Modeling solubility of nitrogen in clean fire extinguishing agent by Peng-Robinson equation of state and a correlation of Henry’s law constants

Mengdong Chen, Yongqi Xie, Hongwei Wu, Shang Shi, Jianzu Yu

School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom

Abstract: Nitrogen is usually used to increase the total pressure of the fluid in aircraft fire suppression bottle. The amount of nitrogen required in the bottle is a significant factor to assure complete and effective discharge into the protected area and it depends on the solubility of the nitrogen in the fire extinguishing agent. In this article, the Peng-Robinson equation of state (PR EOS) including both the classical van der Waals mixing rule and the Wong-Sandler mixing rule is utilized to correlate the Gas-Liquid Equilibrium (GLE) data from available open published literature and to analyze the solubility of nitrogen in halon alternatives such as HFC227ea (C₃HF₇), CF₃I, FC218 (C₃F₈), and HFC125 (C₂HF₅) with Halon1301 (CF₃Br) as a reference. A new method is proposed to compute the adjustable interaction parameters in the van der Waals mixing rule and in the Wong-Sandler mixing rule based on the measurements of nitrogen required to pressurize the fire suppression bottle to a specified equilibrium pressure at room temperature. Results show that the PR EOS reproduces the GLE data very well with both van der Waals mixing rule and the Wong-Sandler mixing rule and it is then utilized to predict the temperature dependence of the Henry’s law constants of nitrogen dissolved in the fire extinguishing agents. The PR EOS with van der Waals mixing rule is much more appropriate for determining the Henry's constants than that with the Wong-Sandler mixing rule and the results calculated by the current model are used to establish a new correlation for the Henry’s law constants. This correlation will be very helpful for fire extinguishing bottle designers to acquire the pressure-temperature relationships for the mixture of nitrogen and agents.

Keywords: PR EOS, mixing rule, nitrogen, fire extinguishing agent, solubility, Henry’s law constants

Nomenclature
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Cohesive energy parameter in the PR equation of state, Pa m6 mol$^{-2}$</td>
</tr>
<tr>
<td>b</td>
<td>Volumetric parameter in the PR equation of state, m3 mol$^{-1}$</td>
</tr>
<tr>
<td>k</td>
<td>Binary interaction parameter</td>
</tr>
<tr>
<td>p</td>
<td>Pressure, Pa</td>
</tr>
<tr>
<td>R</td>
<td>Molar gas constant, 8.31447 J mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature, K</td>
</tr>
<tr>
<td>M</td>
<td>Mole weight, g mol$^{-1}$</td>
</tr>
<tr>
<td>v</td>
<td>Molar volume, m3/mol</td>
</tr>
<tr>
<td>x</td>
<td>Mole fraction in liquid phase</td>
</tr>
<tr>
<td>y</td>
<td>Mole fraction in vapor phase</td>
</tr>
<tr>
<td>z</td>
<td>Compressibility factor</td>
</tr>
<tr>
<td>Z</td>
<td>Total mole fraction of nitrogen in bottle</td>
</tr>
<tr>
<td>m</td>
<td>Mass, kg</td>
</tr>
<tr>
<td>A_E</td>
<td>Excess Helmholtz free energy at infinite pressure</td>
</tr>
<tr>
<td>G_0^E</td>
<td>Excess Gibbs free energy at low pressure</td>
</tr>
<tr>
<td>g</td>
<td>Local composition factor in the NRTL model</td>
</tr>
<tr>
<td>N</td>
<td>Number of data points</td>
</tr>
<tr>
<td>k_H</td>
<td>Henry’s law constant, MPa</td>
</tr>
<tr>
<td>f</td>
<td>Fugacity, Pa</td>
</tr>
<tr>
<td>C</td>
<td>Constants in Krause and Benson’s correlation</td>
</tr>
</tbody>
</table>

Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Function of temperature in the PR equation of state</td>
</tr>
<tr>
<td>ω_{ij}</td>
<td>Binary parameter in the NRTL model</td>
</tr>
<tr>
<td>τ</td>
<td>Binary interaction parameter in the NRTL model</td>
</tr>
<tr>
<td>k_0</td>
<td>Function of the acentric factor</td>
</tr>
<tr>
<td>ϕ</td>
<td>Fugacity coefficient</td>
</tr>
<tr>
<td>ω</td>
<td>Acentric factor</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Critical point</td>
</tr>
</tbody>
</table>
1. Introduction

As effective and nontoxic fire extinguishing agent, CF$_3$Br (Halon1301) has been widely used in aircraft fire protection over the past six decades. However, Halon1301 has been banned from production and utilization under Montreal Protocol with global environmental concerns and high ozone depletion potentials [1]. Many researchers [2-8] have presented alternatives, such as HFC227ea, CF$_3$I, FC218, and HFC125, to replace halon1301 in flight fire protection applications. Due to the low vapor pressure of the alternative agents, nitrogen is usually used for the purpose of shortening the discharging time. For a binary mixture of nitrogen and fire extinguishing agent, the GLE data is very important since the amount of nitrogen in the vessel plays a significant role in determining the final pressure of the vessel. However, very few GLE data for nitrogen and alternative agents are available in the open published literatures.

Yang et al. [2] presented a combined experimental and numerical study to determine the solubility of nitrogen and Freon-23 in alternative halon replacement agents. They applied mass
balance on the agent and nitrogen to obtain the total amount of nitrogen in the bottle. But the
effect of dissolved nitrogen on the density of the liquid phase was neglected. Later on, Yang et
al. [3, 5] also developed an extended corresponding state (ECS) model to predict the
thermodynamic properties of the selected halon alternative and nitrogen mixtures using van der
Waals one fluid mixing rule. Compared with the measured amount of nitrogen, a good prediction
was achieved by the ECS model except for the mixture of N₂+CF₃I. Using Yang’s model [2],
Grosshandler et al. [7] and Gann [8] calculated the amount of nitrogen and CF₃H that needed to
super-pressurize the fire suppression agents in the vessel.

Lim and Kim [4] conducted GLE experiments in the pressure range from 3.0 MPa to 10.0
MPa and temperature range from 293.2 K to 313.2 K for the binary systems of N₂+Halon1301,
N₂+Halon1211, N₂+HFC227ea, and N₂+CF₃I. However, the values of k_{ij}, A_{ij}, A_{ji} in the literature
[4] gave a poor prediction for the amount of nitrogen required to pressurize the alternative agent
to a typical pressure of 4.2 MPa when compared with the experimental data of Yang et al. [5].

Kao et al. [6] used a semi-automated vapor-liquid-equilibrium static cell to measure the
solubility of the nitrogen in three halon replacements. Based on PR EOS, the Henry’s law
constant, the weight of the nitrogen needed for super-pressurization of HFC227ea, HFC236fa,
and HFC125, and pertinent isometric diagrams were calculated, respectively. However, only the
bubble pressures and phase compositions for the mixture of N₂+HFC227ea were given in detail.
Kim et al. [9] selected HFC22, HFC125 and HFC134a as solvent and measured the bubble
pressures with temperature ranging from 283.15 K to 303.15 K to obtain the solubility of the
nitrogen. Compared with their experimental data, the calculated values from Peng-Robinson-
Stryjek-Vera equation of state showed good agreement except for the mixture of N₂+HFC125.

Many refrigerants such as saturated fluorocarbon have similar properties with halons, i.e. FC-
218 is a popular refrigerant and a replacement of Halon1301. Vrabec et al. [10] reviewed binary
interaction parameters of 267 binary mixtures using PR EOS, including 16 mixtures with
nitrogen, of which only one binary mixture was nitrogen and Halon1301. They suggested a value
of 0.076 for the interaction parameter k_{ij} at 313.2 K. Vinš and Hrubý [11, 12] used both Perturbed-
Chain Statistical Associating Fluid Theory (PC-SAFT) and PR EOS to determine the solubility
of the nitrogen in all fifteen one-component refrigerants including HFC125 and FC218. Their
results indicated that it was difficult to confirm which equation of state showed superiority over
the others. The Henry’s law constants for all thirteen mixtures were also correlated as a function
of the reduced temperature. However, the GLE data for the mixture of N₂+HFC125 and
N₂+FC218 were not provided. Consequently, the binary interaction parameter k_{ij} for nitrogen
dissolved in HFC125 and FC218 was set to zero. Using PR EOS and the Wong-Sandler mixing
rule, Claudio et al. [13] represented the similar results compared with one from other researchers,
i.e. Yakoumis et al. [14], Al-Saifi et al. [15], Soo et al. [16], and Courtial et al. [17]. They
concluded that by only analyzing the average deviations, complex models showed no superiority
over the model of PR EOS.

To the best knowledge of the authors, few experimental data were available on the solubility
of nitrogen in fire extinguishing agents, which were restricted to limited temperature ranges and
some were suspected inaccurate. The present research focused on the solubility of nitrogen in
HFC227ea, CF₃I, FC218, and HFC125, with Halon1301 as a reference. Of the many equations
of state available, the cubic equations such as PR EOS offered a compromise between generality
and simplicity that was suitable for many purposes. They were valuable tools for correlating
experimental data and were often used in technical applications. Therefore, the PR EOS was
utilized to predict the solubility of the nitrogen in halon alternatives in the present paper. The
available GLE data about nitrogen and fire extinguishing agents were summarized and
reproduced though the PR EOS associating with van der Waals mixing rule and the Wong-
Sandler mixing rule. In the current work, a new method is proposed to compute the adjustable
interaction coefficient of van der Waals mixing rule and the three adjustable parameters of Wong-
Sandler mixing rule for those binary mixtures of which the GLE data were not found in the
literature. For the proposed new method, the measurements for the amount of nitrogen required
to pressurize the fire suppression bottle to a specified equilibrium pressure at room temperature
were used, which attracted more attention for the fire extinguishing system designers. Based on
the interactive parameters obtained by the GLE data and the new method, a theoretical approach
using PR EOS with two mixing rules was conducted to estimate the temperature dependency of
the Henry’s law constants. Moreover, a new simple temperature correlation for the Henry’s law
constants of nitrogen dissolved in CF₃I and FC218 at a relatively high gas partial pressure was
established.
2. Model development

Due to the limited experimental data on the solubility of nitrogen in clean fire extinguishing agents, a theoretical model is proposed to correlate the collected GLE data. The PR EOS [18] is one of the simplest methods for accurately calculating the GLE. So it is used in this paper and can be written as:

\[
p = \frac{RT}{v-b} - \frac{a}{v(v+b)+b(v-b)}
\]

(1)

where \(p \) is the system total pressure, \(R \) is the gas constant, \(T \) is the absolute temperature and \(v \) is the molar volume.

Both \(a \) and \(b \) are the characteristic parameters specific for each substance, and

\[
a = \frac{0.45724R^2T_c^2\alpha(T)}{p_c}
\]

(2)

\[
b = \frac{0.07780RT_c}{p_c}
\]

(3)

where \(p_c \) is the critical pressure, \(T_c \) is the critical temperature.

\(\alpha(T) \) in Eq. (2) is a temperature function in the PR equation of state defined as:

\[
\alpha(T) = [1 + k_0(1-T_r^{0.5})]^2
\]

(4)

where \(T_r = T/T_c \) is the reduced temperature. \(k_0 \) can be represented by the following formulation:

\[
k_0 = 0.3746 + 1.54226\omega - 0.26992\omega^2
\]

(5)

where \(\omega \) is the acentric factor.

For mixtures the parameters \(a \) and \(b \) of Eq. (1) are substituted by \(a_m \) and \(b_m \):

\[
p = \frac{RT}{v-b_m} - \frac{a_m}{v(v+b_m)+b_m(v-b_m)}
\]

(6)

According to the PR EOS, two different mixing rules are applied. They are the one-parameter van der Waals one-fluid mixing rule [19] and the Wong-Sandler mixing rule [20], respectively.

The one-parameter vdW mixing rule can be summarized as follows:

\[
a_m = \sum x_ix_j\sqrt{a_i a_j (1-k_{ij})}
\]

(7)

\[
b_m = \sum x_ib_i
\]

(8)
where k_{ij} is the binary interaction coefficient that satisfies $k_{ij}=k_{ji}$ and $k_{ii}=0$.

The Wong-Sandler mixing rule for a cubic equation of state such as the PR EOS can be expressed as:

$$b_m = \frac{\sum \sum x_i x_j (b - \frac{a}{RT})_{ij}}{1 - \sum x_i \frac{a_i}{b_i RT} - \frac{A^E_{ij}}{CRT}}$$

$$(b - \frac{a}{RT})_{ij} = \frac{1}{2} [(b - \frac{a}{RT})_i + (b - \frac{a}{RT})_j] (1 - k_{ij})$$

$$\frac{a_m}{b_m} = \sum x_i \frac{a_i}{b_i} + \frac{A^E_{ij}}{C}$$

In Eq. (9), C is a constant (-0.62323) for the PR EOS, k_{ij} is an interaction parameter, x_i and x_j represent the mole fraction of component i and j in the liquid phase or in the vapor phase. A^E_{ij} is an excess Helmholtz free energy model at infinite pressure, which can be calculated assuming that $A^E_{ij} = G^E_{0i}$, where G^E_{0i} is the excess Gibbs free energy. Several models [13, 17, 19] were reported to determine G^E_{0i}, whereas in the current study, the NRTL model [21] is employed:

$$\frac{A^E_{ij}}{RT} = \sum x_i \left[\sum x_j G^E_{ji} \tau_{ji} \right]$$

$$G^E_{ji} = \exp(-\alpha_{ji} \tau_{ji})$$

$$\tau_{ji} = A_{ji} / RT$$

$$A_{ji} = g_{ji} - g_{ij}$$

where G^E_{ji} is the local composition factor for the NRTL model, τ_{ji} is the binary interaction parameter for the NRTL model, g_{ii}, g_{jj}, g_{ij}, and g_{ji} are related to the interaction energy between molecules i and j, α_{ji} is a non-randomness parameter which is equal to 0.3 for all the binary mixtures studied in the present work.

For a binary mixture, the van der Waals mixing rule includes one adjustable binary interaction coefficient (k_{ij}) for a_m. On the other hand, the Wong-Sandler mixing rule consists of one variable binary interaction parameter (k_{ij}) for $b_{ij}-(a_{ij}/RT)$ and two parameters, A_{ij} and A_{ji}, included in the G^E_{0i} model. In summary, the proposed model combined the PR EOS, the van der Waals mixing
rule and the Wong-Sandler mixing rule, which is designated as PR/vdW and PR/WS in the rest of the paper.

3. Sample data

In the current study, five different binary mixtures are considered, namely, $\text{N}_2(1)+\text{HFC}227\text{ea}(2)$, $\text{N}_2(1)+\text{CF}_3\text{I}(2)$, $\text{N}_2(1)+\text{FC}218(2)$, $\text{N}_2(1)+\text{HFC}125(2)$, and $\text{N}_2(1)+\text{Halon}1301(2)$. Here, 1 refers to the component of nitrogen and 2 refers to the other component. Pure component properties that used to calculate the parameters of the PR EOS are listed in Table 1. And the collected GLE data for nitrogen and agent mixtures are listed in Table 2.

Both PR/vdW model and PR/WS model are applied to perform bubble pressure calculations for binary mixtures. The Levenberg-Marquardt algorithm implemented in the MATLAB [26] software is used to determine the adjustable parameter k_{12} of PR/vdW model and the parameters (k_{12}, A_{12}, A_{21}) of PR/WS model. Two objective functions are defined and given by Eq. (16) and Eq. (17):

$$\text{OBJ-1} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{P_{\text{exp}, i} - P_{\text{cal}, i}}{P_{\text{exp}, i}} \right)^2$$

(16)

$$\text{OBJ-2} = \frac{1}{2N} \sum_{i=1}^{N} \left[\left(\frac{P_{\text{exp}, i} - P_{\text{cal}, i}}{P_{\text{exp}, i}} \right)^2 + \left(\frac{Y_{\text{exp}, i} - Y_{\text{cal}, i}}{Y_{\text{exp}, i}} \right)^2 \right]$$

(17)

where N is the number of points in the experimental data, p is the bubble pressure, and ‘exp’ and ‘cal’ represent experimental values and calculated values, respectively.

For the measured amount of nitrogen required to pressurize the binary mixture to a given pressure [3, 5], another objective function is defined as follows:

$$\text{OBJ-3} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{m_{\text{exp}, i} - m_{\text{cal}, i}}{m_{\text{exp}, i}} \right)^2$$

(18)

In Eq. (18), m_{exp} is the amount of nitrogen, m_{cal} refers to the calculated amount of nitrogen.

To accurately estimate the amount of nitrogen required in the fire suppression bottle, a new method is proposed and it is determined by four control parameters such as (1) the total mass of agent in the bottle, (2) bottle volume (V_{bot}), (3) initial equilibrium temperature (T) and (4) initial equilibrium pressure (P). Fig. 1 depicts the overall flowchart of the method in the current study. The computational procedure mainly includes three-level iterative loops and they are (1) Z-loop
(Z refers to the total molar ratio of nitrogen in the binary mixture), (2) e-loop (e refers to the evaporation rate), and (3) K-loop (K refers to the final phase equilibrium constant). Firstly, the binary interaction coefficient $k_{12}=0.01$ and $Z_1=0.10$ are assumed. Then the calculations of bubble point and dew point are carried out to ensure that the binary mixtures are in the two-phase region. Afterwards, a flash calculation is conducted to determine the values of Z, e, K as well as m_{cal}. Finally, Eq. (18) is optimized using the Levenberg-Marquardt algorithm to determine the optimal value of k_{12}. For the adjustable parameters (k_{12}, A_{12}, A_{21}) of PR/WS model, a similar calculation is performed for the binary mixtures of N$_2$+HFC227ea, N$_2$+FC218 and N$_2$+HFC125.

4. Results and discussion

4.1 Binary interaction parameter

The optimized binary interaction parameter (k_{12}) in the vdW mixing rule are shown in Table 3. This can be achieved by minimizing Eq. (16) and Eq. (17). The mean absolute deviation for the pressure and mean relative deviation for the mole fraction of nitrogen in gas volume are calculated according to the following expression:

$$
\% \Delta p = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{P_{i,exp} - P_{i,cal}}{P_{i,exp}} \right|
$$

$$
\% \Delta y_i = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{y_{i,cal} - y_{i,exp}}{y_{i,exp}} \right|
$$

Based on the PR/vdW model with the value of k_{12} determined from Eq. (16) and Eq. (17), it is observed that the mean absolute deviations of the bubble pressure for the binary mixtures (N$_2$+HFC227ea, N$_2$+CF$_3$I, and N$_2$+halon1301) is less than 1.4% at all temperatures, as illustrated in Table 3. For the mixture of N$_2$+HFC227ea, the pressure is reproduced with a maximum deviation of 1.85% and the vapor mole fraction of nitrogen is correlated with a mean-relative deviation less than 1.75%. For the other two mixtures of N$_2$+CF$_3$I and N$_2$+Halon1301, the average deviations for the pressure and the mole fraction of nitrogen were less than those in the case of N$_2$+HFC227ea. However, for the binary mixture of N$_2$+HFC125, the PR/vdW model correlates the experimental data with a relatively larger error. The absolute deviation of the pressure varies from 2.5% to 6.7% and the deviation of the mole fractions of nitrogen in gas volume ranging from 6.8% to 8.0%. The relatively large deviations for the mole fraction of nitrogen indicates that the GLE data [9] are not suitable for estimating the binary interaction
coefficient \(k_{12} \) of vdW mixing rule.

Fig. 2 shows the temperature dependence of \(k_{12} \) in vdW mixing rule for nitrogen dissolved in the fire extinguishing agents. The \(k_{12} \) value is determined by optimizing Eq. (16) and Eq. (17) except for the mixture of \(\text{N}_2+\text{FC218} \) which is optimized by minimizing Eq. (18). As shown in Fig. 2, \(k_{12} \) presents a strong linear variation for the \(\text{N}_2+\text{HFC125} \) mixture based on the experimental data of Kim et al. [9]. However, \(k_{12} \) remains almost constant for the other mixtures. The average value of \(k_{12} \) is found to be -0.00752 for \(\text{N}_2+\text{HFC227ea} \), 0.01948 for \(\text{N}_2+\text{CF}_3\text{I} \), 0.17789 for \(\text{N}_2+\text{HFC125} \) and 0.05715 for \(\text{N}_2+\text{Halon1301} \), respectively. This fact infers that a general constant value of \(k_{12} \) can be performed to calculate the Henry’s law constant of nitrogen in a relatively large temperature range.

Tables 4 and 5 have shown the results of the optimized parameters \((k_{12}, A_{12}, A_{21}) \) in the WS mixing rule based on Eq. (16) and Eq. (17), respectively. The bubble pressures for the mixtures of \(\text{N}_2+\text{HFC227ea} \), \(\text{N}_2+\text{CF}_3\text{I} \), \(\text{N}_2+\text{HFC125} \) and \(\text{N}_2+\text{Halon1301} \) are reproduced with a mean absolute deviation less than 0.7% illustrated in Table 4, and with a mean absolute deviation less than 1.0% shown in Table 5. Of the four studied mixtures, the PR/WS model reproduces the mole fractions of nitrogen in gas volume lower than the experimental values in both Tables 4 and 5. For the mole fraction of nitrogen, the average relative deviation is less than 1.5% for \(\text{N}_2+\text{HFC227ea} \) whereas -0.80%, -17.5% and -6.1% for \(\text{N}_2+\text{CF}_3\text{I}, \text{N}_2+\text{HFC125} \) and \(\text{N}_2+\text{Halon1301} \), respectively, as presented in Table 4.

Similarly, Table 5 demonstrates the bubble pressure calculated agrees well with the experimental data, with an average absolute deviation less than 1.0% for all the binary mixtures. Moreover, the average relative deviation for mole fraction of nitrogen decreases from -17.5% in Table 4 to -1.1% in Table 5 for \(\text{N}_2+\text{HFC125} \). Generally, the PR/WS model with the parameter values obtained by both Eq. (16) and Eq. (17) can reproduce the bubble pressures with close agreement to the experimental data. When correlating GLE data from the references, Eq. (17) could be a better optimization objective function since both the deviations of pressure and vapor mole fraction of nitrogen are included.

In reference [11], the binary interaction coefficient \(k_{12} \) was set to zero since there is no GLE data for the mixture of \(\text{N}_2+\text{HFC25} \) and \(\text{N}_2+\text{FC218} \). As a matter of fact, Kim et al. [9] has already provided GLE data for \(\text{N}_2+\text{HFC25} \) at three different temperatures of 283 K, 293 K and 303 K.
On the other hand, Yang et al. [5] measured the amount of nitrogen that needed to pressurize CF$_3$I, HFC125 and FC218 to a given pressure at 296 K. DuPont [27-28] reported the mass of nitrogen required to pressurize HFC227ea and HFC125 to 2.50 MPa and 4.20 MPa, respectively. In the present study, these experimental data [5, 27, 28] have been employed to determine the binary interaction parameter (k_{12}) in vdW mixing rule and the parameters (k_{12}, A_{12}, A_{21}) in WS mixing rule. The computational procedure is shown in Fig. 1 and results are listed in Table 6.

Table 6 shows the results of the adjustable parameters of the vdW mixing rule and WS mixing rule for the N$_2$+HFC227ea, N$_2$+CF$_3$I, N$_2$+HFC125 and N$_2$+FC218, respectively. Considering the large errors when correlating the GLE data [9] of N$_2$+HFC125 through PR/vdW model and PR/WS model, the adjustable parameters obtained by Eq. (18) will be used to estimate the Henry’s law constants.

4.1.1. N$_2$+HFC227ea

Lim and Kim [4] reported the GLE data for N2+HFC227ea at three different temperatures of 293.2 K, 303.2 K and 313.2 K and pressures from 30 to 100 bar. Kao et al. [6] also measured the nitrogen solubility in super-pressurized HFC227ea at 294 K but the data of the mole fraction for nitrogen in gas volume were not included. In addition, Yang et al. [2-3, 5] provided the amount of nitrogen required to pressurize HFC227ea to a given pressure at 296 K. In general, the data given by Lim and Kim [4] could be convenient for the analysis of the parameter k_{12} in the vdW mixing rule and the parameters (k_{12}, A_{12}, A_{21}) in the WS mixing rule.

Fig. 3 compares the solubility of N$_2$ in HFC227ea predicted by PR/vdW model and PR/WS model. The values for the interaction parameters in Tables 3 and 5 determined by Eq. (17) are used. It is obvious that the PR/WS model reproduces a better result than that of the PR/vdW model.

4.1.2. N$_2$+ CF$_3$I

The binary mixture of N$_2$+CF$_3$I is also investigated by Lim and Kim [4] in the pressure range of 3.0 MPa to 10.0 MPa and temperature range of 293.2 K to 313.2 K. Yang et al. [2, 3, 5] measured the amount of nitrogen required to pressurize CF$_3$I to 2.9 MPa and 4.2 MPa at 296 K. The binary interaction coefficient of k_{12} is 0.025 at 293 K. Fig. 4 compares the PR/vdW and the PR/WS predictions with the GLE data by Lim and Kim [4] for the solubility of N$_2$ in CF$_3$I. The k_{12} value in the vdW mixing rule is from Table 3 and the values of k_{12}, A_{12}, A_{21} in WS mixing
rule are from Table 5. As can be seen in Fig. 4, PR/vdW model has almost the same accuracy with PR/WS model compared with the GLE data of N$_2$+CF$_3$I.

4.1.3. N$_2$+HFC125

In the current work, Kim et al. [9] provided GLE data for N$_2$+HFC25 at three different temperatures of 283 K, 293 K and 303 K. Fig. 5 shows the comparison of GLE data with the prediction by PR/vdW model and PR/WS model, respectively. The k_{12} value in Table 3 and the values of k_{12}, A_{12}, A_{21} in Table 5 are obtained from Eq. (17). From Fig. 5, it is noted that both the PR/vdW and PR/WS model reproduce the GLE data by Kim et al. [9] with a large error. Therefore, it is suggested that these adjustable parameters are not suitable to predict the Henry’s law constant for N$_2$ dissolved in HFC125. Meanwhile, the values of the adjustable parameters determined by Eq. (18) and shown in Table 6 will be utilized to calculate the Henry’s law constant for the mixture of N$_2$ + HFC125.

4.1.4. N$_2$+FC218

Similarly, for the case of N$_2$+HFC125, no GLE data for nitrogen solubility in FC218 was found [11]. As a result, k_{12} for the Berthelot-Lorentz combining rule is suggested as 0.00685, assuming that k_{12} changes with the carbon number of n-perfluorocarbons. Here, the interaction parameter (k_{12}) of vdW mixing rule and parameters (k_{12}, A_{12}, A_{21}) of WS mixing rule are obtained through a new method (as shown in Fig.1) for N$_2$+FC218. The results are that k_{12}=0.1206 in the vdW mixing rule and k_{12}=-0.106895, A_{12}=3770.15, and A_{21}=660.39 in the WS mixing rule. These values will be utilized to predict the Henry’s law constant for N$_2$ dissolved in FC218.

4.1.5. N$_2$+Halon1301

Lim and Kim [4] carried out an experimental study for N$_2$+Halon1301 below 9.2 MPa at 303.3 K and 7.7 MPa at 313.2 K. Their data can be easily used to predict the interaction coefficient for vdW and WS mixing rules. Fig. 6 shows the comparison of GLE data between the PR/vdW model and PR/WS model for N$_2$+Halon1301. It shows similar behavior as the case of N$_2$+HFC227ea. The deviation for the vapor mole fraction of nitrogen increases with the increase of the total pressure of equilibrium cell.

For the fire suppression bottle designers, they are interest of the amount of nitrogen required in the bottle and the bottle temperature-pressure relationships. A typical initial condition of the bottle established by the calculation process of Fig. 1 is shown in Fig. 7. As can be seen from
Fig. 7, with the increase of temperature, the mole fraction of nitrogen dissolved in liquid agent raises quicker than that in lower temperatures. To predict the total pressure in the bottle when the temperature varies, a flash calculation and material balance should be conducted similar to the computational procedure given in Fig. 1. More discussions about the temperature-pressure characteristics for different mixtures of nitrogen and agents can be seen in our previous work [36, 37].

4.2 Henry’s law constant

The Henry’s law constant for nitrogen in an agent is defined as the ratio of the nitrogen fugacity to the mole fraction of nitrogen dissolved in liquid phase at infinite dilution [6]. The values of the Henry’s law constant (\(k_H\)) is computed by PR/vdW model and PR/WS model, which is defined as the following equation:

\[
k_H = \lim_{x_\alpha \to 0} \left(\frac{f_1^V}{x_i} \right) = \lim_{x_\alpha \to 0} \left(\frac{\phi_1^V y_i P}{x_i} \right)
\]

where \(f_1^V\) is the fugacity of nitrogen; \(\phi_1^V\) is the fugacity coefficient of nitrogen in the vapor phase.

The temperature-dependent Henry’s law constants for nitrogen dissolved in HFC227ea, HFC125 and Halon1301 are derived from references [27-28, 30]. In the current work, both the PR/vdW model and PR/WS model are utilized to predict the Henry’s law constants for all the mixtures. Fig. 8 shows the comparisons of the prediction via PR/vdW model and WS model with literatures [6, 27-28]. For the mixture of N\(_2\)+HFC227ea, \(k_{12}=0.03515\) is calculated by using the experimental data from [27], which presents an average deviation of approximate 4.9% higher than the experimental values [27] in the considered temperature range from 263 K to 313 K. For the case of \(k_{12}=0\), the mean deviation is approximate 2.1% and the calculated Henry’s law constant are lower than the experimental data of DuPont [27]. Using the same GLE data or the same amount of nitrogen required, PR/vdW model shows a better prediction for the Henry’s law constant than the PR/WS model, especially for the case of \(k_{12}=0.0173\). Considering the Henry’s law constant of nitrogen dissolved in HFC125, the values calculated by a universal \(k_{12}=0.039\) in vdW mixing rule agrees well with the test data of DuPont [28]. Though the PR/WS model reproduced the GLE data for all the binary mixtures quite well (see section 4.1), it still represents
larger deviations when compared with PR/vdW model. The reason for the inaccurate predictions
of Henry’s law constant by PR/WS model may be that the three parameters \((k_{12}, A_{12}, A_{21}) \) are
more sensitive to temperatures. As such, the PR/vdW model is selected to estimate the Henry’s
law constant for nitrogen dissolved in CF₃I and FC218.

Since no experimental values of Henry’s law constant for nitrogen dissolved in CF₃I and
FC218 were found, a uniform value of \(k_{12} \) in vdW mixing rule is suggested to predict the Henry’s
law constant. Fig. 9(a) shows the results of Henry’s law constants computed by PR/vdW model
with \(k_{12} = 0 \) and \(k_{12} = 0.025 \) for \(\text{N}_2 + \text{CF}_3\text{I} \). Fig. 9(b) gives the results of Henry’s law constants for
\(\text{N}_2 + \text{FC218} \) with \(k_{12} = 0 \) and \(k_{12} = 0.122 \). The values predicted via PC-SAFT EOS [12] and PR
EOS[12] are also shown in Fig. 9(b).

Krause and Benson’s [12, 29] three-parameter correlation is used to predict Henry’s law
constants of nitrogen dissolved in CF₃I and FC218 with the following expression:

\[
\ln k_H = C_1 + C_2 \left(\frac{1 - T}{T} \right)^{1/3} + C_3 \left(\frac{1 - T}{T} \right)^{2/3}
\]

(22)

where \(C_1, C_2 \) and \(C_3 \) are coefficients listed in Table 7.

Due to lack of available experimental values for the Henry’s law constant of nitrogen dissolved
in CF₃I and FC218, it is not possible to obtain which \(k_{12} \) would give a better prediction
compared with the real solubility of nitrogen in CF₃I and FC218. Therefore, in the current study,
both \(k_{12} \) values are considered to estimate the Henry’s law constant.

5. Conclusions

The available GLE data for nitrogen dissolved in HFC227ea, CF₃I, FC218, HFC125 and
Halon1301 are correlated using the PR EOS associated with vdW mixing rule and WS mixing
rule. Both the binary interaction coefficient \(k_{12} \) in vdW mixing rule and parameters \(k_{12}, A_{12}, A_{21} \)
in WS mixing rule are obtained based on Eq. (16) and Eq. (17).

Compared with the GLE experimental data, the PR/WS model shows a better correlation
compared with the PR/vdW model for all the binary mixtures. For the PR/WS model, the average
absolute deviation for the pressure is less than 1.5% while the average relative deviation for the
mole fraction of nitrogen in gas volume is less than 1.2%. Since there are no experimental data
for \(\text{N}_2 + \text{FC218} \) or the data may be questionable for \(\text{N}_2 + \text{HFC125} \), a new computational procedure
has been proposed to determine the interaction coefficient (\(k_{12} \)) and the parameters (\(k_{12}, A_{12}, A_{21} \))
for N₂+HFC227ea, N₂+CF₃I, N₂+FC218 and N₂+HFC125. These coefficients obtained by the new method are to be used in prediction of the Henry’s law constants.

For the calculation of the Henry’s law constants for all the binary mixtures, PR/WS model presents a poor result than PR/vdW model. The reason may be that the parameters (k₁₂, A₁₂, A₂₁) in WS mixing rule are more sensitive to the temperature. Therefore, PR/vdW model is selected to predict the Henry’s law constants for N₂+CF₃I and N₂+FC218. The results of the Henry’s law constant are correlated by the Krause and Benson relation as a function of reduced temperature of the fire suppression agents. These obtained correlations can be very helpful for fire suppression bottle designers to acquire the bottle pressure-temperature relationships for the mixtures of nitrogen and agents.

Acknowledgements
The authors would like to acknowledge the financial support from UoA 15 Flexible Fund from Northumbria University, United Kingdom.

References
[4] Lim, J S, and J D Kim. Vapor-liquid equilibria of the binary systems nitrogen+bromotrifluoromethane+ bromochlorodifluoromethane+ 1, 1, 2, 3, 3, 3-heptafluoropropane, and+ trifluoriodomethane from 293.2 to 313.2 K and 30 to 100 bar. Journal of Chemical & Engineering Data 42.1 (1997): 112-115

[25] TRC databases for chemistry and engineering - TRC thermodynamic tables version 1996-1s. Texas A&M University System: College Station, TX, 1996

[27] DuPont FM-200 fire extinguishing agent: properties, uses, storage, and handling

[28] DuPont FE-25 fire extinguishing agent: properties, uses, storage, and handling

fire extinguishing systems, 1984

coeexistence curve and determination of the critical parameters for refrigerant 13B1, Bulletin
of JSME, 1985, 28(245): 2660-2666

[33] Srinivasan K, Murthy M V K. Corresponding states treatment of saturated liquid viscosity
of some halogenated hydrocarbon refrigerants, International journal of refrigeration, 1985,
8(1): 13-16

[34] Srinivasan K. A corresponding states treatment of saturated density, surface tension and
capillary constant of cryogenic liquids and refrigerants, The Canadian Journal of Chemical
Engineering, 1990, 68(3): 493-497

[35] Defibaugh D R, Moldover M R. Compressed and saturated liquid densities for 18
halogenated organic compounds, Journal of Chemical & Engineering Data, 1997, 42(1): 160-
168

[36] Chen Mengdong, Yu Jianzu, Xie Yongqi. Calculating the filling properties for N₂/CF₃I
based on volume translation Peng-Robinson equation of state. Acta Aeronautica Et

[37] Chen Mengdong, Xie Yongqi, Guo Xiangxiang, et al. Calculating the filling mass of
nitrogen in the fire agent bottle based on Peng-Robinson equation of state with Wong-Sandler
mixing rule. Journal of Beijing University of Aeronautics and Astronautics,

Fig. 1. Flowchart for calculating the amount of nitrogen required.

Fig. 2. Binary interaction parameter for nitrogen and agents using PR/vdW model.

Fig. 3. Solubility of N₂ in HFC227ea at three different temperatures. Comparisons of PR/vdW
model and PR/WS model with GLE data by Lim and Kim [4]. (a) prediction by PR/WS
model (b) mole fraction of nitrogen in liquid HFC227ea (c) comparisons of PR/vdW model
and PR/WS model.

Fig. 4. Solubility of N₂ in CF₃I at three different temperatures. Comparisons of PR/vdW model
and PR/WS model with GLE data by Lim and Kim [4]. (a) prediction by PR/WS model (b)
mole fraction of nitrogen in liquid CF$_3$I (c) comparisons of PR/vdW model and PR/WS model.

Fig. 5. Solubility of N$_2$ in HFC125 at three different temperatures. Comparisons of PR/vdW model and PR/WS model with GLE data by Kim et al. [9]. (a) prediction by PR/WS model (b) mole fraction of nitrogen in liquid HFC125 (c) comparisons of PR/vdW model and PR/WS model.

Fig. 6. Solubility of N$_2$ in Halon1301 at three different temperatures. Comparisons of PR/vdW model and PR/WS model with GLE data by Lim and Kim [4]. (a) prediction by PR/WS model (b) mole fraction of nitrogen in liquid Halon1301 (c) comparisons of PR/vdW model and PR/WS model.

Fig. 7. Solubility of nitrogen in Halon1301 and HFC227ea at different temperatures with a typical initial condition.

Fig. 8. Henry’s law constant predicted by PR/vdW model and PR/WS model. (a) Henry’s law constant for N$_2$+HFC227ea (b) Henry’s law constant for N$_2$+HFC125.

Fig. 9. Henry’s law constant predicted by PR/vdW model. (a) Henry’s law constant for N$_2$+CF$_3$I (b) Henry’s law constant for N$_2$+FC218.

Table 1. Characteristic properties of all the pure component.

Table 2. Details on the phase equilibrium for the systems considered here.

Table 3. Optimum binary interaction parameter in the vdW mixing rule with Eq. (16) and Eq. (17), respectively, and average absolute deviations for pressure and mean relative deviations for mole fraction of nitrogen in gas volume.

Table 4. Optimum binary interaction parameter and NRTL constants in the WS mixing rule at all temperatures studied and average absolute deviations for pressure and average relative deviation for vapor mole fraction of nitrogen, using PR/WS model with Eq. (16).
Table 5. Optimum binary interaction parameter and NRTL constants in the WS mixing rule at all temperatures studied and average absolute deviations for pressure and average relative deviation for vapor mole fraction of nitrogen, using PR/WS model with Eq. (17).

Table 6. Optimum binary interaction parameters for PR/vdW model and PR/WS model with Eq. (18).

Table 7. Parameters C_1, C_2 and C_3 in Krause and Benson’s correlation for the Henry’s law constant of nitrogen dissolved in CF$_3$I and FC218.