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Abstract

This paper reports experiments on a corpus of news articles from the Financial Times,
comparing different text similarity models. First the Ferret system using a method based
solely on lexical similarities is used, then methods based on semantic similarities are inves-
tigated. Different feature string selection criteria are used, for instance with and without
synonyms obtained from WordNet, or with noun phrases extracted for comparison. The
results indicate that synonyms rather than lexical strings are important for finding similar
texts. Hypernyms and noun phrases also contribute to the identification of text similarity,
though they are not better than synonyms. However, precision is a problem for the semantic
similarity methods because too many irrelevant texts are retrieved.

1 Preamble

The work described in this report originated partly in the UK, partly in China. All the texts
used are in English, but we show how some language processing methods can be applied in a
similar way to these very different languages, whilst other methods do not transfer.

The task addressed in these experiments is to take the description of a topic and find
documents that are relevant to it out of a large set.

The first experiments used the well tried Ferret system to find relevant documents. This
method, originally developed to detect plagiarism, is based on lexical similarity between short
strings of words: when two documents have a proportion of matching strings above a threshold
they are similar. Ferret is very effective in finding plagiarism or copied passages in English
and Chinese, but this approach does not turn out to be useful in finding semantically similar
texts written independently. However, it is an example of a language processing technology that
can be transferred from English to Chinese. In both cases the method is based on processing
consecutive tokens; in English these tokens are words, in Chinese they are characters or strings
of characters [1, 2.

The main experiments described in this report use different methods to identify the semantic
content of a text and then compare it with other texts. The concept originated in considering
Chinese language, where written words are composed of one, two or more characters. A passage



RNV ESHERNAERGRER, MBEEELE
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Violent protests have brought the country’s judicial system
to a standstill. Two judges resigned last week.

EBRETTNTHN SRS ERBRKEIE

DRI IRAENZE BB K,
Regulators in Hong Kong and other Asian markets are

being urged to tighten legislation to protect investors from
being diluted against their will.

Figure 1: Example where semantically related words are lexically different in English but have
a matching character in Chinese.



on a given topic may often have repeated characters that constitute part of a word even though
the words as a whole do not match. Some examples are shown in Figure 1, with sentences taken
from a recent issue of the Financial Times. They show how words with a common semantic
sense, such as “judicial” and “judges” (first example), or “regulators” and “legislation” (second
example) include characters that are the same, while the words themselves differ in both Chinese
and English.

The occurrence of repeated Chinese characters can be used to help detect the subject of a
text, but as the figures illustrate, English does not display the characteristic of repeated words
to anything like the same extent that Chinese has repeated symbols. Words with similar or
related semantic content are not necessarily lexically similar. Two topics on similar subjects
may contain words which have related meanings, but to match these up an ontology or thesaurus
will have to be used. The first experiments described below look for lexical matches; we then
go on to look for semantic matches.

2 Introduction

We report on algorithms that are based on different models of text similarity and compare their
performance. The core concept behind the experiments described here is to move from word
matching algorithms to methods that use semantic matching.

Different criteria are used to select the characteristic features of a text. For instance word
strings are selected with and without synonyms obtained from WordNet [9], or with noun phrases
extracted for comparison, using the Stanford Parser [10]. The results indicate that synonyms
rather than lexical strings are important for finding similar texts, when we are looking for texts
relevant to a given topic. Hypernyms and noun phrases also contribute to the identification of
text similarity, though they are not better than synonyms.

Section 3 gives an overview of the data used. The experimental methods are described in
Section 4 and results reported in Section 5. Programs are written in Java. The appendix to this
report contains notes relating to the program code, which is obtainable from the first author.
Our experimental specifications were variants of those run by TREC.

The main set of experiments is supplemented by others based on sets of single key words
rather than phrases, but also using WordNet. This simple method, described in Section 6 was
developed to provide some benchmarks for the main results.

Precision is a problem for the semantic similarity methods because too many irrelevant texts
are typically retrieved. It can be improved by reducing the number of synonyms, at the cost of
lowering recall. In these experiments we take the standard F-score as an evaluation measure,
based on precision and recall (see Section 5.1). However, there are occasions when the user
of an information retrieval system will want to attach more weight to recall (e.g.some forensic
applications) or to precision (e.g. some web searches).

3 Data

All data are derived from a corpus of news articles from the Financial Times (FT). These were
collected by TREC. As well as the raw corpus there is an associated list of topics, of which 50
are used (topics 351 to 400). For each topic a set of texts has been put together, and each one
evaluated by TREC assessors, (for details see Section 5.2). These texts are marked as relevant
or not relevant to a given topic (the qrels data), so they can be used both to develop and to
evaluate our methods.

Each topic has a title, a description (desc) of a few lines and a longer narrative (narr).



This is used as the seed document (i.e. the query text), and the aim is to find articles relevant
(similar or related) to the topic from from the set of documents that have been assessed and are
given to search. The sets contain between 500 and 1500 texts each, details are given in Table
7. The number of words in a text is typically between 500 and 600.

As a preliminary step we use a small subset of the data to test all methods in Experiment
1 (see Section 5.1). The main experiments are described in Section 5.2.

4 Text Similarity Methods

There are 11 text similarity methods tested in the main experiments. Their codes are 00, 10,
11, 13, 20, 21, 23, 30, 31, 40, and 41. All these methods have two basic stages. Firstly, feature
strings (“fingerprints”) are extracted from each text in different ways, denoted by the second
digit of the method code. Secondly, the similarity of a text pair is measured by comparing the
fingerprints of the texts, using different models, denoted by the first digit of the method code.
Five similarity models are tested in the experiments:

e 0: Ferret model [5, 6, 7], which looks for lexical matches. Each text is converted to a
set of 3 word trigrams, and matching trigrams are found. Though there are usually some
matches, above a certain threshold the texts are similar. The comparison is based on the
Jaccard coefficient value [8, page 299]

e 1: String matching model, which counts those words or word sequences that occur in both
texts (omitting stop words) and calculates the Jaccard coefficient value to determine the
similarity between 2 texts. A feature string may contain one or more words.

e 2: Meaning matching model, which is developed from the string matching model. The
difference is that meanings rather than lexical strings are matched between texts. The
meanings of a string include the synonyms and hypernyms of the whole string as well as
that of each word in the string. WordNet is applied to look up word meanings.

e 3: Semantic sequence kin model (SSK) [4], which extracts semantic sequences from a text
as its feature strings, and then takes into account both word and word position when 2
semantic sequences are compared.

e 4: Common semantic sequence model (CSSM) [3], which is similar to semantic sequence
kin model, but uses another formula to calculate similarity of semantic sequences, in which
the word position is not considered.

The second digit of the method code, indicates how fingerprints are extracted. For Fer-
ret, there is only one way to extract fingerprints (trigrams), but for the other methods the
fingerprints can be extracted in the following different ways:

e 0: Word based semantic strings. If a word is repeated locally it is taken to have semantic
significance. Stop words are omitted; “local” is a parameter that can be varied. The
first step identifies locally frequent words. The second step extracts phrases consisting of
adjacent frequent words. These constitute the semantic sequences, which can be one or
more words long, the fingerprints of the text.

An example follows. Frequent words (more than one occurrence) are emphasised. Text
is preprocessed to exclude stop words; in this case no stemming (lemmatization) is done,
so “engines” and “engine” will not match. The definition of “local” is a parameter of the
system, in this example it is taken as the whole paragraph.



Meta tags are used to supply information for search engines that will not be
seen by the web surfer unless they were to view the HTML of your web site.
In the past, meta tags were a primary way for your site to be recognized by
web spiders, but the internet community abused the meta tags to artificially
increase their ranking in the search engine databases. Nevertheless, you should
still include meta for those search bots that do recognize them, to allow your
site to be included in their search engine.

From this the phrases meta tags and search engine are extracted. The phrase web site is
also extracted, because although it only occurs once the individual words occur frequently.

e 1: Synonym based semantic strings. In this case we look for frequent meanings rather
frequent words, using WordNet to get synonyms. The first step identifies locally frequent
meanings, the second step extracts phrases consisting of adjacent frequent meanings.

Using the above example WordNet produces:

meta tags: no synonyms

search engine: program, programme, computer program, computer programme

web site: website, internet site, site, computer, computing machine, computing device,
data processor, electronic computer, information processing system

(To search for a phrase on WordNet link the individual words with an underscore.) Word-
Net has many shortcomings, but is arguably the best available English language ontology.

e 3: Noun phrases. Every sentence in a text is parsed by the Stanford sentence parser
(Stanford Lexicalized Parser v1.5.1 [10]) as a preliminary procedure. The fingerprints are
noun phrases taken from low level components of the parsed text. For example, in the
sentence in Figure 1 the noun phrase

Regulators in Hong Kong and other Asian markets

would not be taken as a whole, but would produce the 3 noun phrases Regulators,
HongKong, other Asian markets. A noun phrase can be a single word or a sequence
of words.

Code 2 was a method to extract semantic sequences based on relative meanings rather than
repeated words or meanings. But it is not tested in the experiments because it is too slow.

Putting together the explanations above of the first and second digit of the method code we
have the following: in each case the seed document, the topic description text, is compared to
the others.

e 00: Ferret method (implemented by Java class Ferret).

e 10: A string matching method for semantic sequences. The first step identifies locally
frequent words; the second step extracts phrases consisting of adjacent frequent words;
the third step looks for matches. A semantic sequence can be a phrase or a single word.
(The method is implemented by the Java class StringMatchBasedSimilar with the class
SemSeqBased TopicStrings and the class SameWord_SS.)

e 11: A string matching method for semantic sequences in which we look for frequent
meanings rather than frequent words, using Wordnet to get synonyms. The first step
identifies locally frequent meanings; the second step extracts phrases consisting of adjacent



frequent meanings; the third step looks for matches. (The method is implemented by the
Java class StringMatchBasedSimilar with the class SemSeqBasedTopicStrings and the
class SameMeaning_SS.)

e 13: A string matching method in which the semantic strings are derived from noun phrases
of the text, extracted by the Stanford sentence parser. (The method is implemented by
the class StringMatchBasedSimilar with the class NounPhraseBased TopicStrings.)

e 20: This starts in the same way as method 10. For the third step WordNet is used. For
each identified phrase the meaning is found in WordNet, synonyms and hypernyms will be
used for matching. This process is repeated on individual words. This differs from method
11, where Wordnet is used in step 1, and only synonyms are employed. (The method is
implemented by the class WordNetBasedSimilar with the class SemSeqBased TopicStrings
and the class SameWord_SS.)

e 21: WordNet is used twice in this method. First, at step 1, as in 11, then at the end
as in 20. (The method is implemented by the class WordNetBasedSimilar with the class
SemSeqBasedTopicStrings and the class SameMeaning_SS.)

e 23: This starts the same way as method 13, but then WordNet is used to produce other
noun phrases using WordNet synonyms and hypernyms. (The method is implemented by
the class WordNetBasedSimilar with the class NounPhraseBased TopicStrings.)

e 30: Semantic Sequence Kin method (SSK). Like 10, the first step is to identify locally
frequent words. These frequent words are compared for the two texts. The metric used

also takes into account the distance between frequent words. (The method is implemented
by the class SSK with the class SameWord_SS.)

e 31: As 30, but based on locally frequent meanings derived from WordNet synonyms. (The
method is implemented by the class SSK with the class SameMeaning_SS.)

e 40: Common Semantic Sequence Model (CSSM). As 30, but employing a different formula
to measure the similarity score. (The method is implemented by the class CSSM with the
class SameWord_SS.)

e 41: Common Semantic Sequence Model (CSSM). As 31, but employing the formula as used
in 40. (The method is implemented by the class CSSM with the class SameMeaing_SS.)

All methods use the default parameters in this experiment. Please see Appendix B for
details.

5 Results of Experiments

5.1 Experiment 1

We first ran a small scale preliminary experiment. The small data is run on two topics (topic
351 and 352) with only 32 texts. 8 texts are relevant to topic 351, another 8 texts relevant to
topic 352, the remaining 16 texts are not relevant to either topic.

The similarities between the query text ( the topic description)and the others are measured
by different methods, described above. If the similarity is greater than or equal to a threshold,
then the file being processed is considered relevant to the query text.



The standard precision p, recall » and f; score are then measured. They are defined in
the following way, [8, page 267, and TREC 2006 note on Common Evaluation Measures [11].
Precision is a measure of the ability of the method to return only relevant texts.

number of relevant texts retrieved

(1)

recision =
p total number of texts retrieved

Recall is a measure of the ability of the method to return all relevant texts

number of relevant texts retrieved
recall =

(2)

total number of relevant texts

T, true positives, denotes the number of texts correctly found to be relevant, as marked by
the TREC assessors.

FT, false positives, denotes texts that were marked relevant when they were not.

F~ denotes texts that were not marked relevant when they should have been.

T+

P T EE ®)
T+

r= T+ + F— (4)

The f score combines precision and recall into a single performance measure. Otherwise
there can be a trade off between them: if every text is marked relevant then recall is complete
but precision would be very low. If p and r are equally weighted then

2XpXxXr
fi= PR (5)
In fact, this is the harmonic mean. Note these formulae should not be applied if there are
no relevant documents to retrieve: in this case a perfect performance would give a score of zero
for precision and an indeterminate result for recall.
This experiment was run to validate the process. The data is too limited to enable any
conclusions to be drawn. Table 7 in Appendix A lists the best results for each method on their
optimal thresholds.

5.2 Experiment 2

In this experiment, all methods are run on all 50 topics with all marked texts from the Financial
Times corpus. Table 1 gives the number of marked texts for each topic and other details about
the texts. Table 2 lists precision for each method on their optimal threshold in the range [0.01,
0.5]. Table 3 gives recall and Table 4 lists the f; scores. Note that for topic 379 no texts were
considered relevant by the assesors, so it is excluded from the calculations (see comment at end
of Section 5.1).

Further details can be found in Appendix A. Table 8 lists the false positive and true positive
values of methods 1*(10,11,13) and 2*(20,21,23). Table 9 lists that of the other methods.

5.2.1 Timings

Table 5 lists the mean time of processing a text in milliseconds, using different methods. Figure
2 shows a comparison of average times in a histogram. See Appendix A for Table 10 for further
details.



Table 1: Texts in the Financial Times corpus

Topic ID  Num. of texts Num. of similar(related) texts

351 743 28
352 1747 249
353 621 54
354 848 80
355 537 2
356 1052 23
357 538 85
358 452 2
359 931 39
360 597 14
361 852 2
362 391 5
363 871 7
364 580 3
365 584 11
366 855 21
367 592 42
368 580 5
369 601 1
370 607 57
371 808 2
372 535 15
373 722 14
374 506 79
375 577 20
376 1300 30
377 569 15
378 1485 96
379 685 0
380 582 1
381 676 7
382 470 6
383 725 88
384 432 4
385 518 36
386 651 7
387 508 13
388 485 17
389 858 171
390 705 71
391 1058 188
392 685 66
393 977 9
394 836 5
395 759 110
396 617 12
397 695 8
398 624 22
399 510 13
400 437 50
Total 35,574 1,905
Total

distinct texts 30,069 1,847

*Texts in topics may have overlap.



Table 2: Precision using different methods on their optimal threshold
Topic Method code
D 00 10 11 13 20 21 23 30 31 40 41
351 | 038 0.17 0.06 018 0.12 008 0.14 000 0.09 043 0.12
352 | 0.00 000 0.08 008 018 0.16 0.8 0.00 0.06 0.00 0.06
353 | 0.00 000 034 051 009 009 012 000 0.13 0.0 0.13
354 | 0.25 0.00 0.03 0.00 0.25 010 0.0 0.00 0.06 0.00 0.12
355 | 0.00 0.00 0.00 000 001 001 001 000 033 000 0.04
356 | 0.20 0.00 0.00 1.00 0.02 1.00 1.00 0.00 0.57 0.00 0.23
357 | 020 029 025 033 018 022 023 1.00 022 075 0.26
358 | 0.00 0.00 0.0 000 0.00 001 0.00 000 0.00 0.00 0.00
359 | 0.00 0.08 0.07 002 006 005 0.05 000 0.09 000 0.05
360 | 0.00 021 1.00 004 050 004 004 000 0.15 0.00 0.10
361 | 0.00 0.00 0.0 000 0.00 000 0.00 000 0.00 0.00 0.00
362 | 0.00 000 0.02 1.00 0.00 006 050 000 0.00 0.00 1.00
363 | 0.00 0.00 0.14 0.04 0.50 0.4 0.03 0.00 004 000 0.03
364 | 0.00 000 0.00 1.00 001 001 001 000 0.00 0.00 0.00
365 | 0.00 029 075 050 027 020 012 1.00 021 1.00 0.33
366 | 0.00 0.00 0.4 000 002 003 003 000 0.00 000 033
367 | 0.00 000 0.6 007 002 006 008 000 1.00 0.00 0.22
368 | 0.00 0.00 0.00 000 0.02 009 0.05 000 0.00 0.0 0.00
369 | 0.00 0.00 0.00 000 0.00 000 0.00 000 0.00 0.00 0.00
370 | 0.00 0.00 0.13 043 0.0 0.3 0.28 0.00 019 0.00 0.17
371 0.00 0.00 0.2 020 0.00 011 0.04 000 025 000 0.20
372 | 000 016 0.14 000 027 005 013 000 0.16 1.00 0.44
373 | 000 100 0.05 005 1.00 011 0.04 000 0.05 050 0.05
374 | 0.00 0.60 0.23 050 020 019 020 033 029 0.67 0.32
375 .00 0.00 0.09 0.0 0.00 028 007 0.00 025 0.00 0.38
376 .00 0.00 0.01 011 0.03 0.03 003 000 050 011 048
377 | 000 100 0.06 000 010 003 0.04 000 0.00 0.00 0.00
378 | 0.00 000 0.06 016 0.00 007 006 000 0.14 0.00 0.16
379
380 | 0.00 0.00 0.00 000 0.00 000 0.00 000 0.00 0.00 0.00
381 | 0.00 000 0.0 000 0.00 008 0.03 000 004 0.00 0.02
382 | 000 030 033 050 025 1.00 029 000 001 038 0.06
383 | 0.00 000 0.0 007 000 014 0.13 000 0.15 0.00 0.13
384 100 010 050 0.17 067 100 100 000 008 007 0.13
385 | 0.00 000 0.80 010 0.00 012 0.10 0.00 0.37 0.00 0.33
386 | 0.00 0.03 0.02 0.01 0.4 001 001 0.00 000 0.00 0.00
387 | 0.00 000 0.04 005 000 004 003 000 0.09 000 0.08
388 | 0.00 000 0.06 019 0.00 007 0.07 000 038 0.00 025
389 | 0.00 0.0 0.04 0.02 026 021 020 033 004 008 0.04
390 | 0.00 006 0.9 008 013 012 012 100 013 100 0.11
391 | 025 033 030 012 024 020 018 043 040 054 0.34
392 | 000 000 031 000 000 010 010 1.00 0.07 1.00 0.07
393 | 0.00 0.0 0.3 1.00 0.17 050 1.00 0.00 0.27 0.00 0.40
394 | 0.00 000 004 001 001 001 001 000 005 000 0.03
395 | 0.00 0.0 0.26 011 0.00 015 0.15 0.00 0.15 0.00 0.13
396 | 0.00 057 038 083 017 007 007 000 0.19 1.00 0.64
397 | 0.00 000 0.00 000 003 009 010 0.00 0.00 0.00 0.00
398 | 0.00 0.00 0.00 023 006 029 0.14 000 0.05 0.00 0.15
399 | 0.00 000 0.03 013 0.03 008 005 000 0.09 0.00 0.10
400 | 0.00 0.22 037 033 020 021 015 0.00 035 0.00 0.26




Table 3: Recall using different methods on their optimal threshold

Topic Method code

ID 00 10 11 13 20 21 23 30 31 40 41
351 0.11 0.14 0.36 071 029 050 046 000 0.11 0.11 0.25
352 0.00 0.00 0.14 0.04 087 094 088 0.00 0.07 0.00 0.08
353 0.00 0.00 0.19 039 028 091 076 0.00 0.13 0.00 0.17
354 0.01 0.00 0.03 0.00 003 084 080 000 0.03 0.00 0.06
355 0.00 0.00 0.00 0.00 050 100 100 0.00 0.50 0.00 0.50
356 0.04 0.00 0.00 0.04 035 004 004 000 017 0.00 0.22
357 0.01 0.14 039 024 075 081 068 0.04 0.14 0.07 031
358 0.00 0.00 0.00 0.00 000 050 100 0.00 0.00 0.00 0.00
359 0.00 0.54 0.64 003 072 095 092 000 0.18 0.00 0.23
360 0.00 0.29 0.07 0.21 007 036 043 0.00 0.36 0.00 0.29
361 0.00 0.00 0.00 0.00 0.00 000 100 0.00 0.00 0.00 0.00
362 0.00 0.00 0.20 0.20 0.00 060 020 0.00 0.00 0.00 0.20
363 0.00 0.00 029 043 014 0.14 0.14 0.00 0.57 0.00 0.14
364 0.00 0.00 0.00 0.33 0.67 100 1.00 0.00 0.00 0.00 0.00
365 0.00 0.36 0.27 0.09 036 018 045 0.09 027 036 0.55
366 0.00 0.00 0.10 0.00 033 048 062 0.00 0.00 0.00 0.10
367 0.00 0.00 0.05 0.02 007 083 081 0.00 0.02 0.00 0.10
368 0.00 0.00 0.00 0.00 020 020 020 0.00 0.00 0.00 0.00
369 0.00 0.00 0.00 0.00 0.00 000 100 0.00 0.00 0.00 0.00
370 0.00 0.00 0.28 0.05 000 07 033 000 0.18 0.00 0.21
371 0.00 0.00 0.50 0.50 0.00 050 050 0.00 050 0.00 0.50
372 0.00 0.27 0.53 000 020 053 0.13 0.00 020 0.07 0.47
373 0.00 0.07 0.36 0.14 0.07 007 086 0.00 0.21 0.07 0.43
374 0.00 0.04 042 001 054 073 082 001 013 0.05 048
375 0.05 0.00 0.35 0.00 000 025 045 0.00 0.15 0.00 0.25
376 0.07 0.00 0.07 0.70 063 0.80 0.8 0.00 0.37 0.03 0.33
377 0.00 0.07 0.27 0.00 027 100 053 000 0.00 0.00 0.00
378 0.00 0.00 0.09 0.23 000 092 099 0.00 0.32 0.00 0.50
379

380 0.00 0.00 0.00 0.00 0.00 100 100 0.00 0.00 0.00 0.00
381 0.00 0.00 0.00 0.00 000 0.14 0.14 0.00 0.14 0.00 0.14
382 0.00 0.50 0.17 0.17 050 0.17 033 0.00 0.17 0.50 0.50
383 0.00 0.00 0.05 0.01 000 0.77 091 0.00 0.15 0.00 0.30
384 025 025 025 075 050 025 025 000 075 025 0.50
385 0.00 0.00 0.11 0.06 000 072 086 0.00 0.19 0.00 0.14
386 0.00 0.14 043 0.14 0.14 100 100 0.00 0.00 0.00 0.00
387 0.00 0.00 0.23 0.23 000 085 1.00 0.00 0.62 0.00 0.69
388 0.00 0.00 024 018 000 071 071 0.00 0.18 0.00 0.24
389 0.00 0.00 0.05 001 085 099 1.00 0.01 0.02 0.01 0.04
390 0.00 0.07 0.18 0.10 075 092 062 0.01 0.08 0.01 0.10
391 0.02 0.16 0.57 0.13 067 087 098 0.02 062 0.07 0.77
392 0.00 0.00 0.08 0.00 000 097 098 0.02 0.03 0.02 0.06
393 0.00 0.00 0.11 0.11 0.11 0.1 0.11 0.00 0.33 0.00 0.22
394 0.00 0.00 040 0.20 100 060 060 0.00 020 0.00 0.20
395 0.00 0.00 045 0.04 000 093 100 0.00 0.07 0.00 0.09
396 0.00 033 025 042 042 075 0.17 0.00 0.58 0.25 0.58
397 0.00 0.00 0.00 0.00 0.13 0.13 063 0.00 0.00 0.00 0.00
398 0.00 0.00 0.00 045 059 009 014 0.00 0.05 0.00 0.23
399 0.00 0.00 0.23 0.08 038 023 08 0.00 0.15 0.00 0.23
400 0.00 0.08 0.58 0.10 054 064 092 0.00 022 0.00 0.42
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Table 4: f1 scores using different methods on their optimal threshold
Topic Method code
D 00 10 11 13 20 21 23 30 31 40 4l
351 0.17 0.6 0.10 029 017 015 021 000 010 0.17 0.16
352 0.00 000 010 005 029 028 030 000 007 000 007
353 0.00 000 024 044 013 017 021 000 013 000 0.15
354 | 0.02 0.00 0.03 0.00 0.05 0.17 0.18 0.00 0.04 0.00 0.08
355 0.00 0.00 000 000 001 001 001 000 040 0.00 0.07
356 0.07 0.00 000 008 004 008 008 000 027 000 022
357 | 0.02 0.19 030 028 030 035 035 0.07 017 0.13 0.28
358 0.00 0.00 000 000 000 001 001 000 000 000 0.00
359 0.00 0.14 013 002 012 010 010 000 0.12 000 0.08
360 0.00 024 013 006 013 007 0.07 000 021 000 0.15
361 0.00 0.00 000 000 000 000 001 000 000 000 0.00
362 0.00 0.00 003 033 000 011 029 000 000 000 0.33
363 0.00 0.00 019 007 022 006 005 000 008 000 005
364 0.00 000 000 050 002 001l 001l 000 000 000 0.00
365 0.00 032 040 015 031 019 019 017 024 053 041
366 0.00 0.00 005 000 003 006 007 000 000 000 0.15
367 | 0.00 0.00 0.05 004 003 012 0.14 000 0.05 0.0 0.13
368 0.00 0.00 000 000 003 013 007 000 000 000 0.0
369 0.00 0.00 0.00 000 000 000 000 000 000 000 0.0
370 0.00 0.00 018 009 000 021 031 000 018 000 0.19
371 0.00 0.00 0.03 029 0.00 018 0.7 000 033 000 0.29
372 0.00 0.20 0.23 000 023 009 013 000 018 0.13 045
373 0.00 0.13 009 007 013 009 008 000 008 013 0.09
374 0.00 0.07 030 002 029 031 033 002 018 009 0.38
375 0.10 0.00 0.14 000 000 026 012 000 019 000 0.30
376 0.13 0.00 0.02 020 0.05 006 0.06 000 042 005 0.39
377 | 0.00 0.3 0.0 0.0 0.15 0.06 0.07 0.00 0.00 0.00 0.00
378 0.00 0.00 0.7 0.19 000 013 012 000 020 000 0.24
379
380 0.00 000 000 000 000 001 001 000 000 000 0.0
381 0.00 0.00 000 000 000 011 005 000 006 000 003
382 0.00 038 022 025 033 029 031 000 002 043 0.10
383 0.00 0.00 0.06 0.02 0.00 023 022 000 015 000 0.8
384 | 040 0.4 0.33 027 057 040 040 0.00 0.14 0.11 021
385 0.00 0.0 0.20 007 0.00 021 018 000 025 000 0.20
386 0.00 0.04 004 003 007 002 002 000 000 000 000
387 | 0.00 0.00 0.07 0.08 0.0 0.07 0.06 0.00 0.16 0.00 0.15
388 0.00 0.00 0.9 0.8 0.00 0.13 0.13 000 0.24 000 0.24
389 0.00 0.00 005 001 039 034 034 001 003 001 004
390 0.00 006 0.12 009 022 022 021 003 010 003 0.11
391 0.03 022 039 013 035 033 031 003 049 013 047
392 0.00 0.00 012 000 000 018 018 003 0.04 003 0.07
393 0.00 000 017 020 013 018 020 000 030 000 029
394 0.00 0.00 0.7 001 0.02 002 0.02 000 0.07 000 0.05
395 0.00 0.00 033 006 000 026 026 000 010 000 0.11
396 0.00 042 030 056 024 012 010 000 029 040 0.61
397 | 0.00 0.00 0.00 0.00 0.5 0.11 0.17 0.00 0.00 0.00 0.00
398 0.00 000 000 031 011 014 014 000 005 000 0.18
399 0.00 0.00 0.5 0.0 0.6 0.12 0.09 000 011 000 0.14
400 0.00 0.12 045 0.15 029 032 026 000 027 000 0.32

Table 5: Mean time of processing a text in milliseconds. Experiments done on machines with

1024MB RAM, processor 2.4GHz
Method code 00 10 11 13 20 21 23 30 31 40 41
Mean time 16.68 2.56 70.95 18.82 57.73 80.80 79.57 250 71.39 256 71.42
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Figure 2: Mean time of processing a text in milliseconds. Experiments done on machines with
1024MB RAM, processor 2.4GHz

5.2.2 Collating results

The average performance is evaluated in 3 ways, micro average macro average and weighted
average. The figures 4 and 3 and 5 illustrate them in histograms.

The micro average first finds the precision, recall and f score for each topic. Then each of
these measures are averaged over all topics. No account is taken of the different size of document
sets for different topics, as shown in Table 1.

e Micro average

The precision, recall of each topic are measured first as in the formula 3, and formula 4,
then they are summed up to get a mean value as shown in the formula 6, and formula 7.
The f; is still the harmonic mean of precision and recall as in the formula 8.

1
Pmicro = ﬁ Zpi (6)

1
Tmicro = E Z T (7)

2 X Pmicro X Tmicro

(8)

flmicro =
Pmicro T Tmicro

e Macro average The macro average finds the cumulative score over all topics and then
calculates the precision, recall and f score for the whole set taken together.

Macro average means that the number of found similar (relevant) texts in each topic are
summed up first, and then precision, recall, and f; are measured as in the formula 9,
formula 10, and formula 11.

_ YT
Pmacro = W (9)
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Table 6: Average performance of different methods

Method code 00 10 11 13 20 21 23 30 31 40 41
Pmicro 0.09 0.11 0.15 0.20 0.12 0.15 0.15 0.10 0.15 0.17 0.17
Tmicro 0.01 0.07 020 0.15 0.28 0.57 064 0.00 0.18 0.04 0.24
fimicro 0.02 0.09 0.17 0.17 0.17 024 0.24 0.00 0.16 0.06 0.20
Pmacro 0.34 0.16 0.12 0.12 0.11 0.10 0.09 0.58 0.16 0.43 0.16
Tmacro 001 005 024 011 043 080 080 001 018 0.02 0.26
fimacro 0.02 0.08 0.16 0.11 0.18 0.18 0.16 0.02 0.17 0.04 0.20
Pweight 0.0 0.09 0.15 0.14 0.12 0.14 0.14 0.08 ©0.16 0.13 0.16
Tweight 0.01 0.05 0.23 0.10 0.41 074 0.61 0.01 0.17 0.02 0.24
flweight 0.02 0.06 0.18 0.12 019 024 023 0.02 0.16 0.03 0.19
ST
i
Tmacro = =k, ey (10)
> (T +F)
2 X Pmacro X Tmacro
flmacro = (11)

Pmacro + Tmacro

o Weighted average

These metrics can be weighted in various ways. Some users will want to attach more
weight to precision, others to recall. The metrics can also be weighted to take account
of different corpora sizes. The type of weighting used here compensates for the different
number of relevant documents in different topics. Weighted average precision is calculated
by summing the precision for each topic modified by a weight (equation 12). The weight
is the proportion of the topic’s similar(related) texts to all topics’ similar(related) texts
(equation 15). Weighted average recall is calculated in an analogous way (equation 13).
The f; score is the harmonic mean of precision and recall (equation 14).

Pweight = Z (wz X pi) (12)

Tweight = Z (wz X Ti) (13)

2 X Pweight X Tweight
DPweight + Tweight

flweight = (14)

number of relevant texts to the ith topic
w; =

sum of relevant texts to each topic (15)

Table 6 shows the average performance of different methods on the whole set of topics, in
graphical form in Figures 3, 4 and 5.

Whichever measure is used, the average performance of methods 11, 20, 21, 23, 31, and 41
are better than the others, though their average running times are longer. It indicates that the
use of an ontology such as WordNet improves performance.

Comparing methods 10 and 11, the difference between them is whether a word alone is
identified, or a word together with its synonyms. Using WordNet to get synonyms increases
the f1 score 2 to 3 times - at a price of more than 27 times greater running time. Comparing
methods 30 and 31, we see that method 30 performs very poorly, its average fi score is only
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about 0.01. Method 31, which employs the same algorithm as method 30, except synonyms are
used in place of words, works much better with the average f1 score about 0.15, again at a price
of more than 27 times greater running time. Comparable results are produced by methods 40
and 41. Obviously, synonyms contribute to finding similarity of texts, but as the search space
expands so does processing time increase.

Methods 21 and 23 perform slightly better than methods 11, 20, 31, and 41, though they
run a little longer than those methods. Method 21 uses WordNet twice, but its performance is
not much better than methods 23 and the other four (11,20,31, and 41). This suggests that the
double use of WordNet is not worthwhile.

Method 13, which employs noun phrases without WordNet, is much better than the other
methods without WordNet (i.e. methods 00, 10, 30, and 40), but worse than methods with
WordNet. It suggests that noun phrases contribute to texts’ similarity more than single words.
Method 23 uses WordNet to find synonyms and hypernyms of noun phrases so that it gains a
significant increase in recall score (from about 0.11 to more than 0.60). But precision does not
increase, in fact it decreases a little. As a result, the final f; score of method 23 is better than
the method 13, but not superior to method 21.

The methods with WordNet that compare synonyms between texts will find more similar
texts than word strings do. That increases the recall score. In particular, methods 20, 21 and
23 use both synonyms and hypernyms and have the best recall scores, but precision is not
improved.

6 Experiments with keyword method for benchmarking

The same task as that described above has been addressed using a simpler keyword method in
order to provide benchmarks for the main experiments. 30 of the 50 topics were used, numbers
351 to 380 inclusive. The method is again based on the concept of matching meanings, rather
than matching actual words, and WordNet is used to provide synsets (synonyms and adjectives
with similar meanings, such as “global” and “international”). The algorithm is designed to
reduce problems that come from words having multiple meanings: by enforcing a requirement
that more than one keyword must be found in more than one synset there is an attempt to
focus on the appropriate context. See the discussion in the conclusion.
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Comparisons of micro-averages

CL-Triall Results with all synonyms and all "synsa" from WordNet
CL-Trial2 Results with 6 synonyms only
JP method described in text

CL-Triall | CL-Trial2
precision 0.16 0.19
recall 0.54 0.45
F score 0.25 0.27

Comparison of macro-averages

CL-Triall | CL-Trial2
precision 0.12 0.17
recall 0.61 0.53
F score 0.2 0.26

JPmethod:

(from
Table 6)

JPmethod:

(from
Table 6)
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11 20 21 23 31 41
0.15 0.12 0.15 0.15 0.15 0.17
0.2 0.28 0.57 0.64 0.18 0.24
0.17 0.17 0.24 0.24 0.16 0.2
11 20 21 23 31 41
0.12 0.11 0.1 0.09 0.16 0.16
0.24] 0.43 0.8 0.8 0.18 0.26
0.16 0.18 0.18 0.16 0.17 0.2




The process used is as follows.

e Two keywords are extracted from the topic description, by taking the first 2 content words
from the title (and description if title is one word long).

e Keywords are looked up in WordNet and a synset is produced for each of them.

e The documents to be searched are analysed. If any member of both synsets occurs in a
text, then that text is considered relevant.

Results of Trial 1 are shown in Figure 6. The most obvious problem was that precision was
low: many irrelevant documents were retrieved. The experiment was repeated, Trial 2, limiting
the number of words in a synset. In this case precision improved, and so did the f-score even
though recall declined slightly.

Trial 1 took 3m 54secs to process all 30 topics, on a laptop with 1.73GHz processor and
0.98GB RAM. Programming is in C++. Code is available from 2nd author.

This approach could be carried further quite easily by increasing the number of keywords
that are taken as seeds. However, extracting keywords might not be so easy in general as it is
with this data, and needs further development.

7 Discussion

A summary of some of our results is given in Table 7. The results of the simple keyword
approach compare favourably with the more sophisticated main methods, but more work is
needed to develop and refine the best of these latter approaches, which have the potential to
be more effective. For example, a topic about the Channel Tunnel would produce keywords
“channel” and “tunnel”, when they are obviously more meaningful as a phrase. Similarly, the
topic subject “remote sensing” should be taken as a phrase; by taking single words the problem
of low precision is exacerbated.

Overall, our results so far from these initial experiments do not seem as good as the best
reported from the TREC competitions; see for example, reports on previous competitions at
the TREC website [11], especially the Filtering Track.

7.1 Limitations of Wordnet and other ontologies

WordNet has many limitations, as is well known, but is arguably the best general ontology
available currently. Its limitations, which only become apparent through manual inspection, fall
into two categories: those that can be corrected and those that cannot. Considering examples
from the data we have been processing we find in the first category some errors of omission - for
instance the seed word “anorexia” does not produce the adjective “anorexic”. There are also
errors of commission: for instance a synonym of “Antarctica” is given as “continent” as well as
an instance of a continent. There is also a bias against recent terminology, since WordNet was
originally based on texts written many decades back. For instance “chip” has 9 senses, of which
the meaning “semiconductor device” ranks 7 in order of frequency, below the meaning “cow
dung”, and other senses. “GM” only occurs as an abbreviation for “gram”, not for “genetically
modified”.

However, these limitations can be put right. The far more profound problem, which applies
to other ontologies as well as WordNet, is that many words have more then one meaning.
The least problematic are words like “bank” which have distinct, unrelated meanings. In an
information retrieval task files relating to the wrong meaning can be filtered out by getting more
context, as in the keyword method (Section 6). However, there is a fundamental problem with

18



the many words whose meanings shade into one another. Examples include “space” which has a
core sense of a void, but could mean a gap between words, a parking space for a car, or the outer
reaches of the universe. “Risk” can mean danger but also has a sense related to probability.
“Commercial” has the sense of pertaining to commerce, but also can mean an advertisement.
In WordNet “fertilization” has the senses “creation” and “enrichment”.

By taking a phrase rather than a single word, as in “Channel Tunnel” or “remote sensing”
this problem can often be reduced, but in other cases variations of meaning produce a multitude
of unwanted matches. This is the primary cause of the low precision scores, the large number
of false positive texts that are retrieved.

In the experiments based on the keyword approach this problem was addressed in a crude
way by reducing the number of keywords in a synset, so that the less frequently used are
discarded; but though precision will probably improve, recall will probably decline (see Figure
6).

8 Conclusions

In the main experiments we have tested and compared 5 similarity models: Ferret, string
matching model, meaning matching model, semantic sequence kin model, and common semantic
sequence model, with different feature selection methods, using a corpus of articles from the
Financial Times corpus. This work provides a base line for further experiments. We have
also conducted experiments with the simpler keyword method, looking for semantic similarities
rather than actual word matching.

We conclude that:

e Synonyms, and other synset terms, are important for finding similar texts.

In similar texts we find that there are many phrases with semantic content that match.
We find numerous synonyms, hypernyms and adjectives with related meanings in similar
texts. Without them very few similar texts can be found based on matching word strings.

Hypernyms are not as important as synonyms. They can lead to an increase in recall
value, but have no effect on precision. As a result, the methods with both synonyms and
hypernyms are not superior to those with synonyms only. We also found that noun phrases
contribute to effective identification of similar texts more than single words, though they
are not better than synonyms.

Synonyms are used twice in method 21. It is a little better than methods 11 and 41, but
not superior to method 23, which employs synonyms only once, and using WordNet twice
increases running time.

e Precision needs to be significantly increased.

In all the experiments conducted precision has been weak. In some cases this could be
due to common words that do not contribute to identifying meaning swamping the more
useful words and phrases with noise. The stopword list could be modified by including
many terms like “issues”, “factor”, “discussion” that are too general to contribute useful
information. However, many words that are generated by WordNet may be irrelevant in
one context, but appropriate in another, as discussed above. It is not possible to filter
them out of a general ontology - hence the development of domain specific ontologies.
Using the keyword approach we tried to reduce the problem by limiting the number of
nouns and adjectives taken from the set produced by WordNet. This did improve precision
marginally, at the cost of reducing recall.
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In order to improve performance we need to develop more accurate ways of characterising
the context of a text, so that words and phrases produced by an ontology can be filtered
and only relevant ones retained.

Acknowledgements

Dr. JunPeng Bao carried out this work at the University of Hertfordshire, UK, sponsored by
the Royal Society as a Visiting International Fellow.

References

1]

8]

[9]
[10]

[11]

J. P. Bao, C. M. Lyon, P. C. R. Lane, W. Ji, and J. A. Malcolm. Copy detection in Chinese
documents using the Ferret: A report on experiments Technical Report 456, Science and
Technology Research Institute, University of Hertfordshire, 2006

J. P. Bao, C. M. Lyon, P. C. R. Lane, W. Ji, and J. A. Malcolm. Copy Detection in Chinese
Documents using Ferret. In Language Resources and Evaluation In press.

J. P. Bao, J. Y. Shen, X. D. Liu, H. Y. Liu, and X. D. Zhang. Finding plagiarism based
on common semantic sequence model. In Proceedings of the 5th International Conference
on Advances in Web-Age Information Management, volume 3129, pages 640-645. Lecture
Notes in Computer Science, 2004.

J. P. Bao, J. Y. Shen, X. D. Liu, H. Y. Liu, and X. D. Zhang. Semantic sequence Kkin:
A method of document copy detection. In Proceedings of the Advances in Knowledge
Discovery and Data Mining, volume 3056, pages 529-538. Lecture Notes in Computer
Science, 2004.

P. C. R. Lane, C. M. Lyon, and J. A. Malcolm. Demonstration of the Ferret plagiarism
detector. In Proceedings of the 2nd International Plagiarism Conference, 2006.

C. M. Lyon, R. Barrett, and J. A. Malcolm. A theoretical basis to the automated detection
of copying between texts, and its practical implementation in the Ferret plagiarism and

collusion detector. In JISC(UK) Conference on Plagiarism: Prevention, Practice and
Policies Conference, 2004.

C. M. Lyon, J. A. Malcolm, and R. G. Dickerson. Detecting short passages of similar
text in large document collections. In Proceedings of Conference on Empirical Methods in
Natural Language Processing. SIGDAT, Special Interest Group of the ACL, 2001.

C. D. Manning and H. Schiitze. Foundations of statistical natural language processing.
Cambridge, MA: The MIT Press, 2001.

WordNet http://wordnet.princeton.edu/
Stanford Lexicalized Parser http://nlp.stanford.edu/downloads/lex-parser.shtml

TREC http://trec.nist.gov

20



Table 7: The best results of different methods on small data set. These experiments were run
on a machine with 2.09GHz processor, 1024MB RAM

Method topic 351 topic 352

code P r fi time P r fi time
00 1.0000 0.1250 0.2222 522 | 0.0000 0.0000 0.0000 524
10 1.0000 0.1250 0.2222 156 | 0.0000 0.0000 0.0000 156
11 0.6000 0.3750 0.4615 36570 | 0.6667 0.2500 0.3636 36733
13 0.7500 0.7500 0.7500 613 | 0.5000 0.1250 0.2000 613
20 0.6250 0.6250 0.6250 36703 | 0.3500 0.8750 0.5000 35706
21 0.5000 0.6250 0.5556 36160 | 0.3684 0.8750 0.5185 37160
23 0.3684 0.8750 0.5185 37338 | 0.4706 1.0000 0.6400 37137
30 0.0000 0.0000 0.0000 162 | 0.0000 0.0000 0.0000 161
31 0.0000 0.0000 0.0000 37000 | 0.0000 0.0000 0.0000 35811
40 1.0000 0.1250 0.2222 163 | 0.0000 0.0000 0.0000 160
41 1.0000 0.2500 0.4000 36465 | 0.3333 0.1250 0.1818 36977

*The time is in milliseconds, that is the whole time from reading 32 texts till the similarities
are measured over them. The optimal threshold varies in the range [0.01,0.5] depending on the
method and topic.

A Appendix A

A.1 Results of the preliminary Experiment 1, on small data set

Two topics (351 and 352) are taken, but only 32 texts in all. 8 are relevant to the first topic, 8
to the second, 16 not relevant to either. The threshold varies from 0.01 to 0.5 by step 0.01.

A.2 Detailed results from main Experiment 2

A.3 Timings

21



Table 8: False positive and true positive values of methods 1* and 2*

Topic | TT + F~ 10 11 13 20 21 23

ID Fr 7t pt 7t Ft 7t pt 1t Ft Tt 7T
351 28 19 4 169 10 92 20 58 8 151 14 80 13
352 249 0 0 432 36 114 10 1018 217 1224 235 981 219
353 54 0 0 19 10 20 21 157 15 489 49 293 41
354 80 0 0 56 2 0 0 6 2 636 67 555 64
355 2 0 0 0 0 0 0 141 1 264 2 382

356 23 0 0 0 0 0 1 344 8 0 1 0 1
357 8 29 12 100 33 40 20 283 64 243 69 191 58
358 2 0 0 0 0 0 0 0 0 160 1 436 2
359 39 (245 21 334 25 65 1 409 28 693 37 682 36
360 14| 15 4 0 1 79 3 1 1 115 5 149 6
361 2 0 0 0 0 0 0 0 0 0 0 786 2
362 5 0 0 63 1 0 1 0 0 46 3 1 1
363 7 0 0 12 2 71 3 1 1 23 1 36 1
364 3 0 0 0 0 0 1 236 2 418 3 402 3
365 11| 10 4 1 3 11 11 4 8 2 37 5
366 21 0 0 54 2 0 0 442 7 291 10 362 13
367 42 0 0 32 2 13 1 127 3 524 35 419 34
368 5 0 0 0 0 0 0 52 1 10 1 21 1
369 1 0 0 0 0 0 0 0 0 0 0 582 1
370 57 0 0 105 16 4 3 0 0 278 40 48 19
371 2 0 0 64 1 4 1 0 0 8 1 25 1
372 15| 21 4 48 8 0 0 8 3 160 8 13

373 14 0 1 88 5 40 2 0 1 8 1 259 12
374 79 2 3 108 33 1 1 174 43 243 58 253 65
375 20 0 0 73 7 0 0 0 0 13 5 125 9
376 30 0 0 151 2 163 21 720 19 693 24 735 24
377 15 0 1 62 4 0 0 35 4 504 15 207 8
378 96 0 0 153 9 113 22 0 0 1195 88 1380 95
379 0 0 0 0 0 0 0 0 0 0 0 0 0
380 1 0 0 0 0 0 0 0 0 215 1 381 1
381 710 0 0 0 0 0 0 0 11 1 32 1
382 6 7 3 2 1 11 9 3 0 1 5 2
383 88 0 0 36 4 14 1 0 0 426 68 549 80
384 4 9 1 1 1 15 3 1 2 0 1 0 1
385 36 0 0 1 4 19 2 0 0 185 26 283 31
386 7139 1 145 3 69 1 22 1 557 7 608 7
387 13 0 0 67 3 59 3 0 0 279 11 38 13
388 17| 0 0 66 4 13 3 0 0 160 12 161 12
389 171 0 0 170 8 52 1 421 145 646 169 679 171
390 71 8 5 133 13 76 7 357 53 466 65 313 44
391 188 | 63 31 258 108 169 24 401 126 634 163 815 184
392 66 0 0 11 5 0 0 0 0 568 64 591 65
393 9 0 0 2 1 0 1 5 1 1 1 0 1
394 5 0 0 47 2 167 1 592 5 297 3 384

395 110 0 0 144 50 31 4 0 0 564 102 628 110
396 12 3 4 5 3 1 5 25 5 127 9 26 2
397 8 0 0 0 0 0 0 28 1 10 1 46 5
398 22 0 0 0 0 3% 10 207 13 5 2 18 3
399 13 0 0 107 3 7 1 139 5 34 3 208 11
400 50| 14 4 49 29 10 5 109 27 121 32 263 46




Table 9: False positive and true positive values of methods 00, 3* and 4*
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Table 10: Running time of methods on their optimal threshold in milliseconds
ments were run on machines with 2.4GHz processor, 1024MB RAM

. These experi-

Topic Method code

ID 00 10 11 13 20 21 23 30 31 40 41
351 11519 1992 45155 13358 36349 50839 50615 1698 45221 1963 45609
352 27274 4358 63137 35472 40157 80811 79714 4457 65170 4497 65834
353 8258 1212 42654 9080 36841 47087 47238 1154 42517 1146 42524
354 12149 1800 47619 14213 37201 51842 51801 1535 47134 1533 47108
355 9470 1582 44963 11178 36589 52189 50538 1533 45601 1590 45420
356 15524 2786 54005 18670 38663 61694 61410 2697 53489 2716 53374
357 8040 1310 42312 10113 35868 49337 46975 1413 43574 1443 42952
358 7253 1028 41726 8151 35610 44608 45200 1010 42976 1010 43332
359 20084 3369 55945 20508 40336 70521 66309 3444 55611 3374 56055
360 10525 1509 45616 11367 36138 51940 49490 1415 44156 1469 44120
361 14683 2325 51458 17175 39413 60677 59553 2621 52136 2538 52313
362 6515 893 41847 6604 37224 45106 44792 806 41999 984 42209
363 13107 1933 49313 14974 38157 55391 54249 2148 47286 2127 48145
364 11406 1702 46071 11314 37437 53021 50595 1670 46599 1778 46902
365 8778 1348 42978 10515 36714 49731 48532 1300 43356 1303 43559
366 14038 2162 50528 15455 38092 59880 58345 2244 50932 2182 50824
367 10641 1494 46080 11122 37171 50562 50185 1446 44923 1600 44798
368 8476 1328 43815 10350 36310 49726 48033 1300 44196 1556 43653
369 10189 1368 43719 10489 36101 49597 48039 1307 43615 1418 43724
370 10684 1525 43687 11470 36463 50127 49279 1441 44244 1441 44130
371 13811 2448 50277 16562 38528 57896 58048 2324 51185 2399 50942
372 8755 1464 44031 10741 36952 50102 50026 1422 44642 1398 44403
373 12864 2214 49208 14870 38064 57854 58370 2105 50199 2113 50328
374 7971 1262 43294 10052 37003 48745 47203 1283 43825 1279 41861
375 8605 1601 42045 10403 35685 48764 49104 1484 43582 1385 43296
376 13594 2192 49735 17737 37762 58691 56766 2070 50584 2311 50895
377 11069 1683 46758 11975 37551 52109 51190 1785 47454 1802 47253
378 23541 3660 60707 27193 40577 74650 70131 3561 61258 3611 60579
379 11256 1538 45606 12700 37444 52246 49095 1580 44616 1762 44972
380 8572 1321 43006 10187 36527 49166 47933 1314 43049 1318 43028
381 13182 1767 47147 12874 37108 53395 52376 1717 48013 2061 47885
382 8437 1320 44081 10294 37796 50649 50030 1271 44358 1270 43974
383 11046 1769 46124 12630 37275 51593 51705 1555 45105 1546 45299
384 7741 1467 44291 9325 37937 50043 49558 1214 44676 1192 44777
385 11546 1562 45698 11651 37662 49627 49793 1824 43885 1611 45705
386 11540 1584 45506 12346 37306 52344 50800 1586 46501 1576 46412
387 6328 932 40248 7087 36285 44120 44166 908 40219 906 41204
388 10701 1459 43904 10554 37549 51245 50191 1313 45724 1314 45504
389 13142 1950 49107 15286 38554 56572 56239 1929 49220 2138 49607
390 11198 1672 46384 12667 37202 52125 51336 1540 46397 1543 46435
391 13988 2221 50817 18067 38923 58528 58830 2191 50659 2540 50563
392 11814 1743 46861 13524 37800 53652 54278 1676 47551 1680 47294
393 12395 1885 49193 13739 38682 55469 54123 1835 49659 1902 49651
394 15101 2502 51672 16237 39193 60504 58681 2773 52421 2759 52223
395 18155 2961 53879 17791 39427 62565 63051 2656 54068 2839 53105
396 11078 1529 44662 11286 35590 48879 48591 1502 44214 1502 45216
397 10679 1729 45430 12685 36946 51906 51657 1589 45752 1590 45974
398 11770 1598 46558 12579 36897 53058 52628 1637 46851 1637 47006
399 8187 1362 43446 10307 37241 49947 49790 1288 44362 1291 44152
400 7682 1154 43293 9085 37780 47303 47633 1101 44151 1105 44114
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B Appendix B
TxtSim Command Line Guide

B.1 Introduction

This file introduces the command line of the TxtSimConsole, which is a text console of the
TxtSim system that aims to find texts similar to a given text in a file collection.

B.2 Requirements

1. JRE(Java Runtime Environment) 1.5.0. The TxtSimConsole is implemented by sun J2SE
SDK 5.0, so a right version java environment must have been installed in your machine.

2. WordNet2.0. Because some methods in the TxtSim are based on WordNet.

3. A xml document (jwnl_properties.xml), which is used by JWNL, should specify the con-
figuration of WordNet.

B.3 Command Line

java [java_settings] TxtSimConsole [options] <-m similarity_method_codes -d corpus_dir>|<-C
similarity_result_file>

B.4 java settings

-cp class_path
To set the java class path. The JWNL libs files (jwnl.jar and commons-logging.jar) must
be set correctly in order to call WordNet.

-Xmx***m

To set the maximum memory used by the system, such as -Xmx400m.

B.5 TxtSimConsole Options

-a arguments_of_methods

To set the arguments of each method. The arguments between different methods should be

9.9

delimited by a semicolon(”;”) without any white space. The arguments of a method should

” N

be delimited by a comma(”,”) without any white space. For example, ”720,4,5;3;100,3” is
a valid arguments string for 3 methods.

-b benchmark_file
To load the benchmark file. The benchmark contains all positive file names in a txt file,
and each line a file name.

-c cluster_method_code
To cluster the texts into groups based on the texts’ similarity. Now, there is only one text
clustering method in the TxtSim system, the cluster method code is 70”.

-C similarity_result_file

To compare the similarity result file with a benchmark file and measures the errors. The
benchmark file must be indicated by the option [-b benchmark file].
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-d corpus_dir
To indicate the directory that contains all texts in a corpus, in which a text is a file
encoded in UTF-8.

-1 stopwords_file
To load the stopwords file. If the stop words need be removed before measuring text
similarity, then a stopwords file in xml format should be set in this option.

-m similarity_method_codes

To indicate the code(s) of the method(s) that measures the similarity between texts. A
method code consists of 2 digits. The First digit, which is valid from 0 to 4, denotes how
to calculate similarity between file fingerprints. The second digit, which is valid from 0 to
3, denotes how to extract fingerprints from a text.

-0 output_file

To indicate the output file name with its whole path. Two formats, i.e. xml and txt, are
valid for the output file. It is decided by the extention of the output file name. See the
sample files at the end of the file.

To sort the text similarity output in descending order. The result is not sorted in default.

-s seed_text
To indicate the seed text, i.e. the query text, file name with its whole path. The file
should be encoded in UTF-8.

-t threshold_step:threshold_last

To set the step and the greatest threshold when the errors are measured in a variety of
thresholds. For example, 0.01:0.2 means that the errors are measured with the threshold
varying from 0.01 to 0.2 stepped by 0.01. The system default threshold step is 0.1, and
the default greatest threshold is 0.9.

-w weights_of_methods

To set the weight vector of the similarity methods, which is used in the combination
function. The weight values between methods should be delimited by a semicolon(”;”)
without any white space, such as ”1;2;3” . The TxtSim system will normalize the weights
automatically. The default weight of each method is 1.

-x jwnl_property_file
To set the JWNL property file. If a method uses WordNet, then this option must be set
in a right file. Because the TxtSim system calls WordNet based on JWNL.

The following is the meaning of each available method code.

00: Ferret method, namely a kind of 3-grams method.
The method parameters:
pO(>=1), pl(>=1).
pO0 is the size of the tuple. The default value is 3.

pl is the window between 2 tuples. The default value is 1.
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10: A string matching method based on semantic sequences without WordNet.
The method parameters:
p0 (>=1), pl(>=1), p2(>= 1), p3(>= 1),p4(>=1), p5({0,1})
p0 is the max number of the semantic strings in a file. The default value is 20.
pl is the max word distance of the repeated word. The default value is 100.
p2 is the max span of the continued word. The default value is 5.
p3 is the min size of a semantic sequence in word. The default value is 2.

p4 is the min number of the shared words between two similar semantic sequences. The
default value is 2.

pb indicates whether or not normalize a semantic sequence, i.e. does a word appear in a
semantic sequence only once? The default value is 0 (false).
11: A string matching method based on semantic sequences with WordNet.
The method parameters:
p0 (>= 1), pl(>=1), p2(>= 1), p3(>= 1), pd(>= 1), p5({0,1}), P6({1,23,4})
p0 is the max number of the semantic strings in a file. The default value is 20.
pl is the max word distance of the repeated word. The default value is 100.
p2 is the max span of the continued word. The default value is 5.
p3 is the min size of a semantic sequence in word. The default value is 2.

p4 is the min number of the shared words between two similar semantic sequences. The
default value is 2.

p5 indicates whether or not normalize a semantic sequence, i.e. does a word appear in a
semantic sequence only once? The default value is 0 (false).

p6 indicates the valid POS(s) of each word. The default value is 4.

12: A string matching method based on semantic sequences with WordNet.

The method parameters are the same with the method 11.

13: A string matching method based on noun phrases.
The method parameters:
p0 (>=1), pl(>=1), p2(>=1), p3(>=1)
p0 is the max number of the semantic strings in a file. The default value is 20.

pl is the multi-word frequency threshold, namely, if the string repetition count is greater
than this threshold, then the string is frequent. The default value is 1.

p2 the single word frequency threshold, namely, if the string repetition count is greater
than this threshold, then the string is frequent. The default value is 3.

p3 is the max grams of a noun phrase. The default value is 4.

20: A meaning matching method based on semantic sequences.
The method parameters:

p0({1,2,3,4}), pl (>= 1), p2 (>= 1), p3 (>= 1), p4(>= 1), p5(>= 1), p6(>= 1),
p7(>=1), p8({0,1})
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p0 indicates the valid POS(s) of each word used in the similarity model. The default value
is 1.

pl is the depth to find a word’s meaning in its hypernym hierarchy. The default value is
2.

p2 is the max grams of a semantic string. The default value is 4.

p3 is the max number of the semantic strings in a file. The default value is 20.
p4 is the max word distance of the repeated word. The default value is 100.
p5 is the max span of the continued word. The default value is 5.

p6 is the min size of a semantic sequence in word. The default value is 2.

p7 is the min number of the shared words between two similar semantic sequences. The
default value is 2.

p8 indicates whether or not normalize a semantic sequence, i.e. does a word appear in a
semantic sequence only once? The default value is 0 (false).

21: A meaning matching method based on semantic sequences.
The method parameters:
p0({1,2,3,4}), pl (>= 1), p2 (>= 1), p3 (>= 1), pd(>= 1), p5(>= 1), p6(>= 1),
p7(>=1), p8({0,1}), p9({1,2,3,4})

p0 indicates the valid POS(s) of each word used in the similarity model. The default value
is 1.

pl is the depth to find a word’s meaning in its hypernym hierarchy. The default value is
2.

p2 is the max grams of a semantic string. The default value is 4.

p3 is the max number of the semantic strings in a file. The default value is 20.
p4 is the max word distance of the repeated word. The default value is 100.
p5 is the max span of the continued word. The default value is 5.

p6 is the min size of a semantic sequence in word. The default value is 2.

p7 is the min number of the shared words between two similar semantic sequences. The
default value is 2.

p8 indicates whether or not normalize a semantic sequence, i.e. does a word appear in a
semantic sequence only once? The default value is 0 (false).

p9 indicates the valid POS(s) of each word used in the semantic sequences model. The
default value is 4.
22: A meaning matching method based on semantic sequences.

The method parameters are the same with the method 21.

23: A meaning matching method based on noun phrases.
The method parameters:
p0({1,2,3,4}), p1 (>=1), p2 (>=1), p3 (>=1), p4(>= 1), p5(>= 1), p6(>=1)

p0 indicates the valid POS(s) of each word used in the similarity model. The default value
is 1.
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pl is the depth to find a word’s meaning in its hypernym hierarchy. The default value is
2.

p2 is the max grams of a semantic string. The default value is 4.
p3 is the max number of the semantic strings in a file. The default value is 20.

p4 is the multi-word frequency threshold, namely, if the string repetition count is greater
than this threshold, then the string is frequent. The default value is 1.

p5 the single word frequency threshold, namely, if the string repetition count is greater
than this threshold, then the string is frequent. The default value is 3.

p6 is the max grams of a noun phrase. The default value is 4.

30: Semantic Sequence Kin method (SSK) without WordNet.
The method parameters:
p0 (>=1), pl(>=1), p2(>=1), p3(>= 1), p4({0,1})
p0 is the max word distance of the repeated word. The default value is 100.
pl is the max span of the continued word. The default value is 5.
p2 is the min size of a semantic sequence in word. The default value is 2.

p3 is the min number of the shared words between two similar semantic sequences. The
default value is 2.

p4 indicates whether or not normalize a semantic sequence, i.e. does a word appear in a
semantic sequence only once? The default value is 1 (true).

31: Semantic Sequence Kin method (SSK) with WordNet.
The method parameters:
p0 (>=1), pl(>= 1), p2(>= 1), p3(>= 1), p4({0,1}), p5({1,2,3,4})
p0 is the max word distance of the repeated word. The default value is 100.
pl is the max span of the continued word. The default value is 5.
p2 is the min size of a semantic sequence in word. The default value is 2.

p3 is the min number of the shared words between two similar semantic sequences. The
default value is 2.

p4 indicates whether or not normalize a semantic sequence, i.e. does a word appear in a
semantic sequence only once? The default value is 1 (true).

p5 indicates the valid POS(s) of each word. The default value is 4.

32: Semantic Sequence Kin method (SSK) with WordNet.

The method parameters are the same with the method 31.

40: Common Semantic Sequence Model (CSSM) without WordNet.

The method parameters are the same with the method 30.

41: Common Semantic Sequence Model (CSSM) with WordNet.

The method parameters are the same with the method 31.

42: Common Semantic Sequence Model (CSSM) with WordNet.

The method parameters are the same with the method 31.
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The part of speech (POS) codes:
e 1: noun;

e 2: noun,adjective;

e 3: noun,adjective,verb;

e 4: noun,adjective,verb,adverb.

The system can run several methods serially, and then combine the results by a linear

function with the given weights. The method codes should be delimited by a semicolon(”;”)
without any white space, such as ”00;32;21”.

B.6 NOTE

The similarity methods based on Noun Phrases (i.e. 13 and 23) need *.stp as input text instead
of *.txt no matter the corpus or the seed document. So the TxtSimConsole always finds the
noun phrase corpus texts in a special directory, i.e. "path_np” where ”"path” is the directory
containing those *.txt files.

For example, when the method is 00 and the corpus directory is ”351_pos”, then the TxtSim-
Console loads the *.txt files in the directory ”351_pos”. While the method is 13, the TxtSim-
Console will load the *.stp files in the directory ”351 _pos_np” and the seed document must be
a *.stp file too.

However, for the TxtSim command line options ”-d corpus_dir” you must NOT add the
suffix ”_np” to a directory because the TxtSimConsole will add it for methods based on Noun
Phrases. for the TxtSim command line options ”-s seed_text”, if the seed text is not ended with
”.stp” then the TxtSimConsole will append the suffix ”.stp” to the text file name for methods
based on Noun Phrases. Please make sure the *.stp seed file can be found at the path. If the
seed text is ended with ”.stp” then it is all right for methods based on Noun Phrases.

B.7 Examples

A command line example:

java -Xmx400m -cp TxtSim.jar:jwnl.jar:commons-logging.jar TxtSimConsole -r -1 stopwords.xml
-0 ../data/train351.m31.xml -m 31 -x jwnl_properties.xml -d .. /data/train/351 -s .. /data/train/351 /F T944-
9743.txt

The above line means that the TxtSim system measures similarity between the seed file
(../data/train/351/FT944-9743.txt) and the files in the corpus (../data/train/351), which are
the texts about the topic 351 in the Financial Times corpus, by means of SSK and considering
the words in the same synonym with the default parameters. The stop words are removed in
the procedure. At last, the text similarities are sorted in descending order as saved to a xml
file (../data/train351.m31.xml).

The following is the top 50 lines of the output file train351.m31.xml:

<?xml version="1.0" encoding="UTF-8"7>

<similarities unit=""file” method="SSK(SameMeaning_SS)(p=100,5,2,2,1)"
runningTime="682ms"

corpus="351" note="null”
xmlns="http://www.xjtu.edu.cn/CS/TextMining”
xmlns:xsi="http://www.w3.org/2001 /XMLSchema-instance”
xsi:schemalocation="http://www.xjtu.edu.cn/CS/TextMining
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similarities.xsd”

xsi:noNamespaceSchemalLocation="http://www.xjtu.edu.cn/CS/TextMining

similarities.xsd” >

<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”
<similar v1="FT1944-9743”
<similar v1="FT944-9743”

< /similarities>

/// similarities unit=""file” method="SSK(SameMeaning_SS)(p=100,5,2,2,1)”

/// runningTime="675ms”
/// corpus="351"

v2="FT911-3135”
v2="FT942-3947”

value="1.0000" />
value="1.0000" />
v2="FT944-9743” value="1.0000” />
v2="FT933-1721" value="0.8165"/>
v2="FT921-16414” value="0.8165" />
v2="FT932-4704" value="0.7071"/>
v2="FT944-16200" value="0.6325" />
v2="FT934-14977” value="0.5000" />
v2="FT943-8525”" value="0.5000" />
v2="FT934-2581” value="0.5000" />
v2="FT942-14018” value="0.4966" />
v2="FT943-2295" value="0.4714" />
v2="FT944-4279” value="0.4556" />
v2="FT943-7346" value="0.4264" />
v2="FT943-13652" value="0.4082" />
v2="FT933-15222” value="0.4082" />
v2="FT921-3445" value="0.4082" />
v2="FT943-1902” value="0.3757" />
v2="FT934-11440” value="0.3583" />
v2="FT944-10008” value="0.3536" />
v2="FT943-9482” value="0.3536" />
v2="FT934-11446” value="0.3493" />
v2="FT923-13483” value="0.3333" />
v2="FT923-9547" value="0.3086" />
v2="FT921-14276” value="0.2887" />
v2="FT922-8324" value="0.2887" />
v2="FT933-7165" value="0.2887" />
v2="FT932-17180" value="0.2780" />
v2="FT931-2870” value="0.2722" />
v2="FT921-6525" value="0.2722" />
v2="FT921-13194” value="0.2722" />
v2="FT924-13356” value="0.2673" />
v2="FT924-13373” value="0.2673" />
v2="FT944-12” value="0.2578" />
v2="FT932-6225" value="0.2539" />
v2="FT932-13583" value="0.2520" />
v2="FT931-16617" value="0.2497" />
v2="FT931-13614” value="0.2462" />
v2="FT922-8327" value="0.2447" />

The following is the same similarity but output in a txt file train351.m31.txt.
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/// note="null”

FT944-9743 F'T911-3135 1.0000
FT944-9743 F'T942-3947 1.0000
FT944-9743FT944-9743 1.0000
FT944-9743 FT933-1721 0.8165
FT944-9743 F'T921-16414 0.8165
FT944-9743 F'T932-4704 0.7071
FT944-9743 F'T944-16200 0.6325
FT944-9743 F'T934-14977 0.5000
FT944-9743 F'T943-8525 0.5000
FT944-9743 F'T934-2581 0.5000
FT944-9743 F'T942-14018 0.4966
FT944-9743 F'T943-2295 0.4714
FT944-9743 F'T944-4279 0.4556
FT944-9743 F'T943-7346 0.4264
FT944-9743 FT943-13652 0.4082
FT944-9743 F'T933-15222 0.4082
FT944-9743 F'T921-3445 0.4082
FT944-9743 F'T943-1902 0.3757
FT944-9743 F'T934-11440 0.3583
FT944-9743 FT944-10008 0.3536
FT944-9743 F'T943-9482 0.3536
FT944-9743 F'T934-11446 0.3493
FT944-9743 F'T923-13483 0.3333
FT944-9743 FT923-9547 0.3086
FT944-9743 F'T921-14276 0.2887
FT944-9743 F'T922-8324 0.2887
FT944-9743 F'T933-7165 0.2887
FT944-9743 F'T932-17180 0.2780
FT944-9743 F'T931-2870 0.2722
FT944-9743 F'T921-6525 0.2722
FT944-9743 F'T921-13194 0.2722
FT944-9743 F'T924-13356 0.2673
FT944-9743 FT924-13373 0.2673
FT944-9743 F'T944-12 0.2578
FT944-9743 F'T932-6225 0.2539
FT944-9743 F'T932-13583 0.2520
FT944-9743 FT931-16617 0.2497
FT944-9743 F'T931-13614 0.2462
FT944-9743 F'T922-8327 0.2447
FT944-9743 F'T942-16608 0.2357
FT944-9743 FT931-66 0.2250
FT944-9743 F'T942-9158 0.2236
FT944-9743 F'T933-4757 0.2236
FT944-9743 F'T911-1338 0.2236
FT944-9743 F'T942-9164 0.2236
FT944-9743 F'T943-11921 0.2236
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