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ABSTRACT

We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary
LSPMJ1314+1320AB. Joint analysis of Keck adaptive optics astrometric monitoring along with Very Long
Baseline Array radio data from a companion paper yield component masses of 92.8±0.6MJup

(0.0885±0.0006M☉) and 91.7±1.0MJup (0.0875±0.0010M☉) and a parallactic distance of
17.249±0.013 pc. We find component luminosities consistent with the system being coeval at
80.8±2.5Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model
predictions, marking the first test of the theoretical lithium depletion boundary using ultracool dwarfs of known
mass. However, we find that the evolutionary model-derived average effective temperature (2950±5 K) is 180 K
hotter than that given by a spectral type–Teff relation based on BT-Settl models (2770±100 K). We suggest that
the dominant source of this discrepancy is model radii being too small by ≈13%. In a test mimicking the typical
application of models by observers, we derive masses on the H-R diagram using luminosity and BT-Settl
temperature. The estimated masses are lower by -

+46 %19
16 (2.0σ) than we measure dynamically and would imply that

this is a system of ≈50MJup brown dwarfs, highlighting the large systematic errors possible in H-R diagram
properties. This is the first time masses have been measured for ultracool (�M6) dwarfs displaying spectral
signatures of low gravity. Based on features in the infrared, LSPMJ1314+1320AB appears to have higher gravity
than typical Pleiades and ABDor members, opposite the expectation given its younger age. The components of
LSPMJ1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements.

Key words: astrometry – binaries: visual – parallaxes – stars: fundamental parameters – stars: individual (LSPM
J1314+1320) – stars: pre-main sequence

1. INTRODUCTION

A major goal of stellar astrophysics is to understand the early
evolution of stars, before they reach a stable equilibrium on the
main sequence. In theory, the fundamental parameters of mass,
composition, and angular momentum uniquely determine the
course of all stellar evolution, including the pre-main-sequence
phase. Binary stars are perhaps the most useful empirical
calibrators available for testing stellar models because their
components share a common age and composition, and
dynamical masses can be derived from their orbital motion.
While dozens of mass measurements have been obtained for
pre-main-sequence stars (e.g., see reviews from Hillenbrand &
White 2004 and Mathieu et al. 2007, p. 411; Gennaro
et al. 2012; Stassun et al. 2014), most of these are for stars
more massive than 0.5M☉. Steady progress has been made to
push measurements to lower masses (e.g., Simon et al. 2000;
Stassun et al. 2006; Kraus et al. 2015; Lodieu et al. 2015;
David et al. 2016). However, there are still only a handful of
masses measured for stars at or below the 0.2–0.3M☉ peak in
the initial mass function (Bastian et al. 2010), leaving pre-
main-sequence models for a large fraction of stars poorly
constrained.

Previous work to measure the masses of pre-main-sequence
stars has mostly focused on star-forming regions, like the
nearby Taurus–Auriga and Scorpius–Centaurus–Lupus–Crux
complexes with ages of ∼1–10Myr and distances of ∼150 pc
(e.g., Schaefer et al. 2008; Czekala et al. 2016; Rizzuto et al.
2016). Over the last two decades, a growing number of young
stars much closer to the Sun and with wider ranging ages
(∼8–150Myr) have been identified (e.g., Zuckerman &
Song 2004; Torres et al. 2008). The proximity of these stars
offers many benefits, including the possibility of spatially
resolving binaries with smaller semimajor axes and correspond-
ingly shorter orbital periods for dynamical mass
determinations.
LSPMJ1314+1320 was first identified as a star exhibiting

proper motion >200 mas yr−1 by Luyten (1979). Law et al.
(2006) included it as a candidate late-type star in their high
angular resolution survey using lucky imaging at i′ and z′
bands, where their sample was selected from objects with red
V−K colors in the LSPM catalog (Lépine & Shara 2005). Law
et al. (2006) estimated a spectral type of M6 for LSPMJ1314
+1320 from its V− K color and discovered that it was a
binary with a separation of 130 mas and flux ratios of
Δi′=0.93±0.25 mag and Δz′=0.97±0.25 mag. Mean-
while, Lépine (2005) had identified LSPMJ1314+1320 as a
potential nearby star with an estimated distance of 9.7 pc,
leading them to obtain spectra and astrometry that revealed a
spectral type of M7, Hα in emission, and a parallactic distance
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of 16.4±0.8 pc (Lépine et al. 2009). They concluded that their
original photometric distance estimate was much smaller than
the parallactic distance due to unresolved binarity and/or
extreme youth.

The first definitive evidence for the youth of LSPMJ1314
+1320AB came from the analysis by Schlieder et al. (2014) of
its published optical spectra and Schlieder et al.’s own near-
infrared (NIR) spectrum, all spatially unresolved. These spectra
display weak alkali lines, which are indicative of low surface
gravity, and strong Li I absorption. Although Schlieder et al.
(2012) had previously identified LSPMJ1314+1320AB as a
likely new member of the AB Doradus moving group
(∼150Myr), subsequent analysis and updated proper motion
data has led to the conclusion that it cannot be confidently
associated with any known group (Gagné et al. 2014; Schlieder
et al. 2014). McLean et al. (2011) has also identified
LSPMJ1314+1320AB as a source of bright (∼1 mJy),
persistent radio emission with a flat spectrum across a wide
range of frequencies (1.43–22.5 GHz), suggesting high levels
of magnetic activity and a stable, large-scale magnetosphere
(Williams et al. 2014, 2015). Therefore, LSPMJ1314
+1320AB is potentially useful as a benchmark not only for
evolutionary models, but also for models of stellar magnetism.

We present here spatially resolved relative astrometric
monitoring of LSPMJ1314+1320AB obtained with Keck
AO that allows us to determine its orbit and thereby its
dynamical total mass (Mtot). We combine our Keck data with
spatially resolved Very Long Baseline Array (VLBA) absolute
astrometry from a companion paper (Forbrich et al. 2016;
hereinafter Paper I) to simultaneously model the orbital motion,
proper motion, and parallax and thereby derive individual
dynamical masses of 1% precision. We confirm that
LSPMJ1314+1320AB is unambiguously in the pre-main-
sequence phase of its evolution and use our dynamical masses
to perform tests of models, examining properties such as
luminosity, temperature, and lithium depletion.

2. OBSERVATIONS

2.1. Keck/NIRC2 Astrometry

We have been monitoring the resolved orbital motion of both
components of LSPMJ1314+1320AB using Keck adaptive
optics (AO) with the facility NIR camera NIRC2. We used both
direct imaging and non-redundant aperture masking to measure
the binary’s separation, position angle (PA), and flux ratio in J
and K bands. Typical examples of our images and masking
interferograms from each epoch are shown in Figure 1. An
analysis of the masking data was done using a pipeline similar
to that in previous papers containing NIRC2 masking data
(e.g., Ireland et al. 2008; Ireland & Kraus 2008) and is
described in detail in Section2.2 of Dupuy et al. (2009b). For
imaging data, we used the same methods described in our
previous work (e.g., see Dupuy et al. 2009a, 2016). Briefly,
after a standard reduction of the images (dark subtraction and
flat fielding) we fit a three-component two-dimensional
Gaussian model to the two binary components. For the last
three epochs, when the binary separation was widest, we were
able to use the StarFinder package (Diolaiti et al. 2000) instead.
StarFinder iteratively solves for both the binary parameters and
an image of the point-spread function. We then corrected our
derived (x, y) positions using the NIRC2 distortion solution of
Yelda et al. (2010), which has a pixel scale of
9.952±0.002 mas pixel−1 and a +0°.252±0°.0.009 offset
added to the orientation given in the NIRC2 image headers.
The last epoch was obtained after a major realignment of the
Keck AO system on 2015April13. Therefore, for this epoch,
we used an updated distortion solution from Service et al.
(2016), which has a pixel scale of 9.971±0.004 mas pixel−1

and an orientation of +0°.262±0°.0.020.
Table 1 summarizes the resolved astrometry and flux ratios

derived from our Keck observations. As an estimate of our
uncertainties, we used the rms of the best-fit binary parameters
at a given epoch across the multiple images or masking
interferograms. To vet these errors, we performed a standard

Figure 1. Contour plots of our Keck AO interferograms (first two panels) and images used to derive relative astrometry and flux ratios (Table 1). Contours are in
logarithmic intervals from unity to 10% of the peak flux in each band. The image cutouts are all 0 5 across and interferogram cutouts are 1 2 across. In the
interferograms, the binary can be seen by eye as an elongation or double peak in the center of the point-spread function. All cutouts have the same native pixel scale,
and here we have rotated them so that north is up.
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seven-parameter orbit least-squares fit (see Section 3.1 of
Dupuy et al. 2010) to our Keck astrometry. We found a value
of χ2=3.5 for 7degrees of freedom (dof), which has a
probability of p(χ2)=0.83, so we concluded that our Keck
astrometric errors are reasonable.5

Our K-band flux ratios are somewhat inconsistent with being
constant across all epochs, with χ2=12.4 (6 dof). To achieve
p(χ2)=0.5, a systematic error of 0.011 mag added in
quadrature is required. Therefore, in the following analysis,
we use ΔK=0.080±0.022 mag, which is the weighted
average after adding this error floor in quadrature to the
individual values. We conservatively use the rms of the
measurements as the uncertainty since it encompasses both the
fitting errors and the potential for variability. Finally, we note
that our infrared flux ratios seem to be at odds with the optical
flux ratios of Δi′=0.93±0.25 mag and Δz′= 0.97±
0.25 mag from Law et al. (2006). However, for another binary
in their survey, LHS1901AB, they also report very unequal
flux ratios (Δi′=1.3±0.7 mag and Δz′= 1.3±0.7 mag;
Law et al. 2008) while AO imaging gives flux ratios in JHK of
≈0.1 mag (Montagnier et al. 2006; Dupuy et al. 2010). This
suggests that the apparent discrepancy may simply be due to
systematic errors in the flux ratios derived from Lucky
imaging, so we do not use them in our analysis.

2.2. UH2.2 m/SuperNova Integral Field
Spectrograph (SNIFS) and Infrared Telescope Facility

(IRTF)/SpeX Spectroscopy

We obtained optical and NIR spectra of LSPMJ1314
+1320AB as part of a larger follow-up program of nearby
bright Mdwarfs from Lépine & Gaidos (2011). In the optical,
we used the SNIFS (Aldering et al. 2002; Lantz et al. 2004) on
the University of Hawaii 2.2 m telescope on Maunakea,
Hawaii, on 2015January9UT. SNIFS provides simultaneous
coverage from 3200–9700Å at a resolution of R;1000.
Details of our SNIFS observations and reduction can be found
in Bacon et al. (2001) and Gaidos et al. (2014), which we
briefly summarize here. The pipeline detailed in Bacon et al.
(2001) performs dark, bias, and flat-field corrections, cleans the
data of bad pixels and cosmic rays, then fits and extracts the
integral field unit spaxels into a one-dimensional spectrum. The
Gaidos et al. (2014) reduction takes this spectrum and performs
flux calibration and telluric correction based on white dwarf
standards taken throughout the night and a model of the
atmosphere above Maunakea (Buton et al. 2013). The final
reduced spectrum of LSPMJ1314+1320AB has a signal-to-
noise ratio (S/N) of >100 pixel−1 redward of 6000Å.

We obtained an NIR spectrum of LSPMJ1314+1320AB
using the SpeX spectrograph (Rayner et al. 2003) at the NASA
IRTF on Maunakea, Hawaii, on 2013May16UT. Our
observations were taken in the short cross-dispersed (SXD)
mode using the 0 3×15″ slit (R;2000), yielding simulta-
neous coverage from 0.8–2.4 μm, with a small gap near 1.8 μm
due to non-overlapping SXD orders. The target was placed at
two positions along the slit (A and B) and was observed in an
ABBA pattern in order to subsequently subtract the sky
background. Six exposures were taken this way, yielding an S/
N>200 per pixel in the H and K bands. To correct for telluric
lines, we observed an A0V star immediately after the target.
Our SpeX spectrum was extracted using the SpeXTool

package (Cushing et al. 2004), which performs flat-field
correction, wavelength calibration, sky subtraction, and
extraction of the one-dimensional spectrum. Multiple expo-
sures were combined using the xcombspec routine. A telluric
correction spectrum was constructed from the A0V star and
applied to the target spectrum using the xtellcor package
(Vacca et al. 2003). Separate orders were stacked using the
xcombspec tool, which also shifts the flux level in different
orders to match each other. These corrections were 1% or less
per order.

3. RESULTS

3.1. MCMC Astrometric Orbit and Parallax Analysis

We combined our Keck/NIRC2 relative astrometry of
LSPMJ1314+1320AB with VLBA absolute astrometry from
PaperI to perform a joint analysis of the orbit and parallax of
the system. The VLBA observations only detect one comp-
onent of the binary at all epochs, and we identify it as the
secondary component LSPMJ1314+1320B (defined as the
component that is fainter in our J- and K-band Keck data). This
is because the orbital motion seen in the VLBA data is to the
northeast over 2013–2014, and our Keck astrometry over the
same time period indicates that the secondary was moving to
the northeast relative to the primary. In addition to our Keck
astrometry here, we also used results from Law et al. (2006)
who measured a binary separation of 130±20 mas and PA of
46°.0±2°.0 from their Lucky imaging data on
2005Jun15UT. The combined data set contains a total of
sevenepochs of resolved astrometry spanning 10.03 years and
nineepochs of absolute astrometry spanning 4.65 years.
Our astrometric model includes 15 total parameters, and 6 of

these are orbit parameters shared between the Keck and VLBA
data. The six common parameters are orbital period (P),
eccentricity (e), inclination (i), argument of periastron (ω),
mean longitude at the reference epoch (λref), and PA of the
ascending node (Ω). We defined the reference epoch for our
model as tref=2455197.5 JD (i.e., calendar date 2010.0). The

Table 1
Keck/NIRC2 Adaptive Optics Astrometry for LSPMJ1314+1320AB

Date (UT) Filter Separation (mas) PA (°) Δm (mag) Note

2013Jan18 K 66.2±0.5 202.3±0.5 0.092±0.012 masking
2014Jan22 K 54.0±1.9 342±7 0.048±0.024 masking
2014May9 K 78.62±0.21 15.2±0.6 0.11±0.04 imaging
2014Jun15 J 88.1±0.5 21.7±0.5 0.08±0.04 imaging
2015Jan14 K 137.25±0.19 41.55±0.04 0.091±0.006 imaging
2015Apr10 K 153.16±0.08 46.27±0.03 0.068±0.005 imaging
2015Jun28 K 166.43±0.13 49.84±0.05 0.081±0.006 imaging

5 When we quote p(χ2), it is the probability of obtaining a value for χ2 as
high or higher than the observed value given the degrees of freedom.
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semimajor axes of the primary and secondary components
about their barycenter are denoted as a1 and a2, respectively.
Since our Keck data measure relative orbital motion, the Keck
semimajor axis parameter was = +a a a1 2, while the VLBA
semimajor axis parameter was simply a2. The remaining
parameters are only used to model the VLBA data: R.A. and
decl. at the reference epoch (α2010, δ2010); proper motion in
R.A. and decl. (ma dcos , μδ); parallax (π); and systematic error
parameters in R.A. and decl. (σα, σδ). These VLBA error
parameters are needed to model systematic errors in the
absolute astrometric calibration, which are expected to be
comparable from epoch to epoch. In order to properly mitigate
our model from preferring extremely large values of these error
parameters, we penalized the logarithm of the likelihood by

( )slog 1 2 , where σ is the quadrature sum of both error
parameters. The parallax factor at each epoch was calculated
from the JPL ephemeris DE405 as described in Equations (1)
and (2) of Dupuy & Liu (2012).

As in our previous work on joint analysis of relative and
absolute astrometry (Dupuy et al. 2015), we used the affine
invariant ensemble sampler emceev2.1.0 (Foreman-
Mackey et al. 2013) to perform our Markov Chain Monte
Carlo (MCMC) analysis. We used 103 walkers (chains) with
105 steps each, saving every 500th step for use in our analysis
and removing the first 10% of all walkers as the burn-in
portion. Table 2 summarizes the resulting posterior distribu-
tions and the priors on all of our parameters. We report both the
best-fit parameters and the credible intervals that encompass
68.3% and 95.4% of each parameter’s posterior values. The
best-fit parameters give a total χ2=17.8 for 19 dof, p
(χ2)=0.53, including both the Keck data and the VLBA data

with the systematic errors added in quadrature to the nominal
VLBA measurement errors. Figure 2 displays this best-fit orbit
and parallax solution alongside both the Keck and VLBA
astrometry.
Table 2 also gives credible intervals and best-fit values for a

number of additional parameters that can be derived directly
from our fitted parameters, e.g., the distance computed from the
absolute VLBA parallax (d=1/π). Most notably, we compute
a precise total system mass from the Keck orbit and VLBA
parallax, ( )p= -M a Ptot

3 2, and individual masses for the
components by combining the VLBA and Keck orbits
( =M Ma

a1 tot
2 , = -M Ma a

a2 tot
2 ). Because of the very high

precision of the VLBA parallax (σπ/π=7.8×10−4), the
uncertainties in these masses are dominated by the uncertainty
in the orbital period (σP/P=7.7×10−3), total semimajor
axis (σa/a=3.5×10−3), and secondary semimajor axis
(s = ´ -a 4.5 10a 2

3
2

). Accounting for covariances between
these parameters, the derived primary mass is the most precise
(s = ´ -M 6.8 10M 1

3
1 ), followed by the total mass (s MM tottot

= ´ -8.7 10 3) and secondary mass (s = ´ -M 1.1 10M 2
2

2 ).
The mass ratio ( º = - = q M M 1 0.989 0.007a

a2 1
2

/ ) is
consistent with the radio-emitting secondary that is fainter
in the NIR being the less massive component, and 95.4%
of our MCMC posterior values having q<1. The derived
primary and secondary masses are 92.8±0.6MJup

(0.0885±0.0006M☉) and 91.7±1.0MJup (0.0875±
0.0010M☉), respectively. These individual masses are very
nearly equal, within 2% of each other at 90% confidence. For
additional discussion of the parallax and proper motion
determined from this joint analysis see PaperI.

Table 2
MCMC Posteriors for the Orbit and Parallax of LSPMJ1314+1320AB

Property Median±1σ Best Fit 95.4% c.i. Prior/Notes

Fitted Parameters

Orbital period P (year) -
+9.58 0.08

0.07 9.58 9.45, 9.74 1/P (log-flat)
Semimajor axis = +a a a1 2 (mas) 146.6±0.5 146.4 145.6, 147.7 1/a (log-flat)
Eccentricity e -

+0.6011 0.0025
0.0022 0.6014 0.5964, 0.6060 uniform, 0�e<1

Inclination i (°) -
+49.34 0.23

0.28 49.19 48.77, 49.82 ( )isin , 0°<i<180°
PA of the ascending node Ω (°) 60.4±0.4 60.2 59.6, 61.3 uniform
Argument of periastron ω (°) 205.6±0.7 205.8 204.1, 207.1 uniform
Mean longitude at 2455197.5JD λref (°) -

+71.8 1.4
1.3 71.9 69.2, 74.5 uniform

– ( )a amedian2010 2010 (mas) 0.0±0.4 0.0 −0.8, 0.8 uniform, ( )a = median 198 . 58410232010

– ( )d dmedian2010 2010 (mas) 0.0±0.9 0.0 −1.7, 1.7 uniform, ( )d = + median 13 . 33304342010

Proper motion in R.A. ma dcos (mas yr−1) −247.99±0.10 −248.01 −248.19, −247.78 uniform

Proper motion in decl. μδ (mas yr−1) −183.58±0.22 −183.64 −184.05,−183.17 uniform
Parallax π (mas) 57.975±0.045 57.988 57.856, 58.082 1/π2 (uniform volume density)
Semimajor axis of secondary a2 (mas) 73.7±0.3 73.7 73.1, 74.4 uniform
R.A. VLBI error parameter ( )salog 2 (deg2) −15.5±0.4 −15.8 −16.2, −14.7 uniform
decl. VLBI error parameter ( )sdlog 2 (deg2) −14.6±0.4 −14.7 −15.4, −13.7 uniform

Derived Properties

Total mass Mtot (MJup) 184.5±1.6 183.7 181.1, 187.6 L
Primary mass M1 (MJup) 92.8±0.6 92.5 91.5, 94.0 L
Secondary mass M2 (MJup) 91.7±1.0 91.2 89.6, 93.8 L
Mass ratio q ≡ M2/M1 0.989±0.007 0.986 0.975, 1.002 L
Distance d (pc) 17.249±0.013 17.245 17.217, 17.284 L
Semimajor axis a (au) 2.528±0.009 2.525 2.512, 2.548 L
Time of periastron T0 (JD) -

+2456498.5 1.8
1.7 2456498.8 2456495.0, 2456502.0 L
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3.2. Other Empirically Determined Properties

Our new AO imaging allows us to compute resolved
photometry for the two components of LSPMJ1314+1320AB.
Our J- and K-band flux ratios (ΔJ=0.08±0.04 mag,
ΔK=0.071±0.013 mag) are consistent with and more
precise than the values of ΔJ=0.10±0.11 mag and
ΔKS=0.10±0.21 mag from Schlieder et al. (2014). Using
our ΔJ and ΔK values and their H-band flux ratio,
ΔH=0.03±0.06 mag, we computed resolved JHK photo-
metry for the components of LSPMJ1314+1320AB. For the
integrated-light photometry, we used the 2MASS Point Source
Catalog (Cutri et al. 2003) along with 2MASS-to-MKO
photometric system conversions calculated from our SpeX
spectrum. We list the resulting resolved and integrated-light

photometry on both the MKO and 2MASS photometric
systems in Table 3.
In order to compute the bolometric flux of LSPMJ1314

+1320AB in integrated light, we combined and absolutely
calibrated our optical and NIR spectra following the method
outlined in Mann et al. (2015). Briefly, we first collected
published photometry from 2MASS, SDSS (Ahn et al. 2012),
the AAVSO All-sky Photometric Survey (Henden et al. 2012),
and the Wide-field Infrared Survey Explorer (WISE; Wright
et al. 2010). We converted this photometry to fluxes using the
relevant zero-points, and we also calculated synthetic fluxes
from our spectra using the corresponding filter profiles (Cohen
et al. 2003; Jarrett et al. 2011; Mann & von Braun 2015). At
this point, we noticed that the SDSS i-band measurement was

Figure 2. Top left: resolved relative astrometry (filled symbols) shown alongside the best-fit orbit (thick black line) and 100 randomly drawn orbits from our MCMC
chain (thin gray lines). The plotting symbols typically are larger than the error bars. Open blue circles indicate the epochs of VLBA astrometry of the secondary from
PaperI. Top right:our relative astrometry shown as a function of time (top sub-panels) and after subtracting the best-fit orbit solution (bottom sub-panels). Bottom:
VLBA astrometry of the secondary from PaperI. Top panels show the data with the proper motion and orbital motion subtracted in order to display the best-fit
parallax solution (thick black line). Bottom panels show the orbit of the secondary component after subtracting the best-fit parallax and proper motion.
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highly discrepant (≈3–4 mag) with our spectrum and with the
surrounding photometry, so we excluded it from our analysis.
Taking account of both random and correlated errors (flux
calibration and optical variability), we scaled the optical and
NIR spectra to match the photometry and to match each other
in the region overlapping between SNIFS and SpeX
(0.80–0.95 μm). We replaced regions of high telluric contam-
ination and those not covered by our spectra with a best-fit
atmospheric model from the BT-Settl grid (Allard
et al. 2011, 2012), where the best-fit here was Teff =2800 K
and =glog 4.5 dex. The final calibrated and combined
spectrum is shown in Figure 3. We calculated the bolometric
flux ( fbol) by integrating over the combined spectrum,
accounting for errors in the flux calibration, optical variability
of 1.5% (McLean et al. 2011; Williams et al. 2015), and errors
introduced by replacing regions of spectra with a BT-Settl
model. This yielded ( )=  ´f 5.12 0.10bol

-10 10 erg s−1 cm−2.
We apportioned this integrated-light bolometric flux to the

individual components by deriving a bolometric flux ratio from
our K-band flux ratio. We examined BT-Settl atmosphere
models with Teff=2700–2900 K and –=glog 4.5 5.0 dex.
Relative to the best-fit Teff =2800 K and =glog 4.5 dex
model, the other five models had comparable or slightly larger
amplitude K-band flux ratios spanning ΔK=−0.10 mag to
0.12 mag for hotter and cooler models, respectively. Among
these models, the relationship between their bolometric
magnitude differences and K-band magnitude differences was
consistently D - D = - M K 0.042 0.011bol mag. In com-
parison to our integrated-light bolometric magnitude error of

0.025 mag, the correction itself is small and the uncertainty in
the correction is essentially negligible (though we do account
for it in our analysis). Combining this correction factor with

Table 3
Properties of LSPMJ1314+1320AB

Property LSPMJ1314+1320A LSPMJ1314+1320B Integrateda Δ=B – A

Spectral type (optical) L L M7.0±0.2 L
Spectral type (near-IR) L L M6±1 FLD-G L
Spectral type (optical) L L M7.0±0.2 L
Spectral type (near-IR) L L M6±1 FLD-G L
JMKO (mag) 10.430±0.029 10.51±0.03 9.717±0.022 0.08±0.04
HMKO (mag) 9.94±0.04 9.97±0.04 9.20±0.03 0.03±0.06
KMKO (mag) 9.480±0.021 9.560±0.022 8.767±0.018 0.080±0.022
J2MASS (mag) 10.467±0.029 10.55±0.03 9.754±0.022 0.08±0.04
H2MASS (mag) 9.91±0.04 9.94±0.04 9.18±0.03 0.03±0.06
KS,2MASS (mag) 9.507±0.021 9.587±0.022 8.794±0.018 0.080±0.022
MJ,MKO (mag) 9.246±0.029 9.33±0.03 9.717±0.022 0.08±0.04
MH,MKO (mag) 8.76±0.04 8.79±0.04 9.20±0.03 0.03±0.06
MK,MKO (mag) 8.296±0.021 8.376±0.022 8.767±0.018 0.080±0.022
MJ,2MASS (mag) 9.283±0.029 9.36±0.03 9.754±0.022 0.08±0.04
MH,2MASS (mag) 8.73±0.04 8.76±0.04 9.18±0.03 0.03±0.06

MK ,2MASSS (mag) 8.323±0.021 8.403±0.022 8.794±0.018 0.080±0.022

( )flog bol (erg cm−2 s−1) −9.584±0.010 −9.599±0.010 −9.291±0.009 −0.015±0.010

Mbol (mag) 11.290±0.025 11.328±0.025 11.309±0.023 −0.038±0.025
( )☉L Llog bol (dex) −2.616±0.010 −2.631±0.010 −2.322±0.009 −0.015±0.010

Derived from BHAC15 Evolutionary Models

Age (Myr) -
+79.9 2.7

2.5
-
+81.7 3.3

2.9 80.8±2.5 1.8±2.7
Teff (K) 2954±3 2947±4 2950±4 −7±3
Radius (RJup) 1.831±0.018 1.808±0.018 1.820±0.016 - -

+0.023 0.017
0.018

glog (cm s−2) 4.836±0.010 4.842±0.011 4.839±0.009 0.006±0.009
Li/Liinit -

+0.12 0.05
0.03 0.17±0.07 -

+0.15 0.06
0.05 0.05±0.04

Note.
a Directly measured properties have their integrated-light values given. For model-derived properties, we report the mean of individually derived values for
LSPMJ1314+1320A and LSPMJ1314+1320B.

Figure 3. Flux-calibrated spectrum of LSPMJ1314+1320AB from which we
determine its integrated-light bolometric flux. Combined SNIFS+SpeX data
are shown in black, and spectral regions replaced by models are shown in gray.
Literature photometry is shown in red, with the horizontal bars indicating the
width of the filter and vertical error bars representing combined measurement
and zero point errors. Blue points indicate the corresponding synthetic fluxes
derived from the spectrum. The bottom panel shows the photometry residuals.
This plot is truncated at 4.0 μm for display purposes, but we include all WISE
photometry in our analysis.
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our K-band photometry, we find ( )D = -Llog 0.015bol
 0.010 dex, with the resultant individual luminosities given
in Table 3.

3.3. Spectral Type and Gravity Classification

We determined the integrated-light spectral type of
LSPMJ1314+1320AB from our optical and NIR data. We
compared our optical SNIFS spectrum to the Mdwarf spectral
library of Bochanski et al. (2007). To find a best-fit spectral
type and uncertainty, we used the least-squares package MPFIT
in IDL (Markwardt 2009). In performing this fit, we allowed
the numerical spectral type to vary continuously, interpolating
between standards to create the comparison spectra. We
excluded wavelengths near Hα, allowed for a small wavelength
shift to account for radial velocity, and neglected extinction
given the small distance. We found a best-fit spectral type for
LSPMJ1314+1320AB of M7.0±0.2, and Figure 4 shows
our data in comparison to the best-fit and adjacent spectral
standards.

We also used our SpeX SXD spectrum to determine an NIR
spectral type and gravity classification on the Allers & Liu
(2013a) system. We find a spectral type of M6±1 (Figure 5),
consistent with our optical type and the previous determina-
tions of M7.0±0.5 in the optical from Lépine et al. (2009)
and M6.5 in the NIR from Schlieder et al. (2014). The gravity
classification is determined from the amount of deviation in
certain spectral features from field objects of similar spectral

type. If most features are consistent with the field (i.e., having a
score of zero), then the classification is FLD-G. If most features
are deviant from the field indicating low gravity, then the
classification is VL-G. Intermediate cases are given the
classification INT-G. For LSPMJ1314+1320, only three scores
are used to determine the gravity, since the strength of VO
absorption is not applicable at this spectral type. Based on the
indices computed from our SXD spectrum (Table 4), we found
that FeH was consisent with the field, most individual alkali
lines were not strongly deviant from the field, and the H-band
continuum was marginally inconsistent with the field. This
results in a score of 0n01 and a formal classification of FLD-G.
However, a closer examination of the alkali lines leads to a
more nuanced interpretation. Of the four features used in the
alkali score, the K I line at 1.169 μm was consistently indicative
of low gravity. Figure 6 shows all four alkali lines, and in fact
all of them appear visually weaker than the field gravity M6
standard, consistent with the findings of Schlieder et al. (2014)
from an independent spectrum. The other three are simply not
weak enough to qualify as low gravity on the Allers & Liu
(2013a) system. Therefore, while the formal classification alone
gives FLD-G, we note that LSPMJ1314+1320 is more faithfully
described as having a spectrum on the borderline between FLD-G
and INT-G classifications.
Finally, we also used the K-band portion of our SpeX

spectrum to determine the metallicity of LSPMJ1314
+1320AB in integrated light. Using the calibration of Mann
et al. (2014) we found [ ] = Fe H 0.04 0.08/ dex, i.e.,
consistent with solar metallicity as assumed by theoretical
models in the following analysis. We caution that this
calibration was based on field objects and thus it might give
a somewhat different value for [Fe/H] than a relation based on
low gravity dwarfs.

3.4. Evolutionary Model-derived Properties

Given our precisely determined individual masses and
luminosities for the components of LSPMJ1314+1320AB,
we can uniquely infer other physical properties from evolu-
tionary model tracks. We first interpolate the values of each
physical parameter such as Teff from the BHAC15 evolutionary
tracks (Baraffe et al. 2015) onto uniform, 2-d grids in log(mass)
and log(Lbol), using grid steps of 0.01 dex in both axes. We
draw random, normally distributed values of the individual
component’s bolometric fluxes for each step in our MCMC
chains. We then bilinearly interpolate each resultant pair of
(mass, Lbol) from our chain on a given 2-d grid of parameter
values to compute the posterior distributions of that parameter.
This approach preserves covariances between input parameters,
e.g., mass and Lbol both depend on distance, when deriving
parameters like Teff (e.g., Liu et al. 2008).
The resulting posterior distributions for model-derived

values of age, Teff , radius, glog , and fraction of lithium
remaining (Li/Liinit) are summarized in Table 3. We find
model-derived ages that are consistent with coevality at 0.7σ,
giving a consensus age of 80.8±2.5Myr. (This and other
mean values given in Table 3 represent the posterior
distribution of the mean of primary and secondary values
calculated from each step of the chain.) Other model-derived
parameters are comparably consistent between the two
components, as expected given the very similar component
masses and luminosities, with mean values of Teff =
2950±4 K, = glog 4.839 0.009 dex, R=1.820±0.016

Figure 4. SNIFS integrated-light spectrum of LSPMJ1314+1320AB shown in
black compared to the M6.5, M7, and M7.5 spectral standards from Bochanski
et al. (2007) shown in shades of blue. Interpolating these standards in a least-
squares fit, we determined a spectral type of M7.0±0.2.
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RJup, and Li/Li = -
+0.15init 0.06

0.05. The very small formal uncer-
tainties in our model-derived properties reflect the precision of
the measured masses and luminosities projected onto the model
grids; we do not attempt to include any systematic errors that
could be associated with the models.

Evolutionary models indicate that the components of
LSPMJ1314+1320AB are well removed from the main
sequence. For our measured masses of 0.0885±0.0006M☉
and 0.0875±0.0010M☉, BHAC15 models predict a
main sequence luminosity of ( )☉ = -L Llog 3.25bol dex

attained by an age of ≈900Myr. Our measured luminosities,
( )☉ = - L Llog 2.617 0.010bol dex and −2.629±

0.010 dex, are a factor of ≈4× higher than the main-sequence
value. The detection of lithium by Schlieder et al. (2014) in the
combined light spectrum of these ≈0.09M☉ objects further
supports the pre-main-sequence nature of this binary, as models
predict lithium will be destroyed in objects of this mass
hundreds of megayears before they reach the main sequence.

4. DISCUSSION

4.1. Lithium Depletion and Age

For very-low-mass stars (0.1M☉) and high-mass brown
dwarfs, lithium is destroyed at a slow enough rate that it can be
used to determine the ages of stellar associations up to at least
∼100Myr. Higher mass objects destroy their primordial
lithium at a faster rate, so at older ages lithium disappears
from the spectra of progressively lower mass objects. There-
fore, the brightest stars to display Li I (6708Å) absorption in a
given cluster define an empirical boundary that can be used as a
relative age scale between different clusters, and evolutionary
models can be used to infer absolute ages of individual clusters
based on the location of this lithium depletion boundary (e.g.,
Bildsten et al. 1997; Binks & Jeffries 2014; Kraus et al. 2014).
LSPMJ1314+1320AB allows us to test these model predic-
tions with stars of known mass for the first time at ages
comparable to those of nearby open clusters.
Schlieder et al. (2014) measured a Li I (6708Å) pseudo-

equivalent width of EW=0.46Å from the integrated-light
spectrum of LSPMJ1314+1320AB. They noted that this is

Figure 5. Integrated-light SpeX spectrum of LSPMJ1314+1320AB (orange) compared to infrared spectral standards from Allers & Liu (2013a, gray). The spectral
type on this system is M6±1.

Table 4
Gravity Classification Summary

Name Index/Score

FeHz 1.1088±0.0012
FeHJ 1.0722±0.0019
VOz -

+1.0010 0.0010
0.0009

K IJ 1.0482±0.0006
H-cont 0.9905±0.0006
Na I 8.22±0.10
K I (1.169 μm) 2.10±0.10
K I (1.177 μm) -

+3.61 0.09
0.10

K I (1.253 μm) 2.63±0.08
Alkali Score 1000
Final Score 0n01
Gravity Classification FLD-G

Note. The parts of the final score correspond, respectively, to lines of FeH (0),
VO (n/a), alkali (0), and H-band continuum (1).
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consistent with measurements of comparable Pleiades late-M
dwarfs, e.g., Stauffer et al. (1998) report three M7 dwarfs that
all have EW=0.5–0.6Å. Given our mass and luminosity
measurements for each component, BHAC15 evolutionary
models predict that the fraction of initial lithium remaining in
the primary and secondary components is -

+0.12 0.05
0.03 and

0.17±0.07, respectively. Since the component masses are
nearly equal, the predicted lithium depletion is correspondingly
consistent within 1.2σ. The mean lithium fraction of the two
components is predicted to be Li/Li = -

+0.15init 0.06
0.05.

An equivalent width measurement cannot be directly
converted into lithium abundance. Palla et al. (2007) used a
model dependent curve of growth approach to estimate the
relationship between Li I pseudo-equivalent widths and lithium
abundance, defined by ( ) ( ( ) ( ))º +A N NLi log Li H 12. If
the lithium depletion level in the components of LSPMJ1314
+1320AB is ≈0.15 as predicted by evolutionary models, and
the initial cosmic lithium abundance is A(Li)≈3.3 dex
(Anders & Grevesse 1989), then their present day abundance
would be A(Li)≈2.5 dex. Over a range of

Teff=3100–3600 K at =glog 4.5 dex, Palla et al. (2007)
found that A(Li)=2.5 dex corresponds to EW = 0.41–0.51Å,
which is consistent with the lithium detection from Schlieder
et al. (2014). If this calibration from Palla et al. (2007) is
accurate and applicable at the somewhat lower Teff here
(≈3000 K according to evolutionary models; Section 3.4), then
the detection of lithium absorption is fully consistent with the
evolutionary model prediction that the components of
LSPMJ1314+1320AB have depleted most of their initial
lithium supply.
As discussed in Section 3.4, models predict an age of

80.8±2.5 Myr based on the mass and luminosity of the
components of LSPMJ1314+1320AB. We can place this in
the context of the relative age scale provided by nearby open
clusters with well determined lithium depletion boundaries. For
the Pleiades, the boundary is at = M 8.78 0.05KS mag
(Dahm 2015) using the VLBI parallax distance of Melis
et al. (2014). The components of LSPMJ1314+1320AB are
0.4–0.5 mag brighter than this (Table 3), implying that they
must be significantly younger than the Pleiades in order to still
possess lithium. Likewise for Blanco1, Cargile et al. (2010)
found a lithium depletion boundary of =M 11.99bol
 0.30 mag, ≈0.7 mag fainter than the components of
LSPMJ1314+1320AB, so they must also be younger than
Blanco1. The younger cluster αPersei has a lithium depletion
boundary of =M 11.31bol mag (Barrado y Navascués
et al. 2004), which is actually consistent within the errors for
both components of LSPMJ1314+1320AB. Therefore, we
conclude that the age of LSPMJ1314+1320AB must be
consistent with or younger than that of αPer. Barrado y
Navascués et al. (2004) report an age of 85±10Myr for
αPer, and recent age determinations for the Pleiades and
Blanco1 are, respectively, 112±5Myr (Dahm 2015) and
132±24Myr (Cargile et al. 2010). The age of LSPMJ1314
+1320AB that we derived from models using mass and
luminosity (80.8±2.5 Myr) is therefore consistent with the
requirement from lithium for the system age to be equal to or
younger than the age of αPer.
Finally, we compare the integrated-light color and resolved

absolute magnitudes of LSPMJ1314+1320AB to the cluster
sequences of αPer and the Pleiades. Using our observed
spectrum, we compute integrated-light apparent magnitudes on
the Cousins system (IC=11.87±0.05 mag) and SDSS
system (i′=12.83±0.04 mag). These give integrated-light
colors of - = I K 3.08 0.05C S mag and ¢ - =i K 4.04S
 0.04 mag. The αPer members from Barrado y Navascués
et al. (2002) within 0.15 mag of this color have apparent
magnitudes of KS=14.1±0.3 mag, and assuming a distance
of 172.4±2.7 pc (van Leeuwen 2009) gives an absolute
magnitude of = M 7.9 0.3KS mag. This is somewhat brighter
than, but consistent with, the absolute magnitudes of the
LSPMJ1314+1320AB components ( = M 8.32 0.02KS mag
and 8.40±0.02 mag). Performing the same exercise for the
DANCe sample of probable (p>0.99) Pleiades members from
Bouy et al. (2015) using our ¢ -i KS color gives
KS=14.2±0.3 mag and thereby = M 8.5 0.3KS mag
assuming a Pleiades distance of 136.2±1.2 pc (Melis
et al. 2014). This is somewhat fainter than, but consistent
with, the absolute magnitudes of the LSPMJ1314+1320AB
components. The scatter in these cluster sequences on the
color–magnitude diagram (≈0.3 mag) is relatively large
compared to the change of ≈0.6 mag in absolute magnitude

Figure 6. Top: a portion of our SpeX spectrum in J band shown in comparison
to M6 dwarfs with field gravity (FLD-G) and very low gravity (VL-G). Although
the alkali lines visually appear intermediate between field- and low-gravity M6
dwarfs, a full analysis of all gravity scores from Allers & Liu (2013a) yields a
classification of FLD-G. LSPMJ1314+1320AB is best described as having a
spectrum on the borderline between FLD-G and INT-G classifications. Bottom: the
full SpeX spectrum with other indices (FeH, VO, and H-band continuum
shape) labeled.
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from αPer to the Pleiades, which limits the discriminating
power of this comparison. The components are somewhat
fainter than expected for being as old or younger than αPer
(0.4–0.5 mag), but the effect is not significant. We therefore
conclude that the location of the components of LSPMJ1314
+1320AB on the color–magnitude diagram is consistent with
the more precise constraints on age from the lithium depletion
boundary comparison, being comparable in age to αPer and
younger than the Pleiades.

4.2. Membership Assessment

Combining our proper motion and parallax with the
published radial velocity of the LSPMJ1314+1320AB system
allows us to derive its space motion and thereby assess
potential membership in known associations of young stars.
Schlieder et al. (2014) reported spectrally resolved radial
velocities of the two components of LSPMJ1314+1320AB
from which they computed a system velocity of
−10.4±1.0 km s−1 under the assumption that the two
components are equal in mass. Our astrometric mass ratio of
q=0.989±0.007 now validates this assumption within their
measurement uncertainty and thereby their reported system
velocity.

We derive a space motion of ( ) (= - U V W, , 10.4 0.21,
)-  - 22.27 0.15, 11.9 1.0 km s−1 and plot this vector

alongside various known young associations in Figure 7. There
are no clear visual associations, except perhaps with ηCha in
UVW, but LSPMJ1314+1320 is very far from ηCha in XYZ.
Using the BANYANII web tool (v1.4; Malo et al. 2013;

Gagné et al. 2014), we find a 99.98% membership probability
in the young field population assuming the age of the system is
<1 Gyr. Therefore, according to BANYAN, LSPMJ1314
+1320 is not likely a member of any of the seven young
moving groups considered in their model (ABDor, Argus,
β Pic, Carina, Columba, Tuc-Hor, and TWA).
We therefore conclude that the LSPMJ1314+1320AB does

not belong to any known young association, despite being
unambiguously pre-main-sequence and located at only
17.25 pc. It is possible that LSPMJ1314+1320AB belongs
to an as yet unidentified <100Myr association in the solar
neighborhood, and if so this should be testable with the
upcoming release of Gaia astrometry (de Bruijne 2012). If no
new associations are found that match LSPMJ1314+1320AB,
then it will join the growing ranks of orphaned young objects in
the solar neighborhood (e.g., Liu et al. 2016).

4.3. Radius and Effective Temperature

In principle, the rotation period (P*) and ( )*v isin measure-
ments from McLean et al. (2011) and Williams et al. (2015)
provide an empirical constraint on the minimum stellar radius,

( )*R isin .6 In practice, such a calculation is complicated by the
fact that their measurements are made in integrated light, but
for the sake of argument we will assume that they both

Figure 7. Heliocentric space velocities and positions for the LSPMJ1314+1320 system (large red circle; error bars are smaller than the symbol size) compared to
various young associations (small colored symbols). For these groups, we use the known members from Torres et al. (2008) that have membership probabilities of at
least 75% and parallaxes. We have used RVs and parallaxes from the literature for objects that had no measured values in Torres et al. (2008). The LSPMJ1314
+1320 system does not seem to be associated with any known young moving groups.

6 We use the notation P* and i* here to indicate the stellar rotation period and
the inclination of the stellar rotation axis with respect to the plane of the sky,
respectively, since we have already used P and i for the binary orbit’s period
and inclination.
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correspond to one of the two components of LSPMJ1314
+1320AB. McLean et al. (2011) reported a rotation period of
3.89±0.05 hr from multi-epoch VLA observations and a

( )* = v isin 45 5 km s−1 from optical spectroscopy. In opti-
cal photometric monitoring, Williams et al. (2015) find two
distinct rotation periods of 3.7859±0.0001 hr and
3.7130±0.0002 hr and conclude that the cause of the two
very similar, but distinct, periods is not clear. Assuming
45±5 km s−1 and 3.8 hr gives ( )* = R isin 1.37 0.15 RJup.
This is consistent with the model-derived average
R=1.820±0.016 RJup, which would correspond to

* =  i 49 8 . Interestingly, this value is in good agreement
with the measured orbital inclination = -

+i 49.34 0.23
0.28 , which

would be consistent with a stellar spin axis aligned with the
orbital plane. However, it is also possible that the true radius is
smaller or larger than predicted by models, corresponding to

* > i 49 or i*<49°, respectively.
The BHAC15 evolutionary models that we have used to

derive stellar parameters like radius and Teff employ BT-Settl
model atmospheres as their boundary conditions for the
surfaces of stars. Therefore, we can test for consistency
between the value of Teff derived from BHAC15 and an
independent estimate based on the spectrum of LSPMJ1314
+1320AB. Direct fitting of our combined optical and NIR
spectrum with BT-Settl models yields Teff =2800 K and

=glog 4.5 dex (Figure 8), but these values necessarily lack
in precision due to the somewhat coarse (100 K, 0.5 dex) model

grid steps. The spectral type–Teff scale of Herczeg &
Hillenbrand (2014), which is based on BT-Settl model
atmospheres, gives Teff =2770 K for a spectral type of M7,
in good agreement with the direct fitting. Therefore, we find the
BT-Settl models give ≈180 K cooler values for Teff than the
average evolutionary model-derived value of 2950±4 K.7

In the absence of additional information, it is equally
possible that this Teff discrepancy could be caused by
systematic errors in either or both of the evolutionary and
atmosphere models. Indeed, the BT-Settl models do not fit the
overall spectrum with high accuracy (Figure 8), implying that
any temperature based on these models will harbor some
systematic error. Observations of other pre-main-sequence
binaries at younger ages show discrepancies consistent with the
180 K difference here. For example, Rizzuto et al. (2016) found
that for two unequal-mass Mdwarf binary systems in the 10-
Myr-old Upper Scorpius subgroup, the evolutionary model-
derived temperatures were 100–300 K higher than model
atmospheres. If the Teff discrepancy for LSPMJ1314
+1320AB were due to evolutionary models, then at fixed
luminosity this would imply model radii that are too small by
13%. Interestingly, there are other cases of pre-main-sequence
Mdwarfs for which such underpredicted model radii can
explain observed discrepancies. Kraus et al. (2015) found that
for the 10Myr old M5 eclipsing binary UScoCTIO5, multiple
evolutionary models (including BHAC15) underpredicted the
component radii by 10%–15% while simultaneously over-
predicting Teff by ≈300 K and thereby predicting consistent
luminosities. In addition, evolutionary models of low-mass
stars that include the effects of magnetic fields predict larger
radii due a slowing down of their contraction (e.g., Macdonald
& Mullan 2010; Malo et al. 2014; Feiden 2016a, 2016b).
Therefore, both observations and theory suggest that the

dominant source of the Teff discrepancy we observe for
LSPMJ1314+1320AB is most likely due to evolutionary
model radii, although we note that spectral type–Teff scale could
still harbor systematic errors. LSPMJ1314+1320AB is much
older than other pre-main-sequence systems with dynamical
mass measurements in nearby star-forming regions, implying
that the same qualitative radius/Teff problem with evolutionary
models extends to ages of at least ∼80Myr.

4.4. Spectral Signatures of Low Gravity

To our knowledge, this is the first mass measurement for an
ultracool dwarf (spectral type M7) with spectral signatures of
lower surface gravity than typical field objects. In Section 3.3,
we classified the integrated-light spectrum as FLD-G, but on the
borderline of being INT-G, and both Schlieder et al. (2014) and
we note the presence of spectral features indicative of lower
surface gravity relative to field dwarfs of similar spectral type.
Evolutionary models indicate that the surface gravities of the
binary components are glog =4.83–4.87 dex, which is
0.42–0.46 dex lower than the predicted main-sequence surface
gravity of 5.29 dex for a 0.09M☉ star. If the model radii are too
small by 13% as suggested above, then the model-derived

Figure 8. Our combined SNIFS+SpeX integrated-light spectrum of
LSPMJ1314+1320AB shown in black compared to BT-Settl model atmos-
phere spectra that all have surface gravity =glog 4.5 dex shown in shades of
green. We fitted a full grid of BT-Settl model spectra to our data, and the best-
fit spectrum had Teff =2800 K and =glog 4.5 dex.

7 The spectral type–Teff scale of Luhman et al. (2003) gives a somewhat hotter
Teff =2880 K at M7, in better agreement with the BHAC15 Teff . However, this
could be due to the fact that the Luhman et al. (2003) scale was designed to
match evolutionary model isochrones of an earlier generation of the BHAC15
models and thus does not provide a truly independent Teff as needed for our
consistency check. Moreover, using a spectral type–Teff scale intended for
higher gravity field dwarfs (e.g., Rajpurohit et al. 2013) results in an even
cooler, more inconsistent Teff .
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gravities would be 0.1 dex lower. Overall, this implies that the
borderline between FLD-G and INT-G designations for late-M
dwarfs corresponds to a surface gravity ≈0.5 dex lower than
field objects.

While the LSPMJ1314+1320AB system itself does not
belong to an association of independently determined age,
numerous other ultracool dwarfs with gravity classifications do.
This allows us to check for consistency of spectral behavior
between LSPMJ1314+1320AB and other young late-M
dwarfs of known age. In the ABDor moving group
(125Myr), Aller et al. (2016) list 15 bona fide or strong
candidate members. Of these, all but one object have gravity
classifications of INT-G or VL-G, with only
2MASSJ03264225–2102057 (L5) classified as FLD-G (but
possessing some visual signs of youth, like LSPMJ1314
+1320AB but at a much later type). Of 17 possible candidate
members none are classified FLD-G. Moreover, Allers & Liu
(2013b) report gravity classifications for eight ultracool dwarfs
in the Pleiades; none were FLD-G, and the two M7 dwarfs PPl1
and Teide1 were INT-G and VL-G, respectively. These
comparisons imply that spectral signatures leading to INT-G and
VL-G classifications are typically still quite entrenched at ages
significantly older than LSPMJ1314+1320AB. At even
younger ages, e.g., Tuc-Hor (50Myr) and βPic (23Myr), no
known members are classified as FLD-G either (e.g., see
compilation of Liu et al. 2016). Therefore, the fact that
LSPMJ1314+1320AB has a gravity classification of FLD-G is
at odds with its model-derived age of 80.8±2.5 Myr and that
our lithium analysis that empirically places the system at a
significantly younger age than the Pleiades.

We suggest a few possible explanations for the fact that
LSPMJ1314+1320AB shows less distinct evidence for low
gravity than older ultracool dwarfs. Perhaps it is not that
uncommon for late-M dwarfs to have more muted gravity
signatures than Ldwarfs, and the existing samples of ultracool
dwarfs are too sparse to detect this yet. As noted by Allers &
Liu (2013b), the currently available infrared spectra of Pleiades
late-M dwarfs are of much lower S/N than was used to define
the gravity classification system, so higher quality spectra may
result in somewhat different, higher gravity, classifications. The
classification of LSPMJ1314+1320AB is done in integrated
light, so perhaps the gravity signatures are somehow obscured
in combined light. Allers & Liu (2013b) tested such an idea,
mostly using VL-G templates for components, and found that it
is quite rare for two components to be classified as lower
gravity in combined light. Finally, maybe some third parameter
is at work, e.g., metallicity or rotation, causing the gravity
classification to deviate slightly from other young ultracool
dwarfs. Our spectrum shows no signs of unusual metallicity,
and it also seems unlikely that such a young object would differ
substantially in composition from other young associations in
the solar neighborhood (e.g., Santos et al. 2008).

4.5. H-R Diagram Test

Pre-main-sequence stellar models are commonly used to
infer masses by placing objects on the H-R diagram (e.g.,
Luhman et al. 1998; Preibisch et al. 2002; Da Rio et al. 2012).
To test the accuracy of masses derived from models in this
way, we used the effective temperatures and luminosities of
LSPMJ1314+1320AB to derive mass and age. Given that the
masses and luminosities of the components are nearly equal,
we simply consider the average integrated-light properties for

this test. As mentioned above, the spectral type–Teff scale
for young objects from Herczeg & Hillenbrand (2014)
gives Teff=2770 K, and they estimate a systematic error
of 100 K for their Teff scale, which we adopt here. The
mean measured luminosity of LSPMJ1314+1320AB is

( )☉ = - L Llog 2.623 0.010bol dex. Figure 9 shows these
values of Teff and Lbol compared to BHAC15 evolutionary
model tracks.
For this test, we interpolated model tracks on a uniform grid

of ( )Llog bol and ( )Tlog eff in the same fashion as described
above in Section 3.4. We found an H-R diagram derived
average component mass of -

+50 20
13 MJup, age of -

+25 17
10 Myr, and

glog of -
+4.46 0.22

0.20 dex. This would imply that LSPMJ1314
+1320AB is actually a pair of young brown dwarfs, due to the
H-R diagram derived mass being -

+46 %19
16 (2.0σ) smaller than

our directly measured component masses of ≈92MJup. The
H-R diagram age is also much smaller (0.5±0.3 dex) than the
age derived from the same models using mass and Lbol. As
expected, the mass and age posteriors derived from the H-R
diagram are highly correlated, where lower masses correspond
to younger ages.
The discrepancy between the H-R diagram derived mass and

our dynamically measured masses suggests either large errors
in the spectral type–Teff relations, which are calibrated using
BT-Settl model atmospheres, systematic errors in the evolu-
tionary models, or some combination of both things. As we
discuss in Section 4.3, we suggest the dominant source of this
discrepancy is that evolutionary model radii are underpredicted
and Teff is thereby overpredicted at a given luminosity.

Figure 9. H-R diagram showing the mean luminosity of the LSPMJ1314
+1320AB components and the Teff determined from the integrated-light
spectral type of M7.0 (blue data point) compared to evolutionary model tracks.
BHAC15 isomass tracks are shown in steps of 0.01 M☉ with the 0.09 M☉ track
highlighted in red since this is consistent within <3% of both measured
individual masses. Isochrones from 1 Myr to 1 Gyr are indicated by dotted
lines. The Teff used for LSPMJ1314+1320AB here is calibrated off of the BT-
Settl model atmospheres, the same used for boundary conditions in the
BHAC15 evolutionary models. When we use this Teff and luminosity to infer
properties from BHAC15 models, we find a mass -

+46 %19
16 (2.0σ) lower than we

measured dynamically. This discrepancy indicates either large errors in spectral
type–Teff relations (≈180 K) or systematic errors in evolutionary models (e.g.,
13% in radius). In either case, this result suggests that masses inferred for
young stars from the H-R diagram will harbor large systematic errors, and
young stars may be confused for young brown dwarfs.
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Regardless of the cause of the discrepancy, this test case shows
that masses derived from the H-R diagram can harbor large
systematic errors. Unfortunately, this method is often the only
practical option when attempting to infer masses of stars and
brown dwarfs in young associations where age can be uncertain
due to potential underlying age spreads. Therefore, the
systematic error we have identified here will have significant
implications for efforts to determine the low-mass end of the
initial mass function, suggesting that young low-mass stars
may be mistakenly identified as young brown dwarfs.

5. CONCLUSIONS

We present here individual dynamical masses for the
components of LSPMJ1314+1320AB, a pre-main-sequence
binary located at a distance of only 17.249±0.013 pc. These
masses and parallactic distance are made possible by a joint
analysis of our resolved relative astrometry of the primary and
secondary from Keck AO imaging and masking along with
absolute astrometry from VLBA radio interferometry of the
secondary (i.e., the component that is fainter in the optical and
infrared). We also derive component luminosities using
integrated-light spectroscopy and photometry and our resolved
infrared photometry. The measured component masses of
92.8±0.6MJup (0.0885±0.0006M☉) and 91.7±1.0MJup

(0.0875±0.0010M☉) and luminosities of ( )☉ =L Llog bol
- 2.616 0.010 dex and −2.631±0.010 dex, respectively,
are consistent with being coeval at an age of 80.8±2.5 Myr
according to BHAC15 evolutionary models. Our precise
masses and luminosities are largely thanks to a remarkably
precise VLBA parallax (s p = ´p

-9 10 ;4 PaperI). We
determine that LSPMJ1314+1320AB is unambiguously in
the pre-main-sequence phase of its evolution based on having
lithium absorption and luminosities ≈4× higher than predicted
for the main sequence at our measured masses. This
combination of precise distance, masses, luminosities, and the
detection of lithium by Schlieder et al. (2014) enables novel
tests of pre-main-sequence models distinct from previous work
on objects in star-forming regions with more uncertain
distances.

1. Evolutionary models self-consistently predict luminosity
and lithium depletion in this binary thereby passing the
first test of the theoretical lithium depletion boundary
using ultracool dwarfs of known mass. Models predict the
components have lost -

+88 %3
5 and 83±7% of their initial

lithium, leaving enough remaining that they are still
expected to display lithium absorption. On the empiri-
cally defined relative cluster age scale, the presence of
lithium and the component absolute magnitudes of
LSPMJ1314+1320AB imply an age consistent with or
younger than αPersei and significantly younger than the
Pleiades and Blanco1.

2. We compare the effective temperature derived from
evolutionary models given our mass and luminosity
(component average Teff=2950±5 K) to that derived
from spectral type–Teff relations based on BT-Settl
models (2770±100 K). The 180 K discrepancy in these
values would correspond to a 13% radius error at fixed
luminosity, which is similar to a problem observed for
low-mass stars in the much younger Upper Scorpius star-
forming region. The eclipsing binary UScoCTIO5
shows that model radii are likely the dominant source

of the Teff problem, while the radius and Teff errors cancel
so that model luminosities are accurate. We suggest that
the same physical cause is responsible for the 180 K
discrepancy for LSPMJ1314+1320AB, showing that
this radius problem can extend to much older pre-main-
sequence ages than previously recognized.

3. In a test that mimics the typical application of
evolutionary models by observers, we used the Teff
derived from spectral type and the average component
luminosity to infer mass and age from evolutionary
model tracks on the H-R diagram. The Teff–Lbol derived
average component mass of -

+50 20
13 MJup is much lower

( -
+46 19

16%, 2.0σ) than we measure dynamically. This
highlights the large systematic errors possible when
inferring masses of low-mass stars and brown dwarfs at
young ages and implies that some stars may be
mistakenly identified as brown dwarfs when using the
H-R diagram.

4. The integrated-light spectrum of LSPMJ1314+1320AB
displays signatures of low surface gravity, though we
formally classify it as FLD-G (on the borderline of INT-G)
on the infrared Allers & Liu (2013a) system. This is the
first time dynamical masses have been measured for
ultracool dwarfs with low-gravity spectral features.
However, contrary to expectations, LSPMJ1314
+1320AB shows less distinct spectral signs of low
gravity than ultracool dwarfs at older ages (Pleiades,
AB Dor), which we are unable to explain.

LSPMJ1314+1320AB provides a high-precision bench-
mark for pre-main-sequence models at a distance ∼10× closer
than even the nearest star-forming regions. One major
unresolved question is why only the secondary component is
radio emitting, as discussed in detail in PaperI. Given that we
have shown that the component masses are within 2% of each
other for this coeval, co-compositional binary system, one
likely explanation for the divergent behavior is a difference in
the angular momentum evolution of the two components.
Projected rotational velocities (v isin ) of other very-low-mass
binaries have hinted at such differences in angular momentum
evolution (e.g., Konopacky et al. 2012), but such measure-
ments have yet to be obtained for LSPMJ1314+1320AB. The
components of LSPMJ1314+1320AB are now the nearest,
lowest mass pre-main-sequence stars with direct mass mea-
surements. In the future, Gaia parallaxes combined with
ongoing ground-based orbit monitoring efforts will make many
more such tests of models possible for more distant binaries in
star-forming regions. Gaia data could even help identify
previously unrecognized associations of young stars in the solar
neighborhood to which LSPMJ1314+1320AB, currently not
associated with any known group, may belong.
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