian orbit fit for HD 114613b. The planet has completed about
1.5 cycles, and the AAT data show a residual rms scatter of 3.9 m s−1.

(A color version of this figure is available in the online journal.)

Table 6
Candidate Secondary Signals for HD 114613

First Half FAP Second Half FAP
Period (days) Period (days)

28.9 0.015 26.6 0.0001
72.5 0.952 73.3 0.1836
122 1.000 121.4 0.0246
490.2 0.138 480.8 0.9755
1562.5 0.910 1111.1 0.0003

express that any shorter period periodic signal which is evident
in one subset of our data should also be evident in other subsets
or seasons of the data. As both HD 114613 eight-year subsets
have ample time coverage and data quantity (N = 77) to sample
the candidate periods listed in Table 6, we can use these results
to conclude that there is not yet sufficient evidence for additional
planetary signals in our data for HD 114613.

3.2. HD 154857

The presence of a planet orbiting HD 154857 was first
reported by McCarthy et al. (2004), who noted that the AAPS
data were best fit with the ∼400 day planet and a linear
trend, indicating a more distant body. Additional data presented
in O’Toole et al. (2007) refined the planet’s parameters and
attempted to constrain the outer object’s orbit since the residual
velocity trend had begun to show curvature. They determined
a minimum orbit with period 1900 days and K ∼ 23 m s−1.

Table 5
Keplerian Orbital Solutions

Planet Period T0 e ω K m sin i a χ2
ν

(days) (JD-2400000) (deg) (m s−1) (MJup) (AU)

HD 114613 b 3827 ± 105 55550.3 ± (fixed) 0.25 ± 0.08 244 ± 5 5.52 ± 0.40 0.48 ± 0.04 5.16 ± 0.13 1.23
HD 154857 b 408.6 ± 0.5 53572.5 ± 2.4 0.46 ± 0.02 57 ± 4 48.3 ± 1.0 2.24 ± 0.05 1.291 ± 0.008 1.35
HD 154857 c 3452 ± 105 55219 ± 375 0.06 ± 0.05 352 ± 37 24.2 ± 1.1 2.58 ± 0.16 5.36 ± 0.09
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Figure 2. Left: generalized Lomb–Scargle periodogram of 223 AAT observations of HD 114613. A highly significant peak is present near 4000 days. Right:
periodogram of the residuals after fitting and removing the long-period planet with the parameters given in Table 5; several peaks remain which may indicate further
planets.

Figure 3. Periodograms of the residuals to a single-planet fit for HD 114613. Left: first eight years (N = 77). Right: second eight years (N = 80), excluding the
high-cadence observing runs in 2007 and 2009.

Now, with a further 6 yr of AAT data, the outer planet has
completed an orbit and a double-Keplerian model converges
easily. We used GaussFit as described above to fit the two
planets, first adding jitter of 2.6 m s−1 in quadrature to the
uncertainties (after O’Toole et al. 2007). The best-fit parameters
are given in Table 5; the outer planet is a Jupiter analog moving
on an essentially circular orbit with P = 9.5 yr (a = 5.36 AU)
and m sin i = 2.6 MJup. The rms about the two-planet fit is
3.2 m s−1, and there are no significant residual periodicities.
The data and two-planet model are shown in Figure 4, and the
orbital fits for the individual planets are shown in Figure 5.

4. DYNAMICAL STABILITY TESTING

Recent work has shown that any claim of multiple orbiting
bodies must be checked by dynamical stability testing to ensure
that the proposed planetary orbits are feasible on astronomically
relevant timescales. Such testing can support the orbit fitting
results (Robertson et al. 2012a; Wittenmyer et al. 2012c; Horner
et al. 2012b), place further constraints on the planetary system
configurations (Robertson et al. 2012b; Wittenmyer et al. 2012b;
Tan et al. 2013), or show that the proposed planets cannot
exist in or near the nominal best-fit orbits (Wittenmyer et al.
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Figure 4. Two-planet Keplerian model and AAT data for the HD 154857 system.
The rms about this fit is 3.2 m s−1.

(A color version of this figure is available in the online journal.)

2012a, 2013a; Goździewski et al. 2012; Horner et al. 2012a,
2013). While HD 114613 appears to be a single-planet system,
HD 154857 hosts two planets which are so widely separated (1.3
and 5.4 AU) that their dynamical interactions might be expected
to be negligible. However, for completeness, we performed the
dynamical analysis as in our previous work (Wittenmyer et al.
2012c).

We tested the dynamical stability of the HD 154857 system
using the Hybrid integrator within the n-body dynamics pack-
age Mercury (Chambers 1999). Holding the initial orbit of the

innermost planet fixed, we tested 41 × 41 × 15 × 5 grid of
“clones” spaced evenly across the 3σ range in the outer planet’s
semi-major axis a, eccentricity e, periastron argument ω, and
mean anomaly M, respectively.

In each integration, the orbital evolution of each planet was
followed until it was either ejected from the planetary system (by
reaching a barycentric distance of 10 AU), or collided with the
central body or one of the other planets. The times at which such
events occurred was recorded, which allowed us to construct a
map of the stability of the HD 154857 planetary system as a
function of the semi-major axis and eccentricity of the outer
planet. As expected, the entire 3σ region exhibited stability for
the full 108yr. Indeed, not a single ejection or collision occurred
in any of the 126,075 trial systems.

5. DISCUSSION AND CONCLUSIONS

We have described the detection of two Jupiter-analog planets
from the 15 yr AAPS program. Our new data confirm the
planetary nature of the previously unconstrained outer body
in the HD 154857 system (McCarthy et al. 2004; O’Toole et al.
2007). These results highlight the importance of continuing
“legacy” programs such as the AAPS, which is among the
world’s longest-running radial-velocity planet searches. The
planets detailed in this work bring the total number of AAPS-
discovered Jupiter analogs to eight. With three Jupiter analogs
confirmed in the past two years (HD 142c; Wittenmyer et al.
2012c; HD 114613b and HD 154857c, this work), the AAPS
has nearly doubled its discoveries of these objects in years 14 and
15 of operation. We expect further discoveries of Jupiter analogs
over the next few years as additional candidates complete orbits.

The AAPS has shifted its primary focus to the search for
Jupiter analogs. Central to this strategy is the selection of a
subset of ∼120 targets (from the original 250 star AAPS sample)
which satisfy two criteria: (1) sufficient observational baseline
to detect a Jupiter analog, and (2) a sufficiently small velocity
scatter to enable the robust detection of the ∼5–15 m s−1 signal
produced by a Jupiter analog. Criterion (1) eliminates those

Figure 5. Left: data and model fit for HD 154857b; the signal of the outer planet has been removed. Right: same, but for HD 154857c after removing the inner planet.

(A color version of this figure is available in the online journal.)
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stars added to the AAPS list well after its inception in 1998,
and criterion (2) eliminates those stars which have high levels
of intrinsic activity noise which would severely degrade the
achievable detection limit. Using the detections and stringent
limits from the non-detections, for every target we will be
able to detect or exclude Jupiter analogs with high confidence.
The result will be a direct measurement of the frequency of
such objects, without suffering from significant incompleteness,
which adds substantial uncertainty to this measurement (e.g.,
Cumming et al. 2008; Wittenmyer et al. 2011b).

There is an emerging correlation between debris disks and
low-mass planets, first noted by Wyatt et al. (2012). They
used Herschel to detect debris disks around four of six stars
known to host only low-mass planets; no debris disks were
found in the five systems hosting giant planets. One of the stars
discussed here, HD 154857, has been observed for infrared
excess (indicative of debris disks akin to the solar system’s
Edgeworth–Kuiper Belt). No excess was found from Spitzer and
Herschel observations (Bryden et al. 2009; Dodson-Robinson
et al. 2011). The HD 154857 system, hosting two giant planets
and no detectable debris, is consistent with the pattern noted by
Wyatt et al. (2012).

To obtain a complete picture of the nature of the planet can-
didates we have presented here, it would be ideal to determine
true masses, rather than the minimum mass derived from radial-
velocity measurements. Direct imaging offers a way forward:
for stars known to host a long-period radial-velocity planet can-
didate, imaging can determine whether that object is stellar
(i.e., detectable by imaging) or substellar. This type of charac-
terization has been done for some planet candidates, such as 14
Herculis c (a > 7 AU; Wittenmyer et al. 2007), for which AO
imaging by Rodigas et al. (2011) established an upper limit of
42 MJup. The TRENDS survey (Crepp et al. 2012, 2013a, 2013b)
is currently using this strategy to target stars with known radial-
velocity trends. The Gemini Planet Imager, now installed on the
8 m Gemini South telescope (Hartung et al. 2013), has been
specifically designed for the detection of these giant planets
(McBride et al. 2011). It will provide not only the high contrasts
needed to detect them, but also low-resolution spectra for each
planet found, which can be used for their characterization. We
are now at a convergence of two developments in exoplanetary
science: (1) radial-velocity data now extend comfortably into
the range of Jupiter-analog orbital periods, and (2) direct imag-
ing techniques have improved to the point where it is possible
to detect Jupiter-like planets orbiting Sun-like stars at orbital
distances approaching that of our own Jupiter (∼5 AU). These
complementary techniques can bridge the detectability gap, en-
abling direct measurements of the occurrence rate of Jupiter
analogs orbiting Sun-like stars.

We thank the referee, William Cochran, for a timely re-
port which improved this manuscript. This research is sup-
ported by Australian Research Council grants DP0774000 and
DP130102695. This research has made use of NASA’s Astro-
physics Data System (ADS), and the SIMBAD database, oper-
ated at CDS, Strasbourg, France. This research has also made
use of the Exoplanet Orbit Database and the Exoplanet Data
Explorer at www.exoplanets.org (Wright et al. 2011).
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