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Abstract 

This study is focused on a diopside-based glass-ceramic sealant for solid oxide fuel cells 

and its compatibility with AISI 441 stainless steel interconnect. The morphological and 

chemical stability with both bare and Mn-Co spinel coated AISI 441 steel, after 3500 h 

exposure at 800 °C in air, is reviewed and discussed. Post-mortem samples are 

morphologically and chemically analysed by SEM-EDS. Reaction products at the glass-

ceramic/bare AISI 441 interface, resulting from the reaction of Mg from the sealant and Cr 

and Mn from the steel, are detected, without affecting negatively the integrity of the joints. 

In the case of Mn-Co spinel coated AISI 441, interactions between the glass-ceramic and 

the outer part of the Mn-Co spinel coating, along with crystallization of oxides rich in Si and 

Mg, are detected, but still no corrosion phenomena are present. The glass-ceramic is 

found to be compatible with both bare and coated AISI 441. 
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Introduction 

Solid oxide fuel cell (SOFC) technology is already a consolidated route for clean energy 

production, owing to the low-level of polluting or toxic products and to the flexibility of 

usable fuels (hydrogen, hydrocarbons, renewables and coal derived fuels). Advanced 

SOFC-based systems are currently being developed for both stationary and mobile power 

production applications [1,2].  

In a SOFC system, many cells are connected to each other in a stack in order to satisfy 

the power density requirements. The planar stack design is, up to now, among the most 

common approaches, owing to its higher power output and the simplicity of manufacturing 

[3,4]. A critical issue in the planar stack design is the use of a sealant to prevent gas 

mixing. The role of the sealant is crucial in order to guarantee high stack efficiency and 

durability [5,6]. The sealing materials should show high gas tightness, thermo-chemical 

and thermo-mechanical compatibility with the coupled materials, as well as stability in the 

relevant operating conditions (800-900 °C, in both oxidising and reducing atmospheres) for 

thousands of hours [7-9].  

The most widely used sealing materials have up to now been based on glass-ceramics, 

because of the ability to tailor their properties over a wide range of compositions and the 

simplicity of the sinter-crystallization process. Furthermore, they have shown superior gas 

tightness in comparison with other types of sealants (i.e. brazes) and higher stability in the 

extreme working conditions [8-10]. In these materials, the presence of a consistent 

residual glassy phase, after the sinter-crystallization process, can minimise the thermal 

stresses and provide self-healing effects, during heating/cooling cycles [7]. On the other 

hand, the formation of crystalline phases improves the mechanical properties and may 

assist in the tailoring of the thermo-mechanical behaviour [11-15].  

Ba-containing glass-ceramics are among the most used sealants [8-10,15], however, 

during the heating, they have been reported to form the detrimental phase BaAl2Si2O8 

(celsian), which has a coefficient of thermal expansion (CTE) between 2.3 * 10-6 K-1 and 8 

* 10-6 K-1  [11] which is not compatible with that of the typical joined materials (9.5-12.5 * 

10-6 K-1). More specifically the celsian phase BaAl2Si2O8 presents different polymorphic 

forms with very different CTEs (monocelsian 2.3 * 10-6 K-1, exacelsian 6.6-8 * 10-6 K-1 and 

hortocelsian 4.5-7.1 * 10-6 K-1) [11]. As a consequence, the phase transitions could lead to 

high thermal stresses and sealing failure. Emerging glass-ceramics systems based on 



Diopside (CaMgSi2O6) are gaining attention thanks to its high chemical stability and to the 

values of its CTE which lies within the desired range [15-19].  

The chemical stability of the sealant should be considered not only in terms of the stability 

of the material itself, but also in terms of interfacial stability and chemical compatibility with 

the other components of the stack with which the sealant is in contact. In particular, the 

interfacing with Cr-containing stainless steels (typical interconnect materials) could lead to 

degradation reactions or to formation of unwanted phases. In the case of Ba-containing 

glass-ceramics, for example, some studies [8,11,15] have reported an interfacial reaction 

that leads to the formation of BaCrO4, which has a very high CTE value (21-23 * 10-6 K-1) 

at the interface with the interconnect.  

Therefore, for SOFC application, it is crucial to evaluate the compatibility of the glass-

ceramic sealants with the interconnect materials. From this point of view, consideration 

should be given to the fact that sometimes the interconnects are coated with protective 

layers, that are applied in order to limit the oxide scale growth and cathode Cr-poisoning 

[20-22]. The most widely used protective layers are Mn-Co spinel-based coatings [21,23-

25]. In some stack designs, it is necessary to have an interface between the sealant and 

the coated interconnect. Hence, it is necessary to conduct experimental work to evaluate 

the compatibility and possible interaction between the sealant and the coating. Some 

researchers focused on this issue [19,26-29], including Chou et al. [28], who reported the 

degradation of the Mn-Co spinel coating when in contact with an alkaline-earth yttrium 

silicate sealing glass, after exposure to dual atmosphere at 800 °C for 500 h. More 

specifically the coating strongly reacted with the glass-ceramic. 

The present study focuses on long-term tests in relevant conditions of a Diopside-based 

Ba-free glass-ceramic, interfaced with Mn-Co spinel coated and uncoated AISI 441 

stainless steel used as interconnects. In particular, the morphological and chemical 

compatibility between these materials, after 3500 h exposure at 800 °C in air, has been 

investigated and discussed. In this work, the MnCo spinel was deposited by an 

electrophoretic method, while in Chou et al. [28] a slurry coating method was used to 

deposit the MnCo coating. The aim was to maintain the same coating formulation and to 

test the glass in contact with it. Since the compatibility between the seal and the MnCo 

based coatings is related not only to the composition of the coating, but also to its porosity 

and especially to the composition of the sealant, different glass-ceramic compositions 

could lead to different results. 



The glass-ceramic studied here (labelled V9), was the subject of a previous study [30], in 

which it was tested in dual atmosphere for 1100 h at 800 °C, coupled with AISI 441 

stainless steel. The composition of the sealant was tailored with the purpose to have 

suitable glass transition temperature (600 °C), sinter-crystallization behaviour suitable for 

obtaining a dense material and in order to obtain Diopside as main crystalline phase. 

 

Experimental 

The glass-ceramic investigated in the present study and labelled V9 has the following 

composition: SiO2 50.4 wt%, Al2O3 8.3 wt%, MgO 13 wt%, CaO 9.3 wt%, Na2O 10.3 wt%, 

B2O3 5.8 wt%, ZrO2 2.9 wt%. Its production and thermal characterization has been 

reported elsewhere [30] along with its crystallization and sintering behaviour. It was 

designed using the SciGlass® database (Science Serve GmbH, SciGlass 6.6 software, 

Newton, MA, USA). The composition of the glass was tailored in order to have a Tg around 

600°C and suitable CTE of the glass-ceramic. The optimal joining process for this system 

was at 850 °C for 30 min in air.  

Joined “sandwich-like” samples were produced interfacing the sealant with the 

interconnect materials; these included bare AISI 441/V9/bare AISI 441 and Mn-Co coated 

AISI 441/V9/Mn-Co coated AISI 441. The sealant was deposited manually as a slurry 

paste in ethanol onto steel coupons which were 20 mm2 in size.  

The Mn-Co spinel protective coating was deposited on the steel coupons using 

electrophoretic deposition (EPD). The deposition was carried out following the procedure 

described in [31]. After the EPD process the coating was sintered using a two-step 

sintering procedure. During the first step, the coated samples were heated in Ar/H2 (5 vol% 

of H2) and during the second in static air. Both the sintering steps were carried out at 900 

°C for 2 h with heating/cooling rates of 10 °C/min.  

Both types of joints (with bare as well as with coated AISI 441) were characterized 

morphologically after the joining process in order to have a benchmark before undergoing 

long term aging tests. 

After the joining process, the samples were subjected to a long term aging at 800 °C for 

3500 h in static air. The heating up and the cooling down cycles were carried out at a rate 

of 5 °C/min. After the long term test the samples were prepared for morphological and 

chemical investigations by polishing using SiC grinding paper (grits 



600/800/1000/1200/2500/4000) and subsequently with diamond suspension (MetaDi, 

monocrystal diamond suspension of 1 μm by Buehler, USA). The samples were then 

characterized by means of SEM/EDS (Merlin microscope by Zeiss). Before these analyses 

an Au-coating was deposited by sputtering, in order to make them electronically 

conductive.  

The bare AISI 441/V9/bare AISI 441 sample was also studied by transmission electron 

microscopy and selected area electron diffraction (TEM/SAED). The lamella was prepared 

using Zeiss NEON CrossBeam 40 EsB. FEI Tecnai G2 and a FEI Titan (Cubed G2 60-

300) microscope was used for TEM/SAED/EDS investigations on the lamella. These 

analyses were conducted on a thin lamella which had been sectioned using focused ion 

beam at the interface between the steel and the sealant.  

X-ray diffraction analyses (XRD) of the aged glass-ceramic were conducted in a 2θ range 

between 10 ° and 70 ° and using Cu Kα radiation (PanAlytical X′Pert Pro PW3040/60, 

Philips). The collected spectra were identified employing X-Pert HighScore software.  

 

Results and discussion 

Both the joints (with bare and coated AISI 441) were well bonded after the joining process. 

The results of morphological SEM analyses, focused at the interfaces between the glass-

ceramic and the steel, are reported in Fig. 1. The V9 glass-ceramic demonstrates good 

thermo-mechanical compatibility with bare as well as with Mn-Co spinel coated AISI 441. 

No cracks nor delamination were detected after the joining process suggesting a desirable 

thermal expansion behaviour of the interfaced materials. This is reasonable considering 

the CTE of the involved materials. Indeed, AISI 441 is reported to have a CTE of 11.5-12.4 

[32,33] 10-6 K-1, while Mn-Co has a CTE of 10.7-11.4 10-6 K-1 [27,32]. On the other hand, 

the CTE of V9 is reported to be 9.52 10-6 K-1 and 9.6 10-6 K-1 respectively after the joining 

process and after an aging of 1100h (both measured between 200 °C and 550 °C) [30]. 

The coating shows thickness around 8 µm as well as good densification and adhesion to 

the substrate as consequences of the sintering process. 

The interface (dark area) between the Mn1.5Co1.5O4 and the AISI substrate in fig 1b is 

composed by the oxide layer (Chromia and MnCrO spinel) [24,25]; its formation is due to 

heat treatment necessary for the densification of the Mn1.5Co1.5O4 coating after the EPD 

deposition; furthermore, the joining process (at 850°C in air) also contributes to its further 



development. Anyway, as demonstrated in previous works [35] the thermomechanical 

compatibility between the oxide layer and the Mn1.5Co1.5O4 coating was found to be very 

good. 

The observation of many crystals at the interface between the steel and the glass-ceramic 

suggests that heterogeneous nucleation has taken place at the surface of AISI 441 and of 

the Mn-Co spinel coating. As identified in our earlier work [30], this crystalline layer (formed 

during the joining process) is composed of diopside (CaMgSi2O6) which forms a barrier 

and prevents detrimental reactions between the Na (contained in the sealant) and the Cr 

from the steel. A consistent residual glassy phase is clearly visible (darker phase in the 

glass-ceramic). Furthermore, the interfacing with the sealant during the joining process, 

does not seem to affect negatively the integrity and the structure of the Mn-Co spinel 

protective coating, which maintained its dense and thick microstructure, that is necessary 

to limit Cr migration and oxidation of the steel.     

 

 

Fig.  1: SEM images (cross section) of bare AISI 441/V9/bare AISI 441 (a) and coated AISI 441/V9/coated AISI 441 after 
the joining process at 850°C for 30min in air. 

 

The study on the V9 glass-ceramic sealant went further with the morphological and 

chemical analyses carried out at the interface with both bare and coated AISI 441 after 

aging at 800 °C for 3500 h in static air. SEM images at different magnification of the bare 

AISI 441/V9/bare AISI 441 sample (after the aging) are shown in Fig. 2. Fig. 2a and 2b 

show SEM images collected at the interface with the steel, while Fig. 2c represents part of 

the bulk of the glass-ceramic. The red numbers in the micrograph correspond to the 

position in the sample where EDS semi-quantitative analyses were undertaken and 

presented in Table 1. The morphological analyses provide evidence of interfacial 



compatibility following long-term exposure at 800 °C; the interface is crack-free and no 

failure nor delamination were detected. However, the formation of new products close to 

the interface is visible as shown in Fig. 2a and 2b. These products grew from the oxide 

scale that had been formed on the surface of the steel during the aging. There is also 

evidence that the long term aging at 800 °C led to some microstructural changes in both 

the glass-ceramic and the steel. In the latter case the precipitation of bright phases is 

visible in the metal, while in the bulk of the glass-ceramic the precipitation of well-shaped 

bright crystals was detected (Fig. 2c). This phenomenon homogeneously affected the 

glass-ceramic (also far from the interfaces) and is present in all the investigated samples, 

so it is reasonable to assume that it is a characteristic of the glass-ceramic itself (its 

composition) and is not due to the coupling with AISI 441. Table 1 shows the composition 

of the bright phases in the steel (point 1) and suggests the formation of Laves phases rich 

in Nb, Cr, Fe and Si. The same phenomenon has been observed by Yang et al. [36] who 

reported the formation of NbFe2 and silicides after a long period aging of AISI 441 at 800 

°C in air. Silicides formation is likely to lead to a reduction in the silicon activity in the 

stainless steel and this will reduce the possibility of formation of an insulating silica layer at 

the metal/oxide scale interface. The EDS points 2 and 5 correspond to the oxide scale 

formed during the aging on the steel surface. The scale is coherent and well adherent to 

the underlying steel all along the sample. The presence of Ti and Si at these points (from 

the steel composition) is due to the behaviour of the AISI 441 in oxidising environments at 

high temperatures. Indeed, it is well known that these elements (more precisely their 

oxides) accumulate just under the oxide scale [36]. These are visible as darker dots in the 

steel side at around ≈2 µm under the oxide scale.  

The compounds corresponding to points 3 and 4 in the glass-ceramic are most likely 

reaction products between the steel and the sealant and are composed mainly of Mg, Cr, 

Mn and O. These compounds seem to have grown starting from the oxide scale and 

complementary to it (Fig. 2b). This, together with the fact that the scale is uniformly 

present at the interface, suggests that the scale formed during the initial stages of the 

aging and subsequent reactions between Mg oxide (from the glass-ceramic, likely from the 

residual glassy phase) and Cr oxide (from the scale) occurred. However, the formation of 

these phases does not seem to have compromised the integrity of the joint and there is no 

evidence of cracks nor porosity at the interface. This implies good CTE agreement is 

maintained between these materials, even after 3500 h exposure at 800 °C in air. 

Concerning the glass-ceramic, the presence of crystals is visible in Fig. 2, embedded in a 



residual glassy phase. This demonstrates that, despite the long aging, the amount of the 

glassy phase was almost unchanged; this is in agreement with previous results on the 

same glass-ceramic system [30]. The presence of the amorphous phase can be beneficial 

thanks to the possibility to provide self-healing during thermal cycling as well as thermal 

stress relief, above the glass-transition temperature. The composition corresponding to 

point 8 (crystal in the sealant) is compatible with the crystallization of diopside, already 

detected in the present system [30], and confirmed by the results of XRD analyses that are 

presented and discussed later. The same could be said for point 7, which most likely 

corresponds to a crystal of Albite (NaAlSi3O8). However, the longer aging in comparison 

with the previous study [30] has led to the precipitation of the bright crystals shown in Fig. 

2c and marked as point 9. The semi-quantitative analyses, shown in Table 1 suggest that 

these particles are ZrO2 which precipitated from the parent glass. Generally, this effect is 

used to induce heterogeneous crystallization in glass-ceramics [12]. In the present case 

the ZrO2 seems to precipitate within the glassy phase and does not act as a crystallization 

site. Many precipitates are embedded within the amorphous matrix and appear to be 

isolated and no crystallization phenomena are visible starting from them. EDS point 6 was 

collected from the glassy phase 20 µm from the steel. No Cr has been detected in this 

region suggesting that no diffusion of this element from the steel/scale towards the glassy 

phase occurred during the aging.  

 



 

Fig.  2: SEM images collected from the sample bare AISI 441/V9/bare AISI 441 on the interface (a, b) and in the bulk of 
the glass-ceramic (c), after the aging 3500 h at 800 °C in air. The red numbers correspond to the EDS semi-quantitative 

results reported in Table 1.  

 

 

 

 

Table  1: EDS semi-quantitative results corresponding to the red numbers in Fig. 2.  

 
EDS points 

1 2 3 4 5 6 7 8 9 

E
le

m
en

ts
 (

at
. %

) 

Nb 31.7 - - - - - - - - 

O - 53 55.5 54.9 50.6 55.4 58.9 49 63.9 

Mg - - 23.6 23.6 1 - 2.1 11.3 - 

Cr 9.1 40.6 17.7 18.2 40.4 - 0.4 - - 

Mn - 1 3.2 2.7 4.5 - - - - 

Fe 50.6 0.9 - - 2.1 - 0.4 - - 

Ti - 1.3 - - 0.7 - - - - 

Al - 0.8 - 0.6 - 9.1 7.8 1.6 1 

Si 8.6 2.6 - - 0.7 27.5 22.5 26 2.2 



Ca - - - - - 0.7 0.8 10.1 0.2 

Na - - - - - 7.3 7.1 2 1.6 

Zr - - - - - - - - 31.1 

 

It is interesting to note that no corrosion phenomena were detected in the sample. This is 

very important considering the previous study on the coupling of AISI 441/V9 [30]. In that 

case, strong corrosion phenomena were detected after an exposure to dual atmosphere at 

800 °C for 1100 h. The absence of corrosion reported here seems to confirm that the 

earlier observations of corrosion [30] had indeed occurred as a consequence of exposure 

to the dual atmosphere and not from interaction between the sealant and the steel. This 

would be in agreement with other studies, in which the breakaway corrosion development 

is bonded to the effect of dual atmosphere exposition [37-39].  

The results discussed above are concordant with the EDS elemental map reported in Fig. 

3. The maps for Mn and Cr show enrichment of these metals at the interface 

corresponding to the formation of the oxide scale. Furthermore, in some of these regions 

there is evidence of the presence of Mg, confirming the formation of the reaction products 

discussed above and corresponding to points 3 and 4 in Table 1. The signals of Mg and 

Ca are both present, together with Si and O, in the crystalline phases in the glass-ceramic 

side and this confirms the formation of diopside.       

 



 

Fig.  3: EDS elemental map collected at the interface bare AISI 441/V9 after 3500 h at 800 °C in air.  

   

Fig. 4 depicts the results of TEM/EDS/SAED analyses carried out on the thin lamella 

(obtained by focused ion beam) at the interface between bare AISI 441 and V9 glass-

ceramic after the aging. The EDS maps of Cr, Mn O and Mg are in accordance with Fig. 3 

showing growth of an oxide containing Mg, Cr and Mn (in minor amount) in contact with 

the oxide scale formed at the interface. The oxide scale thickness is around 1.5 µm 

coherently present in the investigated region. Three electron diffraction patterns were 

collected from three different regions: the oxide scale, one of the bright crystals 

precipitated in the glass-ceramic and the reaction product growth on the scale. The first 



region was observed to be composed of Cr2O3 while the bright crystal was found to be 

ZrO2 confirming the precipitation of this compound in the glass-ceramic as a consequence 

of the long aging. On the other hand, the SAED pattern collected on the reaction product 

seems to have the structure of CrMn2O4. It is possible that the Mg (from the glassy phase 

of the sealant) entered in the spinel structure of (Cr,Mn)3O4 typically formed in the outer 

part of the scale of chromia forming stainless steels. So this compound could be identified 

as a mixed spinel with a general formula (Mg,Cr,Mn)3O4. The grain of (Mg,Cr,Mn)3O4 

appears to be well in contact with the underlying oxide scale as well as with the glass-

ceramic sealant. 

 

 

Fig. 4: TEM/EDS/SAED analyses carried out at the interface bare AISI 441/V9 after aging at 800 °C for 3500 h in air. 

 

Fig. 5 depicts a SEM image collected at the interface between the Mn-Co spinel coated 

AISI 441 and the glass ceramic and confirms continuing compatibility between these 



materials as shown in Fig. 1 following the joining process. The red numbers in Fig. 5 

correspond to the points subjected to EDS analyses. The semi-quantitative EDS results 

are shown in Table 2. From a morphological point of view, the coating is well in contact 

with the underlying oxide scale, grown on the steel during aging (thickness ≈2 µm). The 

protective layer seems to follow well the asperities present on the surface of the steel all 

along the sample and shows a thickness of about ≈ 6-8 µm (after aging for 3500 h). This 

confirms the excellent performance in terms of thickness and homogeneity of the EPD 

process. Indeed, in order to act effectively as a barrier for Cr evaporation/diffusion, a good 

coating should be thick and dense enough. Thin coatings or coatings of low density have 

been demonstrated to have low Cr retention ability [20,21,35]. The absence of cracks and 

delamination suggests that the values of the CTE of the glass-ceramic and the steel as 

well as those of the protective coating and the oxide scale are suitably matched. The EDS 

analyses at point 1 are concordant with the composition of the oxide scale. Point 2 

(collected from the middle of the coating) shows a slight presence of Cr and Fe that could 

be due to the volume interaction of the analysis that could collect some Cr from the region 

close to the interface with the scale. Indeed, some studies detected the formation of a thin 

(≈0.5 µm) reaction layer between the Mn-Co spinel and the Cr from the oxide scale of the 

steel after long term aging [35]. The presence here (very low) of Mg and Al can be due 

also to a slight infiltration of the glassy phase into the porosity of the coating. From the 

morphological point of view, the interface between the sealant and the coating seems to 

exhibit crystalline products. The morphology of these crystals appears different from the 

diopside crystals detected in the glass-ceramic, suggesting a different compound. This 

was confirmed by the EDS results collected at point 3 in Fig. 5. Indeed, the strong 

presence of Si, O and Mg was recorded here together with smaller amounts of Co and Mn. 

This phase is present coherently all along the interface and does not seem to negatively 

affect the integrity of the joining. The interactions between the protective coating and the 

glass-ceramic are limited to the formation of these compounds across a thickness of 2 µm 

above the coating. However, the integrity of the coating was maintained. This is very 

important, as some studies [26-28] have shown that the interaction between the sealant 

and the protective coating could strongly compromise the integrity of the protective layer 

making the application of (MnCo)3O4 on the sealing areas unsuitable. In addition, as 

reported by Wang et al. [29], the compatibility between the (MnCo)3O4-based coatings and 

the glass-ceramic can prevent detrimental reactions between the bare steel and the 

sealant. The sintering procedure of the coatings and the achieved density could be 



another important factor. Indeed, in another previous study, the same type of coating 

(obtained by EPD as well but sintered only in static air) has been reported to be completely 

infiltrated by the glass-ceramic after aging of 500 h at 800 °C[31]. Furthermore, at point 3, 

no Cr was detected suggesting prevention of Cr diffusion into the glass-ceramic.  

 

 

Fig.  5: SEM image of the interface Mn-Co  coated AISI 441 /V9 after 3500 h at 800 °C in air. The red numbers 
correspond to the point interested by EDS analyses.  

 

Table  2: EDS semi-quantitative results corresponding to the red numbers in Fig. 5. 

EDS points 

 1 2 3 

E
le

m
en

ts
 (

at
%

) 

O 54.2 53 53 

Ti 0.7 - - 

Cr 34.3 3.3 - 

Mn 9.1 22.3 1.6 

Fe 1.7 0.9 - 

Mg - 3.1 25.4 

Al - 1 - 

Co - 16.4 4.1 

Si - - 15.9 



 

The results just discussed were further confirmed by the EDS elemental map collected at 

the interface and reported in Fig. 6. The map related to Cr shows that this element is 

situated only within the oxide scale and the steel side, confirming the ability of the Mn-Co 

spinel coating to prevent Cr from diffusing into the glass-ceramic. It is also possible to 

identify a layer just below the protective coating in which the signals for Si, O, Mg, Co and 

Mn (slightly) are present together. This corresponds to the crystals with composition of 

EDS point 3 in Table 2 and described above. From Fig. 6 the Mn seems to be present in 

both the oxide scale and in the coating in accordance with the results reported in Table 2. 

In addition, the presence of Ca, Mg, Si and O was recorded in the crystals inside the 

glass-ceramic. This observation is in agreement with the formation of diospide as the main 

crystalline phase.        

 



 

Fig. 6: EDS elemental map collected at the interface Mn-Co  coated AISI 441 /V9 after 3500 h at 800 °C in air. 

 

The results of the XRD analysis on V9 glass-ceramic after 3500 h at 800 °C in air are 

shown in Fig. 7. The crystalline phases were identified as diopside (ref. code 01-075-0945) 

and albite (ref. code 00-010-0393), confirming the EDS analyses. These observations are 

in agreement with our previous finding in [30], where these were the only detected phases 

after an aging of 1100 h at 800 °C. The values of CTE of these phases are well matched 

with the one of the overall glass-ceramic and of the joined material: 11.5 10-6 K-1 and 9 10-6 

K-1, respectively for the diopside and albite [30-34]. The diopside was formed in the glass-

ceramic after the joining process. The albite was detected only after a long term aging for 



1100 hrs at 800°C [30]. The strong tendency to crystallize in diopside of similar systems is 

well known [17,18,40]. The overall composition of the V9 parent glass was tailored not only 

to form diopside as the main crystalline phase, but also to tune the materials properties 

(such as viscosity, wettability on metal substrates) with the introduction of different oxides 

(such as Na2O).   

 

 

Fig.  7: XRD pattern collected on V9 glass-ceramic after 3500 h at 800 °C in air (a), compared with simulated pattern of 
albite (b) and diopside (c).  

 

Conclusions 

The present study was focused on the morphological and chemical characterization of a 

diopside-based glass-ceramic sealant for SOFC coupled with AISI 441 stainless steel and 

exposed to a 3500 h aging in air at 800 °C. The coupling with bare AISI 441 and Mn-Co 

spinel coated AISI 441 was very successful, because the interfaces remained intact after 

the joining process, as well as after the long aging to 3500 h, as a consequence of good 

thermo-mechanical compatibility between them. The integrity of the joints (after long 

exposure in relevant conditions) would ensure a hermetic seal.  

No diffusion of elements from the bare AISI 441 was detected towards the sealant.  

However, a reaction product was detected at the interface. This resulted from the reaction 

of Mg from the residual glassy phase and Cr and Mn from the oxide scale. These products 



grew starting from the oxide scale and complementary to it, without affecting negatively the 

integrity between the sealant and the steel. So no excessive CTE mismatches are 

expected between these products, the glass-ceramic and the oxide scale, otherwise 

formation of cracks would be expected starting from them. The SAED analyses revealed 

that the structure of these reaction products is compatible with the one of CrMn2O4. It is 

probable that MgO from the glassy phase dissolved into the external part of the oxide 

scale leading to the formation of a (Mg,Cr,Mn)3O4 spinel at the interface between the 

sealant and the oxide scale. This phenomenon was not detected in the previous study, 

indicating that this phenomenon was due to the longer exposition to 800 °C. 

In the case of the Mn-Co spinel coated AISI 441, the protective coating demonstrated very 

good performance in its Cr-blocking ability even considering the long duration of the test. 

There was interaction between interfacial glass-ceramic and protective coating along with 

crystallization of oxides rich in Si and Mg (with traces of Mn and Co). Also in this case the 

growth of these species did not affect negatively the morphology of the interface. 

Diopside and Albite were identified as main crystalline phases in the glass-ceramic in 

agreement with the authors earlier observation following aging for 1100 hrs [30].               

In both of the analysed samples, no corrosion phenomena were detected. In conclusion, 

the glass-ceramic reported here could be considered suitable for sealing in SOFC 

applications when coupled with AISI 441 stainless steel or with Mn-Co spinel coated 

interconnects. The coating demonstrated good performance when joined with AISI 441 

stainless steel and V9 glass-ceramic from the point of view of thermo-mechanical 

compatibility after the 3500 hrs test. The results reported here could be very important 

from a technological point of view. The compatibility between the sealant and the coating 

may suggest that the masking of the interconnect areas dedicated to the sealing, during 

the deposition of the protective coating, may be unnecessary. This may save a step in the 

production of SOFC stacks. However, this is strictly dependent on the specific stack 

design and for this reason it may, in any case, be important to evaluate the compatibility of 

the sealant with the bare steel. The present study has shown V9 glass-ceramic to be 

compatible with both bare and coated AISI 441.   
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Captions 

Fig. 1: SEM images (cross section) of bare AISI 441/V9/bare AISI 441 (a) and coated AISI 

441/V9/coated AISI 441 after the joining process at 850 °C for 30 min in air. 

Fig. 2: SEM images collected from the sample bare AISI 441/V9/bare AISI 441 on the 

interface (a, b) and in the bulk of the glass-ceramic (c), after the aging 3500 h at 800 °C in 

air. The red numbers correspond to the EDS semi-quantitative results reported in Table 1. 

Fig. 3: EDS elemental map collected at the interface bare AISI 441/V9 after 3500 h at 800 

°C in air. 

Fig. 4: TEM/EDS/SAED analyses carried out at the interface bare AISI 441/V9 after aging 

at 800 °C for 3500 h in air. 

Fig. 5: SEM image of the interface Mn-Co coated AISI 441 /V9 after 3500 h at 800 °C in 

air. The red numbers correspond to the point interested by EDS analyses. 

Fig. 6: EDS elemental map collected at the interface Mn-Co coated AISI 441 /V9 after 

3500 h at 800 °C in air. 

Fig. 7: XRD pattern collected on V9 glass-ceramic after 3500 h at 800 °C in air (a), 

compared with simulated pattern of albite (b) and diopside (c). 

Table 1: EDS semi-quantitative results corresponding to the red numbers in Fig. 2. 

Table 2: EDS semi-quantitative results corresponding to the red numbers in Fig. 5.  
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