
Solving the Correspondence Problem Between Dissimilarly
Embodied Robotic Arms Using the ALICE Imitation Mechanism

Aris Alissandrakis Chrystopher L. Nehaniv Kerstin Dautenhahn

Adaptive Systems Research Group
Faculty of Engineering & Information Sciences

University of Hertfordshire
Hatfield Herts AL10 9AB

United Kingdom
{A.Alissandrakis, C.L.Nehaniv, K.Dautenhahn}@herts.ac.uk

Abstract

Imitation is a powerful mechanism whereby knowledge may be transferred between agents (both
biological and artificial). A crucial problem in imitation is the correspondence problem, mapping
action sequences of the model and the imitator agent. This problem becomes particularly obvious when
the two agents do not share the same embodiment and affordances. This paper describes work with our
general imitation mechanism called ALICE (Action Learning for Imitation via Correspondence
between Embodiments) that specifically addresses the correspondence problem. The mechanism has
been implemented in two different software test-beds. The previous implementation, chessworld, is
briefly summarised and the current robotic arm manipulator implementation is presented in this paper.

Using the robotic arm test-bed we present proof of concept for the social transmission of behavioural
patterns through groups of heterogeneous agents. We also present experiments that il lustrate the impact
of synchronization, loose perceptual matching and proprioception on the imitative performance. The
robustness and adaptive nature of the ALICE mechanism is further il lustrated with examples where the
imitator agent embodiment is changing during the initial and later stages of the learning process.

1 Agent-based perspective

Imitation is a powerful learning mechanism and a
general agent-based approach must be used in order to
identify the most interesting and significant problems,
rather than the prominent ad hoc approaches in
imitation robotics research so far. The traditional
approach concentrates in finding an appropriate
mechanism for imitation and developing a robot control
architecture that identifies salient features in the
movements of an (often visually observed) model, and
maps them appropriately (via a built -in and usually
static method) to motor outputs of the imitator
(Kuniyoshi et al. 1990, 1994). Model and imitator are
usually not interacting with each other, neither do they
share and perceive a common context. Effectively this
kind of approach limits itself to answering the question
of how to imitate for a particular robotic system and its
particular imitation task. This has led to many diverse
approaches to robot controllers for imitative learning
that are difficult to generalize across different contexts
and to different robot platforms.

In contrast to the above, the agent-based approach for
imitation considers the behaviour of an autonomous
agent in relation to its environment, including other
autonomous agents. The mechanisms underlying
imitation are not divorced from the behaviour-in-
context, including the social and non-social
environments, motivations, relationships among the

agents, the agent’s individual and learning history etc.
(Dautenhahn and Nehaniv, 2002).

Such a perspective helps unfold the full potential of
research on imitation and helps in identifying
challenging and important research issues. The agent-
based perspective has a broader view and includes five
central questions in designing experiments on research
on imitation: who to imitate, when to imitate, what to
imitate, how to imitate and how to evaluate a successful
imitation. A systematic investigation of these research
questions can show the full potential of imitation from
an agent-based perspective.

In addition to deciding who, when and what to
imitate, an agent must employ the appropriate
mechanisms to learn and carry out the necessary
imitative actions. The embodiment of the agent and its
affordances will play a crucial role, as stated in the
correspondence problem (Nehaniv and Dautenhahn,
2002):

Given an observed behaviour of the model, which
from a given starting state leads the model through a
sequence (or hierarchy) of sub-goals in states, action
and/or effects, one must find and execute a sequence of
actions using one’s own (possibly dissimilar)
embodiment, which from a corresponding starting
state, leads through corresponding sub-goals - in
corresponding states, actions, and/or effects, while
possibly responding to corresponding events.

This informal statement1 of the correspondence
problem draws attention to the fact that the agents may
not necessarily share the same morphology or may not
share access to the same affordances even among
members of the same “species” . This is true for both
biological agents (e.g. differences in height among
humans) and artificial agents (e.g. differences in motor
and actuator properties). Having similar embodiments
and/or affordances is just a special case of the more
general problem.

In order to study the correspondence problem we
developed the ALICE (Action Learning via Imitation
between Corresponding Embodiments) generic
imitation mechanism, and implemented it in different
simple test-beds. These test-beds were implemented
using the Swarm agent simulation system
(www.swarm.org).

2 ALICE overview
The imitative performance of an agent with a dissimilar
embodiment to the model will not be successful unless
the correspondence problem between the model and the
imitator actions is (at least partially) solved.

To address this in an easy to generalize way, we
developed ALICE (Action Learning for Imitation via
Correspondences between Embodiments) as a generic
mechanism for building up correspondences based on
any generating method for attempts at imitation. This
mechanism is related to statistical string parsing models
of social learning from ethology (Byrne 1999) and also
associative sequence learning theory from psychology
(Heyes and Ray 2000).

The ALICE mechanism creates a correspondence
library that relates the actions, states and effects of the
model (that the imitator is being exposed to) to actions
(or sequences of actions) that the imitator agent is
capable of, depending on its embodiment and/or
affordances.

These corresponding actions are evaluated according
to a metric and can be looked up in the library as a
partial solution to the correspondence problem when the
imitator is next exposed to the same model action, state
or effect. It is very important to note that the choice of
metric can have extreme qualitative effects on the
imitator’s resulting behaviour (Alissandrakis et al,
2002), and on whether it should be characterized as
‘ imitation’ , ‘emulation’ , ‘goal emulation’ , etc. (Nehaniv
and Dautenhahn, 2002).

The ALICE mechanism is comprised of a generating
mechanism, a history mechanism and the
correspondence library.

1 For a formal statement of the correspondence problem
relating to the use of different error metrics and for other
applications, see also (Nehaniv and Dautenhahn 1998, 2000,
2001).

2.1 The generating mechanism

The model behaviour that the imitating agent is
exposed to is segmented as a sequence of actions, states
and effects. As the imitating agent is sequentially
exposed to these, it has to perform an appropriate
action to achieve a behaviour matching that of the
model. In this respect, the ALICE mechanism functions
as an action controller in an individual agent for
achieving imitative behaviour based on its own
perceptions and experiences.

The generating mechanism is responsible for
suggesting candidate actions. Although this component
can be complex, in both implementations of ALICE we
choose to use a random generating mechanism instead.
The idea is to accommodate any generating mechanism
that returns a valid action from the search space. This
simple random generating mechanism performs well
enough for our test-bed purposes, although the rate of
learning is naturally slower than for more complex
action generating mechanisms. Sophisticated
applications of ALICE can benefit by replacing, in a
modular way, this action generating mechanism with a
more sophisticated one, appropriate to the given
application.

2.2 The history mechanism

Another way of obtaining solutions to the
correspondence problem is the history mechanism. This
mechanism looks for appropriate alternative
corresponding sequences of actions for each of the
existing correspondence library entries in the history of
performed actions so far by the imitator agent. This
approach can be useful to overcome possible
limitations of the generating mechanism (Alissandrakis
et al., 2002).

2.3 Building up the correspondence library

When the imitating agent is exposed to each action,
state and effect that comprises the model behaviour, the
generating mechanism produces a candidate
corresponding action.

If there is no entry in the correspondence library
related to the current action, state and effect of the
model, a new entry is created, using these as entry keys
with the generated action as the (initial) solution2.

If instead an entry already exists, the new action is
compared to the stored action3. If the generated action
is worse, according to the metric used, then it is
discarded and the existing action from the
correspondence library is performed. If on the other

2 More precisely, the contents of the perceptual key depend
on the metric the agent is using, for example the keys will
only contain states and actions if a composite state-action
metric is used.
3 There is generally more than one stored corresponding
action (or sequence of actions) for each entry, reflecting
alternative ways to achieve the same result.

hand the new action is better, then it is performed by the
agent and the library entry is updated. This could mean
that the new action simply replaces the already existing
one, or is added as an alternative solution.

Over time as the imitating agent is being exposed to
the model agent the correspondence library will reflect
a partial solution to he correspondence problem that can
be used to achieve a satisfactory imitation performance.

Effectively ALICE provides a combination of
learning and memory to help solve the correspondence
problem. There is generalization in that the learned
corresponding actions (or sequence of actions) can be
reused by the imitator in new situations and contexts.

3 The chessworld test-bed
The creation of chessworld was inspired by the need to
implement a shared environment for interacting agents
of different embodiments affording different
relationships to the world.

In the rules of the game of chess each player controls
an army of chess pieces consisting of a variety of
different types with different movement rules. We
borrow the notion of having different types of chess
pieces able to move according to different movement
rules, and we treat them as agents with dissimilar
embodiments moving on the chequered board. Note that
the actual game of chess is not studied. We simply
make use of the familiar context of chess in a generic
way to illustrate the correspondence problem in
imitation.

Figure 1: A chessworld example. The imitator Knight
agent is attempting to imitate the movements of the
model Queen agent.

The range of possible behaviours by the chess agents
is limited to movement-related ones. As a model agent
performs a random walk on the board, an imitator
observes the sequence of moves used and the relevant
displacement achieved and then tries to imitate this,
starting from the same starting point.

Considering the moves sequentially the agent will try
to match them, eventually performing a similar walk on
the board. This imitative behaviour is performed after
exposure to a complete model behaviour with no
obstacles present, neither static (e.g. walls) nor
dynamic (e.g. other moving chess pieces), besides the
edges of the board which can obstruct movement.

An action for a given agent is defined as a move
from its repertoire, resulting in a relative displacement
on the board. For example a Knight agent can perform
move E2N1 (hop two squares east and one square
north) resulting in a displacement of (–2,+1) relative
to its current square.

Addressing what to imitate, the model random walk
is segmented into relative displacements on the board
by using different granularities. For example end-point
level granularity ignores all the intermediate squares
visited and emulates the overall goal (i.e. cumulative
displacement) of the model agent. In contrast path level
granularity not only considers all the squares visited by
the model but also the intermediate ones that the chess
piece ‘slides across’ on the chessboard while moving.
Between these two extremes, trajectory level
granularity considers the sequence of relative
displacements achieved by the moves of the model
during the random walk.

Depending on the embodiment as a particular chess
piece, the imitator agent must find a sequence of
actions from its repertoire to sequentially achieve each
of those displacements.

The assessment of how successful a sequence is in
achieving that displacement and moving the agent as
close as possible to the target square can be evaluated
using different simple geometric metrics (Hamming
norm, Euclidean distance and infinity norm) that
measure the difference between displacements on the
chessboard.

3.1 ALICE in chessworld
For the chessworld implementation ALICE corresponds
model actions (moves that result in a relative
displacement of the chess piece on the board) to actions
(or more probably sequences of actions) that can be
performed by the imitator.

The generating mechanism is a random one,
returning possible actions from the chess piece moves
repertoire of the imitator.

The list of past moves performed by the imitator is
defined as the history, from which the agent’s history
mechanism is looking for sequences of actions that can
achieve the same relative displacement as model action
entries in the correspondence library. The history
mechanism is used in parallel to take advantage of this
experiential data, compensating for the generating
mechanism not allowing moves that locally might
increase the distance, but globally reduce the error,
within the generated sequences.

The success and character of the imitation observed
can be greatly affected by agent embodiment, together

with the use of different metrics and sub-goal
granularities.

For a more detailed description of chessworld and the
ALICE implementation in this test-bed, see
(Alissandrakis et al, 2002).

4 The Robotic Arm test-bed
The robotic arm test-bed was created as a simple, yet
“ rich enough” environment that would allow for several
interacting model and imitator agents, having dissimilar
embodiments to each other. Each agent (see Fig. 2)
occupies a two-dimensional workspace and is embodied
as a robotic arm that can have any number of rotary
joints, each of varying length. The agent embodiment
can be described as the vector L = [l1 l2 l3 … ln], where
l i is the length of the i th joint.

There are no complex physics in the workspace and
the movement of the arms is simulated using simple
forward kinematics but without colli sion detection or
any static restraints (in other words, the arms can bend
into each other). Our intention is to demonstrate the
features of the imitative mechanism and not to build a
faithful simulator.

An action of a given agent is defined as a vector
describing the change of angle for each of the joints,
A ��� � 1

�
2
�

3 ��� n], where n is the number of joints.
These angles are relative to the previous state of the arm
and can only have three possible values, +10° (anti-
clockwise), 0° or -10° (clockwise).

A state of an agent is defined as the absolute angle
for each of the joints, S �	�
 1
 2
 3 �
 n], where n is the
number of joints. We can distinguish between the
previous state and the current state (the state of the arm
after the current action was executed). As a result of the
possible actions, the absolute angle at each joint can be
anywhere in the range of 0° to 360° (modulo 360º), but
only in multiples of 10°.

The end tip of the arm can leave a trail of paint as it
moves along the workspace. The effect is defined as a
directed straight line segment connecting the end tip of
the previous and the current states of the arm
(approximating the paint trail). The effect is
implemented as a vector of displacement
E = (xc - xp, yc - yp), where (xp, yp) and (xc, yc) are the
end tip coordinates for the previous and current state
respectively.

The model pattern is broken down as a sequence of
actions that move the robotic arm of the agent from the
previous state to the current state, while leaving a
behind a trail of paint as the effect.

The nature of the experimental test-bed with the fixed
base rotary robotic arms favours circular looping effects
and the model patterns used in the experiments were
designed as such (see Fig. 3).

Figure 2: Example embodiment. A two-joint robotic
arm with arms of length l1 and l2, moving from state S0
(arm completely outstretched along the horizontal axis)
to state S to state S’ to state S” , as it sequentially
performs actions A, A’ , and A” . Note that the effects are
not shown in this figure.

Figure 3: Four different examples of model
behaviours. Shown are the effect trails created by the
end tip of the model agent manipulator arm after a
complete behavioural pattern. All model agents shown
have the same embodiment L=[15 15 15].

Each complete behavioural pattern that returns the
arm to its initial state observed by the imitator is called
an exposure, and the imitator is exposed to repeated
instances of the same behavioural pattern. At the
beginning of each new exposure it is possible to reset
the imitating agent to the initial state. This resetting is
called synchronization in our experiments.

4.1 Metrics
The imitating agents can perceive the actions, states and
effects of the model agents, and also their own actions,
states and effects, and therefore we define several
metrics to evaluate the similarity between them. Ideally
the metric value should be zero, indicating a perfect
match.

4.1.1 State metric

The state metric calculates the average distance
between the various joints of an agent (posed in a
particular state) and the corresponding joints of another
agent4 (posed in a different state) as if they were
occupying the same workspace. Ideally this distance
should be zero when the arms take corresponding poses,
but this may not be possible due to embodiment
differences. Using forward kinematics, the coordinates
of the ends for each joint are found.

()∑∑ =

−

=
+= i

j ji

i

j ji lxx
1

1

1
cos σ

()∑∑ =

−

=
+= i

j ji

i

j ji lyy
1

1

1
sin σ

If both agents have the same number of joints the

correspondence between them is straightforward; the
Euclidean distance for each pair is calculated, the
distances are then all summed and divided by the
number of joints to give the metric value.

() ()22 imitator
i

Model
i

imitator
i

Model
ii yyxxd −+−=

n

d
n

i i∑ == 1µ

If the agents have a different number of joints, then

some of the joints of the agent with more are ignored.
To find which joint corresponds with which, the ratio of
the larger over the smaller number of joints is
calculated, and if not integer, is rounded to the nearest
one. The i th joint of the agent with the smaller number
of joints, will correspond to the (ratio × i)th joint of the
agent with the larger number of joints. For example if
one of the agents has twice the number of joints, only
every second joint will be considered.

4.1.2 Action metric

For the action metric, the same algorithm as the one
described above for the state metric is used, but
considering the action vectors instead of the state
vectors.

4 The state metric can be used not only between different
agents, but also to evaluate the similarity between two states
of the same agent. This is true for the action and the effect
metric as well .

The value in the case of the state metric represents an
absolute position error; for the action metric, it
represents the relative error between the changes of the
state angles, due to the compared actions.

4.1.3 Effect metric

The effect metric is defined as the Euclidean length

() ()2
21

2
21 yyxx −+−=µ of the vector

difference between two effects (x1, y1) and (x2, y2).

4.2 ALICE implementation

The robotic-arm test-bed is more complex than
chessworld, and as a result the implementation of
ALICE was adapted to reflect this.

At each time step, the imitator agent may perceive
the action, previous and current state and also the effect
of the model agent. The imitator might perceive any of
those aspects or a combination.

When created, each entry in the correspondence
library can contain the action/state/effect of the
observed model agent and the current state of the
imitator, as perceptual and proprioceptive components
respectively, as the key for that entry.

A random action (a different one is generated every
time) can be initiall y used as the attempted
corresponding action. It is possible to replace this part
of ALICE with a more complex generating mechanism
(i.e. inverse kinematics), but the idea is to have a
mechanism that simply returns valid actions from the
search space. In order to speed up the learning, it is
possible to generate more than one random action and
choose a best one.

If the model’s action triggers a perceptual key, e.g. if
it has been observed before, then there is also at least
one corresponding action in that library entry.
Controlled by a threshold, it is possible not to require
an exact match for the perceptual and/or the
proprioceptive components of the trigger key, but a
loose one that is “close enough” . We call this loose
perceptual matching and we hypothesized that it should
support learning and generalization.

The two actions (the newly generated one and the
best one found in the correspondence library) are then
evaluated and compared to each other according to a
metric. Depending on which action scored better, the
imitator agent will perform that action and the
correspondence library entry wil l be updated
accordingly. If there is no matching entry in the library,
a new one is created and the new random action is
performed. In the current implementation, each entry
can store up to three possible corresponding actions
that can be seen as possible alternatives.5

5 Note that the history mechanism which also considers

sequences of past imitative attempts when updating the
correspondence library entries is not implemented in the
robotic arm test-bed since simple action to action
correspondence suff ices here. In contrast, corresponding

5 Experiments on aspects of imitation
Using the robotic arm test bed we conducted various
experiments to study the possibility of social
transmission of behaviours through heterogeneous
agents, the affect of proprioception, loose perceptual
matching and synchronization on the imitation learning
performance, and also the robustness of the ALICE
mechanism when the imitator embodiment changes
during the learning process, and also after achieving a
successful imitative performance.

5.1 Cultural transmission of behaviours

Besides being a powerful learning mechanism,
imitation broadly construed is required for cultural
transmission (e.g., Dawkins 1976). Transmission of
behavioural skills by social learning mechanisms like
imitation may also be fundamental in non-human
cultures, e.g. in chimpanzees (Whiten et al. 1999),
whales and dolphins (Rendell and Whitehead, 2001).

The robotic arm test-bed makes it possible to study
examples of behavioural transmission via imitation,
with an imitator agent acting as a model for another
imitator. If the original model and the final imitator
have the same embodiment but the intermediate
imitator a different one, we can look at how the
different embodiment and the choice of metrics for the
evaluation of a successful imitation attempt can affect
the quality of the transmitted behaviour.

The example shown in Fig. 4 shows such a
transmission of the original model behaviour via an
intermediate agent. Although the intermediary has a
different embodiment, the original model and final
imitator have the same embodiment, and the model
behavioural pattern was transmitted perfectly. This was
partially helped by the use of the action metric for
evaluation to overcome the dissimilar embodiment of
the transmitting agent. This example serves as proof of
the concept that by using social learning and imitation,
rudimentary cultural transmission with variability is
possible among robots, even heterogeneous ones.

Figure 4: An example of social transmission. The
original model (L=[20 20 20]) is shown to the left. In
the middle, an imitator (L=[30 30]) acts also as a
model for the imitator on the right (L=[20 20 20]).
Both imitators use the action metric.

sequences of actions are necessary in chessworld as most
chess pieces are unable to move as far as their model using
only a single action.

The choice of metrics and the particular embodiment
of the agents greatly affect the qualitative aspects of
imitation, making not every combination suitable for
passing on model behaviours, besides crucial aspects of
the model behaviours themselves. Note that in Fig. 4,
the intermediate agent imitates qualitatively differently,
due to its dissimilar embodiment. If the particular
embodiment of the intermediate agent greatly distorts
the model pattern, then such a transmission might be
impossible.

5.2 Synchronization

At the end of each exposure of the imitating agent to
the model, it is possible to reset the imitator arm to the
same initial position, as a result synchronizing the
imitation attempt to the model behaviour.

We conducted ten experimental runs, each with two
imitating agents trying to imitate a model agent, one of
them synchronizing with the model by resetting to the
initial outstretched initial state after the completion of
each exposure, and the other starting each attempt from
the final reached state of the previous attempt (ideally
the same as the initial state, as all the model patterns
are designed as closed loops). Both model and imitator
agents had the same embodiment (L=[20 20 20]) and
the metric used was a weighted half-half combination
of the action and state metrics. Both imitating agents
use proprioception and allow for a 10% margin of
looseness for matching the trigger keys. The generating
mechanism was creating five random actions to choose
from. Each run lasted twenty exposures and the
maximum metric value for each exposure was logged.

The ratio of the maximum error of the imitating agent
that uses synchronization over the maximum error of
the agent that does not reset back the start position at
the end of each exposure can be seen in the bottom
panel of Fig. 5, constantly decreasing and below 1. This
indicates that the numerator is minimized faster than
the denominator, indicating that it is very difficult for
an imitating agent that does not synchronize to reach
again states relevant to the model pattern if the initial
imitation attempts are not successful. This reduces the
chance to update and improve the relevant
correspondence library entries as the agent wanders
with no point of reference. If the state space is large
enough, it is possible for the agent to get completely
lost.

5.3 Proprioceptive matching

The correspondence library entry keys can contain both
perceptive (the action, state and effect of the model
agent) and proprioceptive (the imitator’s own state at
the time of the observation) data. It is possible to ignore
the prioperception and trigger the keys based only on
the perception.

Figure 5: Experiments comparing the use of synchronization. The average maximum error metric value of robotic
agents over 20 exposures using synchronization (top panel) vs. not using synchronization (middle panel). The ratio of the
maximum error per exposure of the imitating agent using synchronization over the maximum error of the imitating agent
that does not use synchronization (bottom panel) indicates a comparative many-fold reduction of error with use of
synchronization. In each panel, the thicker line shows the average values of all the ten experiments, with the bars
indicating the standard deviation. Both model and imitator agents have the same embodiment L=[20 20 20] and the
imitator agents use a half-half composite of the action and state metrics. Both imitators use proprioception and allow for
10% loose perceptual matching.

Figure 6: Experiments comparing using and not using proprioception. The maximum error metric value of robotic
agents over 20 exposures not using proprioception (top panel) vs. using proprioception (middle panel) when searching
through the correspondence library entry keys. The ratio of the maximum error per exposure of the imitating agent not
employing proprioception over the maximum error of the imitating agent that does (bottom panel) indicates some
comparative reduction of error when not using proprioception. In each panel, the thicker line shows the average values of
all the ten experiments, with the bars indicating the standard deviation. Both model and imitator agents have the same
embodiment L=[20 20 20] and the imitator agents use a half-half composite of the action and state metrics. Both
imitators synchronize and allow for 10% loose perceptual matching.

Figure 7: Experiments comparing the use of loose perceptual matching. The average maximum error metric value of
robotic agents over 20 exposures using loose matching (top panel) vs. using exact matching (middle panel). The ratio of
the maximum error per exposure of the imitating agent using loose matching over the maximum error of the imitating
agent that uses exact matching (bottom panel) indicates a comparative many-fold reduction of error with use of loose
matching. In each panel, the thicker line shows the average values of all the ten experiments, with the bars indicating the
standard deviation. Both model and imitator agents have the same embodiment L=[20 20 20] and the imitator agents
use a half-half composite of the action and state metrics. Both imitators synchronize and use proprioception.

Figure 8: Experiments comparing the use of loose matching without proprioception. The average maximum error
metric value of robotic agents over 20 exposures using loose matching (top panel) vs. using exact matching (middle
panel), both without using proprioception. The ratio of the maximum error per exposure of the imitating agent using
loose matching over the maximum error of the imitating agent that uses exact matching (bottom panel) indicates some
comparative reduction of error with use of loose matching. In each panel, the thicker line shows the average values of all
the ten experiments, with the bars indicating the standard deviation. Both model and imitator agents have the same
embodiment L=[20 20 20] and the imitator agents use a half-half composite of the action and state metrics. Both
imitators synchronize and do not use proprioception.

We conducted ten experimental runs, each with two
imitating agents trying to imitate a model agent, one of
them using proprioception, the other not. Both model
and imitator agents had the same embodiment
(L=[20 20 20]) and the metric used was a weighted
half-half combination of the action and state metrics.
Both imitating agents used a loose perceptual matching
of 10% (see section 5.4 below) and the generating
mechanism was creating five random actions to choose
from. Each run lasted twenty exposures and the
maximum error metric value for each exposure was
logged.

The ratio of the maximum error per exposure of the
imitating agent that does not use proprioceptive
matching over the maximum error of the imitating agent
that does can be seen in Fig. 6 (bottom panel),
constantly decreasing and below 1. This indicates that
the numerator is minimized faster than the denominator.
This indicates that ignoring the proprioceptive
component improves the performance rate.

Ignoring the proprioceptive component of the entry
keys will confine the number of entries only to the
number of different actions, states and effects that
define each model pattern, resulting in a much smaller
search space. This reduced number of entries in the
correspondence library will have the opportunity to
update and improve more often, and explains the
performance rate improvement. However given enough
time, it is expected that proprioception would allow the
imitator to eventually learn much finer control in
distinguishing appropriate choices of matching actions
depending on its own body state.6

5.4 Loose perceptual matching

When the ALICE mechanism looks in the
correspondence library to find the relevant entry to the
currently perceived model actions, states and effects, it
is possible not to require an exact match of the entry
keys, but one that is close enough, depending on a
threshold.

We conducted ten experimental runs under the same
conditions. Each run consisted of twenty exposures to
the model behaviour for two imitating agents, one of
them accepting a 10% margin of looseness for the
trigger keys and the other one requiring an exact match,
both using proprioception. Model and imitator agents
have the same embodiment (L=[20 20 20]) and the
metric used was a weighted half-half combination of the
action and state metrics. The generating mechanism for
the imitating agents was creating five random actions to
choose from. The maximum metric value for each
exposure was logged and is shown in Fig. 7, using loose
matching (top panel) and exact matching (middle
panel).

6 In this implementation, using proprioception increases the
size of the search space by a factor of 36 to the nth power,
where n is the number of joints in the imitator.

The ratio of the maximum error of the agent that uses
loose over the agent that uses exact matching can be
seen in the bottom panel of Fig. 7, constantly
decreasing and below 1. This indicates that the
numerator is minimized faster than the denominator,
showing a faster improvement of performance for the
imitator agent using loose matching.

Examining the middle panel of Fig. 7, there is no
obvious performance improvement in this early stage of
learning, although the same amount of time is enough
to minimize the error for the agent using a loose
matching in the top panel. This is mostly due to the
large number of entries created in the correspondence
library due to the different proprioceptive states that the
agent visits during the imitation attempts. The exact
match requirement will create a large number with the
same perceptive but different proprioceptive part of the
keys.

To illustrate the influence of loose matching on the
imitation performance separately from the influence of
proprioception, we conducted ten additional
experimental runs with the same conditions as the ones
described above, but with both imitator agents not
using proprioception. The middle panel of Fig. 8
(showing the maximum error for agents requiring exact
matching for the perception but ignoring the
proprioception part of the trigger keys) indicates that
there is a now faster improvement of performance, but
still slower compared to the top panel (showing the
maximum error for imitating agents allowing a 10%
margin of looseness, and not using proprioception). The
bottom panel showing the ratio of the maximum errors
confirms that loose matching improves the rate of the
imitative performance.

5.5 Changes in the agent embodiment

For each agent, vector L defines its embodiment, the
number of arm segments and their lengths. We define a
growth vector G, of same size as L. By adding (or
subtracting) these two vectors we get L’, a new
embodiment with modified joint lengths, simulating the
development of the agent. The growth vector can either
increase or reduce the length for each of the joints. The
number of joints must remain constant because such a
change makes any existing contents of a
correspondence library invalid7.

The growth vector can be used to simulate the body
development of the imitator agent during the learning
process. One such example is shown in Fig. 9.
Although the imitator constantly changes embodiment,
starting from half the size and finally reaching the same
size as the model agent, the learning process is not
affected, resulting in a successful imitation
performance.

7 A robotic arm with a different number of joints would
not be able to perform the stored actions, as they
describe the angle changes for each of the existing arm
joints when those actions were created.

Figure 9: An example of a growing agent successfully learning to imitate a model pattern. The figure shows twenty
consecutive exposures (left to right, top to bottom). The imitator agent starts on the top left with an initial embodiment
L=[10 10 10], and uses a growth vector G=[1 1 1] after each exposure to grow up to the embodiment L=[20 20
20] of the (unchanging) model agent. The action metric is used, synchronization, proprioception and 10% loose
perceptual matching. The effects of the previous 4 attempts are also shown.

Figure 10: An example of embodiment changes after successful learning. The figure shows 20 consecutive exposures
(left to right, top to bottom) of an imitator agent that starts on the top left already capable to successfully imitate the
model pattern. Starting from an embodiment L=[20 20 20], a growth vector G=[1 1 1] is used after each exposure to
initially reduce and then expand the embodiment back to the original size. The imitator uses the action metric,
synchronization, proprioception and 10% loose perceptual matching. The effects of the previous 4 attempts are also
shown.

Figure 11: Another example of embodiment changes after successful learning. The figure shows 20 consecutive
exposures (left to right, top to bottom). The imitator agent that starts on the top left already capable to successfully
imitate the model pattern. Starting from an embodiment L=[20 20 20], a growth vector G=[1 1 1] is used after each
exposure to initially reduce and then expand the embodiment back to the original size. The action metric is used,
synchronization, proprioception and 10% loose perceptual matching. The effects of the previous 4 attempts are also
shown.

Two examples of using a growth vector to alter the
embodiment of the imitator agent are shown in Figs. 10
and 11. In both examples the imitator starts already
been capable to imitate a model pattern. During an
initial learning stage (not shown in the figures), both
imitator agents had the same constant embodiment as
their respective model agents (L=[20 20 20]). While
still being exposed to the model, the lengths of the
joints are first reduced and then increased back to their
original size. Although the embodiment changes, the
agent is able to continually update the contents of the
correspondence library to compensate. The imitation
performance breaks down when the joint lengths are
reduced beyond a certain point, but the ALICE
mechanism is robust enough to allow recovery when the
agent starts to grow again.

The metric used in both cases is the action metric,
compensating for the large range of dissimilar
embodiments, and the difference in what they afford.
As mentioned in section 5.1 above, the choice of
metrics greatly affects the character and quality of the
imitation, especially between dissimilar embodiments.
For example if the effect metric is used instead of the
action metric, very poor results are observed, as the
paint strokes created by the shorter joints cannot
successfully compensate for the longer strokes achieved
by the longer arms of the reference model. In contrast, a
robotic arm can equally well rotate clockwise,
independent of its length.

These examples show that the ALICE mechanism
can be robust enough (with a certain tolerance) to
compensate for embodiment changes during the
learning stage and after.

6 Conclusions

The results of our experiments using ALICE in the two
test-beds described, and particularly in the robotic arm
test bed that is presented in greater detail in this paper
show that:

1. Cultural transmission is possible in a
heterogeneous community of robots via
imitation,

2. Loose perceptual matching increases the rate
of solving the correspondence problem
significantly,

3. Synchronization dramatically increases the
rate of solving the correspondence problem,

4. Proprioceptive matching does not seem, at
least in the early stages of learning, to aid in
the solution of this problem in terms of
learning rate.

5. The ALICE imitation mechanism is shown in
examples to be reasonably robust to adapt to
embodiment changes a) during the early
learning process and also b) after the imitating
agent has successfully learned how to imitate
the model behaviour.

References
Aris Alissandrakis, Chrystopher L. Nehaniv and Kerstin

Dautenhahn, Imitation with ALICE: Learning to
imitate corresponding actions across dissimilar
embodiments. IEEE Trans. Systems, Man &
Cybernetics: Part A, 32(4):482-496, 2002.

Richard W. Byrne. Imitation without intentionali ty:

using string parsing to copy the organization of
behaviour. Animal Cognition, 2:63-72, 1999.

Kerstin Dautenhahn and Chrystopher L. Nehaniv. The

agent-based perspective on imitation. In Kerstin
Dautenhahn and Chrystopher L. Nehaniv, editors,
Imitation in Animals and Artifacts. MIT Press, 2002

Richard Dawkins. The Selfish Gene. Oxford, 1976.

Cecili a M. Heyes and Elizabeth D. Ray. What is the

significance of imitation in animals? Advances in the
Study of Behavior, 29:215-245, 2000.

Yasuo Kuniyoshi, Hirochika Inoue and Masayuki

Inaba. Design and implementation of a system that
generates assembly programs from visual recognition
of human action sequences. Proc. IEEE Int.
Workshop Intell. Robots Syst. pages 567-574, 1990

Yasuo Kuniyoshi, Masayuki Inaba and Hirochika

Inoue. Learning by watching: Extracting reusable
task knowledge from visual observations of human
performance. IEEE Trans. Robot. Automat. 10:799-
822, 1994

Chrystopher L. Nehaniv and Kerstin Dautenhahn.

Mapping between dissimilar bodies: Affordances and
the algebraic foundations of imitation. In John
Demiris and Andreas Brik, editors, Proceedings
European Workshop on Learning Robots 1998
(EWLR-7), Edinburgh, 20 July 1998, pages 64-72,
1998.

Chrystopher L. Nehaniv and Kerstin Dautenhahn. Of

Hummingbirds and helicopters: An algebraic
framework for interdisciplinary studies of imitation
and its applications. In John Demiris and Andreas
Brik, editors, Interdisciplinary Approaches to Robot
Learning, pages 136-161. World Scientific Series in
Robotics and Intell igent Systems, 2000.

Chrystopher L. Nehaniv and Kerstin Dautenhahn. Like

me? – Measures of correspondence and imitation.
Cybernetics and Systems, 32(1-2):11-51, 2001.

Chrystopher L. Nehaniv and Kerstin Dautenhahn. The

Correspondence problem. In K. Dautenhahn and
C. L. Nehaniv, editors, Imitation in Animals and
Artifacts. MIT Press, 2002.

Luke Rendell and Hal Whitehead. Culture in whales
and dolphins. Behavioral and Brain Sciences,
24(2):309-382, 2001.

Andrew Whiten, Jane Goodall , W.C. McGrew, T.

Nishida, V. Reynolds, Y. Sugiyama, C. E. G. Tutin,
R. W. Wrangham, and C. Boesch. Cultures in
chimpanzees. Nature, 399:682-685, 1999.

