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Outline of a Theory of Strongly Semantic Information 

Abstract 

This paper outlines a quantitative theory of strongly semantic information (TSSI) based on 

truth-values rather than probability distributions. The main hypothesis supported in the paper 

is that (i) the classic quantitative theory of weakly semantic information (TWSI) is based on 

probability distributions because (ii) it assumes that truth-values supervene on information, 

yet (iii) this principle is too weak and generates a well-known semantic paradox, whereas (iv) 

TSSI, according to which information encapsulates truth, can avoid the paradox and is more 

in line with the standard conception of what counts as information. After a brief introduction, 

section two outlines the semantic paradox entailed by TWSI, analysing it in terms of an initial 

conflict between two requisites of a quantitative theory of semantic information. In section 

three, three criteria of information equivalence are used to provide a taxonomy of quantitative 

approaches to semantic information and introduce TSSI. In section four, some further 

desiderata that should be fulfilled by a quantitative TSSI are explained. From section five to 

section seven, TSSI is developed on the basis of a calculus of truth-values and semantic 

discrepancy with respect to a given situation. In section eight, it is shown how TSSI succeeds 

in solving the paradox. Section nine summarises the main results of the paper and indicates 

some future developments. 
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1. Introduction 

“A triangle has four sides”: according to the classic theory of semantic information, there is 

more semantic content1 in this contradiction than in the contingently true statement “the earth 

has only one moon”. Bar-Hillel and Carnap [1953]2 were among the first to make explicit this 

prima facie counterintuitive inequality: 

It might perhaps, at first, seem strange that a self-contradictory sentence, hence one which no ideal receiver 

would accept, is regarded as carrying with it the most inclusive information. It should, however, be emphasized 

that semantic information is here not meant as implying truth. A false sentence which happens to say much is 

thereby highly informative in our sense. Whether the information it carries is true or false, scientifically valuable 

or not, and so forth, does not concern us. A self-contradictory sentence asserts too much; it is too informative to 

be true. (p. 229). 

With a little hyperbole, we may conveniently refer to it as the Bar-Hillel-Carnap semantic 

Paradox (BCP). 

Since its formulation, BCP has been recognised as an unfortunate, yet perfectly 

correct and inevitable consequence of any theory of weakly semantic information (TWSI; 

more on TWSI in section 2). As a consequence, the problem has often been either ignored3 or 

tolerated4 as the price of an otherwise valuable approach. Sometimes, however, attempts have 

been made to circumscribe its counterintuitive consequences. This has happen especially in 

Information Systems Theory (Winder [1997])—where consistency is an essential constraint 

that must remain satisfied for a database to preserve data integrity—and in Decision Theory, 

where inconsistent information is obviously of no use to a decision maker. In these cases, 

whenever there are no possible models that satisfy a statement or a theory, instead of 

assigning to it the maximum quantity of information, three strategies have been suggested: 

1) assigning to all inconsistent cases the same, infinite information value (Lozinskii [1994]). 

This is in line with an economic approach, which defines x as impossible if and only if that x 

has an infinite price; 



 

 4

2) eliminating all inconsistent cases a priori from consideration, as impossible outcomes in 

decision-making (Jeffrey [1990]). This is in line with the syntactic approach developed by the 

statistical theory of signals transmission5 (STST, more on this in a moment); 

3) assigning to all inconsistent cases the same zero information value (Mingers [1997], 

Aisbett and Gibbon [1999]).  

The latter approach is close to the one developed in this paper. Informally, the general 

hypothesis is that BCP indicates that something has gone essentially amiss with TWSI. TWSI 

is based on a semantic principle that is too weak, namely that truth-values supervene on 

information (see the quotation above). A semantically stronger approach, according to which 

information encapsulates truth, can avoid the paradox and is more in line with the ordinary 

conception of what counts as information.6  

The actual viability of an alternative to TWSI is, of course, another matter. In this 

direction, however, STST already provides some initial reassurance. STST identifies the 

quantity of information associated with, or generated by, the occurrence of a signal (an event 

or the realisation of a state of affairs) with the elimination of possibilities (reduction in 

uncertainty) represented by that signal (event or state of affairs).7 Now in STST no 

counterintuitive inequality comparable to BCP occurs, and the line of argument in this paper 

will be that, as in the case of STST, a theory of strongly semantic information (TSSI), based 

on alethic and discrepancy values rather than probabilities, can also successfully avoid BCP, 

although for quite different reasons.  

Before developing TSSI, a note on the terminology, the concepts and the assumptions 

used in the paper is in order. In what follows, the term “infon” and the symbol σ (Devlin 

[1991]) will be used to refer to discrete items of information, irrespective of their semiotic 

code and physical implementation. This is in line with common practice in AI, Computer 

Science and ICT (information and communication technology), where the expression 
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“information resources” is used to refer to information in different formats, e.g. hard copy or 

digital texts, graphics, maps, tabular data etc. (Heck and Murtagh [1993]). Some basic 

concepts belonging to situation logic will also be adopted, still following work done by 

Devlin [1991], who articulates and defends a theory of semantic information, understood 

extensionally, in terms of situation logic principles first developed by Barwise and Perry 

[1983]. Finally, the following three principles of communication theory will be assumed 

without further justification:  

a) every σ-source that generates, sends or transmits σ is treated as a bona fide source of 

information; 

b) when it appears that σ can have a higher or lower degree of informativeness, it is 

attributed the highest of such degrees; 

c) the channel of communication of σ is treated as ideally noiseless. 

The primary aim of these principles is to shift the burden of proving that σ is not maximally 

informative from the sender to the receiver. They make it possible to set aside both error 

analysis issues and problems of a sceptical nature that would be out of place in this context. 

 

2. The Bar-Hillel-Carnap Paradox 

According to TWSI, the semantic content (CONT) of an infon σ can be identified negatively8 

with the set of all the descriptions of the possible states of the universe that are excluded by 

σ:  

1  CONT(σ) =def. the set of all state-descriptions inconsistent with σ 

Suppose E is a probabilistic experiment9 in which infons are messages formulated by a 

source, using the standard language of set theory and classic, first-order logic with identity, to 

describe a domain of three individual constants D = {a, b, c} and 2 predicates either affirmed 

or negated {G, H}, in such a way that each individual (e.g. each figure of the plane) is either 
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G or ¬G (e.g. four-sided or not), and either H or ¬H (e.g. right-angled or not). E allows the 

formulation of 12 different atomic messages, according to the scheme Φ(x). Atomic 

messages are incomplete state-descriptions of E. Complex messages can have any length, but 

a complete state-description is a message σ consisting of a conjunction of 6 different and 

consistent atomic messages. Each conjunctive message σ denotes one of the n possible states 

of E’s universe. Since in E the number s of types of predicates is 2 and the length l of a 

message σ is 6, the number of distinguishable messages is sl = 64. 

E is a microworld whose total possibility is 1. Its fixed and finite sample space can be 

described either ontologically, as the set of all possible states W = {w1, w2, …, w64}, or 

semantically, as the set of all jointly exhaustive and mutually exclusive messages Σ =  {σ1, σ2, 

…, σ64} (see Table 1).10 Three direct consequences of [1] are that:  

i) the inclusion of any other atomic message in any σi ∈ Σ would necessarily result in σi 

becoming inconsistent. Thus, Bar-Hillel and Carnap [1953] describe Σ as the set of all, most 

strongly synthetic messages in E. Each σi is inconsistent with any other message in Σ, and 

any other conjunctive message that logically implies, or is stronger than, any σi is self-

contradictory;  

ii) the set of all messages inconsistent with a tautology is empty, therefore any tautology (T) 

has minimum semantic content,11 that is  

2    CONT(T) = MIN 

iii) since any message is inconsistent with a contradiction (⊥), any contradiction has 

maximum semantic content,12 that is 

BCP    CONT(⊥) = MAX 

In BCP, two fundamental requisites of a quantitative theory of semantic information appear 

to be in conflict. In section 7, we shall see that their relation is actually somewhat more 
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complex, but at the moment it is sufficient to analyse it in its simplest form. The first 

requisite (R.1) states that CONT(σ) should be inversely related to p(σ), the logical probability 

of σ. The “mathematically simplest relation” (Bar-Hillel and Carnap [1953], 302) fulfilling 

this requirement is the complement of 1: 

R.1    CONT(σ) = 1 − p(σ) 

TWSI implements R.1 but, as an alternative, R.1 could also be expressed as an inverse 

proportion: 

R.1*    CONT(σ) ∝ k/p(σ) 

here k is a constant of proportionality independent of the two values. This is the standard 

approach implemented by STST, where the quantity of information conveyed by σ is 

equivalent to the reciprocal of p(σ), expressed in bits: 

3         I(σ) = log2 1/p(σ) = − log2 (σ) 

The problem with implementing R.1* in TWSI is that CONT(σ) × p(σ) = k, and the equation 

would require a more complex treatment of CONT(T) and CONT(⊥) as two limits of the 

continuous function f (p(σ)): 

4 

 

This complication does not occur in STST because the latter presupposes a frequency 

interpretation of probability and partitions the total amount of probability (= 1.0) a priori, 

among all the actually possible alternatives, thus excluding by definition the occurrence of 

any option that is necessarily false. In what follows, it is argued that the set-theoretic 

approach expressed in R.1 can be successfully adopted by TSSI as well.  
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informativeness of σ, should be directly proportional to the semantic content of σ: 

 

1 ) ( ( lim ) CONT( 

0 )) ( ( lim CONT (T) 

0 ) ( 

1 ) ( 
= σ = ⊥ 

= σ = 

→ σ 

→ σ 
p f 

p f 

p 

p 



 

 8

R.2*    ι(σ) ∝ m CONT(σ) + b, with m ≥ 1 and b ≥ 0   

Since for our purposes the significant point in R.2* is only the relation of direct 

proportionality between ι(σ) and CONT(σ), for the sake of elegance and simplicity we can 

adopt a weaker version of R.2*, by treating m and b as redundancy factors and hence 

reducing m to 1 and b to 0. Assuming that σ can be fully normalised in this way,13 R.2* 

simplifies to: 

R.2    ι(σ) ∝ CONT(σ) 

Anything that will be inferred from R.2 below can be inferred, a fortiori, from R.2*. 

R.1 and R.2 generate no conflict about the interpretation of |= σ. However, regarding 

σ |=, the conclusion is that p(σ) = 0 and ι(σ) = 0, and it becomes unclear whether the value of 

CONT(σ) should be MAX, following R.1, or MIN, following R.2. This tension is sufficiently 

problematic to invite the elaboration of a different approach.  

 

3. Three criteria of information equivalence 

TWSI, the classic quantitative theory of semantic information, concentrates on the (degree of) 

systemic consistency and then the a priori, logical probability of (sets of) infons. There is no 

reference to the actual alethic values of the infons in question, which are supposed to qualify 

as instances of information independently of whether they are true or false. This is why the 

theory can be described as only weakly semantic. Is it possible to avoid BCP by assuming a 

stronger semantic principle, according to which if σ qualifies as information it must 

encapsulate truth? The question presupposes a clear view of what alternatives to TWSI are 

available, hence a taxonomy of quantitative theories. The latter can be provided on the basis 

of three criteria of semantic equivalence.  

Any quantitative theory, including any theory dealing with the concept of semantic 

information and its various measures (Smokler [1966]), requires at least a criterion of 
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comparative quantitative equivalence. In general, this “scale” criterion makes it possible to 

establish whether two measured objects, e.g. two coins x and y, have the same weight z, even 

if the latter cannot be qualified any more precisely. Now, two infons σn ≠ σm can be said to 

be co-informative i.e. to possess an equivalent quantity of semantic information, Ci (σn, 

σm)according to three criteria of comparative quantitative equivalence. They can be listed 

here in order of decreasing strength: 

C.1  Ci (σn, σm) ↔ σn and σm have equivalent meaning 

It is reasonable to suppose, for example, that declarative sentences expressing the same 

propositionlike “Peter drives the car” and “The car is driven by Peter”possess an 

equivalent amount of semantic information. If σn and σm are qualitatively co-informative, a 

pragmatic theory (Bar-Hillel and Carnap [1953]) could provide the relevant analysis, by 

addressing the question of how much information a certain infon carries for a subject S in a 

given doxastic state and within a specific informational environment. The pragmatic theory 

of “interested information” is crucial in Decision Theory, where a standard quantitative 

axiom states that, in an ideal context and ceteris paribus, the more informative σ is to S, the 

more S ought to be rationally willing to pay to find out whether σ is true (Sneed [1967]). It 

remains to be seen whether a satisfactory quantitative theory can effectively be developed in 

full.14 

C.2  Ci (σn, σm) ↔ σn and σm are truth-functionally equivalent   

If σn and σm are alethically co-informative, Boolean algebra provides the relevant analysis. 

Of course C.2 can be extended to apply to classic n-order, multi-valued or fuzzy logic 

systems, etc.  

C.3  Ci (σn, σm) ↔ σn and σm are equiprobable     
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If σn and σm are quantitatively co-informative, the classic theory of weakly semantic 

information provides the relevant analysis. 

Interpreting C.1-C.3 as conditionals rather than biconditionals provides the ground for 

a taxonomy of theories (see Table 2). More finely-grained criteria for co-informativeness 

could now be developed, ranging from full synonymity to full equiprobability. Intuitively, the 

closer a criterion is to synonymity, the more the semantic theory is forced to rely on the 

interpretation of σ by an intelligent receiver S capable of understanding its contextual sense 

(this is known as “fully interested information”), the less easily the information in question 

can undergo a quantifiable treatment, and the more a hermeneutic approach becomes 

inevitable. At the other end of the spectrum, a purely quantitative approach to the theory of 

semantic information will tend to abstract from the users of σ (“fully disinterested 

information”) and to deal only with the analysis of p(σ), irrespective of its actual 

interpretation and contextual alethic value. The latter strategy is consistent with a family of 

realist positions, including mathematical Platonism and epistemological Cartesianism: infons 

are treated extensionally not intentionally, as semantic (at least in the sense of being 

interpretable), structured, abstract objects, comparable to fundamental informational particles. 

They subsist, are systemically related and may be physically implemented in the world of 

human experience. 15 

A cursory analysis of Table 2 already suffices to show that:  

a) approach no. 8 is trivially uninteresting;  

b) approach no. 3 is not implementable, since it is impossible for Ci (σn, σm) to be the case 

qualitatively without σn and σm also being alethically co-informative;  

c) approaches nos. 1, 2 and 4 would initially rank as the most interesting alternatives, but a 

fully quantitative and extensionalist approach to the meaning of σ seems unachievable, 

witness the failure of many programs in “strong” Artificial Intelligence (Floridi [1999], 
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chapter 5). In this paper it will be assumed that, if possible, less demanding alternatives 

should be developed first;  

d) approach no. 6 is the one followed in mathematical logic; and  

e) approach no. 7 is the one followed by TWSI.  

We have seen that the implementation of C.3 in no. 7 brings with it some obvious 

computational advantages, of which TWSI makes the most, but also a shortcoming, namely 

BCP. The avoidance of BCP invites the development of  

f) approach no. 5, that is an analysis of the quantity of semantic information in σ including a 

reference to its truth-value. This is TSSI. 

 

4. Three desiderata for TSSI 

As anticipated above, the principal goal of TSSI is to provide a quantitative analysis of 

semantic information that can be as mathematically successful as TWSI, but more respectful 

of our common-sense intuitions. More specifically, this means trying to:  

D.1  avoid any counterintuitive inequality comparable to BCP   

D.2 treat the alethic value of σ not as a supervenient but as a necessary feature of 

information, relevant to the quantitative analysis (for a similar approach see 

Dretske [1981]) 

D.3 extend a quantitative analysis to the whole family of information-related 

concepts: information vacuity and inaccuracy, informativeness, 

misinformation (what is ordinarily called “false information”), disinformation. 

Arguably, D.1 and D.2 are complementary. BCP-like problems can arise because the alethic 

values of the infons in question are treated as irrelevant to the quantitative analysis of 

information, so TSSI can attempt to fulfil both D.1 and D.2 by implementing C.2. Regarding 

D.3, this requires a more robust and substantial theory of semantic information than one 
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based only on probability distributions (Szaniawski [1984], Mingers [1997]). In sections 6-9 

it will be shown that, by treating information as encapsulating truth, TSSI offers a 

quantitative approach that can be generalised to a whole family of related concepts, although 

in this paper the quantitative analyses of misinformation and disinformation will not be 

provided for reasons of space (see section 9). 

 

5. Degrees of vacuity and inaccuracy  

The first step in the construction of TSSI is to define the concept of “informative content” or 

intrinsic informativeness of σ extensionally and a priori in an ideal context,16 as a function of 

the positive or negative degree of “semantic distance” or deviation of σ from a fixed point or 

origin, represented by the given situation w, to which σ is supposed to refer.17 Let w be a 

situation in a context, where a “situation” is “determined by (what goes on in) a topologically 

simply-connected, structured region of space-time” (Devlin [1991], 69), and a “context” is 

the set of interrelated conditions in which a situation occurs, what can be described, 

informally, as the immediate environment of a situation or, topologically, its neighbourhood. 

Each message σi in E conforms to (has the property of providing or conveying true contents, 

e.g. facts or ideas about) its corresponding situation wi in W. Following the terminology of 

situation logic, this means that wi fully supports σi (in symbols, ||-Wi σi). Obviously, each 

message σi is maximally informative relatively to its situation wi, yet this applies 

indiscriminately and trivially to any message. More interesting is the fact that the amount of 

informativeness of each σi can be evaluated absolutely, as a function of  

a) the polarity of σi, i.e. the alethic value possessed by σi; and  

b) the degree of discrepancy18 (want of agreement) between σi and a given state of the world 

w, calculated as the degree ϑ of semantic deviation19 of σi from the uniquely determinate 

state w in which E is (||-Wθ σ).  
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The given situation w functions as a benchmark to test the Boolean truth-value and the degree 

of discrepancy of each σ. This captures an important aspect of the ordinary conception of the 

nature of information, at the roots of any epistemic utility function (Levi [1967]): two infons 

can both be false and yet significantly more or less distant from the event or state of affairs w 

about which they purport to be informative (e.g. “there are ten people in the library” and 

“there are fifty people in the library”, when in fact there are nine people in the library). 

Likewise, two infons can both be true and yet deviate more or less significantly from w (e.g. 

“there is someone in the library” vs. “there are 9 or 10 people in the library”). This implies 

that a falsehood with a very low degree of discrepancy may be pragmatically preferable to a 

truth with a very high degree of discrepancy (Popper [1959]). This in turn provides a strong 

argument for the rejection of the deductive closure principle: since σ could be false, if S 

commits him/herself to accepting σ as epistemically preferable, S is not necessarily 

committing him/herself to accepting all the deductive consequences of σ as epistemically 

preferable. 

In order to express both positive (for σ = true) and negative (for σ = false) degrees of 

discrepancy, let f (σ) be a mapping function from members of Σ to members of the set of 

some numeric values in the range of real numbers [−1.0, + 1.0]. The function associates a real 

value ϑ of discrepancy to each σ depending on its truth-value and deviation from w:  

5    ϑ = f (σ)  

The mapping generates a continuous set Γ of ordered pairs <σ, ϑ>. Γ is a subset of the 

Cartesian product Σ × [−1.0, + 1.0] that may be equipotent with respect to Σ.20 In a way that 

only partly resembles what happens in fuzzy logic, the lower and upper bound are used to 

represent complete discrepancy, while a selection of values in between is used to represent 

what are, intuitively, degrees of approximation to w from the negative and the positive side, 

with 0 as the indication of no discrepancy, i.e. complete conformity (note that ϑ values are 
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mapped onto the x-axis in the graph in Table 5 since values on the y-axis are the result of a 

composite function).    

Intuitively, ϑ indicates the distance of an infon σ from a selected situation w and can 

be read as the degree of support offered by w to σ. In a condition of total ignorance, the value 

of ϑ can be established a priori by using a non-monotonic or probabilistic calculus (this is 

what justifies the clause “it is estimated that” in the following formulae), yet ϑ values should 

not themselves be interpreted as probabilities. Although they can have forecasting 

significance and may be based on the statistical strength of evidence supporting the assertion 

that σ conforms to w, they can be negative and they do not need to sum to one. In real-life 

cases, it may be difficult to calculate ϑ values with a fully reliable degree of precision and 

approximations may often be inevitable. However, any feasible and satisfactory metric will 

have to satisfy the following five conditions: 

M.1   ||-W σ → f (σ) = 0  

if (it is estimated that) σ is true and conforms to w most precisely (i.e. in the least vacuous 

way) and accurately, it is assigned a zero degree of discrepancy, i.e. ϑ = 0. This is the 

technical sense in which precise and accurate information can be seen as the threshold 

between vacuous truth and inaccurate falsehood.  

M.2   ||-∀w σ → f (σ) = 1  

if (it is estimated that) σ is true and conforms to any situation, σ is a tautology and it is 

assigned a maximum degree of positive discrepancy. Every situation supports σ, so no other 

true σ could be more distant from w than a tautological σ. In this case, σ is described as 

having the highest degree of semantic vacuity, i.e. ϑ = 1.21  

M.3   ||-¬∃w σ → f (σ) = −1  
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if (it is estimated that) σ is false and conforms to no possible situation, σ is a contradiction 

and it is assigned a maximum degree of negative discrepancy. No possible situation supports 

σ, so no other false σ could be more distant from w than a contradictory σ. In this case, σ is 

described as having the highest degree of semantic inaccuracy,22 i.e. ϑ = −1. 

M.4   ||-W−θ σ → (0 > f (σ) > −1)  

if (it is estimated that) σ is contingently false, it is assigned a degree of discrepancy with a 

value less than 0 but greater than −1 (degrees of semantic inaccuracy). 

M.5   ||-W+θ σ → (0 < f (σ) < +1)  

if (it is estimated that) σ is contingently true but does not conform to w with the highest 

degree of precision, it is assigned a degree of discrepancy with a value greater than 0 but less 

than +1 (degrees of semantic vacuity). 

 According to M.1-M.5, σn in language Ln is semantically equivalent to σm in language 

Lm if and only if σn and σm have the same absolute alethic value and a comparable L-

dependent degree of discrepancy with respect to w. 

The implementation of M.1-M.3 causes no great difficulties but, when one deals with 

models that are not easily formalisable, the behaviour of the function f (σ) in M.4-M.5 may 

become a matter of more conventional stipulations, which can grade ϑ values according to 

their comparative degree of vacuity or inaccuracy, relative to a specific application. There 

may be various ways of developing this comparative analysis. Since the present task is to 

provide a general outline of a strongly semantic theory, in this article the analysis can be 

limited to a paradigmatic model, which any real-life application will try to approximate. Let 

us consider M.4 first, since it is simpler than M.5.  
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According to M.4, the relative “amount of falsehood” in each contingently false σ 

indicates the degree of inaccuracy of σ with respect to w. This is then calculated as the ratio 

between the number of erroneous23 atomic messages e in σ and its length:  

Inac     −ϑ(σ) = −e(σ)/l(σ) 

Inac allows us to partition Σ = sl into l disjoint classes of inaccurate σ {Inac1, …, Inacl}, and 

map each class to its corresponding degree of inaccuracy (see Table 3 for an application to 

the model E). 

Consider now M.5. The degree of vacuity cannot refer to members of Σ immediately, 

but only to their logical transformations σj possessing a positive alethic value. Since each σj 

must be assumed to be true by definition, the analysis of e/l can no longer provide a clear 

measure of ϑ(σ). For example, both the set of complements or negationsΣn = {¬σ1,  ¬σ2, 

…, ¬σ64}and the logically equivalent set of duals24Σ∆ = {σ1
∆, σ2

∆, …, σ64
∆}of all 

strongly synthetic messages contain formulae with e = 0 that would count as having the 

absolutely lowest degree of vacuity, i.e. ϑ = 0, despite the obvious fact that, since they 

contain disjunctions, they would conform to a number of situations, including w, greater than 

one. Similar difficulties arise in the development of any analysis based on the ratio between 

the number of correct atomic messages in σ and its length. Is there any other reliable criterion 

to quantify ϑ(σ)?  

Recall that a tautology has ϑ = +1 because it is consistent with every possible 

situation. In the case of the most weakly synthetic messages in E, i.e. members of the two sets 

Σn and Σ∆, each ¬σi and σi
∆ is inconsistent with only one state in W. This means that members 

of the two sets have the highest possible degree of positive discrepancy to w, short of being 

analytically true. The conclusion can be generalised to any set of not strongly synthetic 

messages Σx. We shall say that, when σ is contingently true but vacuous, its semantic 
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distance from w can be calculated as a function of the number of situations, including w itself, 

with which σ is consistent: 

Vac    +ϑ(σ) = n/sl 

More precisely, the degree of semantic vacuity of σ, with respect to a situation w, is the ratio 

between the cardinality n of the set of all the situations in E, necessarily including w, that 

support σ, and the number sl of possible situations in E.  

In Vac, n is a positive integer that satisfies the condition 1 ≤ n > sl. The number of 

situations supporting σ ∈ Σx determine the specific value of n. Is there a systematic method 

for generating a “continuum” of progressively weaker synthetic messages in E whilst keeping 

l constant? A simple solution is provided by the introduction of semiduals.  

Semiduals are duals in which only the connectives {∧ , ∨} have been inverted but 

atomic messages have not been replaced by their complement, whilst parentheses can be 

introduced to avoid ambiguities. A message of length l contains l−1 connectives. We start 

with the assumption that all l−1 connectives are conjunctions, that is all messages are 

strongly synthetic. By replacing all conjunctions with l−1 disjunctions we obtain the set of 

most weakly synthetic messages in E, whose ϑ = (sl−1)/sl. We can then proceed to replace 

l−2 conjunctions, l−3 conjunctions and so forth, until l−n disjunctions = 1. The set with l−n = 

1 disjunction is the set of true, synthetic messages in E with the lowest number of supporting 

situations and hence the lowest ϑ > 0 in the model. In E, this means that we can construct five 

classes, whose members are true and consistent with, respectively, 63, 35, 15, 7, or 3 

situations. These are the corresponding values of n.  

Vac and the previous method of semantic weakening allow us to partition Σ into l−1 

disjoint classes Vac = {Vac1…Vacl−1}, and map each class to its corresponding degree of 

vacuity ϑ. Note that the value of ϑ for the class of most weakly synthetic messages in E is 
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always (sl−1)/sl, whilst the middle values are found according to the formula ((sl/2)−1)/sl, 

((sl/22)−1)/sl, … ((sl/2n)−1)/sl, where (sl/2n) − 1 = 3, i.e. the smallest number of situations, 

including w, consistent with σi when ϑ(σi) > 0 (see Table 4 for an application to the model 

E).  

 

6. Degrees of informativeness  

We are now ready to calculate the degree of informativeness function of σ. The complement 

of the squared value of ϑ(σ) with respect to the maximum degree of informativeness provides 

an accurate measure of the informativeness of σ (see Table 5 for the graphics, ι values are 

mapped onto the y-axis): 

 DI    ι(σ) = 1 − ϑ2(σ) 

What are the motivations for DI? If possible, the equation should satisfy the following 6 

constraints, derived from the five necessary conditions for a satisfactory metrics M.1-M.5: 

E.1   (ϑ(σ) = 0) → (ι(σ) = 1) 

E.1 follows immediately from M.1. 

∫
b

a
 integralproper  a isdx  )(                                              E.2 σι  

E.2 follows from the fact that the function f (σ) is bounded on the interval [0, 1]. In the next 

section, we shall see that E.2 simplifies the calculation of the quantity of informative, 

vacuous or inaccurate content in σ.  

E.3   (ϑ(σ) = (+1 ∨  −1)) → (ι(σ) = 0)  

E.3 follows immediately from M.2 and M.3. 

E.4   ((0 < ϑ(σ) < +1) ∨  (0 > ϑ(σ) > −1)) → 0 < ι(σ) > 1 

E.4 follows immediately from M.4 and M.5.   

E.5   a small variation in ϑ(σ) results in a substantial variation in ι(σ).  
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E.5 is meant to satisfy the requirement according to which the lower ι(σ) is, the smaller is the 

possible increase in the relative amount of vacuity or inaccuracy carried by σ. E.5 will 

become clearer in the next section, once the two concepts of quantity of vacuity and 

inaccuracy are introduced. Here, it is possible to rely on the intuitive view that, moving from 

a σ with ϑ = 0 towards a σ with either ϑ = +1 or ϑ = −1, the first steps can be expected to 

bring a comparatively greater loss of informativeness (a greater increase in vacuity or 

inaccuracy) than the following ones. More generally, this means endorsing the view that an 

information system (a) is not brittle, like a classic logic system (the presence of an 

inconsistency in the former is not as destructive as in the latter), and (b) does not have a 

progressive degree of fault tolerance (in the case of examination assessment techniques or in 

the context of assessment of moral responsibility, for example, ceteris paribus, the errors are 

usually evaluated more and more severely, the second having a comparatively more negative 

impact than the first and so forth). It is rather described as having an “inverted” degree of 

fault tolerance: faults are decreasingly less impairing, the first being more damaging than the 

second and so forth (this holds true, for example, in the case of experiments error analysis, or 

in cases of assessment of moral trust and faithfulness).  

E.6   the marginal information function MI is a linear function.  

E.6 is justified by the requirement that, a priori, all atomic messages ought to be assigned the 

same potential degree of informativeness and therefore, although E.5 indicates that the graph 

of the model has a variable gradient, the rate at which ι(σ) changes with respect to change in 

ϑ(σ) should be assumed to be uniform, continuous and linear. 

DI satisfies E.1 by adopting the standard convention according to which the absolute 

maximum value ι(σ) = +1 occurs at ϑ(σ) = 0, by analogy with the range of values of CONT(σ) 

and p(σ). It satisfies E.2 by calculating the degree of informativeness of σ in terms of the 

complement of the value of ϑ(σ), not its reciprocal. We saw in section 3 that this solution has 
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the further advantages of being mathematically simpler and in agreement with TWSI’s 

approach. Finally, DI satisfies E.3-E.6 by referring to the squared value of ϑ(σ). From DI, 

the derivative of ι(σ) is: 

MI   ι′(σ) = d/dx 1 − ϑ2(σ) = −2ϑ(σ) 

MI means that the total degree of informativeness of σ changes at a rate of −2ϑ. The squared 

value of ϑ makes the function continuous and differentiable and provides the most 

satisfactory solution to model DI.25  

 

7. Quantities of vacuity and semantic information  

Now that it is possible to calculate the degree of informativeness of σ, the next step is to 

calculate on its basis the relative quantity of semantic information in σ. To this purpose, the 

absolute maximum quantity of information MQI and its unity must first be defined.  

The value of MQI is inferred from DI, by calculating the definite integral of the 

function ι(σ) on the interval [0, 1]: 

 

The term sbit (semantic bit) indicates the unit of semantic information in TSSI. One sbit 

corresponds to the maximum quantity of semantic information, concerning the fixed situation 

w, that can be conveyed by an infon σ with ϑ = 0. It is linearly equivalent to Log2 2/3.26  

ϑ*(σ), the quantity of vacuous information in σ, can now be obtained from [MQI] by 

calculating the ratio between the definite integral of the function ι(σ) on the interval [0, ϑ] 

and 1 sbit: 
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Finally, the quantity of semantic information in σ, ι*(σ), can be obtained from QV, by 

calculating the complement of ϑ* with respect to 1 sbit: 

QI   ι*(σ) = 1 sbit − ϑ*(σ) 

As required by the model constraints, when ϑ(σ) = 0, it follows that ϑ*(σ) = 0 and ι*(σ) = 1 

sbit (σ is a fully accurate, precise and contingent truth), and when ϑ(σ) = 1, it follows that 

ϑ*(σ) = 1 sbit and ι*(σ) = 0 (σ is a tautology). Note that, following QI, the quantity of 

informative content in σ is established by reference to its truth-oriented properties and is not 

immediately identified with all information that is nomically or analytically nested in σ, as in 

Dretske [1981], yet the two approaches are perfectly compatible. 

 

8. The solution of the Bar-Hillel-Carnap Paradox 

We are now in a position to evaluate TSSI’s solution of BCP. Suppose a deflationary 

argument is offered, phrased as follows. BCP owes its apparently counterintuitive nature to a 

conceptual confusion between CONT(σ) in 1 and ι*(σ) in QI. Once the two concepts are 

distinguished with sufficient clarity, the alleged paradox vanishes. On the one hand, CONT(σ) 

refers to the quantity of semantic information that can be attributed to σ a priori, on the basis 

of its probability distributions and independently of the state in which the system under 

analysis actually is (context of total ignorance). On the other hand, ι*(σ) refers to the quantity 

of semantic information that can be attributed to σ still a priori but in a context which is 

presupposed to be of “localised omniscience” in the game-theoretical sense of perfect and 

complete information about the system, on the basis of σ’ alethic value and its degree of 

discrepancy, relative to a fixed state w of the system under analysis. So R.1 and R.2 really 

embody two different and hence compatible explications of the pre-theoretical idea of 

“quantity of semantic information”: R.1 refers to the relation between CONT(σ) and p(σ), 
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whereas R.2 refers to the relation between ι*(σ) and ι(σ). Since the two requisita are not 

really in conflict, there is no paradox to be solved. 

Unfortunately, the conclusion cannot be granted. The previous analysis has shown 

that CONT(σ) ≠ ι*(σ), but this inequality is insufficient to explain the counterintuitive 

definition of the former in TWSI. What does follow from the deflationary argument is that 

the paradox can no longer be satisfactorily explicated merely in terms of a semantic conflict 

between R.1 and R.2. But the counterintuitive nature of CONT(σ) is actually increased by the 

fact that it is now obvious that CONT(σ) does not provide an indication of the amount of 

informativeness of σ. What does CONT(σ) really purport to indicate then? Despite the fact that 

CONT(σ) ≠ ι*(σ), there is a clear conceptual connection between the two measures: they both 

attempt to provide, from different perspectives, a quantitative evaluation of the “information-

richness” of σ. This is why it is difficult to reconcile CONT(σ) with a sound understanding of 

what the quantity of semantic information conveyed by σ is, without any further proviso. 

There is no uncontroversial sense in which a contradiction or a lie can be richer in 

information than a true proposition, and actually TSSI shows in what sense exactly the 

opposite can be proved. Abandoning CONT(σ) as a useless notion, marred by paradoxical 

implications, would be too hasty. Transforming it into a mere definitional convention or 

adopting ad hoc solutions, though viable alternatives, would not only be in conflict with 

Carnap’s and Bar-Hillel’s original interpretation of their semantic theory, but would also 

make it substantially less interesting. Given the usefulness of TWSI, CONT(σ) should 

probably be salvaged, if possible. In TWSI, CONT(σ) is meant to indicate nothing less than 

the quantity of semantic information carried or conveyed by σm, which may be greater than 

the quantity of semantic information carried or conveyed by σn (Bar-Hillel [1964], 222 and 

299). It is exactly the unqualified boldness of this general claim that is in need of a more 
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circumspect formulation. In order to avoid BCP, two modifications in the understanding of 

CONT(σ) are in order: a clarification of what CONT(σ) is really a measure of, and a constraint 

on its applicability.  

First, CONT(σ) does not indicate the quantity of semantic information but, more 

precisely, the quantity of data in σ. By concentrating on the degree of systemic consistency 

and then the logical probability of sets of infons, CONT(σ) deals only with completely 

uninterpreted information, that is data, which are not carried by, but actually constitute σ, as 

syntactically well-formed combinations of interpretable signs or signals. Therefore, between 

TWSI and TSSI, it is the latter that, working on alethically-interpreted data, comes closer to 

providing a quantitative indication of the information-richness or poverty of σ. The former 

evaluates the information-richness of messages only insofar as their implementation is 

logically possible.  

Secondly, because TWSI does not deal with semantic information but only with data 

and their possible combinations a priori, the general equation CONT(σ) = 1 − p(σ) in R.1 

cannot be assumed to have a precise value independently of its frame of reference. This 

means that the equation is really meaningful only once it is properly constrained by the 

following three systemic conditions: 

S.1) unambiguous individuation and explicit description of the data system (in our model a 

universe consisting of 3 constants, each qualifiable by two properties, affirmed or negated); 

S.2) generation of a fully normalised description of the data system, as the set of all the 

mutually exclusive messages necessary and sufficient to describe in full all the possible states 

in which the data system can be; 

S.3) attribution of a probability p to each state-description σieither in terms of uniform 

distribution, or according to any bias for which there may be evidence in the systemsuch 

that the following two standard conditions are satisfied: 
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It is only at this point that a precise meaning can be attached to CONT(σ). The complement of 

the value of p(σ) with respect to the maximum degree of probability can be used to indicate 

the quantity of data in σ only because of the connection between S.1 and S.2, whilst p can 

only be assigned a value in the open interval (0,1) because of S.3. It is not that we are unable 

to analyse the probability of σ absolutely, but rather that the latter is inappropriate for the task 

in question. The probability of σ can be correctly interpreted as a measure of the quantity of 

interpretable data in σ only when σ is completely uninterpreted and implementable, that is 

only when we are dealing with syntactically well-formed strings of symbols or signals which 

are not already known to be either necessarily true or false a priori. These constraints make it 

possible to couple27 probability of σ and quantity of data in σ sufficiently tightly that the 

former can provide a reliable indication of the latter. Outside these constraints, the two 

measures may not be significantly related or even lead to paradoxical conclusions, as BCP 

shows. 

The two modifications in the interpretation of CONT(σ) lead to a re-assessment of the 

meaning of the standard view concerning the relation between the information-richness of σ 

and its likelihood. To develop a clear understanding of semantic information we need to 

move from likelihood (TWSI) to likeness (TSSI), as it were. When we say that the less likely 

σ is the more informative it may be assumed to be, unless we are making some 

psychologistic remark about the subjective expectations of a user, we are referring to the 

higher or lower degree of discrepancy of σ with respect to one or more w. The less vacuous σ 
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is the fewer possible worlds support it, and the more informative σ becomes with respect to 

the fixed w that acts as a benchmark. Of course, this direct relation can also be analysed in 

terms of probability, since the latter can provide an interpretation for the concept of vacuity. 

But the two concepts do not overlap and they diverge when the σ in question is no longer 

uninterpreted. Information is an actual possibility that is inconsistent with at least one but not 

all other possibilities. A contradiction is not information-rich because it is not a possibility, 

and a tautology is not information-rich because it does not exclude any possibility. In TSSI, 

they are both limit instances of “uninformation” (lack of both positive information and 

negative misinformation).28 

 

9. Conclusion: summary of results and future developments   

In this paper, a quantitative theory of strongly semantic information (TSSI) has been shown 

to be possible on the basis of a calculus based on truth-values and degrees of discrepancies 

with respect to a given situation, rather than probability distributions. The main hypothesis 

supported has been that semantic information encapsulates truth, and hence that false 

information fails to qualify as information at all. The expression “false information” is to be 

equated to expressions such as “false policeman” (not a policeman at all) or “false passage” 

(not a passage at all), not to “false leg” (still a leg, though artificial). The main result of the 

development of TSSI has been the solution of the semantic paradox affecting the classic 

quantitative theory of semantic information, according to which a contradiction contains the 

highest quantity of information. In the course of the analysis, the paper has provided a review 

of the requirements for any quantitative theory of semantic information, of the criteria of 

semantic information equivalence, of the concepts of degrees of strongly (i.e. truth-based) 

semantic inaccuracy, vacuity and informativeness; and of the concepts of quantities of 
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strongly semantic vacuity and information. Three results of conceptual interest, based on 

TSSI, which have been left to a second stage of the research are:  

1) the extension of the quantitative analysis to the semantic concepts of quantity of 

misinformation (ordinarily called “false information”) and degree of disinformation, as 

foreshadowed in D.3;  

2) the generalisation of the results, obtained by TSSI in connection with the formal logical 

setting represented by the finite model system E, to the more general context represented by 

(regions of) the infosphere, where the latter is understood as the universal system of 

information and is modelled by means of Formal Methods29 (popular model-based 

formalisms consistent with the present treatment are given by the specifications languages Z 

and VDM, see Woodcock and Davies [1996] and Jones [1986]); and 

3) the analysis of the standard definition of knowledge as true justified belief, in light of a 

“continuum” hypothesis that knowledge encapsulates truth because it encapsulates semantic 

information.30 
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Notes 

 
1 This is short for “semantic information content”. This paper follows the common practice of 

using the two expressions interchangeably. 

2 The first version of the paper was read before the Symposium on Applications of 

Communication Theory in 1952. A more detailed and systematic treatment appeared then in 

Technical Report No. 247 of the Research Laboratory of Electronics, M.I.T., 1953. A slightly 

revised version was published in The British Journal for the Philosophy of Science in 1954. 

The chapter in Bar-Hillel [1964] is from the 1953 version, which is actually dated 1952 in the 

opening footnote.  

3 Cherry [1978], for example, contains one of the clearest and most informative summaries of 

TWSI, but no reference to the paradox. 

4 Beginning with Bar-Hillel and Carnap [1953]. Bar-Hillel’s and Carnap’s analysis, discussed 

in the text, is further developed in Kemeny [1953], Smokler [1966] and Hintikka and Suppes 

[1970]. 

5 This is also known as Mathematical Theory of Information, or Communication Theory, 

Information Theory and Mathematical Information Theory. I have opted for STST in order to 

avoid any possible confusion.  One of the best conceptual introductions to STST is still 

Dretske [1981], but see also Cherry [1978]. More technical presentations can be found in 

Reza [1994] and Van der Lubbe [1997].  

6  For a defence of the view that false information is not an inferior kind of information but 

not information at all see Dretske [1981] and Grice’s “Logic and Conversation” in Grice 

[1989], especially p. 371 of the “Retrospective Epilogue”. 

7 The classic references are Shannon [1948], Shannon and Weaver [1949], Shannon [1993], 

but see also footnote 5 above. I shall avoid in this context any reference to “doubt” 
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(uncertainty of the signal) and “surprise value” (statistical rarity of the signal), for these 

psychologistic metaphors are not very helpful. 

8 Popper [1935] was one of the first to suggest that the amount of semantic information in a 

statement can be analysed in terms of the number of alternative possibilities excluded by that 

statement, see also Popper [1962]. For a positive account, in terms of the set of all state-

descriptions entailed by σ, see Hanson [1980]. Both accounts equally lead to the formulation 

of BCP. 

9 Following Hockett [1952], the choice of the model is suggested only by syntactic elegance 

and simplicity, and results can be adapted to cases where some redundancy also occurs. 

10 The model is useful precisely in order to have a discrete, one-to-one correspondence 

between formulae–like truth–makers and semiotic truth–bearers. This idealisation guarantees 

information completeness. The question of whether a more coarse–grained model of truth–

makers is metaphysically preferable will not be addressed here. Strictly speaking, one needs 

to recall that, as in error analysis theory (Taylor [1997]), infons (e.g. measures) are never 

compared to “absolute realities” (e.g. absolutely true values), but always and only to other 

infons that are assumed or known to be true, i.e. states of the world that are transformed into 

evidence by the information process, at least momentarily, that is until further critical 

revision (Levi [1967]). 

11 More formally: [1] CONT(T) = MIN = ∀σn∀σi (((|= σn ∧  |≠ σi) → (CONT(σn) < CONT(σi))) ∧  

((|= σn  ∧  |= σi) → (CONT(σn) = CONT(σi)))) 

12 More formally: [BCP] CONT(⊥) = ∀σn∀σi (((σn |=  ∧  σi |≠) → (CONT(σn) > CONT(σi))) ∧  

((σn |=  ∧  σi |=) → (CONT(σn) = CONT(σi)))). 
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13 “Normalisation” refers here to the process followed to obtain a database design that allows 

for efficient access and storage of data and reduces data redundancy and the chances of data 

becoming inconsistent. 

14 See Sneed [1967] for an early, critical analysis based on Jeffrey [1967], now Jeffrey 

[1990]. Szaniawski [1967], based on a game-theoretic approach, and Szaniawski [1974], both 

now in Szaniawski [1998], is more optimistic. Smokler [1966] defends a moderate approach, 

which, however, requires that every individual has, at a certain time, only a finite and 

consistent set of true/false beliefs, and that these can be expressed in the language of the 

classic logic of predicates. These seem unrealistic requirements, especially since Smokler 

accepts both (i) that beliefs are best characterised as propositions and (ii) that the latter are 

non-linguistic entities. As a counterexample, it suffices to note that any individual who 

knows arithmetic can both believe an infinite number of true propositions and hold some 

contradictory beliefs. Jamison [1970] goes as far as to argue that a pragmatic theory of 

informational quantities is the most fundamental of all approaches, and presents a sort of 

inverted BCP by suggesting that (p.29) “an undesirable feature of RL [i.e. what has been 

defined in this article as TWSI] is that in it logical truths carry no information”, so that 

mathematical equations, insofar as they can be interpreted as tautologies, would be utterly 

non-informative.  

15 “The name [infon] suggests a parallel with the fundamental particles of physics, the 

electrons, protons, neutrons, photons and so forth.” (Devlin [1991], p. 37) Is there a 

conceptualisation of “information” as “a theoretical commodity that we can work with, 

analogous to (say) the numbers that the number-theorist works with, or the points, lines and 

planes the geometer works with”? (Devlin [1991], p. 18) The question is answered in Dretske 

[1981], who provides a definition of information as an objective commodity. However, 
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Taylor [1987] is justified in arguing that Dretske’s “objectivism” is not easily reconcilable 

with his pragmatic approach, whereby information is also defined pragmatically, with 

reference to a user S.   

16 The context is ideal because it presupposes a state of perfect and complete information 

about the system, in the game-theoretic sense of the expressions. We shall see in section 9 

that this is a further difference between TWSI and TSSI, which presupposes a state of 

imperfect and incomplete information with respect to the states of the system. Here it is 

possible to anticipate that presupposing some “localised omniscience” does not affect the 

value of the approach, since TSSI attempts to discover what the quantity of semantic 

information in σ is where σ’s alethic value is known, not the average amount of semantic 

information any σ may have a priori.   

17 Szaniawski [1984] does not refer explicitly to any result in situation logic, but develops an 

approach similar to Devlin [1991]. A limitation of his analysis is that he does not 

acknowledge the fact that the change in perspective entails an inversion in the relation 

between information and truth, which no longer supervenes on, but now constitutes the 

former. His definition of semantic information as “(p. 231) potential information about X that 

has been ‘singled out’ in some way: observed, asserted, etc. Semantic information may be 

said to be true if it points to the actual state of the world” is not satisfactory; not so much 

because it is circular (in the article the circularity is avoided at the cost of some vacuity, by 

means of a reference to unspecified ways in which σ is “relevant” and “points” to the actual 

state in which X is) as because it does not clarify what difference is made by the “singling 

out” procedure. In his article, it becomes clear that “singling out” p is attributing a positive 

alethic value to p as a description correctly pointing to the actual state in which X is.  
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18 This is a technical term in error analysis terminology. When a measurement or a result is 

compared to another that is assumed or known to be more reliable, the difference between the 

two is defined as the experimental discrepancy.  

19 This is another technical term in error analysis. Deviations are “experimental uncertainties” 

and are commonly called “errors”. More precisely, when a set of measurements is made of a 

physical quantity, the difference between each measurement and the average (mean) of the 

entire set is called the deviation of the measurement from the mean. 

20 Although ϑ can in principle take any value in the range of real numbers [−1.0, + 1.0], thus 

giving rise to a continuous function (see Table 5), this does not mean that, given a specific 

model, an infinite number of interpretations of ϑ is effectively available. More realistically, a 

model always sets up a finite and discrete range of values for ϑ, approximate to n decimals. 

Following standard practice, in what follows the function is defined for all real numbers in 

the specified range, and discontinuities are associated only with truly dramatic behaviour on 

the part of the model.  

21 Note that in this context vacuity does not refer to typical problems raised by borderline 

cases or the sorites paradox. In the model, each situation w is precise and each infon σ 

sharply divides the world into those situations to which σ applies and those to which it does 

not. In this context, vacuity is a matter of semantic uncertainty, not in the sense that infons 

with a certain degree of vagueness are infons that apply to situations to varying degrees, 

hence generating indecision about borderline cases, but in the sense that infons with a certain 

degree of vagueness are infons that apply to a varying number of situations, hence generating 

indecision with respect to which w is the case. Infons do not increase gradually in their 

degrees of truth, as in fuzzy logic, but in their degree of conformity to w (lack of 
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discrepancy). This approach appears to be consistent with the epistemic view according to 

which vagueness is a kind of ignorance (Sorensen [1988], Williamson [1994]). 

22 “Inaccuracy” here does not have exactly the same technical meaning as in error analysis 

theory, where a measurement is said to have high precision if it contains a relatively small 

indeterminate error, and is said to have high accuracy if it contains relatively small 

indeterminate error and relatively small determinate error. 

23 Errors are not to be understood as blunders. Consistently with current practice in error 

analysis theory, the term “error” is used here as a synonym for “logical uncertainty” (see 

above the comment on “uncertainty” as “occurrence/elimination of possibilities”). Hence, the 

“errors” in Inac are independent of the user, precisely characterizable and can be assumed to 

be normally distributed, unless the system is biased.  

24 Table 1 is laid out in such a way that the fourth column contains the complements of the 

first column upside down (e.g. w49 is the complement of w16), and the third column the 

complements of the second. 

25 Why? Because in ι(σ) = 1 − ϑ(σ)n, n could be an odd integer, 1, or an even integer greater 

than 2, but none of these alternatives is fully satisfactory. If n is an odd integer, the model 

satisfies only E.2, and introducing the absolute value of ϑ still leaves E.6 unsatisfied. If n = 1,  

the equation satisfies E.1, but in order to satisfy E.2 and E.3 we need to calculate the 

complement of the absolute value of ϑ(σ). However, the new formula 1 − |ϑ(σ)| still fails to 

satisfy [E.6]. If n is any even integer greater than 2, the equation not only represents merely a 

more complicated extension of the simpler solution adopted in DI, it also fails to satisfy E.6. 

26 A trit is one base-3 digit and represents the amount of information conveyed by a selection 

among one of three equally likely outcomes. It is linearly equivalent to Log23 bits. 
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27 “Coupling” is used here in the technical IT sense, to refer to the strength of interrelations 

between the components of a system (e.g. the modules of a program, or the processing 

elements of an artificial neural network). The tighter the coupling, the higher the 

interdependency, the looser the coupling the lower the interdependency. Completely 

decoupled components—systems with a null degree of interdependency—have no common 

data and no control flow interaction. 

28 Not a word in the OED, “uninformation” has already appeared on the Web with the 

meaning “useless/undesired information”, in connection with junk email, or “disposable 

information”.  

29 FMs are mathematically based techniques used in computer science for the abstract 

analysis of the composition and behaviour of real world systems. Z and VDM are the two 

most successful model-based FMs, capable to handle the formal conceptualisation of very 

large-scale systems. 

30 A first version of this paper was given at Es ©, First Edinburgh Symposium: “Italian 

Philosophy in UK”, 28th October 1999, Italian Cultural Institute for Scotland and Northern 

Ireland, Edinburgh. I am very grateful to the participants for their comments and especially to 

Timothy Williamson, who acted as respondent and provided many valuable suggestions. 


