
Same Difference: Detecting Collusion by
Finding Unusual Shared Elements

Pam Green1, Peter C.R. Lane1, Austen Rainer1, Steve Bennett1, and
Sven-Bodo Scholz2

1School of Computer Science, University of Hertfordshire, Hatfield,
AL10 9AB, UK.

2School of Mathematical and Computer Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, UK.

Abstract

Many academic staff will recognise that unusual shared elements
in student submissions trigger suspicion of inappropriate collusion.
These elements may be odd phrases, strange constructs, peculiar lay-
out, or spelling mistakes. In this paper we review twenty-nine ap-
proaches to source-code plagiarism detection, showing that the ma-
jority focus on overall file similarity, and not on unusual shared ele-
ments, and that none directly measure these elements. We describe
an approach to detecting similarity between files which focuses on
these unusual similarities. The approach is token-based and therefore
largely language independent, and is tested on a set of student as-
signments, each one consisting of a mix of programming languages.
We also present a novel technique for visualising one document in
relation to another in the context of the group. This visualisation sep-
arates code which is unique to the document, that shared by just the
two files, code shared by small groups, and uninteresting areas of the
file.

Keywords: source-code, plagiarism detection, unusual similarities,
survey, visualisation, n-grams

1email: [p.d.1.green, p.c.lane, a.w.rainer, s.j.bennett]@herts.ac.uk; 2s.scholz@hw.ac.uk

1

1 Introduction

Joy and Luck (1999) highlight two reasons for one student to copy another’s
work: they are either unable to understand how to do the work, or are un-
willing to take the time to do so. In both cases, it might be assumed that the
ability or time needed to disguise the copied work is lacking. Indeed, many
academic staffwill recognise that unusual elements in student submissions
trigger suspicion of inappropriate collusion. These elements may be odd
phrases, strange constructs, peculiar layout, or spelling mistakes (Cosma,
2008, p.191).

From a review of twenty-nine approaches to source-code plagiarism
detection, we have found that the majority focus on overall file similarity,
and not on unusual shared elements. In particular, none of these approaches
directly measure the unusual similarities between files. The work reported
here computes these unusual similarities, accounting not only for those
which appear in a pair of files, but also those which appear in few files.
This method is based on trigram analysis, finding pairs, or small groups, of
files which share trigrams not found in the rest of the files in the group.

We continue with background information, in particular, with the anal-
ysis of approaches to source-code plagiarism detection. In Section 3, we
describe two problems in measuring similarity between files of source code
produced for assignments, and explain our method for overcoming these
problems by measuring the unusual similarity between files, based on tri-
gram analysis. In Section 4, we report on our study using the proposed
measure on a set of student projects. The visualisation, described in Sec-
tion 5, is also based on trigram analysis, and highlights the interesting
similarities between two files. We conclude after a discussion in Section 6.

2 Background

2.1 Similarity in program code

The aim in source-code collusion detection is to find meaningful similarity
between files submitted by a group of students. Our approach computes
this similarity based on elements in the text. However, in any group of
documents there are elements which naturally occur frequently. For ex-
ample, articles and prepositions appear in most English language texts.
If the documents have the same subject, topic-related words may also be
repeated.

In program code, keywords, idioms and common constructs will appear
in many files. For example, “for (i= 0; i< n; i++)” or “# include< stdio.h>”
in C code. There are other reasons for similarity between code-based as-
signments:

2

• template code may be provided as part of the assignment, meaning that
it will be used by every student,

• code used in exercises and examples during the course is likely to be
reused,

• code is automatically produced by a development tool, such as Visual
Studio, or

• the common aim of the task will constrain students to produce similar
code.
This additional incidental similarity means that program code compar-

ison can be more challenging than text comparison (Cosma, 2008; Freire
et al., 2007, revised 2011; Hage et al., 2010; Mozgovoy, 2007).

2.2 Approaches to source-code plagiarism detection

The approaches to plagiarism detection in code that we surveyed are listed
in date order, from 1996 to 2011, in Table 3 (see pages 19–22). Previous sur-
veys have focused on a smaller number of tools and include Cosma (2008),
Hage et al. (2010), and Lancaster (2003). In the table, the authors and, where
relevant, the names of the tools (in bold text), are listed in the first column,
with dates in the next column.

In broad terms, the steps taken when comparing files are:

• pre-processing the code,

• transforming the processed code,

• breaking the new representation into elements suitable for matching,

• matching these elements,

• post-processing the results, and

• displaying the results.

Key Meaning Key Meaning Key Meaning

C Comments I Identifiers P Punctuation
C-1 Comments replaced K Macros S Single character identifiers

by single token L Literals U Unique terms
G Globals M Imports W White-space
H Headers N Numbers ? Possibly other, unknown

Table 1: Key to the elements removed from code during preprocessing by the
plagiarism detection tools analysed in Table 3, column 3.

3

Pre-processing: During preprocessing, different parts of the code are ex-
cluded by different tools, either explicitly, or as a consequence of the trans-
formation process, such as white-space (W) in tokenising, or comments (C)
in graph construction. Keys to what is removed by each tool are in the
column marked ‘Pre’, with the meanings of the keys in Table 1.

Transformation: Code is generally transformed into an intermediate rep-
resentation. The column headed “TI” notes the way that the code is trans-
formed initially. These new forms are tokens (Tk), intermediate language
(IL), trees (Tr), graphs (Gr) or metrics (Mt). Following initial transforma-
tion, further changes may be made. For example, by filtering out some of
the information, by parameterising or flattening trees to form sequences or
sets of tokens. Further details about the transformations are in column 5.

Elements for matching: The new representations of the code are usually
broken into smaller elements for matching. For example, text and tokens
may be divided into lines, statements, or n-grams, which comprise n adja-
cent words, characters or tokens. The units may then be compared directly,
or transformed before comparison. For example, by hashing, fingerprint-
ing, or by forming sets, bags or frequency vectors. These elements are
shown in column 6.

Matching: Elements are either expected to match exactly, or some measure
of their similarity is computed. Similarity measures are noted in column 7,
these vary, depending to some extent on what is suitable for the elements
to be matched. In some cases researchers compare several measures, and
the one found to be most effective is listed here.

Post-processing: The need for post-processing depends on the applica-
tion, the elements matched, and the method by which they are matched.
Some methods provide an immediate measure of similarity. For example,
the Jaccard1 or Dice2 coefficients of similarity between two sets of token
n-grams, or the cosine distance between two attribute vectors. Otherwise,
after matching sections of code within files, such as in string tiling, align-
ment methods, or clone-based methods, the proportion of shared code to
total file size provides a measure of similarity between two files.

Displaying results: Results can be provided as a ranked list of pairwise
similarity scores, as a similarity matrix, or file clusters based on their similar-
ity. Other graphical displays include Cosma’s (2008) box-and-whisker plots,

1Jaccard coefficient =

∣∣∣∣Set intersection
∣∣∣∣∣∣∣∣Set union

∣∣∣∣ 2Dice coefficient = 2 ×
∣∣∣∣Set intersection

∣∣∣∣∣∣∣∣Set 1
∣∣∣∣+∣∣∣∣Set 2

∣∣∣∣

4

Freire’s (2008) individual histograms, or the Categorical Patterngrams of Ri-
bler and Abrams (2000). Many of the tools provide a method for displaying
the text of the files side-by-side, with detected similarities highlighted, so
that the tutor can determine the nature of the similarity. Column 8 shows
how results are reported and also, to fit the page, any remarks, which are
in square brackets.

Excluding template code: The column headed “Exc.” indicates whether
the tool is reported to have the option of excluding template code from
the comparison between files, (X) or whether common code is inversely
weighted in the calculation of similarity (*), making template code, which
will appear in all or most submissions, less important in the resulting simi-
larity score.

Unusual similarity: Hoad and Zobel (2003, p.2) state that ”In plagiarized
assignments, it is common to find that some errors or atypical usages have been
copied verbatim.” The last column shows whether files which share this type
of unusual similarity are identified (X, directly; *, indirectly; O, optionally).
This last feature will not highlight collusion where disguises are employed,
however, it is of interest where the student has too little time or skill to make
sufficient alterations to their submission.

Four approaches, by Arwin and Tahaghoghi (2006), Burrows et al. (2007),
Ji et al. (2007), and Cosma (2008), accentuate similarities which occur in-
frequently within the group. The first two because they use a similarity
measure which inversely weights terms, depending on how often they oc-
cur in the set of files. The second two because they weight the terms in the
input vectors. Ji et al. apply weights to the scores assigned during the local
alignment of keyword sequences, and Cosma uses latent semantic analysis
on vectors of filtered terms.

Two other approaches target unusual similarity between files more di-
rectly. Moss (Aiken, 1997), provides a parameter, m, which allows exclu-
sion from its comparison elements which occur in more than m documents.
However, as it compares a subset of the hashed n-grams in each file, some
unusual similarities between files may be missed. Full details of Moss’s
implementation are not available, making further discussion difficult. Ri-
bler and Abrams (2000), is the only approach to specifically target unusual
similarity between files based on the full set of n-grams in each file.

2.3 Ribler and Abrams’ categorical patterngrams

Ribler and Abrams’ approach relies on the visual inspection of graphical
displays of the character n-grams in a file. The categorical patterngram, in
Figure 1a, places the sequence of n-grams in one file along the x-axis. The

5

(a) Categorical patterngram (b) Composite categorical patterngram

Figure 1: Ribler and Abrams’s patterngrams, taken from (Ribler and Abrams, 2000)

number of other files in the group which contain each n-gram is plotted
on the y-axis, for the values 1–9. If the n-gram is unique to the file being
analysed, it is plotted at y = 1 and shown in blue. If in 10 or more files,
it is considered uninteresting and plotted at y = 10, in green. Figure 1a
shows a file which shares a suspicious sequence of code with one other file,
indicated by the dense sequence of red lines at n = 2.

Another graph, the composite categorical patterngram, is constructed
to show which files contain the n-grams, see Figure 1b. This graph is based
on one file, with the n-grams it contains plotted for each of the files in the
comparison group. This time, the y-axis is labelled with file numbers and
the presence of the n-gram in a file marked by a coloured point. The base
file n-grams are coloured blue, otherwise the point is green if the n-gram is
in 10 or more files and red otherwise. This highlights those files with which
the base file shares significant sections. Figure 1b is based on the same file,
45, as Figure 1a, and shows that most of the code shared by few is in file 46,
where the large amount of common code indicates collusion.

2.4 Ferret

The copy detection tool Ferret was originally developed by the University
of Hertfordshire Plagiarism Detection Group to measure the similarity be-
tween text files (Lane et al., 2006; Lyon et al., 2001), and has since been
adapted for use with program code (Rainer et al., 2008). Efficiency in pro-
cessing is achieved by constructing a trigram to file (trigram-file) index on
a single pass through each file in the group. The index is used to compute
the Jaccard coefficient of similarity between pairs of files, based on trigrams
(3-grams) of words or tokens.

Table 2 shows an excerpt from an example trigram-file index. Twenty-
one files are compared, one of the code provided for the course, file [0], and

6

Label Trigram Files in which the trigram occurs

.....
A. unique identifier = -1 FILES:[17]

} unique identifier = FILES:[17]
else } unique identifier FILES:[17]

B. char* id123 , FILES:[4 12]
void func234 (FILES:[4 12]
; shiftleft (FILES:[4 12]

C.] ; struct FILES:[4 12 15]
void dosomething (FILES:[2 4 12 19]
result == -4 FILES:[1 4 12 14]
if (somecondition FILES:[2 4 12 19]
(somecondition) FILES:[4 12 17 19]

D. abc = 3 FILES:[4 13 19 20]
int abc = FILES:[3 4 7 8 12 16 17 19 20]
int xyz = FILES:[4 6 7 9 13 16 17 19 20]

E. = 1 ; FILES:[0 1 3 4 5 6 7 8 10 12 14 15 17 18 19 20]
printf (” FILES:[0 1 3 4 6 7 9 10 12 14 15 17 19 20]
= (” FILES:[0 1 3 4 5 9 12 13 17 19]
(i = FILES:[0 1 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19]
.....

Table 2: Extract from an example of a trigram-file index showing trigrams and the
files where they occur. For example, the trigram ”char* id123 , ” occurs
in just two files, numbered 4 and 12, while the trigram ”(i = ” is in the
majority of the 21 files. The letters A–E are not part of the Ferret output,
but label areas which are discussed further in Section 3.

twenty student assignments, numbered [1–20]. In this table, the trigrams
are on the left, with the files in which they occur on the right.

3 Measuring similarity in program code assignments

Most of the methods (26 of 29) listed in Table 3 use proportional similarity
measures. For example, the number of tokens in matched sections to the
total in the file (Mozgovoy et al., 2005), and those using the Jaccard coef-
ficient (Chilowicz et al., 2009; Jadalla and Elnagar, 2008; Lane et al., 2006;
Moussiades and Vakali, 2005; Xiong et al., 2009) or Dice coefficient (Huang
et al., 2010; Ji et al., 2007).

These measures are used to rank pairs of files, so that the most similar
can be further investigated. Proportional measures work best when the files
are of roughly the same size. For example, when essays are required to be a
specific length, or for programming tasks which consist of a defined set of
exercises. However, when file sizes differ, such as in a more open software
development task, proportional measures can be misleading.

When a portion of a large document is copied to another document, the
proportion of copied trigrams to the total may be small. This may mean that,
although significant, copying is missed. In Figure 2, file B is compared with

7

(a) |A|=|B| = 200, |A∩B| = 100 (b) |C| = 1000, |B| = 200, |C∩B| = 200

Figure 2: The Venn diagrams represent the trigrams in 3 files, A, B and C. In each
diagram, file B has 200 trigrams. File A also has 200 trigrams and the 2
files share 100 trigrams. File C has 1000 trigrams and contains file B.

two other files, A and C. The Jaccard coefficient, or resemblance between
files A and B is 100

300 = 0.33, whereas between files B and C the resemblance
is 200

1000 = 0.2. File B is more likely to be derived from file C than file A, but
the resemblance between files A and B is higher than that between files B
and C.

One option which overcomes the potential drawbacks of proportional
measures for files of unequal sizes is to count the elements shared by each
pair of files, to find the amount, rather than the proportion of shared ele-
ments.

3.1 Trigrams shared by two files

There are also problems with using a count of shared trigrams to measure
similarity. As discussed in Section 2.1, even when there has been no col-
lusion between the authors, the incidental similarity between files of code
submitted for an assignment can be high. Factors include the constraints
introduced by using the same programming language(s), the code provided
to the students for the course, the common aim of the task, and, possibly,
auto-generated code. We aim to avoid these problems by using a measure
which does not include this incidental similarity.

The Venn diagrams in Figure 3 show four circles representing the tri-
grams in a group of files. The red and blue circles are two student files,
A and B. The yellow circle, file P, contains code provided for the course,
either in the form of examples given in teaching, or template code for the
assignment. The green circle, labelled O, represents the other files in the
group. Files A and B share the same number of trigrams. In the left-hand

8

(a) Little unusual similarity (b) Much unusual similarity

Figure 3: The Venn diagrams represent the trigrams in two student files, A and
B, in code provided for the course, P, and in other students’ work, O. In
each diagram, the files A and B share the same number of trigrams. On
the left, the majority appear in other files in the group, while on the right,
there are a large number of “uniquely shared trigrams”, (A

∩
B)\(P∪O).

diagram, 3a, the majority of the code shared by A and B also appears in
other files in the group, while in the right-hand diagram, 3b, about half of
the trigrams are “uniquely shared” by the two files. This set of trigrams,
(A
∩

B)\(P∪O), is a strong indication that the files should be further inves-
tigated.

3.2 Extending shared counts to groups

Collusion is not always between just two people, but may also be among a
group. For example, in the excerpt in Table 2, students 4 and 12 not only
uniquely share 3 trigrams, but also share 5 other trigrams with one or two
others (section C). There is also evidence, from the trigrams in sections C, D
and E, that student 19 is working with students 4 and 12. Of the 10 trigrams
shown for student 19, 4 are in the provided code, and therefore used by
many students. The remaining 6 are all shared with student 4, and 4 of
these are also shared with student 12.

The count of trigrams shared by two students can be extended to include
the trigrams shared by the two documents and by a small group of others.
In Figure 4, the area shared by the two files A and B, and by other files
except for the provided code, ((A

∩
B
∩

O)\P), is shown split into sections.
Some of these trigrams will be shared by files A, B, and just one of the other
files. The other file can be any one of the rest of the group. In the top left
part of the diagram are three such groups, formed by A, B, and each of the
files labelled i (green), ii (pink) and iii (cyan). In the lower left section, three

9

Figure 4: Two files may share trigrams uniquely, or may share trigrams which are
shared with few other files. This diagram illustrates the files A and B and
examples of the way they may share trigrams with one other file at the
top, or two other files at the bottom.

groups of four files which include files A and B are shown in the same way.
One way to compute this extended count of shared trigrams is to weight

the trigrams shared by A, B, and n others according to the number of files
containing the trigrams. Illustrated in Figure 5, the two files, A and B,
uniquely share 100 trigrams, share 60 with any one of the other files, and
240 with any two others. In the example, we weight the shared trigrams by

1
n+1 . The weighted similarity count is therefore:(

100 ∗ 1
1

)
+
(
60 ∗ 1

2

)
+
(
240 ∗ 1

3

)
= 100 + 30 + 80 = 210.

This weighted count can be used as a measure of similarity between files.
In this example, groups of up to four files are taken into account, however,
the method allows for calculation of any maximum group size.

3.3 Individual counts

Counting trigrams is useful in other respects: for measuring individual
effort, and for measuring engagement with tasks set during a course.

Trigrams unique to one document, (A\(P∪B
∪

O)), such as the trigrams
in section A of Table 2, may be seen as a measure of individual effort.
Alternatively, if there is suspicion that code has been sourced from the
internet, the unique trigrams can be used as search terms.

10

Figure 5: Two files may uniquely share trigrams, may share trigrams with each
other and one other, two others, ... Here the files A and B uniquely share
100 trigrams, share 60 which are also shared with another member of the
group, and 240 with two other members.

If the students’ work is collected regularly, then a measure of each
student’s engagement with the exercises set during the course can be found
by counting trigrams shared with the provided code. For example, A

∩
P

in Figures 3–5. It may be difficult to determine the number of trigrams
expected to be shared, as the provided code will probably need to be edited
to complete the exercises. However, as long as some of the students are
doing the exercises, a baseline level should be apparent. Students falling
below this level can then be identified.

4 Study

The group in our study were taking a course during which they were asked
to develop a community website using ASP.NET and VB.NET. The students
were expected to commit their code to an online repository on a regular
basis, and staff had access to the code for analysis purposes. Motivations
for using a repository included encouraging steady development and thus
discouraging contract cheating, and enabling feedback, both to staff for
monitoring, and to students to show their progress in relation to others
in the group. Trigram analysis was used both in feedback, to measure
originality, and in monitoring, to measure similarity.

There were 64 students initially registered on the course. Their projects
were written using Visual Studio, which produces a large amount of auto-
generated code. Although not necessary, except to exclude images, the

11

Figure 6: The selected files are concatenated to form one large file for each student
(shown on the left). Provided code is also placed in one file. This file and
those of student code are presented to Ferret to obtain information about
the distribution of trigrams in the files.

files were filtered prior to comparison. Only files expected to contain the
student’s own code were selected for analysis. These were .ascx, .css and
.master files, with scripts from .aspx files, and classes from .vb files.

Each student’s code was concatenated into one large file to simplify
comparisons between their work, see the left-hand side of Figure 6. This
technique has been used before in plagiarism detection, for example by
Lancaster and Tetlow (2005). The concatenation introduces new trigrams
at the file margins and these vary depending on file order. However, this is
a small price for making the rest of the process more straightforward.

Ferret currently has tokenisers for C-type languages, but appears to
work effectively with the code in these projects. A C-type tokeniser will
give a slightly different token set to a language-specific tokeniser. For
example, “not equals” in Visual Basic, “<>”, which is treated as two tokens,
“<” and “>”, instead of one.

The code provided for the course, in the form of examples or exercises,
was also concatenated into one large file. This file and all of the student files
were compared by Ferret and the trigram-file index and similarity scores
saved for analysis.

12

Figure 7: Connections between files with a weighted trigram count of at least
85, calculated for a maximum of 4 files. The connections are inversely
proportional to the weighted trigram count.

4.1 Results

Weighted trigram counts were calculated for each pair of documents, tak-
ing into account any trigrams shared by up to two others. The results are
presented in graphical form in Figure 7. Connections of less than an arbi-
trary weighted count of 85 are removed, leaving four pairs of files and four
groups. The group formed by 24, 30 and 40 is fully connected, the others
partially so.

As the course was closely monitored, we did not expect to find inap-
propriate collusion, and generally this was the case. However, a number of
features make this set of projects a good test for the measures. The projects
vary in size, ranging from 400 to 7,000 lines of filtered code. There is high
incidental similarity because many of the ideas introduced in class were
incorporated into the projects as they were developed. There is also some
unusual similarity, where students have found similar ways of dealing with

13

more advanced technical problems. Third party code, such as that for deal-
ing with differences in browser display, was acceptable provided it was
properly attributed.

As with all collusion detection techniques, the similarity measure used
here provides a filter which points to pairs or groups of files which merit
further investigation. Comparing this measure to the normal proportional
Ferret similarity measure, |(A

∩
B)|

|(A∪B)| , we found that of the top 20 pairs detected
by the weighted count based measure, only 6 were in the top 20 of those
detected by Ferret. The majority of pairs with the higher Ferret similar-
ity scores consisted of projects which had not been well-developed, and
therefore had a larger than usual proportion of provided code.

We also measured the trigrams uniquely shared by two files proportion-
ally, using the Jaccard coefficient, |(A

∩
B)\(P∪O)|

|(A∪B)\(P∪O)| . Twelve of the top 20 similar
pairs of files based on this measure were the same as those in the top 20
of the weighted counts. The 8 selected by proportional measure and not
by weighted measure did not show significant areas of similarity, but were
selected because one or both projects were small.

5 Enhanced display of a two file comparison

The outputs of many copy-detection tools show the two files under scrutiny
next to each other, highlighting the shared parts of the files. In this section,
we show how trigram analysis can be used to display more information
about the interaction between two files in the context of a group.

In Figure 9, an excerpt from a comparison between two projects is de-
picted. The comparison is output as XML, which is minimised here to fit the
page. The left-hand column shows the code coloured by Ferret in normal
use. Trigrams shared by the two files are coloured blue, and are otherwise
black. This does not provide information about the nature of the similarity.

Figure 8: One way to colour the code in a file (A) compared to another (B). The
colours and gradations can be altered to suit the user’s needs.

14

By analysing the trigram-file index, more information can be shown.
In the middle column, the trigrams which are uniquely shared by the two
projects are coloured red. On the right, the idea is developed to provide
additional information, which is detailed in Figure 8.

The trigrams are coloured black if they are unique within the group.
Red code is, again, that uniquely shared with the other project. Shades of
orange show trigrams are shared by the two, but also shared by few others.
Here, dark orange means one or two others sharing, and pale orange, three,
four or five others sharing. Bright blue means that code is shared by the
two projects and at least six others, and pale blue means that the code is
provided for the course, and is therefore uninteresting whether shared by
A and B or not.

The group thresholds are arbitrary, and it is possible that a larger class
warrants larger group sizes. However, Burrows et al. (2007, p.14), in their
work on detecting plagiarism, note that “Our test data and anecdotal evidence
indicates that students generally do not work in very large groups”, and this is
taken into account.

6 Summary and Discussion

6.1 Survey

We have surveyed twenty-nine approaches to source-code plagiarism de-
tection. Although it is recognised that unusual similarity between files is a
good indicator of possible collusion, few of the approaches surveyed take
this into account, with only two specifically targeting the elements shared
by few files, and none directly measuring them all.

Another observation from the survey is that twenty-one of the ap-
proaches initially tokenise the code. Tokenising requires a suitable lex-
ical analyser (lexer), but means that the method is otherwise language-
independent. A lexer for one language can be used to tokenise other lan-
guages in a reasonable manner, as we have shown by use of a C-type lexer.
However, eighteen of these approaches parameterise the tokenised code,
and for this a language-specific lexer is necessary to identify keywords.
Tools which change the code to graph, tree or metric representations are
tied to one language. Those which convert the code into an intermediate
language aim for language independence, but are restricted to the lan-
guages supported by the compilation suite. Only those approaches which
are token-based and do not parameterise will be able to analyse a mix of lan-
guages, that is Ferret (Lane et al., 2006) and PlaGate (Cosma, 2008) among
those listed in Table 3.

15

6.2 Measures

Almost all of the surveyed similarity measures are proportional to the size
of one or both of the files being compared. Although proportional measures
are likely to perform well with files of similar sizes, there can be a problem
when file sizes differ. Count-based measures can find similarity which
may be missed by proportional measures, especially where files are large.
However, care must be taken in what is counted, otherwise pairs of large
files will have more in common than pairs of small files, because of the
inherent similarity in program code. This problem is resolved by computing
similarity based on less common trigrams. In our study, we found the
count-based measures more effective than the two alternative proportional
measures tested.

Jones (2001, p.2) reports on methods used to disguise plagiarism: changes
to comments, white-space, identifiers and data-types; reordering code within
statements, moving blocks of code, adding redundant statements, and ex-
changing one type of control structure with another. Many of the ap-
proaches are concerned with detecting similarity in the face of these dis-
guises. These approaches use strategies such as parameterising , which lead
to a loss of textual information. However, there is a place for information
preserving approaches, such as Ferret (Lane et al., 2006) and GPlag (Liu
et al., 2006).

Although our method is not robust to systematic identifier renaming, it
will find unusual common code which has not been well disguised. This
similarity would probably be found naturally by someone marking a small
group of moderately sized assignments. However, as the size and number
of assignments increases, and particularly when marking is distributed
among several tutors, unusual similarity is unlikely to be found without
automatic analysis.

6.3 Visualisation

Our graduated visualisation pinpoints the areas of similar files which war-
rant investigation, especially helpful in a large file with high levels of in-
cidental similarity. Parts of the file which are unique to one student are
also highlighted, useful in understanding the novelty of the work, or per-
haps where outside sources have been used. As far as we know, no other
approach offers the level of detail displayed by our source code visuali-
sation. Although our display is based on trigram analysis, other units of
comparison, such as lines, clones, or procedures, could be used in a similar
way. Colour-blindness is a consideration (Jefferies et al., 2011), however,
the scheme can be easily altered to suit the user; for example, by the use of
underlining or shading in place of one or more of the colours.

16

7 Conclusion

Analysis of twenty-nine approaches to source-code plagiarism shows that
unusual similarity between student submissions is not directly measured by
existing tools. Our method for computing similarity overcomes the prob-
lems which can arise from proportional measures and from the inherent
similarity in program code, and performed well on our dataset. The visual-
isation adds group context to the comparison between two files. The more
interesting sections of the file are highlighted, which helps in assessing the
nature of the similarity between files. Future work will include testing the
measure on other groups of assignments and further developing the tool.

17

Figure 9: An excerpt from project A, compared to project B. On the left, is the
normal Ferret colouring, where trigrams shared by A and B are in blue,
and black means not shared. The middle is the same, except that the
trigrams uniquely shared by the two projects are in red. On the right, the
excerpt is coloured according to the scheme shown in Figure 8.

18

R
ep

or
ti

ng
A

ut
ho

r
D

at
e

Pr
e.

TI
Tr

an
sf

or
m

at
io

n
de

ta
il

El
em

en
ts

m
at

ch
ed

Si
m

ila
ri

ty
m

ea
su

re
[R

em
ar

ks
]

Ex
c.

D
is

.

W
is

e
19

96
C

,I
Tk

Sy
no

ny
m

un
ifi

ca
ti

on
,

H
as

he
d

n-
gr

am
s

R
un

ni
ng

K
ar

p-
R

ab
in

%
C

ov
er

ag
e

by
YA

P3
L

fu
nc

ti
on

s
re

ar
ra

ng
ed

w
he

re
n

re
du

ce
s

G
re

ed
y

St
ri

ng
Ti

lin
g

m
at

ch
ed

ti
le

s
by

ca
ll

se
qu

en
ce

it
er

at
iv

el
y

A
ik

en
19

97
W

,?
Tk

To
ke

n
n-

gr
am

s,
H

as
h

va
lu

es
re

du
ce

d
M

at
ch

in
g

fin
ge

rp
ri

nt
s

Si
m

ila
ri

ty
as

%
,

X
O

M
os

s
20

03
ha

sh
ed

by
w

in
no

w
in

g
to

tr
ig

ge
r

m
or

e
de

ta
ile

d
m

at
ch

ed
lin

es
to

to
ta

l
fin

ge
rp

ri
nt

th
e

fil
e

te
xt

m
at

ch
in

g

G
it

ch
el

l
19

99
C

-1
Tk

Pa
ra

m
et

er
is

ed
,

To
ke

n
st

ri
ng

s
N

or
m

al
is

ed
al

ig
nm

en
t

H
ig

h
sc

or
in

g
an

d
Tr

an
e.

g.
TK

N
-I

D
-I

,
O

ne
pr

og
ra

m
ag

ai
ns

t
id

s
=

,2
;,

,0
;g

ap
,-

2;
pa

ir
s

di
sp

la
ye

d
SI

M
TK

N
-F

O
R

m
od

ul
es

of
th

e
ot

he
r

ot
he

r
to

ke
ns
=

,1
;,

,-
2

Jo
y

an
d

Lu
ck

19
99

-
-

1.
O

ri
gi

na
lc

od
e

Ea
ch

se
t

R
un

s
of

eq
ua

ll
in

es
,

Si
m

ila
r

fil
es

cl
us

te
re

d
Sh

er
lo

ck
C

,W
-

2.
Ex

cl
ud

in
g

C
,W

of
lin

es
m

ay
be

ga
pp

ed
,a

s
by

K
oh

on
en

SO
FM

C
,W

Tk
3.

To
ke

ni
se

d
pr

op
or

ti
on

of
fil

e
si

ze
[S

in
ce

up
da

te
d]

R
ib

le
r&

A
br

am
s

20
00

W
-

C
ha

ra
ct

er
n-

gr
am

s
H

as
he

d
n-

gr
am

s
M

at
ch

in
g

ha
sh

-v
al

ue
s

G
ra

ph
ic

al
di

sp
la

y
X

X
C

at
eg

or
ic

al
(o

pt
io

na
lly

pr
ev

io
us

ly
fo

r
re

su
lt

s
pa

tt
er

ng
ra

m
pa

ra
m

et
er

is
ed

)

Jo
ne

s
20

01
C

,W
Tk

C
ou

nt
s

of
lin

es
1.

C
od

e
at

tr
ib

ut
e

ve
ct

or
s

1.
Eu

cl
id

ea
n

di
st

an
ce

Pa
ir

w
is

e
si

m
ila

ri
ti

es
w

or
ds

,c
ha

rs
,l

en
gt

h,
2.

Er
ro

r
lo

g
at

t.
ve

ct
or

s
2.

C
om

pi
la

ti
on

lo
g

di
st

.
vo

ca
bu

la
ry

&
vo

lu
m

e
3.

Ex
ec

ut
io

n
lo

g
at

t.v
ec

s.
3.

Ex
ec

ut
io

n
lo

g
di

st
.

Pr
ec

he
lt

et
al

.
20

02
C

,I
Tk

as
YA

P3
–

–
–

–
–

–
[a

s
YA

P3
w

it
h

X
JP

la
g

L
ha

sh
in

g
op

ti
m

is
ed

]

Be
lk

ho
uc

he
20

04
C

,W
Tr

Pa
rt

it
io

ne
d

st
ru

ct
ur

e
Su

bg
ra

ph
ty

pe
se

qu
’s

.
L.

C
.S

ub
se

qu
en

ce
Pa

ir
w

is
e

%
M

at
ch

es
,

et
al

.
ch

ar
ta

nd
N

od
es

Su
bt

re
es

&
to

ke
n

ty
pe

s
ne

ar
-m

at
ch

es
,&

no
de

s
B

ra
ss

da
ta

di
ct

io
na

ry
Ty

pe
fr

eq
ue

nc
y

%
m

at
ch

ed
no

de
s

by
ty

pe
[T

ie
re

d:
1.

su
bg

ra
ph

s,
Id

en
ti

fie
rs

&
by

ty
pe

-i
d

pa
ir

s
2.

no
de

s,
3.

sy
m

bo
ls

]

Ta
bl

e
3.

A
pp

ro
ac

he
s

to
pl

ag
ia

ri
sm

de
te

ct
io

n
C

on
ti

nu
ed

on
ne

xt
pa

ge

19

R
ep

or
ti

ng
A

ut
ho

r
D

at
e

Pr
e.

TI
Tr

an
sf

or
m

at
io

n
de

ta
il

El
em

en
ts

m
at

ch
ed

Si
m

ila
ri

ty
m

ea
su

re
[R

em
ar

ks
]

Ex
c.

D
is

.

C
he

n
et

al
.

20
04

Tk
To

ke
n

se
qu

en
ce

s
C

om
pr

es
se

d
fil

es
C

om
pr

es
si

on
di

st
an

ce
Fi

le
pa

ir
s

ra
nk

ed
SI

D
(C

m
)

1
-

C
m

(a
)−

C
m

(a
|b)

C
m

(a
b)

by
si

m
ila

ri
ty

La
nc

as
te

r
20

05
Tk

1.
W

or
ds

‘W
or

d’
bi

gr
am

s
10

0
×

Ja
cc

ar
d

co
eff

’t
[T

es
tf

ra
m

ew
or

k
to

an
d

Te
tl

ow
2.

Pa
ra

m
et

er
is

ed
L.

C
.S

ub
st

ri
ng

s
20

0
×

T
ok

en
si

n
m

at
ch

ed
se

ct
io

ns
T

ot
al

to
ke

ns
in

fi
le

co
m

pa
re

3
m

ea
su

re
s

3.
U

np
ro

ce
ss

ed
C

om
pr

es
se

d
fil

es
10

0
×

C
m

(a
)+

C
m

(b
)

C
m

(a
b)
+

C
m

(b
a)
−

1
-fi

nd
s

bi
gr

am
s

be
st

]

M
ou

ss
ia

de
s

20
05

C
Tk

In
de

xe
d

ke
yw

or
ds

e.
g.

K
ey

w
or

d
se

t
Ja

cc
ar

d
co

effi
ci

en
t

C
lu

st
er

ed
on

w
ei

gh
te

d
&

V
ak

al
i

{v
oi

d1
,i

nt
1,

in
t2

,f
or

1,
...
}

un
di

re
ct

ed
gr

ap
h

PD
et

ec
t

M
oz

go
vo

y
et

al
.

20
05

W
Tk

Pa
ra

m
et

er
is

ed
To

ke
n

se
qu

en
ce

s
T

ok
en

si
n

m
at

ch
ed

se
ct

io
ns

T
ot

al
to

ke
ns

in
fi

le
Si

m
ila

ri
ty

m
at

ri
x

FD
PS

20
07

(p
-m

at
ch

)
us

in
g

su
ffi

x
ar

ra
y

A
rw

in
&

20
06

C
,W

IL
C

on
ve

rt
ed

to
R

TL
,

N
-g

ra
m

s
of

O
ka

pi
BM

25
R

el
at

iv
e

%
sc

or
e

*
*

Ta
ha

gh
og

hi
op

ti
m

is
ed

,
se

le
ct

ed
to

ke
ns

X
pl

ag
to

ke
ns

fil
te

re
d

La
ne

et
al

.
20

06
W

Tk
To

ke
n

tr
ig

ra
m

s
Ja

cc
ar

d
co

effi
ci

en
t

Pa
ir

w
is

e
si

m
ila

ri
ti

es
Fe

rr
et

Li
u

et
al

.
20

06
C

,I
G

r
Pr

oc
ed

ur
al

pr
og

ra
m

G
ra

ph
pa

ir
s,

fil
te

re
d

Su
bg

ra
ph

is
om

or
ph

is
m

C
ou

nt
s

of
ap

pr
ox

.
G

pl
ag

W
de

pe
nd

en
ce

gr
ap

hs
to

ex
cl

ud
e

sm
al

lu
ni

ts
m

at
ch

ed
pr

oc
ed

ur
es

(P
D

G
s)

an
d

un
lik

el
y

m
at

ch
es

M
er

lo
20

06
C

,W
M

t
Fu

nc
ti

on
m

et
ri

cs
(b

ra
nc

h,
M

et
ri

c
ve

ct
or

s
C

lo
ne

cl
us

te
rs

ba
se

d
Pr

op
or

ti
on

of
fil

es
C

La
n

pa
ra

m
et

er
,e

tc
.c

ou
nt

s)
on

th
re

sh
ol

ds
co

ve
re

d
by

cl
on

es

N
oh

et
al

.
20

06
C

,W
Tr

1.
X

M
L

tr
ee

to
6

se
ts

Fe
at

ur
e

m
at

ri
ce

s
C

om
pa

ri
so

n
de

pe
nd

s
Pa

ir
w

is
e

si
m

ila
ri

ti
es

EX
PD

ec
of

fe
at

ur
e

fr
eq

ue
nc

ie
s

on
th

e
fe

at
ur

es
2.

C
on

tr
ol

se
qu

en
ce

s
C

on
tr

ol
m

at
ri

x
Le

ve
ns

ht
ei

n
(w

ei
gh

te
d)

Ta
bl

e
3.

A
pp

ro
ac

he
s

to
pl

ag
ia

ri
sm

de
te

ct
io

n
C

on
ti

nu
ed

on
ne

xt
pa

ge

20

R
ep

or
ti

ng
A

ut
ho

r
D

at
e

Pr
e.

TI
Tr

an
sf

or
m

at
io

n
de

ta
il

El
em

en
ts

m
at

ch
ed

Si
m

ila
ri

ty
m

ea
su

re
[R

em
ar

ks
]

Ex
c.

D
is

.

Bu
rr

ow
s

et
al

.
20

07
C

,W
Tk

Pa
ra

m
et

er
is

ed
to

1
of

To
ke

n
ty

pe
4-

gr
am

s
1.

O
ka

pi
BM

25
Pa

ir
w

is
e

si
m

ila
ri

ti
es

*
*

55
to

ke
n

ty
pe

s,
e.

g.
2.

St
ri

ng
al

ig
nm

en
t

in
tS

,r
et

ur
n

g,
(A

,=
K

on
be

st
m

at
ch

es
m

at
ch

1,
in

de
l-

2,
m

is
-3

A
ht

ia
in

en
et

al
.

20
07

C
,I

Tk
as

JP
la

g
–

–
–

–
–

–
[a

s
JP

la
g

X
Pl

ag
gi

e
L

bu
to

pe
n

so
ur

ce
]

Fr
ei

re
et

al
.

20
07

U
Tk

1.
To

ke
n

ty
pe

co
un

ts
1.

To
ke

n
fr

eq
u’

y
ve

ct
or

s
C

os
in

e
di

st
an

ce
Pa

ir
w

is
e

si
m

ila
ri

ti
es

A
C

20
08

2.
To

ke
n

se
qu

en
ce

2.
C

om
pr

es
si

on
(C

m
)

C
m

(a
b)
−m

in
(C

m
(a

),C
m

(b
))

m
ax

(C
m

(a
),C

m
(b

))
Fi

le
cl

us
te

r
gr

ap
h

va
ri

an
ce

an
al

ys
is

R
el

at
iv

e
si

m
’y

hi
st

og
ra

m

Ji
et

al
.

20
07

C
,W

Tk
St

at
ic

tr
ac

e
“k

ey
w

or
ds

”
Lo

ca
la

lig
nm

en
tw

it
h

D
ic

e
co

effi
ci

en
t

Si
m

ila
ri

ty
m

at
ri

x
*

*
e.

g.
IF

LE
BL

O
C

K
ST

A
R

T
sc

or
es

w
ei

gh
te

d
on

al
ig

ne
d

se
ct

io
n

R
ET

U
R

N
FU

N
C

C
A

LL
on

ke
yw

or
d

fr
eq

ue
nc

ie
s

to
fil

e
si

ze
s

C
os

m
a

20
08

C
,N

Tk
Te

rm
fr

eq
ue

nc
ie

s
Pr

oc
ed

ur
e

le
ve

lt
er

m
C

os
in

e
si

m
ila

ri
ty

Si
m

ila
ri

ty
m

at
ri

x/
pl

ot
*

*
Pl

aG
at

e
P,

S,
ve

ct
or

s
re

su
lt

in
g

fr
om

U
la

te
nt

se
m

an
ti

c
an

al
ys

is

Ja
da

lla
20

08
C

,W
Tk

Pa
ra

m
et

er
is

ed
,u

ni
fy

in
g

Ba
g

of
4-

gr
am

s
Ja

cc
ar

d
co

effi
ci

en
t

Pa
ir

w
is

e
si

m
ila

ri
ti

es
&

El
na

ga
r

id
en

ti
fie

rs
,s

ep
ar

at
or

s,
of

th
e

di
gi

ts
C

lu
st

er
s

si
m

ila
r

fil
es

PD
E4

Ja
va

ke
yw

or
ds

..
as

di
gi

ts
us

in
g

D
BS

C
A

N

C
hi

lo
w

ic
z

et
al

.
20

09
C

,I
Tk

Pa
ra

m
et

er
is

ed
,u

ni
fy

in
g

To
ke

n
su
ffi

x
ar

ra
y

Ja
cc

ar
d

co
effi

ci
en

t
Pa

ir
w

is
e

fil
e

W
so

m
e

to
ke

n
ty

pe
s

G
lo

ba
lc

al
lg

ra
ph

of
&

co
nt

ai
nm

en
tb

as
ed

si
m

ila
ri

ti
es

,
e.

g.
IF

LP
A

R
id

en
ti

fie
r

su
bf

un
c’

ns
in

c.
sh

ar
ed

on
su

bf
un

ct
io

ns
co

nt
ai

nm
en

t(
1i

n2
,2

in
1)

X
io

ng
et

al
.

20
09

C
,W

,
IL

C
IL

to
A

ST
to

lin
ea

r
To

ke
n

4-
gr

am
s

Ja
cc

ar
d

co
effi

ci
en

t
C

lu
st

er
s

si
m

ila
r

fil
es

B
U

A
A

H
,G

re
pr

es
en

ta
ti

on
,w

hi
ch

A
nt

iP
la

gi
ar

is
m

is
to

ke
ni

se
d

Ta
bl

e
3.

A
pp

ro
ac

he
s

to
pl

ag
ia

ri
sm

de
te

ct
io

n
C

on
ti

nu
ed

on
ne

xt
pa

ge

21

R
ep

or
ti

ng
A

ut
ho

r
D

at
e

Pr
e.

TI
Tr

an
sf

or
m

at
io

n
de

ta
il

El
em

en
ts

m
at

ch
ed

Si
m

ila
ri

ty
m

ea
su

re
[R

em
ar

ks
]

Ex
c.

D
is

.

Br
ix

te
le

ta
l.

20
10

Tk
A

lp
ha

nu
m

er
ic

s
un

ifi
ed

C
ho

ic
e

e.
g.

C
ho

ic
e,

an
y

su
it

ab
le

Si
m

ila
ri

ty
m

at
ri

x
e.

g.
tt
=

t+
t;

lin
es

,f
un

ct
io

ns
m

ea
su

re
fo

r
se

qu
en

ce
s

[1
-t

o-
1

se
ct

io
n

m
at

ch
in

g
by

M
un

kr
es

al
go

ri
th

m
]

H
ag

e
et

al
.

20
10

C
,M

Tk
To

ke
ns

un
ifi

ed
by

ty
pe

Tr
an

sf
or

m
ed

lin
es

L.
C

.S
ub

st
ri

ng
(d

iff
)

Pa
ir

w
is

e
si

m
ila

ri
ti

es
M

ar
bl

e
S

O
pt

io
na

lf
un

ct
io

n
so

rt
Si

m
ila

ri
ty
=

10
0

-
ab

ov
e

th
re

sh
ol

d
sc

or
e

no
.d

if
fe

re
nt

lin
es

(f
1,

f2
)×

10
0

le
ng

th
f1
+

le
ng

th
f2

H
ua

ng
et

al
.

20
10

C
,K

Tk
1.

Id
en

ti
fie

rs
un

ifi
ed

,
1.

W
in

no
w

ed
ha

sh
ed

1.
D

ic
e.

(2
×L

C
Se

q(
f1
,f

2)
le

ng
(f

1+
f2

)
Pa

ir
w

is
e

si
m

ila
ri

ti
es

W
,?

co
nc

at
en

at
ed

in
to

st
ri

ng
n-

gr
am

s
=

fin
ge

rp
ri

nt
,f

2.
Σ

4 i=
1w

i.(
m

ea
ns

im
) i

Tr
2.

4
A

ST
no

de
ty

pe
se

ts
2.

N
od

es
pa

ir
ed

on
si

m
.

w
ei

gh
te

d
co

m
bi

na
ti

on
of

si
m

ila
ri

ti
es

1.
&

2.

Ju
ri

či
ć

20
11

C
,W

IL
C

on
ve

rt
ed

to
C

IL
M

ac
hi

ne
in

st
ru

ct
io

n
1
−

Le
ve

ns
ht

ei
nd

is
ta

nc
e

M
ax

im
um

fi
le

si
ze

Si
m

ila
ri

ty
m

at
ri

x
Fi

lt
er

ed
to

ex
cl

ud
e

st
ri

ng
s

m
et

ad
at

a
&

lo
ca

ti
on

s
e.

g.
ld

c,
st

lo
c,

ad
d

Ta
bl

e
3:

A
pp

ro
ac

he
s

to
so

ur
ce

co
de

pl
ag

ia
ri

sm
de

te
ct

io
n.

A
ut

ho
r

an
d

to
ol

na
m

es
ar

e
lis

te
d

in
co

lu
m

n
1.

Pa
rt

s
of

th
e

co
de

re
m

ov
ed

du
ri

ng
pr

e-
pr

oc
es

si
ng

ar
e

in
co

lu
m

n
3,

co
m

m
en

ts
(C

)
an

d
w

hi
te

-s
pa

ce
(W

)
ar

e
m

os
tc

om
m

on
,a

s
th

es
e

ca
n

be
a

by
-p

ro
du

ct
of

tr
an

sf
or

m
at

io
n,

ot
he

r
ke

ys
ar

e
in

Ta
bl

e
1.

Th
e

in
it

ia
lt

ra
ns

fo
rm

at
io

n
of

th
e

co
de

is
sh

ow
n

in
th

e
ne

xt
co

lu
m

n,
(T

I)
,w

he
re

Tk
m

ea
ns

th
at

th
e

co
de

is
to

ke
ni

se
d,

ot
he

rk
ey

s
ar

e:
G

r-
gr

ap
h,

Tr
-t

re
e,

M
t-

m
et

ri
cs

,a
nd

IL
-i

nt
er

m
ed

ia
te

la
ng

ua
ge

.B
ri

ef
de

sc
ri

pt
io

ns
of

fu
rt

he
r

tr
an

sf
or

m
at

io
n,

el
em

en
ts

m
at

ch
ed

,a
nd

si
m

ila
ri

ty
m

ea
su

re
s

ar
e

in
co

lu
m

ns
5–

7.
C

ol
um

n
8

ha
s

re
po

rt
fo

rm
at

s
an

d
[s

el
ec

te
d

re
m

ar
ks

].
Th

e
la

st
2

co
lu

m
ns

sh
ow

w
he

th
er

th
e

to
ol

al
lo

w
s

ex
cl

us
io

n
of

te
m

pl
at

e
co

de
,a

nd
if

di
ss

im
ila

ri
ty

to
th

e
re

st
of

th
e

gr
ou

p
is

co
ns

id
er

ed
.[
X

-e
xp

lic
it

,*
-i

m
pl

ic
it

,O
-o

pt
io

na
l]

22

References

Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie: GPL-licensed
source code plagiarism detection engine for Java exercises. In M. Wiggberg
A. Berglund, editor, 6th Baltic Sea Conference on Computing Education Research,
pages 141–142. Uppsala University, Sweden, 2007.

Alex Aiken. Moss system for detecting software plagiarism. http://theory.stan-
ford.edu/aiken/moss/, 1997.

Christian Arwin and Seyed M. M. Tahaghoghi. Plagiarism detection across pro-
gramming languages. In Vladimir Estivill-Castro and Gillian Dobbie, editors,
ACSC, volume 48 of CRPIT, pages 277–286. Australian Computer Society, 2006.
ISBN 1-920682-30-9.

Boumediene Belkhouche, Anastasia Nix, and Johnette Hassell. Plagiarism detec-
tion in software designs. In Seong-Moo Yoo and Letha H. Etzkorn, editors, ACM
Southeast Regional Conference, pages 207–211. ACM, 2004. ISBN 1-58113-870-9.

Romain Brixtel, Mathieu Fontaine, Boris Lesner, Cyril Bazin, and Romain Robbes.
Language-independent clone detection applied to plagiarism detection. In
SCAM ’10:Proceedings of the 10th IEEE International Workshop on Source Code
Analysis and Manipulation, pages 77–86. IEEE Computer Society, 2010. ISBN
978-0-7695-4178-5.

Steven Burrows, Seyed M. M. Tahaghoghi, and Justin Zobel. Efficient plagiarism
detection for large code repositories. Software Practice and Experience, 37(2):151–
175, 2007.

Xin Chen, Brent Francia, Ming Li, Brian McKinnon, and Amit Seker. Shared
information and program plagiarism detection. IEEE Transactions on Information
Theory, 50(7):1545–1551, 2004.

Michel Chilowicz, Étienne Duris, and Gilles Roussel. Finding similarities in source
code through factorization. Electronic Notes in Theoretical Computer Science, 238
(5):47–62, 2009.

Georgina Cosma. An Approach To Source-code Plagiarism Detection And Investigation
Using Latent Semantic Analysis. PhD thesis, University of Warwick, 2008.

Manuel Freire. Visualizing program similarity in the AC plagiarism detection
system. In Proceedings of Advanced Visual Interfaces (AVI), pages 404–407, New
York, USA, May 2008. ACM Press. ISBN 1-978-60558-141-5.

Manuel Freire, Manuel Cebrián, and Emilio del Rosal. AC: An integrated source
code plagiarism detection environment. CoRR, abs/cs/0703136, 2007.

Manuel Freire, Manuel Cebrian, and Emilio del Rosal. Uncovering plagiarism
networks. arXiv:cs/0703136v7 [cs.IT], 2007, revised 2011.

David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in computer
programs. In Jane Prey and Robert E. Noonan, editors, SIGCSE, pages 266–270.
ACM, 1999. ISBN 1-58113-085-6.

23

Jurriaan Hage, Peter Rademaker, and Nike van Vugt. A com-
parison of plagiarism detection tools. Technical Report UU-CS-
2010-015, Utrecht University, June 2010. Further information from
http://www.cs.uu.nl/docs/vakken/apa/10plagiarismdetection.pdf.

Timothy C. Hoad and Justin Zobel. Methods for identifying versioned and pla-
giarized documents. Journal of the American Society for Information Science and
Technology, 54(3):203–215, 2003. ISSN 1532-2890.

Liuliu Huang, Shumin Shi, and Heyan Huang. A new method for code similarity
detection. In Progress in Informatics and Computing (PIC), 2010 IEEE International
Conference on, volume 2, pages 1015–1018, dec. 2010.

Ameera Jadalla and Ashraf Elnagar. Pde4java: Plagiarism detection engine for
Java source code: a clustering approach. IJBIDM, 3(2):121–135, 2008.

Amanda Jefferies, Colin Egan, Edmund Dipple, and Dave Smith. Do you see what
I see? Understanding the challenges of colour-blindness in online learning. In
S Greener and A Rospiglio, editors, Proceedings of 10th European Conference for
E-Learning, pages 210–217, Reading, U.K., 2011. Academic Conferences Ltd.

Jeong-Hoon Ji, Soo-Hyun Park, Gyun Woo, and Hwan-Gue Cho. Source code
similarity detection using adaptive local alignment of keywords. In David S.
Munro, Hong Shen, Quan Z. Sheng, Henry Detmold, Katrina E. Falkner, Cruz
Izu, Paul D. Coddington, Bradley Alexander, and Si-Qing Zheng, editors, PD-
CAT, pages 179–180. IEEE Computer Society, 2007. ISBN 0-7695-3049-4.

Edward L. Jones. Metrics based plagiarism monitoring. Journal of Computing
Sciences in Colleges, 16(4):253–261, 2001.

Mike Joy and Michael Luck. Plagiarism in programming assign-
ments. IEEE Transactions on Education, 42(1):129–133, 1999. URL
http://eprints.ecs.soton.ac.uk/3872/.

Vedran Juricic. Detecting source code similarity using low-level languages. In
Information Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd International
Conference on, pages 597 –602, June 2011.

Thomas Lancaster. Effective and Efficient Plagiarism Detection. PhD thesis, Birming-
ham City University, Birmingham, UK, 2003.

Thomas Lancaster and Mark Tetlow. Does automated anti-plagiarism have to be
complex? evaluating more appropriate software metrics for finding collusion.
In Ascilite 2005, pages 361–370, Brisbane, Australia, 2005. ascilite 2005.

Peter C. R. Lane, Caroline M. Lyon, and James A. Malcolm. Demonstration of the
Ferret plagiarism detector. In 2nd International Plagiarism Conference, 2006.

Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: detection of software
plagiarism by program dependence graph analysis. In Tina Eliassi-Rad, Lyle H.
Ungar, Mark Craven, and Dimitrios Gunopulos, editors, KDD, pages 872–881.
ACM, 2006. ISBN 1-59593-339-5.

24

C. M. Lyon, J. A. Malcolm, and R. G. Dickerson. Detecting short passages of
similar text in large document collections. In Proceedings of Conference on Empirical
Methods in Natural Language Processing. SIGDAT, Special Interest Group of the
ACL, 2001.

Ettore Merlo. Detection of plagiarism in university projects using metrics-based
spectral similarity. In Rainer Koschke, Ettore Merlo, and Andrew Walenstein,
editors, Duplication, Redundancy, and Similarity in Software, volume 06301 of
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

Lefteris Moussiades and Athena Vakali. Pdetect: A clustering approach for de-
tecting plagiarism in source code datasets. The Computer Journal, 48(6):651–661,
2005.

Maxim Mozgovoy. Enhancing Computer-Aided Plagiarism Detection. PhD thesis,
Department of Computer Science, University of Joensuu, University of Joensuu,
P.O.Box 111, FIN-80101 Joensuu, Finland, November 2007.

Maxim Mozgovoy, Kimmo Fredriksson, Daniel R. White, Mike Joy, and Erkki
Sutinen. Fast plagiarism detection system. In Mariano P. Consens and Gonzalo
Navarro, editors, SPIRE, volume 3772 of Lecture Notes in Computer Science, pages
267–270. Springer, 2005. ISBN 3-540-29740-5.

Seo-Young Noh, Sangwoo Kim, and Cheonyoung Jung. A lightweight program
similarity detection model using xml and levenshtein distance. In Hamid R.
Arabnia, editor, FECS, pages 3–9. CSREA Press, 2006. ISBN 1-60132-008-6.

Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms
among a set of programs with JPlag. The Journal of Universal Computer Science, 8
(11):1016–, 2002.

Austen W. Rainer, Peter C. R. Lane, James A. Malcolm, and Sven-Bodo Scholz.
Using n-grams to rapidly characterise the evolution of software code. In The 4th
International ERCIM Workshop on Software Evolution and Evolvability, 2008.

Randy L. Ribler and Marc Abrams. Using visualization to detect plagiarism in
computer science classes. In INFOVIS, pages 173–178, 2000.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algorithms
for document fingerprinting. In SIGMOD ’03: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pages 76–85, New York,
NY, USA, 2003. ACM. ISBN 1-58113-634-X.

Michael J. Wise. Yap3: improved detection of similarities in computer program and
other texts. In John Impagliazzo, Elizabeth S. Adams, and Karl J. Klee, editors,
SIGCSE, pages 130–134. ACM, 1996. ISBN 0-89791-757-X.

Hao Xiong, Haihua Yan, Zhoujun Li, and Hu Li. BUAA AntiPlagiarism: A system
to detect plagiarism for C source code. In International Conference on Computational
Intelligence and Software Engineering, CISE 2009., pages 1–5, 2009.

25

