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Abstract

Yang-Baxter type models are integrable deformations of integrable field theories, such
as the principal chiral model on a Lie group G or σ-models on (semi-)symmetric spaces
G/F . The deformation has the effect of breaking the global G-symmetry of the original
model, replacing the associated set of conserved charges by ones whose Poisson brackets
are those of the q-deformed Poisson-Hopf algebra Uq(g). Working at the Hamiltonian level,
we show how this q-deformed Poisson algebra originates from a Poisson-Lie G-symmetry.
The theory of Poisson-Lie groups and their actions on Poisson manifolds, in particular the
formalism of the non-abelian moment map, is reviewed. For a coboundary Poisson-Lie
group G, this non-abelian moment map must obey the Semenov-Tian-Shansky bracket on
the dual group G∗, up to terms involving central quantities. When the latter vanish, we
develop a general procedure linking this Poisson bracket to the defining relations of the
Poisson-Hopf algebra Uq(g), including the q-Poisson-Serre relations. We consider reality
conditions leading to q being either real or a phase. We determine the non-abelian moment
map for Yang-Baxter type models. This enables to compute the corresponding action of
G on the fields parametrising the phase space of these models.

1 Introduction

Integrable field theories of so-called Yang-Baxter type arise as integrable deformations of differ-
ent well known integrable σ-models. The name originates from the appearance of an R-matrix,
a solution of the so-called modified classical Yang-Baxter equation (mCYBE) on a Lie algebra
g which reads

[RX,RY ]− R
(
[RX, Y ] + [X,RY ]

)
= −c2[X, Y ],

1

http://arxiv.org/abs/1606.01712v1


for any X, Y ∈ g and with c 6= 0, in the action of all these models. Without loss of generality
we can assume that c = 1 or c = i, referred to as the split and non-split cases respectively.
The first example of such a model, coined the Yang-Baxter σ-model, was constructed in [1, 2]
by C. Klimč́ık as a one-parameter deformation of the principal chiral model. This was later
generalised to deformations of symmetric [3] as well as semi-symmetric space σ-models [4, 5].
Other σ-models of Yang-Baxter type include the bi-Yang-Baxter σ-model which gives a two-
parameter deformation of the principal chiral model [2, 6]. The classical integrability of these
various Yang-Baxter type models at the Hamiltonian level was proved in [3,5,7]. We note that
the construction of Yang-Baxter type models can equally be applied to solutions of the classical
Yang-Baxter equation (the case c = 0) [8], resulting in a different class of models [9–11] which
may be referred to as “homogeneous” Yang-Baxter type models. However, these models have
very different properties (see e.g. [12]) to those obtained from solutions of the mCYBE and so
we will not consider such models here.

A prominent feature shared by all Yang-Baxter type models built from solutions of the
mCYBE is that they are characterised by a q-deformation of the global symmetry algebra of
the original “undeformed” integrable σ-model. To illustrate this point let us take the principal
chiral model on a real semisimple Lie group G with Lie algebra g = Lie G as an example. This
model is invariant under a global G× G symmetry acting by left and right multiplications on
its group valued field g(σ, τ). To describe this statement in the Hamiltonian formalism, let M
denote the phase space of the model with Poisson bracket {·, ·}. The left and right actions of
G on M each admit a moment map Q : M → g∗ such that:

(1) the infinitesimal symmetry with parameter ǫ ∈ g reads δǫf = 〈ǫ, {Q, f}〉 for any function
f : M → R on phase space, where 〈·, ·〉 denotes the pairing between g and g∗, and

(2) writing Q = QaTa where T
a and Ta are dual bases of g and g∗, we have {Qa, Qb} = fab

cQ
c

with fab
c denoting the structure constants of g with respect to T a, i.e. [T a, T b] = fab

c T
c.

Moreover, both the left and right actions of G onM are symmetries of the principal chiral model
since they leave the Hamiltonian H invariant, i.e. δǫH = 0 for all ǫ ∈ g. For the Yang-Baxter
σ-model it was shown in [3] that the Poisson brackets from (2) satisfied by the charges of the
right G-symmetry get deformed to those of a Poisson-Hopf algebra Uq(g) [13, 14], where q is
a function of the deformation parameter. The latter can be defined as a semiclassical limit of
the quantum group Uq̂(g) with q̂ = q~. This fact was first shown for the Yang-Baxter σ-model
with G = SU(2) in [15, 16]. Likewise, in the case of the bi-Yang-Baxter σ-model, the Poisson
algebra of the global left and right G-symmetries get deformed instead to Uql(g) and Uqr(g)
algebras, where ql and qr are functions of the two deformation parameters. The latter were
conjectured in [17] and proved in [7].

One of the motivations for the present work is to address the following question: what is
the infinitesimal transformation associated with the q-deformed symmetry of Yang-Baxter type
models? In other words, what is the analog of the property (1) above after deforming? Before
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answering this question it is worth recalling first that the phase space of a Yang-Baxter type
deformation is the same as the phase space of the original “undeformed” integrable model [12],
which we shall keep calling M as in the above example. The correct framework for describing
the symmetries of Yang-Baxter type models is that of Poisson-Lie groups and Poisson-Lie
symmetries. Indeed, the effect of the deformation will be to promote the Lie group G, whose
action on M is Hamiltonian in the sense of property (1) above, to the status of a Poisson-Lie
group, whose action on M is also Hamiltonian but in the Poisson-Lie group sense.

Recall that a Poisson-Lie group1 G is a Lie group equipped with a Poisson bracket {·, ·}G
which is compatible with the multiplication. Its linearisation at the identity endows the dual
g∗ of its Lie algebra g with a natural Lie bracket [·, ·]∗. The dual group G∗ is defined as the
corresponding connected and simply connected Lie group with Lie G∗ = g∗. The action of the
Poisson-Lie group (G, {·, ·}G) on M is called Hamiltonian if there exists a non-abelian moment
map Γ : M → G∗ such that the infinitesimal variation of any function f : M → R is given by

δǫf = −
〈
ǫ,Γ−1 {Γ, f}

〉
(1.1)

where the parameter ǫ takes value in g. Note that if the Poisson bracket {·, ·}G is trivial then so
is the Lie bracket [·, ·]∗, in which case the group G∗ becomes abelian. As a consequence, writing
Γ = exp(−Q) with Q : M → g∗, one recovers the standard infinitesimal symmetry generated
by the moment map Q as in (1) above. We therefore expect the Poisson bracket {·, ·}G to be
proportional to the deformation parameter.

If the deformation is to promoteG to a Poisson-Lie group, the question is with which Poisson
structure {·, ·}G? In the context of Yang-Baxter type deformations, which are associated with
skew-symmetric R-matrices, one can define a natural coboundary Poisson-Lie group structure
on G given by the Sklyanin bracket

{x1, x2}G = γ [R12, x1x2] ,

where x ∈ G and γ plays the role of the real deformation parameter. In particular, we note
that the Poisson bracket becomes trivial in the undeformed limit γ = 0. In the present case,
the Lie algebra (g∗, [·, ·]∗) defined above is naturally isomorphic to the Lie algebra (g, [·, ·]R),
which we denote gR, where

[X, Y ]R = γ
(
[RX, Y ] + [X,RY ]

)
,

for all X, Y ∈ g. Note that this defines a Lie bracket by virtue of the mCYBE. Correspondingly,
the dual group G∗ is isomorphic to the connected and simply connected Lie group GR with Lie
algebra gR. Alternatively, depending on whether the R-matrix is a split or non-split solution
of the mCYBE, the Lie algebra (g∗, [·, ·]∗) may equally be realised as a Lie subalgebra of the

1There are many references on Poisson-Lie groups. For the aspects reviewed in the present article, we mainly
refer to the articles [18–26] and to the books [27, 28]. Further references may be found in [29].
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real double g ⊕ g which we denote gDR, or as Lie subalgebras g± of the complexification gC,
respectively. Let GDR be the corresponding Lie subgroup of G×G and G± the Lie subgroups
of the complexification GC. Both GDR and G± become Poisson-Lie groups themselves when
equipped with the Semenov-Tian-Shansky Poisson bracket

{
x±
1
, x±

2

}
G∗

= γ
[
R12, x

±
1
x±
2

]
,

{
x±
1
, x∓

2

}
G∗

= γ
[
R±

12
, x±

1
x∓
2

]
,

where (x+, x−) ∈ GDR or x± ∈ G± and we have defined R± = R± c Id.

We are now in a position to state what the generalisation of the above two properties (1) and
(2) should be for Yang-Baxter type models. Namely, the action of the coboundary Poisson-Lie
group (G, {·, ·}G) on M should admit a non-abelian moment map, which can be described as a
map (Γ+,Γ−) : M → GDR or Γ± : M → G±, such that:

(1′) the infinitesimal symmetry with parameter ǫ ∈ g reads

δǫf = − 1

2cγ
κ
(
ǫ, (Γ+)−1

{
Γ+, f

}
− (Γ−)−1

{
Γ−, f

})
(1.2)

for any function f : M → R on phase space, where κ(·, ·) is the Killing form on g, and

(2′) the non-abelian moment map is a Poisson map, in the sense that

{
Γ±
1
,Γ±

2

}
= γ

[
R12,Γ

±
1
Γ±
2

]
,

{
Γ±
1
,Γ∓

2

}
= γ

[
R±

12
,Γ±

1
Γ∓
2

]
. (1.3)

Moreover, the action of the Poisson-Lie group (G, {·, ·}G) on M is a symmetry if it preserves
the Hamiltonian, i.e. δǫH = 0 for all ǫ ∈ g, or equivalently if the non-abelian moment map
is conserved. For the standard choice of R-matrix, in both the split and non-split cases, the
data of the non-abelian moment map Γ± is equivalently specified by a collection of charges QH

i

for i = 1, . . . , l = rank g and QE
α for each root α ∈ h∗ of g. We will show that the Poisson

bracket relations (1.3) on the non-abelian moment map Γ± implies that these charges satisfy the
defining Poisson bracket relations, including the q-Poisson-Serre relations, of the Poisson-Hopf
algebra Uq(g) where q = e−icγ.

In order to justify our claim that the q-deformed symmetries of Yang-Baxter type models
indeed correspond to Poisson-Lie group symmetries in the above sense, it therefore remains
to identify the corresponding non-abelian moment map Γ : M → G∗. Now Yang-Baxter type
models can be obtained by deforming a double pole of the twist function of the undeformed
integrable models into a pair of simple poles at λ± [12]. In this context, focusing on the case of
a non-split R-matrix, we will show that the gauge transformed monodromy matrix evaluated
at the pair of points λ±, namely Γ± = T g(λ±), satisfy the Poisson bracket relations (1.3) and
thus provide the desired non-abelian moment map.

This achieves the main goal of this article, namely the generic identification of q-deformed
symmetries analysed in [3] with Poisson-Lie symmetries in Yang-Baxter type models. It is
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worth emphasising that the study of Poisson-Lie symmetries in the context of various σ-models
of Yang-Baxter type has been carried out before in [1, 17]. In fact, the Yang-Baxter σ-model
and the bi-Yang-Baxter σ-model were both originally defined in [1,2] so as to possess, by their
very construction, Poisson-Lie symmetries in the sense of [30,31]. By contrast, we wish to stress
that the analysis carried out in the present article applies to all Yang-Baxter type models and,
most importantly, operates at the Hamiltonian level. The latter is the right setting not only
for discussing the Poisson brackets (1.3) of the non-abelian moment map but also to express
the sought after infinitesimal transformation (1.2) it generates. The variations of the canonical
fields of the model are of the same form as the variations in the undeformed model but where
the transformation parameters are suitably dressed by non-local expressions in the fields.

The plan of this article is the following. In section 2 we begin by reviewing the definitions
of Lie bialgebras, Poisson-Lie groups and Drinfel’d doubles. In the next section we go on to
recall what is meant by the action of a Poisson-Lie group on a Poisson manifold M . The action
is called Hamiltonian when the corresponding infinitesimal transformation is generated by a
non-abelian moment map Γ : M → G∗ as in (1.1). The requirement that this be a Lie algebra
action is shown to imply that the lift

M −→ G∗ −֒→ DG

of Γ to the Drinfel’d double DG is a Poisson map if we equip DG with the Sklyanin bracket
associated with the canonical R-matrix, up to terms involving central quantities.

In section 4 we turn to the study of coboundary Poisson-Lie groups, discussing in parallel
the cases of split and non-split R-matrices. In this setting we recall the different realisations
of the dual group G∗ which in later sections will provide us with useful ways of describing the
non-abelian moment map Γ. We focus on the Poisson-Lie group structure on G defined by the
Sklyanin bracket. The dual space g∗ is naturally a Lie algebra which is isomorphic in this case
to gR, the vector space g equipped with the R-bracket. This provides a first concrete realisation
of G∗ as the Lie group GR associated to gR. We denote the corresponding description of the
non-abelian moment map by

ΓR : M −→ GR.

Next, we recall that the Drinfel’d double Dg of a coboundary Lie bialgebra defined by a split
R-matrix is canonically isomorphic as a Lie algebra to the real double g⊕ g. Likewise, in the
case of a non-split R-matrix the Drinfel’d double Dg is isomorphic as a Lie algebra to the
complexification gC. The Lie algebra g∗ ≃ gR may then be realised in the split case as a Lie
subalgebra of g⊕g which is complementary to the diagonal subalgebra, or as a Lie subalgebra of
gC complementary to the real subalgebra in the non-split case. This provides a second explicit
realisation of the dual group G∗ as a subgroup of the Cartesian product G×G in the split case
or of the complexification GC in the non-split case. We denote the corresponding presentations
of the non-abelian moment map respectively by

(Γ+,Γ−) : M −→ GDR, and Γ± : M −→ G±.
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We show that these are both Poisson maps if we equip GDR and G± with the Semenov-Tian-
Shansky Poisson bracket, again with the possible addition of terms involving central quantities.
In the remainder of the paper, however, we shall put these central quantities to zero.

Section 5 is devoted to showing that, when we choose the standard R-matrix in the split
(resp. non-split) case, the Semenov-Tian-Shansky Poisson bracket on GDR (resp. G±) corre-
sponds precisely to the defining Poisson bracket relations of the Poisson-Hopf algebra Uq(g)
with q = e−iγ (resp. q = eγ). Specifically, the choice of standard R-matrix means that Γ+

and Γ− are elements of the positive and negative Borel subgroups of G (resp. GC). To any
choice of normal ordering on the set of positive roots of g we associate a parametrisation of
Γ+ and Γ− in terms of charges QH

i for each Cartan direction and QE
α for each positive and

negative root α ∈ h∗. We then show that imposing the Semenov-Tian-Shansky Poisson bracket
on the pair Γ± implies that the charges QH

i and QE
α satisfy all the relations of the Poisson

algebra Uq(g), including the q-Poisson-Serrre relations, as given in [3]. We also discuss reality
conditions suitable for the split and non-split cases.

Finally, the results from previous sections are applied in section 6 to discuss the q-deformed
symmetries of Yang-Baxter type models. As explained above, we show that the non-abelian
moment map in this case is given by the quantity Γ± = T g(λ±). We use this to compute the
variations under the q-deformed symmetry of the canonical fields parametrising the phase space
of these models. To end this section we also comment on the corresponding variation of the
first order action of Yang-Baxter type models.

2 Poisson-Lie groups and Drinfel’d doubles

In this section, we recall the main points of the general theory of Poisson-Lie groups and their
link to Lie bialgebras, including the formulation in terms of Drinfel’d doubles.

2.1 Poisson-Lie groups and Lie bialgebras

A Poisson-Lie group is a real Lie group G equipped with a Poisson bracket {·, ·}G which is
compatible with the multiplication G×G→ G in the sense that the latter is a Poisson map.

Consider the dual space g∗ of the Lie algebra g. As g ≃ TeG, any element in g∗ can be
realised as the differential def : TeG→ R of a smooth function f : G→ R, taken at the identity
e. Using this, we define a skew-symmetric product on g∗ by

[def, deg]∗ = de {f, g}G . (2.1)

One can show that this product is well defined, i.e. that the results only depend on def and
deg and not on the choice of f and g. Using the Jacobi identity of the Poisson bracket, one
finds that

(g∗, [·, ·]∗)

6



is a Lie algebra. The Lie bracket [·, ·]∗ can be seen as a skew-symmetric map δ∗ : g∗ ⊗ g∗ → g∗.
One can show that the dual map δ : g→ g⊗ g is a 1-cocycle, i.e. that (g, g∗) is a Lie bialgebra
(see for instance [28]). Conversely, from any Lie bialgebra, one can define a unique connected
and simply connected Poisson-Lie group.

2.2 Drinfel’d doubles

Let G be a Poisson-Lie group, with Lie bialgebra (g, g∗). We define the Drinfel’d double of g
as the vector space direct sum

Dg = g⊕ g∗.

We will write ι and ι∗ for the natural embeddings of g and g∗ into Dg and we will denote
elements of Dg as (X, λ), where X is in g and λ is a linear form in g∗. One can define a bilinear
form on the double Dg by

〈
(X, λ)|(Y, µ)

〉
= 〈X, µ〉+ 〈Y, λ〉 = µ(X) + λ(Y ) (2.2)

for any X, Y ∈ g and λ, µ ∈ g∗, where 〈·, ·〉 denotes the canonical pairing between g and g∗.
One then has the following result [28]:

Theorem 2.1. There exists a unique Lie bracket [·, ·]D on Dg such that ι and ι∗ are Lie
homomorphisms from g and g∗ to Dg, and such that the bilinear form 〈·|·〉 is ad-invariant.

It is clear from the definition (2.2) that the subspaces ι(g) and ι∗(g∗) are both isotropic with
respect to 〈·|·〉. The data (Dg, g, g∗) therefore defines a Manin triple. Moreover, let us consider
a basis {T a} of g and the dual basis {Ta} of g∗. Consider the element in Dg⊗Dg define by

RD
12

=
∑

a

ι(T a)⊗ ι∗(Ta)− ι∗(Ta)⊗ ι(T a), (2.3)

where we use the standard tensorial notation. By the Adler-Kostant-Symes procedure, it is a
skew-symmetric solution of the split modified classical Yang-Baxter equation on Dg, which in
tensorial notation reads

[
RD

12
,RD

13

]
D
+
[
RD

12
,RD

23

]
D
+
[
RD

13
,RD

23

]
D
=
[
CD

12
, CD

13

]
D
,

with CD
12

the quadratic Casimir in Dg⊗Dg.

3 Poisson-Lie actions

In this section we study actions of Poisson-Lie groups on Poisson manifolds via the non-abelian
moment map formulation.
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3.1 Non-abelian moment map

Let G be a Poisson-Lie group and M be a Poisson manifold, with Poisson bracket {·, ·}. Let

ρ : G×M −→M

be a smooth group action of G on M . We say that ρ is a Poisson-Lie action if it is a Poisson
map, fromG×M , with the direct product Poisson structure, toM . The map ρ can alternatively
be seen as a group homomorphism from G to Diff(M), the group of diffeomorphisms of M . Its
differential at the identity induces a Lie algebra action

δ : g −→ TId

(
Diff(M)

)
= Vect(M),

on the space Vect(M) of vector fields on M . For ǫ ∈ g, the vector field δǫ acts naturally on any
smooth function f : M → R. We consider the case where there exists a map

Γ : M −→ G∗,

where the dual group G∗ is the connected and simply connected Lie group with Lie algebra g∗,
such that

δǫf = −
〈
ǫ,Γ−1 {Γ, f}

〉
. (3.1)

The map Γ is called the non-abelian moment map of the action of G on M . If M is symplectic
and simply connected, then such a map always exists. We can note here that Γ is defined up
to a left multiplication by a constant element in G∗. Conversely, every transformation of the
form (3.1) preserves the Poisson bracket if the parameter ǫ has a non-zero bracket with itself,
coming from the Poisson-Lie structure on G.

To illustrate this concept, let us investigate here the case of a usual Hamiltonian action of
G on M . For any fixed g, the action ρ(g, ·) is then a canonical transformation on M . In other
words, ρ is a Poisson map for the trivial Poisson structure on G. The induced Lie bracket on g∗

defined by (2.1) is then trivial, so that the dual group G∗ is abelian. We write Γ = exp(−Q),
with Q : M → g∗. As G∗ is abelian, the transformation (3.1) simply becomes

δǫf = 〈ǫ, {Q, f}〉 . (3.2)

We recognize here the usual expression for a Hamiltonian action of G onM , with Q the moment
map. When this action is a symmetry of a Hamiltonian system, decomposing Q with respect
to the dual basis of g∗ as Q =

∑
a Q

aTa, we obtain dimG conserved charges Qa.

3.2 Poisson brackets of the non-abelian moment map

Let us recall that since ρ is a Lie group action, δ is a Lie algebra action. In other words, δ is a
Lie homomorphism which is to say that

[δǫ, δǫ′] = δ[ǫ,ǫ′], (3.3)

8



for any ǫ, ǫ′ ∈ g. In the case of a usual Hamiltonian action of G on M , where δǫ is given by
equation (3.2), it is a well-known fact that the homomorphism condition (3.3) implies that the
Poisson algebra of the charges Qa takes the form

{Qa, Qb} =
∑

c

fab
c Q

c +Nab

of the Lie algebra relations in g up to central quantities Nab, where fab
c are structure constants

of g with respect to the basis {T a}, i.e.

[T a, T b] =
∑

c

fab
c T

c.

It is therefore natural to ask whether we can extract from equation (3.3) some informations on
the Poisson bracket of Γ with itself. One important step is to note that, from equation (3.1),
using the Jacobi and Leibniz identities on {·, ·}, the action of [δǫ, δǫ′] on any function f takes
the following rather simple form

[δǫ, δǫ′] f =
〈
ǫ1ǫ

′
2
,Γ−1

1
Γ−1
2

{
{Γ1,Γ2}Γ−1

1
Γ−1
2
, f
}
Γ1Γ2

〉
12

. (3.4)

In order to treat the right hand side of equation (3.3), we pass to the Drinfel’d double formu-
lation recalled in section 2.2. Indeed, we can write

δ[ǫ,ǫ′]f = −
〈
[ι(ǫ), ι(ǫ′)]D

∣∣ ι∗(Γ)−1 {ι∗(Γ), f}
〉
,

where, by abuse of notation, we still denote by ι∗ the lift of ι∗ : g∗ →֒ Dg to the group embedding
G∗ →֒ DG. Using the definition (2.3) of RD

12
we note that

ι(ǫ′)1 = 〈ι(ǫ′)2|RD
12
〉2 and ι(ǫ)2 = −〈ι(ǫ)1|RD

12
〉1.

From these two equations and the fact that the pairing 〈·|·〉 is invariant with respect to the
[·, ·]D bracket (cf. Theorem 2.1), we obtain

δ[ǫ,ǫ′]f = −1
2

〈
ι(ǫ)1ι(ǫ

′)2

∣∣∣
[
RD

12
, ι∗(Γ)−1

1
{ι∗(Γ)1, f}+ ι∗(Γ)−1

2
{ι∗(Γ)2, f}

]
D

〉
12

.

This expression can be rewritten as

δ[ǫ,ǫ′]f =
1

2

〈
ι(ǫ)1ι(ǫ

′)2

∣∣∣ ι∗(Γ)−1
1
ι∗(Γ)−1

2

{
ι∗(Γ)1ι

∗(Γ)2RD
12
ι∗(Γ)−1

1
ι∗(Γ)−1

2
, f
}
ι∗(Γ)1ι

∗(Γ)2

〉
12

.

(3.5)
Using the fact that the pairing 〈·|·〉 is non-degenerate between g and g∗, by equating (3.4) and
(3.5) we arrive at

{ι∗(Γ)1, ι∗(Γ)2} ι∗(Γ)−1
1
ι∗(Γ)−1

2
=

1

2
ι∗(Γ)1ι

∗(Γ)2RD
12
ι∗(Γ)−1

1
ι∗(Γ)−1

2
+ P12 (3.6)
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where the element P12 ∈ Dg ⊗ Dg is a central quantity for the Poisson bracket {·, ·}. Let us
study the properties that P12 must fulfil. First of all, it must be skew-symmetric. Moreover,
it should be such that the right hand side of (3.6) lives in ι∗(g∗) ⊗ ι∗(g∗). It is a well-known
consequence of the Adler-Kostant-Symes construction for Manin triples that, for any y ∈ ι∗(G∗),
we have y1y2RD

12
y−1
1
y−1
2
− RD

12
∈ ι∗(g∗) ⊗ ι∗(g∗). Thus, defining N12 = P12 + 1

2
RD

12
, we can

write

{ι∗(Γ)1, ι∗(Γ)2} = −
1

2

[
RD

12
, ι∗(Γ)1ι

∗(Γ)2
]
+N12ι

∗(Γ)1ι
∗(Γ)2, (3.7)

with N12 ∈ ι∗(g∗) ⊗ ι∗(g∗) skew-symmetric. The last requirement on N12 is that the Poisson
bracket (3.7) must satisfy the Jacobi identity. Let us first remark that this is the case when
N12 = 0, as RD

12
verifies the mCYBE. We will see in the next sections why this case is of

particular interest.
More generally, we recognise in (3.7) a quadratic algebra of ad-type, in the nomenclature

of [32, 33]. In this case, a necessary and sufficient condition for the Jacobi identity to hold is
that RD

12
− 2N12 satisfies the mCYBE. In particular, this is the case if

N12 =
1

2
RD

12
− 1

2
ι∗(C)−1

1
ι∗(C)−1

2
RD

12
ι∗(C)1ι

∗(C)2,

for some constant C ∈ G∗. For this N12 we define Γ̃ = CΓ. As noted in subsection 3.1, Γ̃ is

still a good non-abelian moment map. Moreover, the Poisson bracket of Γ̃ becomes

{
ι∗(Γ̃)1, ι

∗(Γ̃)2
}
= −1

2

[
RD

12
, ι∗(Γ̃)1ι

∗(Γ̃)2
]
.

Conversely, if the Poisson brackets of Γ are of the form (3.7), then the transformation (3.1) is
a Lie algebra action of g, i.e. it satisfies (3.3).

4 Coboundary Poisson-Lie groups and R-matrices

One important class of Lie bialgebras are the so-called coboundary ones, which are given by
R-matrices, solutions of the mCYBE. In this section, we recall their properties and apply the
abstract result (3.7) of the previous section to this particular case.

4.1 R-matrices, Sklyanin bracket and gR dual algebra

Let g be a Lie algebra and R : g→ g a skew-symmetric linear map solution of the mCYBE on
g, namely

[RX,RY ]− R
(
[RX, Y ] + [X,RY ]

)
= −c2[X, Y ], (4.1)

for all X, Y ∈ g with c = 1 (split case) or c = i (non-split case). We define R± = R± c Id, and
introduce the R-bracket

[X, Y ]R = γ
(
[RX, Y ] + [X,RY ]

)
= γ

(
[R±X, Y ] + [X,R∓Y ]

)
,
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with γ a real constant. An important consequence of the mCYBE is that the vector space g

equipped with the R-bracket is also a Lie algebra. We therefore have two Lie algebra structures
on the vector space g: the usual one (g, [·, ·]), that we shall still note g and

gR = (g, [·, ·]R).

This construction is related to Poisson-Lie groups. Suppose now that g is semisimple and
let κ denote its Killing form. Let R be a skew-symmetric solution of the mCYBE on g. We
denote by R12 ∈ g⊗g its kernel with respect to κ. One can then define a Poisson-Lie structure
on G with the Sklyanin bracket

{x1, x2}G = γ [R12, x1x2] .

Since g is semisimple, its Killing form κ is non-degenerate. This allows us to define a natural
pairing π between g and its dual g∗ by considering, for any X ∈ g, the linear form

π(X) : g −→ R

Y 7−→ κ(X, Y ).

As a vector space, gR is equal to g, so π can be seen as a linear isomorphism from gR to g∗.
The following lemma then gives a concrete realisation of the dual Lie algebra g∗.

Lemma 4.1. Let G be a Poisson-Lie group, with the Sklyanin bracket associated with a solution
R of the mCYBE on g. Equip g∗ with the Lie bracket (2.1). Then the map

π : gR −→ g∗

is a Lie algebra isomorphism.

4.2 Real and complex doubles and the dual Lie algebras gDR and g±

In this section, we study separately the split and non-split cases.

Split case. Define the real double of g as the Lie algebra direct sum g⊕ g. We introduce the
subspaces

gdiag =
{
(X,X), X ∈ g

}
, gDR =

{
(R+X,R−X), X ∈ g

}
.

It is clear that, for any endomorphism R, gdiag and gDR form a direct sum decomposition of
g⊕ g. Moreover, gdiag is a Lie subalgebra of g⊕ g. One shows that, when R is a split solution
of the mCYBE, gDR is also a Lie subalgebra of g⊕ g isomorphic to gR. More precisely,

Lemma 4.2. If R is a solution of the split mCYBE on g, then

∆ : gR −→ gDR

X 7−→ γ(R+X,R−X)

11



is a Lie algebra isomorphism, whose inverse is given for all (X, Y ) ∈ gDR ⊂ g⊕ g by

∆−1(X, Y ) =
1

2γ
(X − Y ). (4.2)

We have obtained yet another realisation of g∗, this time in the real double. Moreover the
subalgebra gdiag is isomorphic to g. Hence we have realised both g and g∗ as subalgebras of the
real double g⊕ g. In fact, by the following lemma the real double g⊕ g itself is a realisation of
the abstract Drinfel’d double Dg = g⊕ g∗ (cf. section 2.2).

Lemma 4.3. If R is a skew-symmetric solution of the split mCYBE on g, then

Φ : Dg −→ g⊕ g

(X, λ) 7−→ (X,X) + ∆ ◦ π−1(λ)

is a Lie algebra isomorphism, such that Φ
(
ι(g)

)
= gdiag and Φ

(
ι∗(g∗)

)
= gDR. Its inverse is

given for every (X, Y ) ∈ g⊕ g by

Φ−1(X, Y ) =
1

2

(
R+Y −R−X,

1

γ
π(X − Y )

)
.

Moreover, Φ sends the pairing (2.2) on Dg to the non-degenerate ad-invariant bilinear form on
g⊕ g defined, for all X1, X2, Y1, Y2 ∈ g, by

〈
(X1, Y1)

∣∣(X2, Y2)
〉
=

1

2γ

(
κ(X1, X2)− κ(Y1, Y2)

)
.

Non-split case. One can perform a similar analysis in the case of a non-split solution of the
mCYBE (c = i). Here we introduce the complex double gC as the complexification of g, namely

gC = {X + iY, X, Y ∈ g}.

We define the complex conjugation relative to the real form g as

θ : gC −→ gC

X + iY 7−→ X − iY.

This is a semi-linear involutive automorphism of gC and g itself can be seen as a Lie subalgebra
of gC, viewed as a real Lie algebra. More precisely, g is the subalgebra of gC fixed by θ (see
also appendix B).

We introduce the subspaces
g± = {R±X, X ∈ g}

of gC. Note that g± = θ(g∓). We have the vector space decompositions gC = g⊕ g+ = g⊕ g−.
Moreover, as a consequence of the mCYBE, g± are Lie subalgebras of gC isomorphic to gR.

12



Lemma 4.4. If R is a solution of the non-split mCYBE on g, then

∆± = γR± : gR −→ g±

is a Lie algebra isomorphism, whose inverse is given for each X ∈ g± ⊂ gC by

∆−1
± (X) = ±X − θ(X)

2iγ
. (4.3)

As in the split case, we realised g and g∗ as subalgebras of gC. Moreover, the complex double
gC provides another realisation of the abstract Drinfel’d double Dg by the following result.

Lemma 4.5. If R is a skew-symmetric solution of the non-split mCYBE on g, then

Φ± : Dg −→ gC

(X, λ) 7−→ X + γR± ◦ π−1(λ)

is a Lie algebra isomorphism, such that Φ±

(
ι(g)

)
= g and Φ±

(
ι∗(g∗)

)
= g±. Its inverse is given

for any X ∈ gC by

Φ−1
± (X) =

1

2i

(
R±
(
θ(X)

)
−R∓(X),±1

γ
π
(
X − θ(X)

))
.

Moreover, Φ± sends the pairing (2.2) on Dg to the non-degenerate ad-invariant bilinear
form on gC defined, for all X, Y ∈ gC, by

〈X|Y 〉 = ±1

γ
Im
(
κ(X, Y )

)
.

4.3 Poisson-Lie action of G: Semenov-Tian-Shansky brackets

In the previous subsections, we provided concrete realisations of both the dual Lie algebra g∗

and the Drinfel’d double Dg for (split and non-split) coboundary Poisson-Lie groups. By abuse
of notation, we will denote by the same symbols the lift of these realisations to the dual group
G∗ and the Drinfel’d double group DG. In section 3.2, we found an abstract expression (3.7)
for the Poisson bracket of the non-abelian moment map viewed in the Drinfel’d double. We
will now investigate what this Poisson bracket becomes in the concrete realisations of DG.

Split case. The non-abelian moment map Γ can be seen as a map to the group GR via the
Killing pairing π, namely

ΓR = π−1(Γ) ∈ GR,

and in turn as an element of the group GDR via the morphism ∆,

(Γ+,Γ−) = ∆(ΓR) = ∆ ◦ π−1(Γ) ∈ GDR ⊂ G×G.

13



The real double G × G is related to the Drinfel’d double DG by the morphism Φ (cf lemma
4.3). Let us remark here that

Φ
(
ι∗(Γ)

)
= (Γ+,Γ−).

Under the action of Φ1Φ2, the Poisson bracket (3.7) then becomes

{
(Γ+,Γ−)1, (Γ

+,Γ−)2
}
= −1

2

[
Φ1Φ2RD

12
, (Γ+,Γ−)1(Γ

+,Γ−)2
]
+ Ñ12(Γ

+,Γ−)1(Γ
+,Γ−)2 (4.4)

with Ñ12 = Φ1Φ2N12 the central quantity.
The objects in the above formula belong to (g⊕ g)⊗ (g⊕ g). Such objects can be written

as vectors with four g⊗ g-valued components as

(X, Y )⊗ (X ′, Y ′) =




X ⊗X ′

X ⊗ Y ′

Y ⊗X ′

Y ⊗ Y ′


 .

Let us now compute Φ1Φ2RD
12
. We have Φ ◦ ι(T a) = (T a, T a) and

Φ ◦ ι∗(Ta) = ∆ ◦ π−1(Ta) =
∑

b

κab∆(T b) = γ
∑

b

κab(R
+T b, R−T b)

where κab is the Killing form written in the basis {T a}. We therefore find that

Φ1Φ2RD
12

= −2γ




R12

R+
12

R−
12

R12


 . (4.5)

We define

Ñ12 =




N++
12

N+−
12

N−+
12

N−−
12


 .

The four components of the Poisson bracket (4.4) then read

{
Γ+
1
,Γ+

2

}
= γ

[
R12,Γ

+
1
Γ+
2

]
+N++

12
Γ+
1
Γ+
2
, (4.6a)

{
Γ+
1
,Γ−

2

}
= γ

[
R+

12
,Γ+

1
Γ−
2

]
+N+−

12
Γ+
1
Γ−
2
, (4.6b)

{
Γ−
1
,Γ+

2

}
= γ

[
R−

12
,Γ−

1
Γ+
2

]
+N−+

12
Γ−
1
Γ+
2
, (4.6c)

{
Γ−
1
,Γ−

2

}
= γ

[
R12,Γ

−
1
Γ−
2

]
+N−−

12
Γ−
1
Γ−
2
. (4.6d)
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When the central quantities N±±
12

and N±∓
12

vanish, these are the Semenov-Tian-Shansky brack-
ets

{
Γ±
1
,Γ±

2

}
= γ

[
R12,Γ

±
1
Γ±
2

]
, (4.7a)

{
Γ±
1
,Γ∓

2

}
= γ

[
R±

12
,Γ±

1
Γ∓
2

]
. (4.7b)

Finally, let us emphasise that the transformation law (3.1) can be re-expressed in terms of
the non-abelian moment map (Γ+,Γ−) via the morphism ∆ ◦ π−1, giving explicitly

δǫf = − 1

2γ
κ
(
ǫ, (Γ+)−1

{
Γ+, f

}
− (Γ−)−1

{
Γ−, f

})
. (4.8)

Non-split case. From the non-abelian moment map ΓR = π−1(Γ) seen in the group GR, we
can construct two different realisations of Γ in the complex double GC:

Γ+ = ∆+(ΓR) ∈ G+ and Γ− = ∆−(ΓR) ∈ G−.

These are not independent. They are related by the semi-linear automorphism θ as Γ± = θ(Γ∓).
Note that

Φ± ◦ ι∗(Γ) = Γ±.

For any η, ε ∈ {+,−}, applying Φη1Φε2 to the bracket (3.7), we obtain

{
Γη
1
,Γε

2

}
= −1

2

[
Φη1Φε2RD

12
,Γη

1
Γε
2

]
+Nηε

12
Γη
1
Γε
2
,

with the central quantities Nηε
12

= Φη1Φε2N12. We have Φ± ◦ ι(T a) = T a and

Φ± ◦ ι∗(Ta) = γR±
(
π−1(Ta)

)
= γ

∑

b

κabR
±T b,

so that
Φη1Φε2RD

12
= γ

(
Rε

21
−Rη

12

)
= −γ

(
Rη

12
+R−ε

12

)
.

Thus, in the non-split case, the non-abelian moment maps Γ+ and Γ− also satisfy, up to central
quantities, the Semenov-Tian-Shansky Poisson brackets (4.7).

Applying Φ± to equation (3.1) yields the transformation law in terms of the non-abelian
moment map Γ± which reads

δǫf = ∓1

γ
Im
(
κ
(
ǫ, (Γ±)−1

{
Γ±, f

}))
= − 1

2iγ
κ
(
ǫ, (Γ+)−1

{
Γ+, f

}
− (Γ−)−1

{
Γ−, f

})
. (4.9)
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4.4 Poisson-Lie action of G∗: Sklyanin bracket

In this section we consider the case of a coboundary Lie bialgebra specified by a split R-matrix.
We have canonical isomorphisms g∗DR ≃ g∗∗ ≃ g of vector spaces. Moreover, the dual Lie group
G∗ ≃ GDR is a Poisson-Lie group when equipped with the Semenov-Tian-Shansky bracket

{
x±
1
, x±

2

}
= γ

[
R12, x

±
1
x±
2

]
, (4.10a)

{
x±
1
, x∓

2

}
= γ

[
R±

12
, x±

1
x∓
2

]
. (4.10b)

The induced Lie structure on g∗DR is isomorphic to g, so that the isomorphism g∗∗ ≃ g∗DR ≃ g

also holds at the level of Lie algebras. Thus the Drinfel’d double Dg∗ of the dual Lie algebra
g∗ is isomorphic to the Drinfel’d double Dg of the original Lie algebra g.

As a consequence, the formalism developed in the previous sections can also be used to treat
a Poisson-Lie action of the dual group G∗ ≃ GDR on a Poisson manifold M . In this case, the
non-abelian moment map is an application

U : M −→ G.

We can see it as an element ι(U) of the Drinfel’d double DG. The results presented in section
3.2 still apply in this case and the Poisson bracket of U is then given by

{ι(U)1, ι(U)2} = −
1

2

[
RD

12
, ι(U)1ι(U)2

]
+ ι1ι2(M12)ι(U)1ι(U)2,

where M12 is a central quantity valued in g ⊗ g. Applying the morphism Φ to this equation,
noting that Φ

(
ι(U)

)
= (U, U) and recalling equation (4.5), we obtain

{U1, U2} = γ [R12, U1U2] +M12U1U2. (4.11)

This is, up to central quantities, the Sklyanin bracket.

5 Link with q-deformed algebras

In this section we suppose that g is either the split real form or a non-split real form of the
semisimple complexification gC. The definitions and basic properties of semisimple complex Lie
algebras are recalled in appendix A and those of (non-)split real forms in appendix B.

5.1 Real forms and standard R-matrices

Let πn± and πh denote the projections with respect to the Cartan-Weyl decomposition gC =
h⊕ n+ ⊕ n−. We define the linear operator R ∈ End gC by

R = c
(
πn+ − πn−

)
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with c = 1 (split case) or c = i (non-split case), which is a solution of the mCYBE on gC.
Moreover, as can be seen in the explicit bases (B.2) and (B.6) of the split and non-split real
forms, this operator stabilises the real form g. Thus, by restriction, it defines a solution of the
mCYBE on g, that we refer to as the standard R-matrix of g.

The kernel of R with respect to the Killing form is

R12 = c
∑

α>0

(Eα ⊗ E−α −E−α ⊗ Eα) .

Likewise, the kernel of R± is R±
12

= R12 ± c C12, where the quadratic Casimir tensor is given

C12 =
l∑

i=1

Ki ⊗Ki +
∑

α>0

(Eα ⊗ E−α + E−α ⊗ Eα) ,

where {Ki, i = 1, . . . , l} is an orthonormal basis of h with respect to the Killing form.

5.2 Extraction of charges

We saw in section 4.3 that, in the split case, the non-abelian moment map can be regarded as
an element (Γ+,Γ−) of GDR ⊂ G × G. In the non-split case, it can be represented as either
Γ+ ∈ G+ ⊂ GC or Γ− ∈ G− ⊂ GC (with Γ+ and Γ− related by Γ± = θ(Γ∓), where θ is the
semi-linear involutive automorphism of GC defining the real subgroup G). Here we will treat
the two cases together.

In the split (resp. non-split) case, the Lie algebras R±(g) are the positive and negative Borel
subalgebras of g (resp. gC), with opposite Cartan parts. Therefore Γ+ and Γ− are elements of
the positive and negative Borel subgroups of G (resp. GC), with Cartan parts inverses of one
another. We choose to parametrise them as follows

Γ+ = M+D, Γ− = D−1M−, M± ∈ N±, D ∈ H, (5.1)

where H is the Cartan subgroup and N± the positive and negative unipotent subgroups of G.
We now extract scalar charges from D and M±. Starting with the Cartan part D, we choose

a decomposition with respect to the basis of fundamental weights Pi, recalled in appendix C,

D = exp

(
icγ

l∑

i=1

QH
i Pi

)
=

l∏

i=1

exp
(
icγQH

i Pi

)
. (5.2)

The order of the product has no importance since the Cartan subgroup is abelian. We define

Z = icγ
l∑

i=1

QH
i Pi ∈ h, (5.3)
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so that D = exp(Z).
The extraction of suitable charges from M+ and M− is more involved. Let us fix a labelling

β1, . . . , βn of the positive roots, where n is the number of positive roots. We can parametrise
M± by scalar charges QE

β as

M± =

n∏

i=1

exp
(
±icγA±βi

QE
±βi

E±βi

)
, (5.4)

where the Aβ’s are normalisation constants to be fixed later. Define

u(i) = exp
(
icγAβi

QE
βi
Eβi

)
and v(i) = exp

(
−icγA−βi

QE
−βi

E−βi

)
(5.5)

so that we can write

M+ = u(1) . . . u(n) and M− = v(1) . . . v(n). (5.6)

Since the Lie groups N± are not abelian, these products depend on the choice of the ordering
β1, . . . , βn of the positive roots. We choose an ordering such that

if i < j and βi + βj is a root, then βi + βj = βk with i < k < j. (5.7)

Such an ordering can be constructed from the (partial) normal order described in [3]. We label
the simple roots α1, . . . , αl in a way which is compatible with the ordering β1, . . . , βn, i.e. such
that αi = βki with 1 = k1 ≤ . . . ≤ kl = n.

5.3 Semenov-Tian-Shansky brackets and Uq(g) algebra

We will now start from the Semenov-Tian-Shansky brackets (4.7) for the non-abelian moment
map Γ± and extract from it the corresponding Poisson brackets between the charges QH

i and
QE

β , as defined above. We will make extensive use of two theorems for the extraction of Poisson
brackets that we present in appendix D. We shall denote by πk and π−k the projections onto
CEβk

and CE−βk
with respect to the Cartan-Weyl decomposition

g =

n⊕

k=1

(CEβk
⊕ CE−βk

)⊕ h.

5.3.1 Poisson brackets of D and M±

Consider the decomposition (5.1) of Γ+ and Γ−. Using Theorem D.1, we obtain

{D1, D2} = 0, (5.8a){
D1,M

±
2

}
= γD1

[
H12,M

±
2

]
, (5.8b)

{
M+

1
,M−

2

}
= γ

(
D2R

++
12

D−1
2
M+

1
M−

2
−M+

1
M−

2
D−1

2
R++

12
D2

)
, (5.8c)

{
M±

1
,M±

2

}
= γ

([
R12,M

±
1
M±

2

]
∓M±

1
H12M

±
2
±M±

2
H12M

±
1

)
, (5.8d)
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where we have introduced

H12 = c
l∑

i=1

Ki ⊗Ki, (5.9a)

R++
12

= R+
12
−H12 = 2c

∑

α>0

Eα ⊗ E−α, (5.9b)

R−−
12

= R−
12

+H12 = −2c
∑

α>0

E−α ⊗Eα. (5.9c)

We also made use of the following identity, valid for any h ∈ H and ǫ ∈ {∅,+,++,−,−−},

h1h2R
ǫ
12
h−1
1
h−1
2

= Rǫ
12
.

From the Poisson bracket (5.8a), one simply finds

{
QH

i , Q
H
j

}
= 0. (5.10)

5.3.2 Poisson bracket between QH
i and QE

β

The partial Casimir tensor (5.9a) on the Cartan subalgebra can be expressed in terms of the
dual bases of weights Pi and co-roots α∨

i (cf appendix C) as

H12 = c

l∑

i=1

Pi ⊗ α∨
i .

This allows us to extract the Poisson bracket between QH
i and M± by projecting equation

(5.8b) onto Pi in the first tensor factor, namely

i{QH
i ,M

±} =
[
α∨
i ,M

±
]
.

We will now treat the bracket with M+, the case of M− being similar. We introduce

w(k) = u(k) . . . u(n),

such that M+ = w(1) and w(k) = u(k)w(k+1). Using this decomposition and Theorem D.1, one
shows by induction on k that, for every k ∈ {1, . . . , n}, we have

iu−1
(k){QH

i , u(k)} = u−1
(k)α

∨
i u(k) − α∨

i , (5.11a)

i{QH
i , w(k)}w−1

(k) = α∨
i − w(k)α

∨
i w

−1
(k). (5.11b)

This induction relies on the fact that for any k, the adjoint action of w(k+1) on α∨
i only creates

nilpotent generators Eγ corresponding to roots of the form γ = ak+1βk+1 + . . . + anβn, with
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ak+1, . . . , an ∈ N. One can show from the ordering condition (5.7) that these roots are always
strictly superior to the root βk, which allows to perform the projection needed in Theorem D.1.
Using the definition (5.5) of u(k), equation (5.11a) becomes

i{QH
i , Q

E
βk
} = βk(α

∨
i )Q

E
βk
.

Applying the same method to the Poisson bracket with M−, we find that this equation holds
for any root β, positive or negative. In the case of a simple root (or its opposite) β = ±αj , we
have β(α∨

i ) = ±αj(α
∨
i ) = ±Aij (cf appendix C). We therefore obtain

i{QH
i , Q

E
±αj
} = ±AijQ

E
±αj

. (5.12)

5.3.3 Poisson bracket between QE
αi

and QE
−αj

Fixing two simple roots αi and αj , we want to compute the Poisson bracket between QE
αi

and
QE

−αj
. Recall that αi = βki and αj = βkj . Considering the decomposition (5.6) of M±, we need

to extract the Poisson bracket of u(ki) with v(kj). Define

x = u(1) . . . u(ki), x̃ = v(1) . . . v(kj),

y = u(ki+1) . . . u(n), ỹ = v(kj+1) . . . v(n).

By Theorem D.2, applied on both tensor factors, we may write

u−1
(ki) 1

v−1
(kj) 2

{
u(ki) 1, v(kj) 2

}
= πki ⊗ π−kj

(
P12

)
,

where P12 = x−1
1
x̃−1
2

{
M+

1
,M−

2

}
y−1
1
ỹ−1
2
. On the other hand, from equation (5.8c) we find

P12 = γ
(
x−1
1
x̃−1
2
D2R

++
12

D−1
2
x1x̃2 − y1ỹ2D

−1
2
R++

12
D2y

−1
1
ỹ−1
2

)
.

Recalling from (5.3) that D = exp(Z) with Z ∈ h, we have

D±1
2
R++

12
D∓1

2
= 2c

∑

α>0

exp
(
∓α(Z)

)
Eα ⊗E−α,

so that

P12 = 2cγ
∑

α>0

(
exp
(
−α(Z)

) (
x−1Eαx

)
⊗
(
x̃−1E−αx̃

)
− exp

(
α(Z)

) (
yEαy

−1
)
⊗
(
ỹE−αỹ

−1
))

.

The adjoint action of any Eβ (appearing in x or y) on Eα cannot create the simple root generator
Eαi

and similarly for E−αj
on the second space. It follows that

πki ⊗ π−kj

(
P12

)
= 2cγδij

(
exp
(
−αi(Z)

)
− exp

(
αi(Z)

))
Eαi
⊗E−αj

.
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Yet, by definition (5.5) of the u(k)’s and v(k)’s, we find

πki ⊗ π−kj

(
P12

)
= u−1

(ki) 1
v−1
(kj) 2

{
u(ki) 1, v(kj) 2

}
= c2γ2Aαi

A−αj

{
QE

αi
, QE

−αj

}
Eαi
⊗E−αj

,

so that

i
{
QE

αi
, QE

−αj

}
=

2i

cγAαi
A−αj

δij

(
exp
(
−αi(Z)

)
− exp

(
αi(Z)

))
.

From equation (5.3), one has (cf. appendix C)

αi(Z) = icγ
l∑

k=1

QH
k αi(Pk) = icγ

l∑

k=1

QH
k diδik = icγdiQ

H
i .

Introducing the deformation parameter

q = e−icγ, (5.13)

we therefore have

i
{
QE

αi
, QE

−αj

}
=

2i

γcAαi
A−αj

δij

(
qdiQ

H
i − q−diQ

H
i

)
.

Finally, if we fix the normalisation A±α for simple roots as

A±αi
=

(
4 sinh(icγdi)

icγ

) 1

2

, (5.14)

then we may rewrite the above Poisson brackets as

i
{
QE

αi
, QE

−αj

}
= δij

qdiQ
H
i − q−diQ

H
i

qdi − q−di
. (5.15)

5.3.4 q-Poisson-Serre relations

The Poisson brackets (5.10), (5.12) and (5.15) obtained so far are part of the defining relations
of the semiclassical limit Uq(g) of the quantum group Uq̂(g) with q̂ = q~, as given in [3].
The complete set of relations characterising Uq(g) also includes the so-called q-Poisson-Serre
relations. The purpose of the present subsection is to derive these from the Poisson bracket
(5.8d). We will only treat the case of positive roots, the negative one being handled similarly.

Poisson brackets of QE
αi

with M+. Let us fix a simple root αi. We recall that αi = βki, so
that QE

αi
is to be extracted from u(ki). Introduce

x = u(1) . . . u(ki),

y = u(ki+1) . . . u(n),
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so that M+ = xy. By Theorem D.2 we have

(
u(ki)

)−1

1

{
u(ki)1,M

+
2

}
= (πki)1

(
P12

)
,

where P12 = x−1
1

{
M+

1
,M+

2

}
y−1
1
. On the other hand, from (5.8d) we have

P12 = γPR
12

+ γPH
12

with

PR
12

= x−1
1
R++

12
x1M

+
2
−M+

2
y1R

++
12

y−1
1
,

PH
12

=
(
x−1
1
H12x1 − y1H12y

−1
1

)
M+

2
+M+

2

(
x−1
1
H12x1 − y1H12y

−1
1

)
.

By writing (5.9a) as H12 = c

l∑

j=1

ω∨
j ⊗Hj (cf. appendix C), these can be rewritten

PR
12

= 2c
∑

α>0

(
x−1Eαx

)
⊗
(
E−αM

+
)
− 2c

∑

α>0

(
yEαy

−1
)
⊗
(
M+E−α

)
,

PH
12

= c

l∑

j=1

(
x−1ω∨

j x− yω∨
j y

−1
)
⊗
(
HjM

+ +M+Hj

)
.

The adjoint action of any Eβ (appearing in x or y) on Eα cannot create the simple root generator
Eαi

. Thus, we have

(πki)1
(
PR

12

)
= 2cEαi

⊗
(
E−αi

M+ −M+E−αi

)
.

In the same way, in the adjoint actions of Eβ’s from x or y on ω∨
j , only a unique adjoint action

of Eαi
, coming from u(ki) in x, can create the simple root generator Eαi

. Therefore

πki

(
x−1ω∨

j x− yω∨
j y

−1
)
= −icγAαi

QE
αi
adEαi

(
ω∨
j

)
= icγAαi

QE
αi
δijEαi

,

and hence
(πki)1

(
PH

12

)
= ic2γAαi

QE
αi
Eαi
⊗
(
HiM

+ +M+Hi

)
.

Putting together all the above we arrive at

(
u(ki)

)−1

1

{
u(ki)1,M

+
2

}
= cγEαi

⊗
(
2
[
E−αi

,M+
]
+ icγAαi

QE
αi

(
HiM

+ +M+Hi

))
.

Yet, by definition of u(ki) in (5.5) we have

(
u(ki)

)−1

1

{
u(ki)1,M

+
2

}
= icγAαi

Eαi
⊗
{
QE

αi
,M+

}
,

and hence
iAαi

{
QE

αi
,M+

}
= 2
[
E−αi

,M+
]
+ icγAαi

QE
αi

(
HiM

+ +M+Hi

)
. (5.16)
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αi-string through αj. Let us now consider another simple root αj . We suppose here that
αi > αj. The αi-string through αj is then contained between αj and αi. Specifically, we have

αj < αj + αi < . . . < αj − Aijαi < αi,

with A the Cartan matrix of g (cf. appendix C). Let r ∈ {0, . . . ,−Aij} and p ∈ {1, . . . , n} be
such that

βp = αj + rαi,

We define

x = u(1) . . . u(p),

y = u(p+1) . . . u(n),

and Q = x−1
{
QE

αi
,M+

}
y−1. By Theorem D.2, we have

u−1
(p)

{
QE

αi
, u(p)

}
= πp(Q). (5.17)

On the other hand, from the Poisson bracket (5.16) we get

iAαi
Q = 2

(
x−1E−αi

x− yE−αi
y−1
)
+ icγAαi

QE
αi

(
x−1Hix+ yHiy

−1
)
. (5.18)

The projection onto Eβp
of the terms involving Hi on the right hand side of (5.18) can be

computed as follows. We note that yHiy
−1 contains nilpotent generators Eβ with β a sum of

roots superior to βp, which therefore cannot be βp. In the same way, the adjoint action of x on
Hi creates nilpotent generators Eβ with β a sum of roots inferior or equal to βp. Such β can
be either strictly inferior to βp or βp itself. Therefore the only way to have Eβp

in x−1Hix is by
the simple adjoint action on Hi of the generator Eβp

(appearing in u(p)). Thus, we have

πp

(
x−1Hix+ yHiy

−1
)
= −icγAβp

QE
βp
adEβp

(
Hi

)
= icγAβp

QE
βp
(αi, βp)Eβp

. (5.19)

Next, consider the term x−1E−αi
x−yE−αi

y−1 on the right hand side of (5.18). It is composed
of generators Eβ, with β = γ −αi and γ a sum of roots either all inferior or equal to βp (for x)
or all superior (for y). We want to project this on Eβp

. Yet, having β = βp requires γ = βp+αi.
As βp < αi, this means that βp < γ, hence γ comes from the adjoint action of y. To be more
precise, yE−αi

y−1 is composed of elements of the form (up to prefactors)

ad
ap+1

Eβp+1

. . . adan
Eβn

(
E−αi

)
, with ap+1, . . . , an ∈ N.

Such a term is proportional to Eγ−αi
, with γ = ap+1βp+1 + . . .+ anβn. In order to get Eβp

, one
must have γ = αi + βp = αj + (r + 1)αi. Therefore, we want to solve

ap+1βp+1 + . . .+ anβn = αj + (r + 1)αi,
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with ap+1, . . . , an non-negative integers. If a root βq, for q > p, contains a simple root αk

different from αi and αj, it is clear from the equation above that aq must be zero, as αk does
not appear in the right hand side of the equation.

Moreover, the only roots superior to βp and containing only αi and αj as simple roots are
αj + (r+ 1)αi, αj + (r+ 2)αi, . . . , αj −Aijαi and αi. The only way that a non-negative integer
linear combination of these roots can give αj + (r+1)αi is if all the coefficients are zero except
for that of the root αj +(r+1)αi itself. Thus, the projection of x−1E−αi

x− yE−αi
y−1 onto Eβp

comes from the simple adjoint action of Eαj+(r+1)αi
on E−αi

(if αj + (r+1)αi is a root). Hence

πp

(
x−1E−αi

x− yE−αi
y−1
)
= −icγAαj+(r+1)αi

QE
αj+(r+1)αi

[
Eαj+(r+1)αi

, E−αi

]

= −icγAαj+(r+1)αi
QE

αj+(r+1)αi
Nβp,αi

Eβp
,

(5.20)

if αj + (r + 1)αi is a root, and is zero otherwise.
Applying πp to (5.18) and using the results (5.19) and (5.20) gives

iAαi
πp(Q) = −2icγAαj+(r+1)αi

Nβp,αi
QE

αj+(r+1)αi
Eβp

+ (icγ)2Aαi
Aβp

(αi, βp)Q
E
αi
QE

βp
Eβp

.

Yet from (5.17) together with the definition of u(p) in (5.5) we have

πp(Q) = u−1
(p)

{
QE

αi
, u(p)

}
= icγAβp

{
QE

αi
, QE

βp

}
Eβp

,

and hence {
QE

αi
, QE

βp

}
=

Aαj+(r+1)αi

Aαi
Aβp

2iNβp,αi
QE

αj+(r+1)αi
+ cγ(αi, βp)Q

E
αi
QE

βp
.

We define the q-bracket of two charges associated with the positive roots α and β as

{
QE

α , Q
E
β

}
q
=
{
QE

α , Q
E
β

}
+ cγ(α, β)QE

αQ
E
β .

Moreover, if we fix the normalisation constant Aα for α in the αi-string through αj as

Aαj+rαi
= Aαj

Ar
αi
,

then we deduce that {
QE

αj+rαi
, QE

αi

}
q
= 2iNαi,αj+rαi

QE
αj+(r+1)αi

,

if αj + (r + 1)αi is a root and is zero otherwise.
By induction, we get the q-Poisson-Serre relation

{{
. . .
{
QE

αj
, QE

αi

}
q
, . . . QE

αi

}
q
, QE

αi︸ ︷︷ ︸
1−Aij times

}
q
= 0. (5.21)

24



One can treat the case αi < αj in a similar way. For that, one needs to use a slightly different

version of Theorem D.2, involving the quantity
(
u(1) . . . u(p−1)

)−1 {
QE

αi
,M+

} (
u(p) . . . u(n)

)−1

instead of
(
u(1) . . . u(p)

)−1 {
QE

αi
,M+

} (
u(p+1) . . . u(n)

)−1
. This yields the q-Poisson-Serre relation

{
QE

αi
,
{
QE

αi
, . . . ,

{
QE

αi︸ ︷︷ ︸
1−Aij times

, QE
αj

}
q
. . .
}
q

}
q
= 0. (5.22)

Applying the same method as above to the Poisson bracket in (5.8d) involving M−, one finds
that the charges QE

−αi
also verifiy q-Poisson-Serre relations, but with respect to the deformed

bracket {·, ·}q−1, defined for two negative roots α and β as

{
QE

α , Q
E
β

}
q−1 =

{
QE

α , Q
E
β

}
− cγ(α, β)QE

αQ
E
β .

5.3.5 Reality conditions

The Poisson brackets (5.10), (5.12) and (5.15), together with the q-Poisson-Serre relations
stated above are the defining Poisson bracket relations of the semiclassical limit Uq(g) of the
quantum group Uq̂(g) with q̂ = q~. It only remains to check that the required reality conditions
are verified by the charges QH

i and QE
α . We shall address this question in the present subsection,

first in the split case and then in the non-split one.

Split case. When c = 1, the deformation parameter (5.13) becomes

q = e−iγ ,

so that |q| = 1, i.e. q is a phase. Now the moment map (Γ+,Γ−) takes values in the real double
G×G, therefore the reality condition is simply

θ(Γ±) = Γ±,

with θ the split semi-linear automorphism described in appendix B and lifted to the complexified
group GC. As θ stabilises the Cartan and the unipotent subgroups and since the decomposition
(5.1) is unique, one has

θ(D) = D and θ(M±) = M±.

We recall (cf. appendix B) that in the split case θ(Pi) = Pi for i ∈ {1, . . . , l} (since Pi is a real
linear combination of the Hj) and θ(Eα) = Eα for any root α. Considering the extraction of
charges (5.2) and (5.4) with c = 1, the above reality condition gives

QH
i = −QH

i ,

A±αi
QE

±αi
= −A±αi

QE
±αi

.
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The normalisation constants A±αi
are given by equation (5.14), which in the split case reads

A±αi
=

(
4 sin(γdi)

γ

) 1

2

.

We will restrict attention to the case where

−π ≤ γdi ≤ π,

for any i, so that the A±αi
are real numbers. As a result, the reality conditions are simply

|q| = 1, QH
i = −QH

i and QE
±αi

= −QE
±αi

. (5.23)

These are the reality conditions for the split real form Uq(g), which correspond precisely to the
semiclassical counterpart of the reality conditions on Uq̂(g) as given in [34].

Non-split case. For c = i, the deformation parameter (5.13) now reads

q = eγ,

which is a real number. As explained in subsection 4.3, the two moment maps Γ+ and Γ− are
not independent. They are related by the reality condition

θ(Γ±) = Γ∓,

where θ is the non-split semi-linear automorphism described in appendix B, lifted to the com-
plexified group GC. Since θ stabilises the Cartan subgroup H but exchanges the unipotent
subgroups N±, applying θ to the decomposition (5.1) we get

θ(Γ+) = θ(M+)θ(D) = θ(D)︸ ︷︷ ︸
∈H

θ(D)−1θ(M+)θ(D)︸ ︷︷ ︸
∈N−

,

θ(Γ−) = θ(D)−1θ(M−) = θ(D)−1θ(M−)θ(D)︸ ︷︷ ︸
∈N+

θ(D)−1

︸ ︷︷ ︸
∈H

,

where we used the fact that an adjoint action of a Cartan element on a element of N± is still
in N±. Equating θ(Γ+) with Γ− = D−1M− and θ(Γ−) with Γ+ = M+D we obtain

θ(D) = D−1 and θ(M±) = D−1M∓D. (5.24)

Recall (cf. appendix B) that θ(Pi) = −Pi. Using the extraction of Cartan charges (5.2), with
c = i, we find

QH
i = QH

i .
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From the decomposition (5.4), we have

D−1M±D =
n∏

k=1

exp
(
∓γA±βk

QE
±βk

D−1E±βk
D
)
.

Moreover, since D = exp(Z) with Z defined in (5.3),

D−1E±βk
D = exp

(
∓βk(Z)

)
E±βk

= exp
(
±γ

l∑

j=1

QH
j βk(Pj)

)
E±βk

.

In particular, for k = ki, i.e. for βk the simple root αi, using (C.2) we get

D−1E±αi
D = q±diQ

H
i E±αi

.

The term corresponding to the simple root αi in D−1M∓D therefore reads

exp
(
±γA∓αi

q∓diQ
H
i QE

∓αi
E∓αi

)
.

Yet we have θ(E±αi
) = −λiE∓αi

, so that the corresponding term in θ(M±) is

exp
(
±γA±αi

QE
±αi

λiE∓αi

)
.

It now follows from the second equality in (5.24) that

A±αi
QE

±αi
= λiq

∓diQ
H
i A∓αi

QE
∓αi

.

The normalisation constants A±αi
are given by (5.14), which for c = i take the form

A±αi
=

(
4 sinh(γdi)

γ

) 1

2

and are therefore real numbers. Hence, the reality conditions are

q ∈ R, QH
i = QH

i and QE
±αi

= λiq
∓diQ

H
i QE

∓αi
. (5.25)

According to [34], these are the reality conditions of the non-split real form Uq(g).

5.4 Sklyanin bracket and Uq(g
∗) algebra

As in subsection 4.4, in what follows we consider only the split case. We start from the Poisson
bracket (4.11) with the central quantity M̃12 set to zero. In other words, U satisfies the Sklyanin
Poisson bracket

{U1, U2} = γ [R12, U1U2] . (5.26)
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Let us decompose U as
U = M−DM+,

with D ∈ H and M± ∈ N±. Using Theorem D.1, we can extract the Poisson brackets between
D, M+ and M− from equation (5.26) to find

{D1, D2} = 0, (5.27a){
D1,M

±
2

}
= ±γD1

[
H12,M

±
2

]
, (5.27b)

{
M+

1
,M−

2

}
= 0, (5.27c)

{
M±

1
,M±

2

}
= γ

([
R12,M

±
1
M±

2

]
∓M±

1
H12M

±
2
±M±

2
H12M

±
1

)
. (5.27d)

We notice that these Poisson brackets are very similar to (5.8), the main difference being that
M+ and M− Poisson commute in the present case.

The methods of subsection 5.3 can be applied to this case. For each positive root α, we
extract the positive nilpotent charge QE

α from M+ and negative nilpotent charge QE
−α from M−

as we did before using the decomposition (5.4). Likewise, we extract Cartan charges QH
i from

D as we did in equation (5.2).
From equation (5.27d), following the same procedure outlined in subsection 5.3.4, we find

that the nilpotent charges QE
α and QE

−α satisfy the q-Poisson-Serre relations. In other words,
these charges span nilpotent q-deformed Poisson algebras Uq(n+) and Uq(n−). Moreover, it is
clear from (5.27c) that elements from these two algebras Poisson commute.

Similarly, we can apply the methods of subsection 5.3.2 to the Poisson bracket (5.27b).
Doing so, we find that, for any positive root α,

i{QH
i , Q

E
α} = α(α∨

i )Q
E
α and i{QH

i , Q
E
−α} = α(α∨

i )Q
E
−α.

This implies that the Cartan charges QH
i for i = 1, . . . , n together with the charges QE

α for
α > 0 span a q-deformed positive Borel algebra Uq(b+). In the same way, the charges −QH

i

for i = 1, . . . , n together with the charges QE
−α for α > 0 span a q-deformed negative Borel

algebra Uq(b−). The combination of all the charges QH
i for i = 1, . . . , n and QE

α for all roots α
therefore span a q-deformed Poisson algebra which we could call Uq(gDR).

Since U takes value in the split real form G we have θ(U) = U , with θ the split semi-linear
automorphism of appendix B. Moreover, since θ stabilises the subgroups H and N±, we deduce
that θ(D) = D and θ(M±) = M±. The reality conditions are then identical to those of the
split case in the subsection 5.3.5, so that

|q| = 1, QH
i = −QH

i and QE
±α = −QE

±α. (5.28)
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6 Application to Yang-Baxter type models

6.1 Yang-Baxter type models

In this section we will apply the formalism of Poisson-Lie groups and non-abelian moment maps
to discuss the symmetries of Yang-Baxter type models. The latter can be defined as the result
of applying a general procedure for constructing integrable deformations of a broad family of
integrable models. We briefly recall the construction below, referring to [12] for details.

We consider models whose classical integrable structure is described by a Lax matrix L(λ, σ)
which is rational in the spectral parameter λ ∈ C and taking values in the space of gC-valued
fields on the real line (parameterised by σ). We require the Poisson bracket of the Lax matrix
with itself to take the following general non-ultralocal form [35, 36]

{L1(λ, σ),L2(µ, σ
′)} =

[
R12(λ, µ),L1(λ, σ)

]
δσσ′ −

[
R21(µ, λ),L2(µ, σ)

]
δσσ′

−
(
R12(λ, µ) + R21(µ, λ)

)
δ′σσ′ ,

where δσσ′ denotes the Dirac δ-distribution and δ′σσ′ = ∂σδσσ′ . Here R12(λ, µ) is a non-skew-
symmetric gC ⊗ gC-valued rational function of λ and µ satisfying the classical Yang-Baxter
equation with spectral parameter

[
R12(λ, µ),R13(λ, ν)

]
+
[
R12(λ, µ),R23(µ, ν)

]
+
[
R32(ν, µ),R13(λ, ν)

]
= 0.

We will assume that its leading order behaviour in the limit λ→ µ is of the following form

R12(λ, µ) =
C12

µ− λ
ϕ(µ)−1 +O

(
(λ− µ)0

)
,

where ϕ(λ) is called the twist function, which is rational in λ and plays a central role in the
construction. For certain models the Lax matrix L(λ, σ) may be twisted by some automorphism
of the complex Lie algebra gC, e.g. for symmetric space σ-models, and the construction of Yang-
Baxter type deformations applies equally to these. However, to keep the presentation concise
we will not discuss the subtleties relating to this case. We note however that the main equations
(6.1) and (6.2) below remain valid.

In the original undeformed integrable model, we assume that the twist function ϕ(λ) has a
double pole at some point λ0 ∈ R. One can show that, associated with this double pole is a
pair of fields g valued in G and X valued in g with the following Poisson brackets

{g1(σ), g2(σ′)} = 0, (6.1a)

{X1(σ), g2(σ
′)} = g2(σ)C12 δσσ′ , (6.1b)

{X1(σ), X2(σ
′)} = − [C12, X2(σ)] δσσ′ . (6.1c)

To construct a Yang-Baxter type model we begin by modifying the twist function ϕ(λ) of the
undeformed model, by deforming its double pole at λ0 to a pair of simple poles which we denote
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λ±, while keeping all other poles and zeroes fixed. In order to preserve certain reality conditions
of the Lax matrix, we should take either λ± both real or λ+ and λ− complex conjugate of one
another. We refer to these two cases as the real and complex branches respectively. Finally,
we require also that the deformed twist function ϕ(λ) has opposite residues at the simple poles
λ+ and λ−, which allows us to define a single real deformation parameter γ ∈ R by

c

2γ
= resλ−

ϕ(λ)dλ = − resλ+
ϕ(λ)dλ,

with c = 1 in the real branch and c = i in the complex branch.
The Yang-Baxter type model may now be defined as follows. We fix a choice of R-matrix

R : g → g which is a split or non-split solution of the mCYBE on g, depending on whether
the twist function ϕ(λ) has been deformed in the real or complex branch. Keeping the same
Lax matrix L(λ, σ) as in the original undeformed model, one can show [3,12] that the G-valued
field g and g-valued field X such that

Lg(λ±, σ) = γR±X(σ), (6.2)

where Lg(λ, σ) denotes the gauge transformation of L(λ, σ) by g, satisfy the same fundamental
Poisson brackets (6.1) as in the undeformed case. In other words, the underlying phase space
is still the same after the deformation process, but the expression of the Lax matrix in terms
of the new fields g and X , and hence also the Hamiltonian, is now modified. In the following
analysis, we shall take the equations (6.1) and (6.2) as our starting point for studying the
symmetries in Yang-Baxter type models.

For any σ > σ′ we define the transition matrix

T g(λ± ; σ, σ′) = P←−exp
(
−
∫ σ

σ′

dρLg(λ±, ρ)

)
. (6.3)

The main properties of path-ordered exponentials we shall need are recalled in appendix E. In
particular, we have (

∂σT
g(λ± ; σ, σ′)

)
T g(λ± ; σ, σ′)−1 = −Lg(λ±, σ), (6.4a)

T g(λ± ; σ, σ′)−1
(
∂σ′T g(λ± ; σ, σ′)

)
= Lg(λ±, σ

′). (6.4b)

Moreover, we suppose that the different currents of the models (such as X and g−1∂σg) vanish
when σ tends to ±∞. Therefore, since Lg(λ±, σ) is the spatial component of a flat connection,

T g(λ±) = T g
(
λ± ; +∞,−∞

)

is conserved (cf. appendix E).
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6.2 Poisson brackets of T g(λ±)

In this subsection, we will compute the Poisson bracket of T g(λ±) with itself and with T g(λ∓).
In general, when a Lax matrix obeys Poisson brackets of the r/s-type, the Poisson bracket of
its path-ordered exponential is ill-defined, due to the presence of non-ultralocal terms.

However, in our present case, as Lg(λ±, σ) depends only on the field X , the Poisson bracket
of Lg(λ±, σ) with itself is ultralocal. More precisely, starting from (6.1c) and (6.2) we find

{
Lg

1
(λ±, σ1),Lg

2
(λ±, σ2)

}
= γ

[
Lg

1
(λ±, σ1) + Lg

2
(λ±, σ2), R12

]
δσ1σ2

, (6.5)

where we have used the mCYBE equation (4.1). According to equation (E.2) we have

{
T g
1
(λ±), T

g
2
(λ±)

}
=

∫ +∞

−∞

dσ1

∫ +∞

−∞

dσ2 T g
1
(λ± ; +∞, σ1)T

g
2
(λ± ; +∞, σ2)

×
{
Lg

1
(λ±, σ1),Lg

2
(λ±, σ2)

}
T g
1
(λ± ; σ1,−∞)T g

2
(λ± ; σ2,−∞).

Inserting (6.5) into the latter and integrating the δ-distribution, we obtain an expression for{
T g
1
(λ±), T

g
2
(λ±)

}
as a single integral. Using the differential equations (6.4) to re-express

Lg(λ±, σ) in terms of the transition matrices (6.3), we recognise the total derivative of a product
and obtain, after integration,

{
T g
1
(λ±), T

g
2
(λ±)

}
= γ

[
R12, T

g
1
(λ±)T

g
2
(λ±)

]
.

Similarly, we can compute the Poisson brackets between T g(λ+) and T g(λ−) to find

{
T g
1
(λ+), T

g
2
(λ−)

}
= γ

[
R+

12
, T g

1
(λ+)T

g
2
(λ−)

]
.

In conclusion, T g(λ+) and T g(λ−) satisfy the Semenov-Tian-Shansky Poisson brackets (4.7).

6.3 Poisson-Lie G-symmetry

For the remainder of this section we shall restrict attention to the non-split case. The treatment
of the split case is completely analogous.

6.3.1 The non-abelian moment map

According to (6.2), Lg(λ±, σ) take values in the subalgebras g± of the complex double gC (cf.
subsection 4.2). Hence the path-ordered exponentials T g(λ± ; σ, σ′) belong to the subgroups G±,
which are realisations of the dual group G∗. Moreover, we proved in the previous subsection
that T g(λ±) satisfies the Semenov-Tian-Shansky bracket. It follows from subsection 3.2 that
T g(λ±) has the right Poisson brackets for being the non-abelian moment map of a Poisson-Lie
action of G. In the notations of the previous sections, we therefore consider

Γ± = T g(λ±). (6.6)
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as the two realisations of a non-abelian moment map in G±, embedded in the complex double
GC. It is natural to also look for the expression of this non-abelian moment map in the other
realisation of the dual group G∗, namely the group GR described in subsection 4.1. This is given
by ΓR = ∆−1

±

(
T g(λ±)

)
, with ∆± : GR → G± the automorphisms described in subsection 4.2.

In order to evaluate this explicitly we note that (6.2) can be written as Lg(λ±, σ) = ∆±X(σ).
Therefore, according to equation (E.3), the non-abelian moment map seen in GR simply reads

ΓR = P←−expGR

(
−
∫ ∞

−∞

dσ X(σ)

)
. (6.7)

In this expression, X(σ) is seen as an element of gR and the path-ordered exponential is taken
in the group GR.

6.3.2 Transformation law of g and X

As motivated in the previous subsection, we consider the Poisson-Lie action of G generated
by the non-abelian moment map T g(λ±) ∈ G±. According to equation (4.9), the infinitesimal
form of this action is given by

δǫf = − 1

2iγ
κ
(
ǫ, T g(λ+)

−1 {T g(λ+), f} − T g(λ−)
−1 {T g(λ−), f}

)
= −κ

(
ǫ,Γ−1

R {ΓR, f}
)
. (6.8)

In the undeformed case γ = 0, the group GR is abelian and, from the expression (6.7) of the
non-abelian moment map ΓR, the transformation (6.8) becomes the usual Hamiltonian action
with moment map Q =

∫ +∞

−∞
dσ X(σ), namely

δǫf = κ
(
ǫ, {Q, f}

)
.

This corresponds to the action of G by right multiplication on g since

δǫg(σ) = g(σ)ǫ and δǫX(σ) = [X(σ), ǫ]. (6.9)

We will see in the rest of this subsection that, for γ 6= 0, the Poisson-Lie action generated by
T g(λ±) is still a right multiplication of g, but with a more complicated parameter.

Since the Poisson bracket of Lg(λ±, σ) with the fields g and X is ultralocal, we can compute
the Poisson brackets of T g(λ±) with g and X using equation (E.2), without the need for any
regularisation. We find

{
T g
1
(λ±), g2(σ)

}
= −γT g

1
(λ± ; +∞, σ) g2(σ)R

±
12

T g
1
(λ± ; σ,−∞),

{
T g
1
(λ±), X2(σ)

}
= −γT g

1
(λ± ; +∞, σ)

[
X2(σ), R

±
12

]
T g
1
(λ± ; σ,−∞).

Inserting these expressions into (6.8), we obtain the transformation law of g and X ,

δǫg(σ) = g(σ)K(σ) and δǫX(σ) = [X(σ), K(σ)], (6.10)
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where we have defined

K(σ) =
1

2i
R+
(
T g(λ− ; σ,−∞) ǫ T g(λ− ; σ,−∞)−1

)

− 1

2i
R−
(
T g(λ+ ; σ,−∞) ǫ T g(λ+ ; σ,−∞)−1

)
. (6.11)

We note that this transformation law has the same structure as the undeformed one (6.9) but
with ǫ replaced by a more complicated (and non-constant) expression K(σ). In particular, this
field is non-local, as it contains T g(λ± ; σ,−∞). Since T g(λ± ; σ,−∞) becomes equal to the
identity when γ = 0, we see that K turns back into ǫ in the undeformed case.

According to the paragraph following equation (3.1), the transformation (6.10) must pre-
serve the Poisson brackets on (g,X) if ǫ possesses a Poisson bracket with itself, coming from
the linearisation of the Sklyanin Poisson bracket on G, namely

{ǫ1, ǫ2} = γ[R12, ǫ1 + ǫ2]. (6.12)

For coherence, one can check this directly from the expression (6.11) of K(σ). This (slightly
long) computation involves some algebraic manipulations to simplify the expressions, in par-
ticular the identity

AdT g(λ±) ◦R± = R± ◦ AdGR

ΓR
,

which is a consequence of equation (E.3), applied to the automorphism ∆±.
The transformation law (6.10) may seem complicated because of the non-local expression

(6.11) for K(σ). However, it can be re-interpreted in a simpler way by introducing the more
adapted variables [1, 3, 12]

Ψ±(σ) = g(σ)x±(σ), with x±(σ) = T g(λ± ; σ,−∞).

In terms of these, the quantity (6.11) may be then rewritten as

K(σ) =
1

2i
R+
(
x−(σ) ǫ x−(σ)

−1
)
− 1

2i
R−
(
x+(σ) ǫ x+(σ)

−1
)
. (6.13)

If we also introduce

Z(σ) =
1

2i

(
x+(σ) ǫ x+(σ)

−1 − x−(σ) ǫ x−(σ)
−1
)
,

then one checks that

δǫX(σ) =
[
X(σ), K(σ)

]
= −1

γ

(
∂σZ(σ) +

[
X(σ), Z(σ)

]
R

)
.

Using this identity and equation (E.2), we find that the transformation law of x± reads

δǫx±(σ) = R±Z(σ) x±(σ).
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Finally, it follows that the pair of fields Ψ± simply transform as

δǫΨ±(σ) = Ψ±(σ)ǫ.

It was observed in [3] that for Yang-Baxter type deformations with standard R-matrices, the
Cartan part of the G-symmetry is preserved. This can be checked here explicitly: indeed, for
ǫ ∈ h we find that the definition (6.11) ofK reduces to ǫ, so that the infinitesimal transformation
in the Cartan direction remains undeformed, as in (6.9). This fact can also be seen in terms
of Poisson-Lie actions. For standard R-matrices, the Sklyanin bracket (6.12) vanishes when
restricted to the Cartan subalgebra h. The corresponding action is then a usual Hamiltonian
symmetry.

6.3.3 Poisson-Lie symmetry: variation of the Hamiltonian and first order action

In this section, we consider the case of the Yang-Baxter σ-model. The conservation of T g(λ±)
can be seen as the fact that it has a vanishing Poisson bracket with the Hamiltonian H of the
model. This implies that the Hamiltonian is invariant under the Poisson-Lie action generated
by T g(λ±), namely

δǫH = 0.

Thus, the transformation (6.10) is a symmetry of the Hamiltonian.
Let us now compute the variation of the first order action under the transformation. In the

case of a Hamiltonian action (G∗ abelian), the transformation is canonical and the invariance
of the Hamiltonian is then equivalent to the invariance of the action. The situation is slightly
more involved in the case of a Poisson-Lie action. The first order action is given by

S =

∫
dτdσ κ

(
g−1∂τg,X

)
−
∫

dτ H. (6.14)

Consider the transformation (6.10) of g and X and, at first, let us allow the parameter ǫ to
be a function of the time parameter τ with compact support. Since H is invariant under this
transformation, the variation of the action becomes

δǫS =

∫
dτdσ δǫ

(
κ
(
g−1∂τg,X

))
.

We have δǫ
(
g−1∂τg

)
= ∂τK +

[
g−1∂τg,K

]
, so that

δǫ

(
κ
(
g−1∂τg,X

))
= κ

(
∂τK,X

)
= ∂τ

(
κ(K,X)

)
− κ
(
K, ∂τX

)
.

Using expression (6.13) for K, the skew-symmetry of R and the invariance of κ under the
adjoint action, one finds

κ
(
K, ∂τX

)
=

1

2i
κ
(
ǫ, x−1

+ ∂τ (R
+X)x+ − x−1

− ∂τ (R
−X)x−

)
.
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Discarding the boundary terms at initial and final times, we get

δǫS = −
∫

dτ
1

2iγ
κ

(
ǫ, T g(λ+)

−1

∫ ∞

−∞

dσ T g(λ+ ; +∞, σ)∂τLg(λ+, σ)T
g(λ+ ; σ,−∞)

)

+

∫
dτ

1

2iγ
κ

(
ǫ, T g(λ−)

−1

∫ ∞

−∞

dσ T g(λ− ; +∞, σ)∂τLg(λ−, σ)T
g(λ− ; σ,−∞)

)
.

Using equation (E.2), this may be rewritten as

δǫS = − 1

2iγ

∫
dτ κ

(
ǫ, T g(λ+)

−1∂τT
g(λ+)− T g(λ−)

−1∂τT
g(λ−)

)
. (6.15)

In terms of the “abstract” non-abelian moment map Γ, seen as a G∗-valued map, this is simply

δǫS = −
∫

dτ
〈
ǫ(τ),Γ−1∂τΓ

〉
. (6.16)

By the principle of least action, δǫS must be zero for any function ǫ(τ), as long as the fields are
on-shell. Thus, we recover the fact that Γ is conserved.

It is worth noticing that, if G∗ is non-abelian, Γ−1∂τΓ is not a total time derivative. Thus,
when we choose a constant parameter ǫ, we cannot conclude that δǫS = 0. That is to say, the
action is not invariant under the Poisson-Lie symmetry. However, the latter is still a symmetry
of the model since the Hamiltonian is invariant.

7 Conclusion

A deformation of Yang-Baxter type, with respect to either a split or non-split R-matrix, has the
effect of q-deforming a global G-symmetry of the original integrable models. In this article we
showed at the Hamiltonian level that such a q-deformation can be understood as a deformation
of the Poisson structure on the symmetry group G, from the trivial one to a multiple of the
Sklyanin bracket defined by the R-matrix. Indeed, the non-abelian moment map Γ : M → G∗

which generates this Poisson-Lie symmetry is given explicitly in terms of the monodromy matrix
evaluated at the poles of the twist function, and its Poisson bracket is found to coincide with
the pullback of the Semenov-Tian-Shansky bracket on G∗ ≃ GR. We then showed, in the case
of a standard R-matrix, that the various charges constituting Γ span the Poisson algebra Uq(g).

It is expected that Yang-Baxter type models possess a larger infinite dimensional symmetry
which we could call Uq(ĝ), defined as a semiclassical limit of the quantum affine algebra Uq̂(ĝ)
with q̂ = q~. This idea has indeed been realised explicitly in [14] where the Yang-Baxter σ-

model for su(2) was shown to have a Uq

(
ŝu(2)

)
symmetry (see also [37]). However, even in

these rank one cases, deriving the full infinite dimensional symmetry algebra requires using the
algebra of the monodromy matrix for arbitrary values of the spectral parameters, as opposed
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to its evaluation at the poles of the twist function. Yet the former is notoriously plagued
with ambiguities due to the non-ultralocality in the Poisson bracket of the Lax matrix of these
models.

Another important class of integrable deformations of integrable σ-models, which applies
in particular to the principal chiral model and (semi)-symmetric space σ-models, is given by
the λ-deformations (sometimes also called k-deformations or deformations of the gauged WZW
type) [38–41], see also [42–44,12,45–49]. There are results [50,47] indicating that these deformed
models possess a Uq(g) symmetry with q a phase. It would therefore be interesting to also relate
this type of q-deformation to Poisson-Lie symmetries. However, the study of the symmetries
of these models along the lines of the present article is more difficult. For instance, contrary to
the setting of section 6 for Yang-Baxter type models where the Poisson bracket of the quantity
T g(λ±) with itself is well defined, it appears that one would have to deal with the issue of
non-ultralocality.
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comments on the draft. This work is partially supported by the program PICS 6412 DIGEST
of CNRS and by the French Agence Nationale de la Recherche (ANR) under grant ANR-15-
CE31-0006 DefIS.

A Semisimple complex Lie algebras

Let f be a semisimple complex Lie algebra. Fix a Cartan subalgebra h of f and let ∆ ⊂ h∗

denote the associated set of roots. We choose a set of simple roots α1, . . . , αl ∈ ∆, with l the
rank of f. Let f = h⊕ n+ ⊕ n− be the associated Cartan-Weyl decomposition, and {Eα, α > 0}
and {E−α, α > 0} the associated bases of the nilpotent subalgebras n±. We choose to normalise
the latter such that

κ (Eα, Eβ) = δα,−β,

where κ is the Killing form on f. For α ∈ ∆, we define Hα ∈ h via the Killing form isomorphism
between h and h∗, namely we set

κ(Hα, X) = α(X). (A.1)

for all X ∈ h. In particular, for simple roots αi we use the shorthand notation Hi = Hαi
. Then,

{Hi, i = 1, . . . , l} forms a basis of h. The Killing form induces a symmetric bilinear form on h∗

that we shall note (·, ·).
By definition, we have the following commutation relations

[X,Eα] = α(X)Eα. (A.2)

for all X ∈ h. Moreover,

[Eα, E−α] = Hα and
[
Eαi

, E−αj

]
= δijHi. (A.3)
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Finally, the Lie algebra structure of n± is given by

[Eα, Eβ] = Nα,βEα+β , (A.4)

with Nα,β a real skew-symmetric normalisation constant. Moreover, one has N−α,−β = −Nα,β .

B Split and non-split real forms

Let f be a semisimple complex Lie algebra of dimension n. We will use the notations introduced
in appendix A. We want to describe the real forms of f, i.e. the subalgebras of f which are also
real vector space of dimension n.

The real forms of f are in one-to-one correspondence with the fixed-point subalgebras fθ of
semi-linear involutive automorphisms θ of f, i.e. maps θ : f→ f such that θ2 = Id and

θ(λX + µY ) = λθ(X) + µθ(Y ) and θ
(
[X, Y ]

)
=
[
θ(X), θ(Y )

]
,

for all λ, µ ∈ C and X, Y ∈ f.
Consider the Cartan-Weyl basis {Hi, Eα} of f (cf. appendix A). Since the E±αi

’s generate
the Lie algebra f, the automorphism θ is completely described by its action on these. In the
following, we consider two “natural” ways to act on the E±αi

’s, that correspond to the so-called
split and non-split real forms.

Split real form. Let us consider the semi-linear involutive automorphism θ defined by

θ (E±αi
) = E±αi

. (B.1)

As the normalisation constants Nα,β in equation (A.4) are all real, we find for any root α that

θ (Eα) = Eα.

Hence, one also has
θ (Hα) = Hα.

As a consequence, a basis of the real subalgebra fixed by θ is given by the Cartan-Weyl basis
{Hi, Eα} of f itself. This way, we obtain the so-called split real form

g =

{
l∑

i=1

aiHi +
∑

α∈∆

bαEα, ai, bα ∈ R

}
. (B.2)
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Non-split real forms. Another possibility for defining θ is to let

θ (E±αi
) = −λiE∓αi

, (B.3)

where λi = ±1. Using equation (A.4), for any positive root α = p1α1 + . . .+ plαl we obtain

θ (Eα) = −λαE−α, (B.4)

with λα = λp1
1 . . . λpl

l ∈ {+1,−1}. In the same way, using (A.3), one has

θ(Hα) = −Hα. (B.5)

The real subalgebra g of elements fixed by θ is called a non-split real form of f. A basis of g is
given by

Ti = iHi, Bα =
i√
2
(Eα + λαE−α) , Cα =

1√
2
(Eα − λαE−α) . (B.6)

If one choose λ1 = . . . = λl = 1, then λα = 1 for any root α and we get the so-called compact
real form of f.

C Roots, co-roots, weights and co-weights

In this appendix, we recall the main properties of some bases of the Cartan subalgebra h. As
it is equipped with the non-degenerate Killing form κ(·, ·), there exists a natural isomorphism

ζ : h∗ → h,

between h and its dual h∗. It is characterised by the relation

κ
(
ζ(λ), X

)
= λ(X),

for all λ ∈ h∗ and X ∈ h (cf. (A.1)). This isomorphism induces a bilinear form (·, ·) on h∗,
given for all λ, µ ∈ h∗ by

(λ, µ) = κ
(
ζ(λ), ζ(µ)

)
.

C.1 Roots and co-roots

A basis of h∗ is given by the simple roots α1, . . . , αl. Using the notations of appendix A, the
corresponding basis {ζ(αi)} of h is {H1, . . . , Hl}. We will often use

di =
(αi, αi)

2
=

κ(Hi, Hi)

2
.
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We define the simple co-roots as

α∨
i =

2Hi

(αi, αi)
= d−1

i Hi,

which forms another basis of h. The Cartan matrix is then given by

Aij = αj(α
∨
i ) =

2(αi, αj)

(αi, αi)
.

C.2 Fundamental weights and co-weights

We define the fundamental weights ωi ∈ h∗ as the dual basis of the co-roots α∨
i , namely

ωi(α
∨
j ) = δij.

By the Killing form duality, the
Pi = ζ(ωi) (C.1)

form a basis of h. Moreover, we have the relation

αi(Pj) = diδij. (C.2)

In the same way, one defines the fundamental co-weights ω∨
i ∈ h as the dual basis of the simple

roots
αj(ω

∨
i ) = δij ,

which relates them to the basis elements (C.1) simply by

ω∨
i = d−1

i Pi.

D Poisson brackets extraction theorems

In this appendix, we state and prove two theorems allowing to extract the Poisson brackets of
the factors of a Lie-group-valued quantity.

Theorem D.1. Let F1 and F2 be two Lie groups, that are decomposable into two subgroups:
Fi = GiHi. This group factorisation corresponds to a direct sum of Lie algebras fi = gi ⊕ hi.
We denote by πgi and πhi the associated projections. We consider A ∈ F1 and B ∈ F2 that we
factorise as

A = uv, and B = xy,

for (u, v) ∈ G1 ×H1 and (x, y) ∈ G2 ×H2. We define

P12 = u−1
1
x−1
2
{A1, B2}v−1

1
y−1
2
∈ f1 ⊗ f2.
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Then, we have

{u1, x2} = u1x2 πg1 ⊗ πg2

(
P12

)
,

{u1, y2} = u1 πg1 ⊗ πh2

(
P12

)
y2,

{v1, x2} = x2 πh1 ⊗ πg2

(
P12

)
v1,

{v1, y2} = πh1 ⊗ πh2

(
P12

)
v1y2.

Proof. Using the Leibniz rule, we have

{A1, B2} = {u1, x2}v1y2 + x2{u1, y2}v1 + u1{v1, x2}y2 + u1x2{v1, y2},
so that

P12 = u−1
1
x−1
2
{u1, x2}︸ ︷︷ ︸

∈ g1 ⊗ g2

+ u−1
1
{u1, y2}y−1

2︸ ︷︷ ︸
∈ g1 ⊗ h2

+ x−1
2
{v1, x2}v−1

1︸ ︷︷ ︸
∈ h1 ⊗ g2

+ {v1, y2}v−1
1
y−1
2︸ ︷︷ ︸

∈ h1 ⊗ h2

,

and hence the theorem. �

Theorem D.2. Let G be a Lie group that factorises into subgroups as G = G1 . . . Gp. This
group factorisation corresponds to a direct sum of Lie algebras g = g1⊕ . . .⊕gp, with associated
projections πi. Suppose this decomposition is such that, for all i ∈ {1, . . . , p},

g<i =

i−1⊕

k=1

gk and g>i =

p⊕

k=i+1

gk

are subalgebras of g and [gi, g<i] ⊆ g<i.
Let f be a R-valued function and A a G-valued function, that we factorise as

A = A(1) . . . A(p), with
(
A(1), . . . , A(p)

)
∈ G1 × . . .×Gp.

If we define

P(i) =
(
A(1) . . . A(i)

)−1 {A, f}
(
A(i+1) . . . A(p)

)−1 ∈ g,

then we have (
A(i)
)−1 {

A(i), f
}
= πi

(
P(i)

)
.

Proof. Let B = A(1) . . . A(i−1) and C = A(i+1) . . . A(p). Using the Leibniz rule, we have

P(i) =
(
A(i)
)−1 {

A(i), f
}

︸ ︷︷ ︸
∈gi

+
(
A(i)
)−1 (

B−1 {B, f}
)

︸ ︷︷ ︸
∈g<i

A(i) + {C, f}C−1

︸ ︷︷ ︸
∈g>i

.

Since B−1 {B, f} belongs to g<i, the assumption on the Lie subalgebras gk tells us that the
adjoint action (

A(i)
)−1 (

B−1 {B, f}
)
A(i)

still belongs to g<i, hence the theorem. �
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E Path-ordered exponentials

In this appendix, we recall some properties of path-ordered exponentials. Consider a g-valued
field L(σ) and the path-ordered exponential

T (σ, σ′) = P←−exp
(
−
∫ σ

σ′

dρL(ρ)
)
. (E.1)

This is a G-valued field verifying the differential equations

(
∂σT (σ, σ

′)
)
T (σ, σ′)−1 = −L(σ),

T (σ, σ′)−1
(
∂σ′T (σ, σ′)

)
= L(σ′).

Under an infinitesimal transformation δL of L, the path-ordered exponential is transformed by

δT (σ, σ′) = −
∫ σ

σ′

dρ T (σ, ρ)δL(ρ)T (ρ, σ′). (E.2)

This formula allows one to compute the variations of T (σ, σ′) or Poisson brackets of T (σ, σ′)
with other observables.

In particular, if L is the spatial component of a zero curvature equation

∂τL − ∂σM+ [M,L] = 0,

we find from equation (E.2) that

∂τT (σ, σ
′) = T (σ, σ′)M(σ′)−M(σ)T (σ, σ′).

Thus, if we consider fields that decrease rapidly at infinity, so thatM(σ)→ 0 when σ → ±∞,
the path-ordered exponential T (+∞,−∞) is conserved.

Suppose now that we are given a Lie group homomorphism τ : G→ F , from G to another
Lie group F . It induces a Lie algebra homomorphism τg : g→ f. The image of the path-ordered
exponential (E.1) by the homomorphism τ is simply

τ
(
T (σ, σ′)

)
= P←−expF

(
−
∫ σ

σ′

dρ τg
(
L(ρ)

))
, (E.3)

where P←−expF denotes the path-ordered exponential in the group F .
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