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Abstract 

Physiological functions of the two extreme ends of the age spectrum, children (< 18 years old) and 

older adults (aged 65 years and over), differ from healthy young adults. This consequently affects the 

pharmacokinetic profiles of administered drugs, which, in turn, impacts upon clinical practice and drug 

therapy. The gastrointestinal milieu acts as a distinct and vital organ regulating the dissolution, 

absorption and metabolism of orally ingested drugs. Age-mediated alteration in the physiology and 

function of the gut can reshape the pharmacokinetics of certain drugs. However, our understanding 

on this topic is limited. This article references the gut physiology of healthy adults to capture the 

available evidence in the literature on the extent and nature of the changes in childhood and older 

age. The gut, as an organ, is examined with regards to the effect of age on luminal fluid, microbiota, 

transit and motility, and the intestinal mucosa. Whilst drastic developmental changes were observed 

in certain aspects of the gastrointestinal environment, the examination reveals significant gaps in our 

knowledge in the physiology and function of the developing or ageing gut.  The revelation of the 

unknown paves the way towards a better characterization of the human gastrointestinal tract for 

optimized drug therapy in children and older adults.  
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1. Introduction 

The duration of the human life cycle and the age of the individual at death are both circumstances 

dependent on multiple interdisciplinary factors, ranging from living environment to nutrition, 

healthcare resource availability and the adoption of so-called ‘lifestyle’ changes such as heavy alcohol 

consumption, recreational drug use and cigarette smoking. The life expectancy of an individual also 

varies from one geographical location to another; good individual quality of life, therefore, may be 

reflective of a greater proportion of the population entering the elderly phase of life through 

undertaking of collective practices perceived as beneficial to prolongation of life (for instance, dietary, 

based on communal food production or availability). It has been estimated that the majority of babies 

born since the year 2000 in developed nations such as the United Kingdom, USA and Canada will be 

much more likely, for instance, to reach their 100th birthdays if the current observed increase in life 

expectancy for members of these populations is continued (Christensen et al., 2009). At present, the 

demographic most affected by this increase is by and large comprised of individuals aged 85 years and 

older (Wade, 2002) – to this end, it is also thought that around 18% of the US population will be 

accounted for by those over the age of 70 by the year 2025 (Elsner, 2002). 

The natural human growing process is the cumulative effect of growth and development of different 

bodily organs, including the gastrointestinal tract. The gut, as with other organs, evolves and develops 

during gestation from a basic structure – in this case, analogous to a simple hollow tube – into a more 

functionalized and complex cellular system. Soon after labour, maternal support to the foetus ends, 

and the newborn subsequently encounters various bio-physiological challenges, such as breathing and 

feeding independently. Thus begins a crucial period for the functional maturity of the gut and its 

luminal environment with changes in digestive and transport function taking place under the influence 

of genetic and neurohormonal regulators that mediate gut development (Collins et al., 2006). Babies 

which are breastfed and those who are formula-fed harbor different bacterial species in their gut, 

though such differences are normally shown to dissipate after weaning at around two years of age. 
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This dynamic behaviour distinguishes the gut as a unique organ, whereby intra-organ – more precisely, 

intra-luminal – conditions are seen to be highly variable. Such variability is otherwise thought to be a 

consequence of the complex interplay between various factors ranging from feeding behaviour to 

genetics influences; gender; disease; and, somewhat inevitably, ageing.  

Humans enter into adulthood as the body reaches maturity and this is followed by a downturn in 

advanced age. As we age, the gastrointestinal tract undergoes various morphological and functional 

changes, paralleling a general decline in bodily function. This involves circumstances such as delayed 

gastric emptying, reduced splanchnic blood flow and changes in gastrointestinal pH (Wilkinson, 1997). 

Such age-related changes disturb normal homeostatic mechanisms, however, and so predispose the 

gut to the development of certain diseases (Majumdar and Basson, 2006; Newton, 2004).  

The intra-luminal environment directly influences drug bioavailability, and hence the performance of 

orally-administered formulations (Bai et al., 2015). The same is also true of intravenously-delivered 

drugs, whereby drug molecules may encounter the gut environment following hepatic diffusion or 

secretory processes (Arimori and Nakano, 1998). The anatomical and physiological changes, due to 

the development of children and the declination in advanced age alike, significantly impact upon the 

pharmacokinetics of certain drugs (Gidal, 2006; Roy and Varsha, 2005; Smits and Lefebvre, 1996). An 

understanding of the gastrointestinal environment for members of different age groups is therefore 

vital for the successful delivery of drugs to achieve required therapeutic outcomes in these target 

patient categories – broadly, the young, adult and elderly. The primary objective of this paper is to 

provide a general overview of the developmental changes observed in certain aspects of the 

gastrointestinal environment with respect to age, with particular emphasis on the lumen, microbiota, 

mucosa, and intestinal transit and motility. A secondary aim of this paper is to highlight the knowledge 

gaps in the physiology and function of the developing or ageing gut.  
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2. Changes in the physiology and function of the developing and ageing gut  

The effects of ageing (young and elderly) on the physiology and function of the gastrointestinal tract 

have been investigated using various models leading to reports suggesting changes in circumstances 

such as gastric pH, gastrointestinal motility, serum albumin, hepatic and renal function,  lean body 

mass and body fat when compared to younger adults influence pharmacokinetic parameters (Gidal, 

2006; Roy and Varsha, 2005; Smits and Lefebvre, 1996). With age, an alteration  in drug-metabolizing 

enzyme activity is also reported, causing a change in oral bioavailability and the plasma concentrations 

of drugs susceptible to first-pass metabolism (Wilkinson, 1997). However, information on age-

mediated changes in gastrointestinal milieu is scarce, and there remain gaps in our knowledge. 

Batchelor et al., (2014) have reviewed physiological and pharmaceutical factors manipulating 

solubility and permeability in the paediatric population and reemphasised the current lack of 

appreciation of age-mediated differences in gastrointestinal tract postpartum. Moreover, age-related 

physiological changes in the gut have been reported to be variable mainly due to the cellular and 

molecular changes in the system (Saffrey, 2014). To this end, the literature presently available on 

human modeling has been summarized and discussed in Table 1 below.  

2.1 Changes in gastrointestinal fluid  

2.1.1. Fluid volumes  

Extensive studies investigating gastrointestinal water effects in humans are considerably lacking, 

though one publication of relevance is that by Gotch et al (1957), who measured the gastrointestinal 

water in thirteen human subjects (8 male and 5 female) post-mortem. Interestingly, the data 

represents elderly subjects aged 50 years and over (63 ± 9 years), with gut contents only measured up 

to the transverse colon. In another study, colonic mass was measured in forty six subjects (18 female, 

28 male) of  lower ages (48 ± 3 years) (Cummings, 1990), and Schiller et al (2005) measured the 

intestinal fluid volumes in even younger subjects (23-45 years). More recently, Mudie et al (2014) and 

Koziolek et al (2014) reported the fasted-state gastric fluid volume in young adults comparable to 
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Schiller et al (2005). The fasted-state small intestinal fluid volume varies between studies (Koziolek et 

al., 2014; Mudie et al., 2014), even varies considerably between individuals (Schiller et al., 2005). The 

inter-individual variation should be considered in planning the investigations on the small intestinal 

fluid volume comparison between different age groups.  

Given that we know the body weight and size of the gastrointestinal tract to increase significantly from 

youth (childhood) to adulthood (puberty), it would be reasonable to assume that gastrointestinal mass 

also increases in humans from childhood to puberty (though there is no direct evidence in the 

literature to support this). The size and type of meal also influence the development of the 

gastrointestinal tract, whereas individual food choices may also adjust with age (Drewnowski and 

Shultz, 2001), with implications for gastrointestinal mass and luminal water content in subjects of 

different age groups. 

2.1.2 pH 

The gastric pH in neonates is  neutral and drops to acidic values over the first two years of life (Bowles 

et al., 2010), with average gastric pH in 248 children after a 6-8 hours fast was reported as 1.37 ± 1.6, 

where 87 % of the children had a gastric pH of < 2.5 (Schwartz et al., 1998).  

It is worth mentioning that children from 2 months to 18 years of age were included in this study and 

therefore average pH values may mask potential trends in gastric pH of infants (<1 mo), toddlers (<2 

y), children (2-11 y) and adolescents (12-18 y). This pH data is, however, in agreement with ten 

different studies compiled by the authors who measured gastric pH of children (without GI symptoms 

who were fasted for a comparable time) in the range of 1.7 to 2.1 (Schwartz et al., 1998). The pH of 

12 healthy children (5 boys and 7 girls, aged 8-14 years, median 12 y) measured after an 8-hours fast 

by a radio-telemetry capsule (where upon subjects continued to fast until gastric emptying) was also 

comparable to that observed in adults as part of a different study from the same researchers using 

the pH capsule (Fallingborg et al., 1989; Fallingborg et al., 1990). 

The pH in the elderly human stomach was also found to be very acidic (Hurwitz et al., 1997), though 

evidence was lacking to suggest that these values were different for the adult or child human. Feldman 
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previously reviewed available evidence on gastric pH in the elderly, and suggested that the stomach 

of elderly subjects retains the capacity to secrete markedly high levels of gastric acid; a characteristic 

which does not appear to diminish with age (Feldman, 1997). Gastric and duodenal pH in 79 healthy 

elderly subjects (Age, 71 ± 5 years) under fasting conditions was 1.3 (range, 1.1-1.6) and 6.5 (range, 

6.2-6.7), respectively. The gastric pH under fed conditions (1000 kcal meal) was increased to 4.9 

(range, 3.9-5.5), but duodenal pH was unaffected (6.5, range 5.4-6.7). Notably, the rate of return of 

postprandially-raised gastric pH to acidic pH was comparatively slower in elderly than in young 

subjects (Figure 1). In turn, different behaviours in gastric pH were observed in the elderly subjects: 

the first being the typical behaviour of low fasting pH which was postprandially increased and followed 

by a spontaneous decrease. Around 11% of subjects were found to be achlorhydric  (pH > 5 in fasted 

stomach), and in 45 % of these subjects, the median pH remained higher than 5.0 postprandially 

(Russell et al., 1993). However, in spite of the rate of gastric acid secretion being similar in older and 

younger individuals, the incidence of achlorhydria (characterized by consistent acid hyposecretion) is 

approximately 10-20 % among elderly patients compared to only <1 % in younger subjects (Gidal, 

2007). It is estimated that in the USA alone, approximately 22 % of the population suffer from 

hypochlorhydria (characterized by intermittent acid secretion) and achlordydria; potentially 

compromising the oral bioavailability of certain drugs including Vitamin B12 (Russell, 1997). Elevated 

gastric pH was also shown to result in the compromised absorption of the weakly basic drug 

dipyridamole in elderly achlorhydric subjects (Russell et al., 1994). 

The information about the distal gut pH in the elderly is scarce; a number of studies have suggested 

faecal pH in elderly human subjects was within the range of 6.57±0.10 (Bouhnik et al., 2007) and 

6.97±0.75 (Chung et al., 2007), which is not too dissimilar from those values identified in adults and 

children (Fallingborg et al., 1989; Fallingborg et al., 1990).  
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2.1.3  Buffer capacity 

Information on the buffer capacity of the healthy human gastrointestinal fluids due to ageing is equally 

scarce. The buffer capacity of gastric aspirates obtained from human volunteers (aged 20-32 years) 

was 14 mmol/L/ΔpH 30 minutes post-ingestion of a liquid meal (Ensure® Plus), which then increased 

to 28 mmol/L/ΔpH 210 minutes postprandially (Kalantzi et al., 2006). This was also related to the 

buffer capacity of the administered liquid meal itself (Ensure® Plus, 24 mmol/L/ΔpH). The buffer 

capacity of the duodenal aspirates varied between 18 and 30 mmol/L/ΔpH during 30 to 210 minutes 

post meal ingestion (Kalantzi et al., 2006). However, it should be borne in mind that Kalantzi and 

colleagues measured buffer capacity in whole gastric and duodenal aspirates; whereas the type and 

calorific value of the food ingested during these experiments is thought to be crucial. Little is known 

about the buffer capacity in the distal small intestine, however there is a report by Fadda et al (2010), 

where buffer capacity of human jejunal and ileal fluids were reported as 3.2 and 6.4 mM/L/∆pH 

respectively, where jejunal fluids were aspirated from healthy volunteers and ileal fluids were 

obtained from patients undergoing surgery. The buffer capacity of the supernatants from ascending 

colon fluids from  healthy human volunteers (aged 20-32 years) was ~18.9 mmol/L/ΔpH (Diakidou et 

al., 2009). However, a much higher buffer capacity (almost double) was estimated (37 mmol/L/ΔpH) 

when whole ascending colon fluids from humans were tested in place of the supernatants. The authors 

suggest that this is due to the consumption of titrated acid by the bacteria-mediated reactions 

prevalent in the whole colonic fluids (Diakidou et al., 2009).  

2.1.4  Bile salts 

Bile acids (bile salts) are the major organic components of the bile secretion, accounting for 50% of its 

solid content. Bile acids are released from the gall bladder into the duodenum after a meal. The 

average values of the total bile acid concentration are similar in the duodenum and the jenunum but 

decrease rapidly in the ileum due to reabsorption into the enterohepatic circulation (Dressman et al., 

1998).  
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The mean values for the total duodenal bile acids concentration in the fasted state lie between 1.6-

5.9 mM (Armand et al., 1996; Clarysse et al., 2009; de la Cruz Moreno et al., 2006; Deferme et al., 

2003; Dressman et al., 1998; Lindahl et al., 1997; Persson et al., 2005). Postprandial luminal 

concentration of bile acids reaches a maximum within 30 minutes and gradually declines afterwards 

(Armand et al., 1996; Dressman et al., 1998; Fausa, 1974). The reported average bile acid 

concentrations were around 10 mM within 60 minutes after meal ingestion (Armand et al., 1996; 

Clarysse et al., 2009; Dressman et al., 1998; Fausa, 1974; Kalantzi et al., 2006; Persson et al., 2005). 

However, high intra- and inter-individual variability in total bile acid concentrations were reported in 

the literature, in both fasted and fed states. Clarysse et al., (2009) reported a time-dependent bile acid 

concentration variation within individual subjects in the fasted state ranging from 0.3 to 9.6 mM. The 

total bile salt concentration varied from 0.5 to 5.5 mM inter-individually in the fasted state in a study 

conducted by Moreno et al. (2006). High variability was also reported on postprandial bile salt 

concentrations, ranging from 0.5 to 37 mM (Hernell et al., 1990; Ladas et al., 1984).  

In the early life of foetuses, the primary bile acids, cholic and chenodeoxycholic acids, are secreted by 

the liver, concentrated in the gallbladder and released into the fetal intestine (Watkins and Perman, 

1977). However, the pool size and the concentration of bile acids in the gallbladder of new born infants 

(both pre-mature and full-term) was much lower than in older children and adults (Bongiovanni, 1965; 

Watkins et al., 1975), which might contribute to lower neonate duodenal bile acid concentrations. 

Challacombe et al., (1975) measured duodenal bile acid concentrations in three age groups of infants 

2 hours after a 5% dextrose feed. The duodenal bile acids was significantly lower in infants under 2 

days of age (1.65 ± 1.1 mM) and aged 2-7 days (3.33 ± 3.0 mM), compared to infants aged 10 days to 

7 months (8.47 ± mM) which is similar to the value reported in adults.  Low birth weight infants showed 

reduced duodenal bile acid concentrations (2.07 ± 1.3 mM in 10-19 days old and 5.8 ± 2.7 mM in 20-

34 days old), compared to normal term infants (6.8 ±  2.7 mM in three weeks to 8 months of age) (Lavy 

et al., 1971). Unlike adults, lower concentrations of bile acids in the duodenal content were observed 
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in newborn infants during or within two hours after feeding and this is likely due to the dilution of 

gastric content (Norman et al., 1972; Senger et al., 1986).  

The synthesis of bile acids by the liver was reported to decrease due to aging in older life (Bertolotti 

et al., 1993; Einarsson et al., 1985). (Einarsson et al., 1985) reported that the rate of bile acid synthesis 

in adult healthy human volunteers (age 20 years) was ~1.74 mmol/day, while the corresponding value 

in healthy elderly subjects (age 60 years) was only 0.91 mmol/day. Interestingly, this reduction was 

compensated by a reciprocal increase in cholesterol secretion from ~53 umol/h to ~73 umol/h in the 

same age group. Khalil et al., (1985) reported that the sensitivity of the gallbladder to plasma 

concentration of cholecystokinin (CCK) decreases with aging. This might be compensated by an 

increased release of CCK, which, in turn, could increase the circulatory concentration of CCK in the 

elderly. No effect of aging on gallbladder contractility and emptying kinetic was found (Khalil et al., 

1985). Very limited work has been done in determining the bile acid concentration in human intestinal 

fluids in the older population. Annaert et al., (2010) found that there was no statistically significant 

change in the concentrations of 11 individual bile salts in older age compared to young adults. 

However, large inter-individual variation was observed in the intraluminal bile salt concentrations 

which may partly contribute to the absence of significant difference.  

It is well known that the presence of bile salts increases the dissolution rate of poorly water soluble 

drugs (Dressman et al., 1998; Jantratid et al., 2008; Persson et al., 2005). This could account for an 

increase in absorption and bioavailability of these compounds after a meal compared to the fasted 

state (Charman et al., 1997; Fleisher et al., 1999; Jones et al., 2006).  There are limited data available 

on the luminal bile salt content in children and older adults. No conclusions, therefore, can be drawn 

on whether changes in bile salt concentrations and/or compositions in the young and aged 

populations could affect drug solubility, dissolution and in turn bioavailability. Annaert et al., (2010) 

reported that in general drug solubility was not significantly different in the aspirated intestinal fluids 
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of older adults (62-72 years old) compared to young volunteers (18-25 years old). Again, large inter-

individual variability in drug solubility was observed.  

2.1.5  Osmolality  

The information on osmolality and surface tension of human gastrointestinal fluids from different age 

groups is also limited. Wakayama et al. (1988) found a higher fasting gastric osmolality (253 mOsm/L) 

in infants (mean age of approximately 8 months) undergoing inguinal hernia repair in a study by 

Lindhal et al.,  (1997) in adults (191 ± 36 mOsm/L). Billeaud et al. (1982) reported a significant positive 

linear correlation between the osmolality of the diet and the osmolality in the stomach and duodenum 

among 15 low birth weight neonates during the 3 hours after feeding. In one study, osmolality of small 

intestinal aspirates from 62-72 years old (215 ± 37 mOsm.Kg-1) and 18-25 years old (226 ± 35 

mOsm.Kg1) human subjects (Annaert et al., 2010)  were not significantly different to one other. 

 The solubility of drug substances in the gut lumen is dependent on the interplay of a range of 

physiological factors, the luminal fluid volume, pH, buffer capacity, ionic composition, bile salt, 

viscosity and surface tension; however, there is limited data available on age-mediated changes 

regarding drug solubility in the human gut. In a recent study, Maharaj et al., (2016) have developed 

paediatric biorelevant media (i.e. P-FaSSGF, P-FeSSGF, P-FaSSIF and P-FeSSIF) reflective of age-related 

changes in neonates and infants based on available literature values. The solubility of seven BCS 

class-II compounds were compared in paediatric and adult biorelevant media and significant 

differences were found in some cases. For example, the solubilities of fenofibrate and carbamazepine 

in paediatric fasted-state gastric media (P-FaSSGF) were significantly different and outside the 80-

125% bioequivalent criterion compared to that in adult-based media.  In one study (Annaert et al., 

2010), the average solubility of danazol (another neutral steroid) was found to be ~2 fold higher in 

intestinal aspirates from elderly humans (62-72 y, n=7) than in young subjects (18-25 y, n=8), though 

this increase did not achieve statistical significance. It has also been reported that the solubility of an 

ionisable drug such as mesalamine in human gastrointestinal fluids is strongly influenced by the fluid 
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pH and its buffer capacity (Fadda et al., 2010), and as such  the solubility of such compounds is likely 

to be influenced by age-mediated differences in pH and the buffer capacity of gastrointestinal fluids.  

2.2  Changes in the gastrointestinal mucosa  

The appearance of the small bowel mucosa, in terms of villous morphology, was reported to show 

slight difference between young (mean age 43 years, range 13 to 59 years) and older (mean age 80 

years, range 67 to 90 years) adults (Webster and Leeming, 1975). The study reported that leaf-shaped 

villi were more commonly seen in the older group than in younger subjects. The mean value of villous 

height for the older group was significantly smaller (371 µm) than weighted mean values (471 µm) 

from pooled results of previous publications in young subjects. However, Corazza et al., (1986) 

reported that there is no significant difference in the surface to volume ratio of the jejunal mucosa and 

the enterocyte height between young (mean age 36.8 years, range 15 to 60 years) and older (mean 

age 71.5 years, range 65 to 82 years) subjects.  

2.2.1 Gut associated lymphoid tissue (GALT) 

In the human small intestine, the Peyer’s patches increase in size and number from early foetal life to 

puberty, with a general tendency to decrease in number rapidly after puberty, plateauing somewhat 

thereafter (Figure 2). They are well developed by the end of the fourth and the beginning of the fifth 

month of gestation, and the relative distribution of Peyer's patches in the duodenum, jejunum, and 

ileum was similar to that in older children (Cornes, 1965a). 

The reduction in the number of patches with older age (70 and 95 years of age) was also gradual and 

fairly equal throughout the length of the small intestine, though with age, a gradual loss of lymphoid 

follicles within the patches was observed, and in some cases resulted in the appearance of 

‘fragmented’ patches. In the latter case, this was seen to lead to the replacement of large patches by 

a ‘collection’ of small ones; well-developed by the end of the fourth and the beginning of the fifth 

month of gestation. These patches were not seen to dissipate entirely in the oldest patient (95 year 
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old female) studied where 59 patches were still clearly visible in the small intestine of the oldest 

patient (Cornes, 1965a, b). 

Cornes (1965a, b) reported an increase in the number of Peyer’s patches in babies during gestation to 

birth and a continual increase until puberty (15 years) (Figure 2, 3A). When the data reported by 

Cornes (1965a, b) was dissected in different age groups and reanalyzed using Microsoft Excel, the 

number of Peyer’s patches in the small intestine was found to decrease on further ageing, i.e., from 

15 years to 95 years (Figure 4A). Where data was normalized to the number of patches per centimetre 

length of the small intestine, there was no difference in the number of patches present up to 15 years 

of age (Figure 3B), though a downward trend was still visible in individuals ranging from 15 years to 

95 years (Figure 4B). Interestingly, when data was normalized to the subject body weights, an 

exponential decrease was observed with age until puberty (Figure 3C), which became less significant 

on further ageing (adult to elderly, Figure 4C). 

It was suggested that the average number of lymphoid follicles in the colon of the child is 

comparatively greater than in adults, but there is otherwise no evidence of a decrease in the number 

of lymphoid follicles in old age (Dukes and Bussey (1926). When the data was dissected in different 

age groups and analysed using Microsoft Excel, a negative correlation was seen in the number of 

lymphoid follicles per cm2 of the colon with age (Figure 5A). The average number of lymphoid follicles 

per cm2 of the colon in younger subjects aged 15 years or less was 8.0 ± 2.3 (n=7), which decreased to 

half in individuals aged between 16-40 years (4.0 ± 1.6 follicles/cm2, n=27). This decreased further 

with age to 3.5 ± 1.6 (41-60 years, n=57) and 3.1 ± 1.6 (61-88 years, n=15). More interestingly, when 

the data was grouped according to gender, it was found that the decrease in average follicles did not 

appear in females, whereas a clear downward trend was apparent in male subjects (Figure 5B). 

 

2.2.2 The mucus layer  



14 
 

It has been suggested that the protective mechanisms of the human gastrointestinal tract are  

impaired with age (Newton et al., 2004), implicated by the higher statistical incidence of 

gastrointestinal diseases in the elderly ranging from peptic ulceration to gastric cancer and 

inflammatory bowel disease (Newton, 2004; Pullan et al., 1994). The normal gastro-duodenal mucosal 

protection is the consequence of complex interplay between bicarbonate secretion and the behaviour 

of the gastric mucus layer (Allen et al., 1993), to which end a decrease in bicarbonate secretion by 

gastric (Feldman and Cryer, 1998) and duodenal (Kim et al., 1990) mucosa.  An increased production 

of mucus in the glands is stated as part of the development of the newborn GI tract (Xu, 1996). During 

the perinatal period, the undernutrition results in decreased mucus levels in the small intestine (Neu, 

2007).  For older people, reduced mucus thickness in the upper gut has been reported, particularly in 

patients with H. pylori infection (Newton et al., 2000).  

The age-mediated decrease in the number of mucus producing cells (Goblet cells) has also been 

demonstrated in humans, which in turn results in a lower amount of secreted mucus over the 

epithelium. Also, the total sialic acid concentration in human gastric aspirates was found to decrease 

with age; suggesting a structural change in gastric mucus (Corfield et al., 1993). Here viewed on a 

molecular level, it has been shown that mucosal concentrations of prostaglandins A and E – which 

stimulate gastric mucus and bicarbonate secretion – are decreased in the elderly (Cryer et al., 1992a; 

Cryer et al., 1992b), whilst bicarbonate secretion by gastric mucosa (Feldman and Cryer, 1998) and 

duodenum (Kim et al., 1990) is also impaired in elderly subjects. 

2.2.3 Mucosal enzymes and transporters 

The intestinal epithelium accommodates a range of drug transporters (both influx and efflux) and a 

family of membrane-bound metabolic enzymes. These enzymes and transporters contribute 

substantially to the absorption and bioavailability of a large numbers of drug substances. Limited 

research has been conducted on the effect of age on the expression of solute carriers in the intestine. 
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Buddington et al. has reviewed ontogenetic development of intestinal nutrient transporters in humans 

(Buddington and Diamond, 1989). However, the effect of this on drug absorption is unclear.  

The function of the efflux transporters is to expel compounds that have penetrated the intestinal 

epithelium back into the gut lumen, with P-glycoprotein (P-gp) being the most studied amongst them. 

P-gp is the product of the multidrug resistance gene MDR1 and is recognized as a member of the APT-

binding cassette super-family of membrane transport proteins (Hunter and Hirst, 1997). Other efflux 

transporters include multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance 

protein (BCRP). The intestinal metabolic enzymes, known as cytochromes, are responsible for the 

metabolism of variety of drug compounds, potentially decreasing their bioavailability. The most 

important membrane-bound enzyme is the cytochrome P450 (CYP450), with the most abundant form 

being CYP3A4 accounting for 80% of CYP enzymes in the small intestine (Doherty and Charman, 2002; 

Suzuki and Sugiyama, 2000). 

 

A clear expression of MDR1-mRNA can be observed in human fetal intestinal epithelium from 16 to 

20 weeks fetal age (van Kalken et al., 1992). Fakoury et al. detected MDR1-mRNA in the intestine of 

children aged 1 month to 17 years, however, they did not find a significant relation between P-gp 

expression and age (Fakhoury et al., 2005). Miki et al. (2005) demonstrated that MDR1-mRNA 

expression was 4-5 fold higher in the small intestine of young adults (15-38 years old) than in fetus 

and neonates (0 years old). Again, they did not show a significant correlation between the 

development and age. Mooij et al., (2014) found that intestinal transporter expression was statistically 

significantly associated with age for MRP2, but not for MDR1.  

Miki et al., (2005) also reported a 4-fold higher mRNA expression of the CYP3A4 enzyme in the small 

intestine of young adults than of fetus and neonates with no significant difference. However, in the 

large intestine, the CYP3A4 mRNA expression was significantly higher (about 8-fold) in fetus than in 

neonates and young adults. In contrast, the study by Fakoury et al., (2005) reported that the duodenal 
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mRNA expression of CYP3A4 was significantly higher in the first year of life and decreased with age to 

lower values in older children (1-6 years and 6-17 years). In an earlier study Johnson et al., (2001) 

demonstrated a developmental pattern of increasing CYP3A4 mRNA expression and enzyme activity 

from fetus to children older than 12 years (Figure 6). However, a statistically significant difference was 

only observed between neonates and children > 12 years.  

Literature has provided limited evidence on the developmental effect on the activity of P-gp and 

CYP3A4 in the intestine of children, let alone their impact on the absorption of drug molecules that 

are substrates of these transporters and enzymes. de Wildt et al., (2002) have observed a nearly 10-

fold lower rate in midazolam clearance after oral administration in preterm infants compared to 

adults.  The oral midazolam clearance is dependent on the intestinal and hepatic CYP3A4 activities 

(Thummel et al., 1996). The possible low level of CYP3A4 activity in the intestine of neonates could 

explain this low clearance rate and a resultant higher oral bioavailability in pre-term infants (median 

49%) compared to adults (24-38%) (de Wildt et al., 2002). Johnson et al. (2008) have suggested a list 

of drugs used in children with variable oral bioavailability which is believed to be due in part to 

intestinal first-pass metabolism (Johnson and Thomson, 2008).  

The effect of older age on the intestinal CYP3A4 activity was unclear. Miki et al. demonstrated a nearly 

one-third decrease in CYP3A4 mRN expression in the elderly (67-85 years) compared to young adults 

(15-38 years); however, no significant correlation was found between age and the mRN expression 

(Miki et al., 2005). Gorski et al. investigated relative susceptibility of intestinal and hepatic CYP3A 

activity to induction by rifampin (a CYP3A inducer), measured by the clearance of CYP3A substrate 

midazolam (Gorski et al., 2003). They reported a nearly one-third reduction in the oral clearance of 

midazolam in the elderly (age 70 ± 4 years men and 72 ± 5 years women, clearance rate 19 ± 18) 

compared to young adults (age 27 ± 4 years men and 26 ± 4 years women, clearance rate 36 ± 26), 

and again, no significant difference was detected. Fromm et al. studied the effect of rifampicin 

induction to intestinal CYP3A4 activity on pre-hepatic clearance of S-verapamil after oral 
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administration in older adults (67.1 ± 1.2 years) (Fromm et al., 1998). Bioavailability of verapamil 

decreased significantly from 14.2 ± 4.3% to 0.6 ± 0.5% as a consequence of the rifampicin induction. 

However, this was not compared to the effect in younger adults. The impact of aging on the activity 

and expression of P-gp has been investigated in a number of tissues in human, especially in 

lymphocytes (Table 2). However, the effect on intestinal P-gp activity in human and its consequence 

in drug absorption in older age remains largely unclear.  

2.3 Changes in gastrointestinal transit and motility 

The paediatric data for gastrointestinal transit and motility has been well reviewed focusing on its 

impact on oral drug delivery design (Bowles et al, 2010). There are developmental oropharyngeal 

anatomical differences, mainly from birth into early childhood. The oesophageal transit time is 

comparable to normal younger adult values. The gastric emptying time of liquids is reported to reach 

adult values by around 6-8 months of age (Bowles et al, 2010). The intestinal transit time is similar 

between younger (2 months-3 year old) and older segments of paediatric population (3-12 year old) 

(Bowles et al, 2010). The colonic transit time in children is also comparable to normal adult values 

(Bowles et al, 2010). 

 

The motor function of the gastrointestinal tract is relatively well preserved in healthy aged people 

while diseases and concomitant medicine use may alter the gastrointestinal system function at 

advanced age (Sinclair et al., 2012). In order to focus on the effect of the normal ageing process on 

gastrointestinal transit and motility, the changes that may occur due to age-related diseases and 

concomitant drug use are not mentioned in this paper. The age-related changes are significant in 

oropharyngeal and oesophageal motility, in particular reduction in lower oesophageal sphincter 

pressure resulting in impairments including dysphagia and reflux (Grande et al., 1999; Grassi et al., 

2011). The oesophageal dysmotility is most common in the very old (Hollis and Castell, 1974). The gag 

reflex is absent in 43% of elderly subjects (Davies et al., 1995).The oesophageal sphincteric and 

peristaltic function deteriorates with ageing (Grande et al., 1999; Ren et al., 1993; Robbins et al., 
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2006); changes in peristalsis are seen from as early as 40 years of age (Gregersen et al., 2008). 

Nevertheless, the magnitude of amplitude of oesophageal pressure changes is modest (Orr and Chen, 

2002). 

Although a modest slowing of gastric emptying time (Brogna et al., 1999; Evans et al., 1981; Kao et al., 

1994) is reported to be associated with advanced age, the effect of natural healthy ageing process is 

reported to be minor on the GI motility (Fich et al., 1989; Husebye and Engedal, 1992; Kagaya et al., 

1997; O'Mahony et al., 2002; Russell, 1992).  The fasting and fed gastric motility do not differ between 

younger (18-39 year old) and older (40-69 year old) adults (Fich et al., 1989). An early study (Haboubi 

et al., 1988) indicated that small intestinal transit was slowed in elderly subjects but later studies using 

gamma camera (Madsen and Graff 2004) and video capsule endoscopy (Fischer and Fadda, 2016) 

confirmed that transit remains unaffected by age (Figure 7). However the influence of age on small 

intestinal transit time is still inconclusive and requires further investigation on larger cohorts with well 

defined age bands.  Healthy ageing does not substantially affect the small intestine motility in contrast 

to the altered colonic transit in elderly (Sinclair et al., 2012). In the colon, there is evidence of a 

prolonged transit time due to a decline in propulsive activity in the colon related to a reduction in both 

neurotransmitters and receptors (Britton and McLaughlin, 2013; Gomes et al., 1997; Madsen and 

Graff, 2004; Salles, 2007). The age-related loss of enteric cholinergic neurons is reported to be 

associated with the delay in colonic transit, leading to inefficient peristalsis (Wiskur and Greenwood-

Van Meerveld, 2010). Further studies are required to be conducted in order to understand the true 

age-related changes in gut structured function by measuring gut function against age-related normal 

values rather than against data from younger adults (O'Mahony et al., 2002). 

2.4 Changes in the gastrointestinal microbiota   

The human gut is intensively colonised by microbes. The numbers of microbes and the composition of 

the microbiota vary significantly at different sites in the gastrointestinal tract (Ouwehand and 

Vesterlund, 2003). The stomach contains relatively low numbers of bacteria (< 104 CFU/ml). In 

comparison, a relatively higher density of bacteria colonise the small intestine, with approximately 
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103-105 CFU/ml in the duodenum and jejunum and 107-108 CFU/ml in the ileum respectively. The colon 

is the main site of microbial colonisation, containing an estimated 1.5 kg of microbes equivalent to 

approximately 1014 microbes (1010-1011 CFU/ml) (Moore and Holdeman, 1974; Ouwehand and 

Vesterlund, 2003).  

The intestines of new-born infants are considered to be sterile. Intestinal bacteria start to colonise 

within hours and a rapid increase in bacterial count occurs within the first few days. At the end of the 

first week, infant faecal bacteria reach a level of 109-1010 CFU/g of wet faeces (Palmer et al., 2007).  

However, infant intestinal microbiota is very different from that found in adults with low diversity and 

low complexity (Adlerberth and Wold, 2009). The neonatal gut presents high level of oxygen which 

prevents the growth of anaerobes. Therefore, enterobacteria dominate the early life flora including E. 

coli and enterococci (Adlerberth and Wold, 2009). During the first week of life, luminal anaerobic 

bacterial populations expand. These bacteria species consume the oxygen and create an anaerobic 

environment in the gut, which further favours the growth of anaerobic bacteria such as 

Bifidobacterium.  

In the first months of life, the microbiota of the infant gut varies remarkably between individuals. The 

composition of the intestinal microbiota in early infancy is affected by many factors such as the mode 

of delivery, type of infant feeding, hospitalisation after birth and use of antibiotic (Penders et al., 

2006). This inter-individual diversity decreases in the early months and the gut flora progresses toward 

an adult-like profile by the end of the first year. A Danish study reported significant changes in 

intestinal microbiota in infants before 18 months of life (Bergstrom et al., 2014). The intestinal 

microbiota does not completely reach the adult state until much later in childhood; differences in 

viable counts of predominant bacterial species could still be seen between children up to 7 years old 

and adults (Hopkins et al., 2002; Ringel-Kulka et al., 2013).  

In the older population, mean total anaerobe counts remain similar to that of young adults; however, 

shifts in dominant bacteria species are frequently reported (Woodmansey, 2007). One of the most 
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marked changes in older people is the decline in numbers of bifidobacteria (Hopkins et al., 2002; 

Mitsuoka, 1992; Mitsuoka et al., 1974; Woodmansey et al., 2004). It was reported that the species 

diversity of bifidobacteria is also reduced in the elderly, with dominant species being Bifidobacterium 

adolescentis, Bifidobacterium angulatum and Bifidobacterium longum (He et al., 2001; Mitsuoka, 

1992; Mitsuoka et al., 1974; Woodmansey et al., 2004). Studies have shown that total numbers and 

species diversity of bacteroides also decrease in older age (Claesson et al., 2011; Guigoz et al., 2002; 

Hopkins et al., 2002; Woodmansey et al., 2004). Bacteroides species contribute to the digestion of 

majority of polysaccharides to short-chain fatty acids in the colon.  Reductions in amylolytic activities 

and overall fecal excretion of short-chain fatty acids have been reported in the older population 

(Woodmansey et al., 2004). This could be the consequences of the decline in bacteroides species in 

the colon. In contrast, numbers of facultative bacteria species were found to increase in the aged gut 

(Bouhnik et al., 2007; Guigoz et al., 2002; Hopkins et al., 2001; Woodmansey et al., 2004). In 

particularly, higher numbers of enterobacteria, streptococci, staphylococci and yeasts were reported 

in the elderly compared to young adults (Woodmansey et al., 2004).  

A cross-sectional study examined fecal microbiota in older populations in four European countries, 

France, Germany, Italy and Sweden (Mueller et al., 2006). It was found that age effects in intestinal 

microbiota composition were dependent on the  geographical location of the subjects. For example, 

higher levels of eubacteria were detected in the elderly compared to young adults in Germany; 

whereas a decrease in levels of these species with age was found in Italy. The older subjects in Sweden 

had the highest levels of Fecalibacterium prausnitzii in all study countries. However, higher 

proportions of bifidobacteria were found in Italian subjects than in subjects from any other countries 

and this effect was independent of age. Another study suggested that many external factors affect the 

intestinal microbiota composition in the elderly. Significant correlations were found between 

microbiota composition in the elderly and health factors including diet, frailty, co-morbidity, 

nutritional status and markers of inflammation (Claesson et al., 2012). It was reported that older 

individuals with high frailty scores had a significant reduction in the number of lactobacilli compared 
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to healthy older adults; whereas significantly higher levels of Enterobacteriaceae was found in these 

very frail older subjects (van Tongeren et al., 2005). Table 3 summarizes the faecal microbiota 

composition of children, adults and the elderly in selected studies.  

Bacteria present in the gut lumen are capable of metabolizing a range of drug substances (Sousa et 

al., 2008), affecting their bioavailability in modified release formulations. Drug delivery systems 

targeting to the colon are designed to utilize bacteria activity for the release of active substances. 

These include the inclusion of polysaccharides that are substrates to colonic bacteria metabolism and 

pro-drugs, such as the prodrugs of 5-aminosalicylic acid (mesalazine), including sulfasalazine, 

balsalazide, and olsalazine, for the treatment of ulcerative colitis. These prodrugs are poorly absorbed 

in the stomach and small intestine and rely on colonic anaerobic bacteria to cleave the azo linkage and 

liberate the active drug (Sousa et al., 2014).  Changes in colonic microbiota, be it an increase or 

reduction in number, species and/or activity, in children and older adults might affect the absorption 

of drug compounds that either benefit from or be destroyed by these microorganisms.  

3. Conclusion and future perspectives 

Age is an important determinant that impacts on the absorption and metabolism of drugs. It is 

apparent from this paper that many physiological and functional aspects of the human gut differ in 

children and older individuals from young adults. However, there are many knowledge gaps on age-

related changes in the gut. The heterogeneity of both age groups further complicates the situation, as 

children do not develop at the same rate nor do the elderly age uniformly. Considering the rareness 

of healthy older patients, individual studies should be conducted on the geriatric population with co-

morbidities and multiple medications, to consider the potential influence of concomitant diseases on 

the in-vivo fate of the drug in the gastrointestinal tract. Equally, further understanding on the 

chronological age-related changes (only healthy young and healthy older age-related) in the gut is 

important. In the case of the elderly, frailty should be a better indicator for the aged-gut compared to 



22 
 

chronological age as the ageing status should be ideally defined by connecting the decline in 

physiological capacity and increased risk of vulnerability to disease. 

 

Children and older patients are often underrepresented in clinical trials resulting in a lack of evidence 

based information on the effect of ageing on oral drug bioavailability.  Although it is known that the 

function of GI tract is altered during developmental stages or with advanced age, the effects on 

pharmacokinetics and/or pharmacodynamics of the orally administered drug are often unclear. This 

data obtained from children and older subjects is essential as the prediction of clinical outcomes based 

on the gut physiological changes and/or extrapolation from healthy young adults may not be 

appropriate. The impact of prediction tools (e.g. physiologically-based 

pharmacokinetic/pharmacodynamics modelling and simulation) should be further explored to inform 

clinical trials in younger and older populations. Age related changes in barriers to drug delivery should 

be available to formulation scientists and adequately reflected in the design of personalized 

formulations to ensure the development of high quality, safe and effective drug therapies for use in 

young and older patients.  
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List of Figures 

 

Figure 1. Postprandial time to return to pH 5, 4, 3 and 2 in elderly (65-83 years, n=79) and young (21-35 years, n=24) 
subjects. Figure plotted using data from (Russell et al., 1993). 
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Figure 2. Effect of age on the number of Peyer’s patches in human small intestine. B: before term (from 24 to 37 weeks 
gestation), A: after term (from birth to 95 years). Figure reproduced from (Cornes, 1965b). 
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Figure 3. Effect of age on the number of Peyer’s patches in human small intestine in subjects up to 14 years of age. Figure 
plotted using data from (Cornes, 1965b).  
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Figure 4. Effect of age on the number of Peyer’s patches in human small intestine in subjects from 15 to 95 years of age. 
Figure plotted using data from (Cornes, 1965b). 
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Figure 5. Effect of age on the number of lymphoid follicles per cm2 of human colon. Figure drawn using data from (Dukes 
and Bussey, 1926). 
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Figure 6. (a) Age related changes in the villi corrected expression of CYP3A4 in histologically normal duodenal sections. The 
numbers in each group are given in brackets and error bars are ± s.d. Statistical significance differences (P < 0.05) were 
achieved between foetus and all other groups and between neonate and children > 5 years. (b) Age related changes in 

villin corrected CYP3A4 activity measured by the rate of 6OHT formation in histologically normal duodenal sections. The 
numbers in each group are given in brackets and error bars are ± s.d. A statistically significant difference (P < 0.05) was 

observed only between neonates and children > 12 years. (Reproduced from (Johnson et al., 2001). 

  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2014473_bcp0051-0451-f2.jpg
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Figure 7. Effect of age on small intestinal transit time , figures reproduced from [A] Madsen and Graff (2004) and [B] 

Fischer and Fadda (2016) 

 

 



30 
 

List of Tables 

Table 1. Effects of ageing on the human gastrointestinal environment. 

GI characteristics Mean ± SD 

    Young Adult Elderly 

pH 8-14 y (n=12)[1] 18-65 y (n=39)[2]  65-83 y (n=79)[3] 

 Stomach 1.6 1.5 1.1-1.6 

 Small intestine (SI)    

 Duodenum 6.5 6.4 6.5 

 Jejunum 6.6 6.6  

 Mid SI 7.0 7.0  

 Distal SI 7.4 7.3  

 Caecum 5.9 5.7  

 Colon    

 Ascending 5.6 5.6  

 Transverse 5.5 5.7  

 Descending 6.0 6.6  

 Rectosigmoid  6.5 6.6  

 Faeces 6.4 6.5 6.57[4] 

Buffer Capacity (mmol/L/ΔpH)    

 Stomach  14 (20-32 y)[5]  

 Small intestine (SI)    

 Duodenum  18-30 (20-32 y)[5]  

 Jejunum  3.2 ± 1.3 [6]  

 Ileum  6.4 [6]  

 Caecum  -  

 Colon    

 Ascending  18.9 (20-30 y) [7]  

 Transverse    

 Descending    

 Rectosigmoid     

 Faeces    

Bile salts (mM), Duodemum    

 Fasted   1.6-5.9[10-16]  

 Fed 1.7 (under 2 days )[19] ~ 10[10-13, 17,18]  

 3.3 (2-7 days)[19]   

 8.5 (10 days to 7 mo)[19]   

Osmolality (mOsm.Kg-1)  226 ± 35 (18-25 y)ref 215 ± 37 (62-72 y)ref 

Gut associated lymphoid tissue (GALT)   

 SI (Peyer’s patches) [8] 222 ± 91 (0-14 y) 273 ± 67 (15-38 y) 181 ± 43 (41-95 y) 

 Colon (follicles/cm2) [9] 8.0 ± 2.3 (≤15 y) 4.0 ± 1.6 (16-40 y) 3.5 ± 1.6 (41-60 y) 
3.1 ± 1.6 (61-88 y) 

[1] Fallingborg et al 1990, [2] Fallingborg et al 1989, [3] Russell et al 1993, [4] Bouhnik et al 2007, [5] Kalantzi et al., 2006, [6] Fadda et al 
2010, [7] Diakidou et al., 2009, [8] Crones 1965ab, [9] Dukes and Bussey 1926, [10] (Armand et al., 1996), [11] (Clarysse et al., 2009), 
[12](Persson et al., 2005), [13] (Dressman et al., 1998), [14] (Lindahl et al., 1997), [15] (de la Cruz Moreno et al., 2006), [16] (Deferme et al., 
2003), [17] (Fausa, 1974), [18] (Kalantzi et al., 2006), [19] (Challacombe et al., 1975) 
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Table 2. Studies on the effect of aging on P-gp activity and expression in human. 

Parameter tested Cell type Effects of aging Reference 

P-gp activity B and T lymphocytes ↓ (Pilarski et al., 1995) 

P-gp expression T lymphocytes ↑ (Aggarwal et al., 1997) 
P-gp activiety ↑  
ABCB1 expression ↑  
P-gp expression Enterocytes → (Lown et al., 1997) 

P-gp activity B and T lymphocytes → or ↓ (Machado et al., 2003) 

P-gp activity Bone marrow stem cells → or ↑ (Calado et al., 2003) 

P-gp activity Natural killer cells → (Brenner and Klotz, 
2004) 

P-gp activity Blood-brain barrier ↓ (Toornvliet et al., 2006) 

ABCB1 expression Liver → (Prasad et al., 2014) 

P-gp activity Blood-brain barrier ↓ in male, → in female (van Assema et al., 
2012) 

P-gp activity  Intestine → (Larsen et al., 2007) 

P-gp expression Male lymphocytes ↑ (Vilas-Boas et al., 2011) 
P-gp activity →  

* Studies published prior to 2007 were adapted from (Mangoni, 2007). Increase (↑); decrease (↓); no change (→)
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Table 3. Selected studies on the composition of the faecal microbiota in children, adults and the elderly* 

Study 

population 

Age Total 

anaerobes 

Bacteroides Bifidobacterium Enterobactria Enterococci Clostridia Lactobacilli Reference 

Children 1 w 
 

4.8 - 9.3 6.2 - 10.2 6.2 - 9.4 5.7 - 9.0 3.1 - 7.2 4.4 - 7.0 (Adlerberth and Wold, 2009)† 

5 w 
 

6.0 - 10.1 4.3 - 11.3 6.1 - 9.6 4.5 - 9.6 3.0 - 8.1 5.0 - 9.1 (Adlerberth and Wold, 2009)† 

1 m  9.40 (5.74-

10.36) 

10.71 (6.84-11.56)   5.24 (2.70-

9.57) 

8.70 (7.92-

10.73) 

(Scheepers et al., 2015) 

16 m - 7 y 10.4 ± 0.2 9.9 ± 0.4 9.8 ± 0.3 8.0 ± 0.4 5.5 ± 0.5 7.2 ±0.8 6.6 ± 0.7 (Hopkins et al., 2002) 

Adults 21 - 34 y 10.5 ± 0.1 10.0 ± 0.1 9.1 ± 0.2 5.9 ± 0.5 6.1 ± 0.7 6.6 ± 0.4 6.7 ± 0.6 (Hopkins et al., 2002) 

19 - 35 y 
 

9.9 ±  0.1  9.5 ±  0.2 5.8 ±  0.6 6.5 ±  0.9 5.6 ±  1.0 6.3 ±  1.0 (Woodmansey et al., 2004) 

21 - 39 y 9.11 9.42 9.54 
    

(Tiihonen et al., 2008) 

Elderly 67 - 88 y 10.1 ± 0.2 9.6 ± 0.2 7.3 ± 1.0 6.7 ± 0.8 6.0 ± 0.8 6.9 ± 0.6 5.4 ± 1.0 (Hopkins et al., 2002) 

67 - 75 y 
 

6.5 ± 2.1 8.1 ± 1.6 7.3 ± 0.4 
 

5.3 ± 1,7 4.1 ± 1.8 (Woodmansey et al., 2004) 

> 62 y 10.3 ± 0.5 
 

8.6 ± 1.0 
   

6.0 ± 1.4 (Bartosch et al., 2005) 

69 ± 2 y 10.09 ± 0.07 
 

8.5 ± 0.26 7.69 ± 0.21 
 

3.25 ± 0.25 
 

(Bouhnik et al., 2007) 

77 - 97 y  
 

8.8 6.0 7.7 6.1 3.5 5.1 (Guigoz et al., 2002) 

68 - 84 y 9.29 9.59 9.59         (Tiihonen et al., 2008) 

*Amounts are given as log10 number of bacteria/g fresh faecal weight, †Adapted from reference (Adlerberth and Wold, 2009), summarising studies on intestinal microbiota in children performed 
until 1990.  
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