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Constant Modulus Shaped Beam Synthesis via
Convex Relaxation

Pan Cao, Member, IEEE, John S. Thompson, Fellow, IEEE, and Harald Haas, Member, IEEE,

Abstract—Constant modulus shaped beam synthesis is widely
employed in multi-input multi-output (MIMO) radar systems and
MIMO wireless communication systems to improve the effective
power gain by using only phase adjustment. To achieve the
maximum beam gain, we formulate a new optimization problem
to maximize the main lobe gain and also properly suppress the
side lobes. However, this problem is NP-hard because of the
constant modulus constraint. In order to efficiently solve this
problem, we first relax the constant modulus constraint to a
convex constraint, and then propose an alternating optimization
algorithm to solve the relaxed problem. Interestingly, numerical
results imply that the solutions of the relaxed optimization
problem are (almost) constant modulus and thus the convex
relaxation is usually tight.

Index Terms—Linear antenna arrays, shaped beam synthesis,
constant modulus constraint, analog beamforming, alternating
optimization, convex relaxation

I. INTRODUCTION AND SYSTEM MODEL

M ILLIMETER wave (mmWave) communication is one
promising technology for future fifth generation (5G)

wireless networks due to the substantial bandwidth available
at mmWave frequencies. In mmWave communication systems,
analog beam-codebook based beam training is usually used to
estimate the directions of the dominant signal rays, where each
analog beam codeword is designed with a desired shape [1].

One popular shaped beam synthesis approach is to directly
match the beam pattern G(θ), θ ∈ Θ controlled by the analog
beamforming vector w, where Θ is defined as the physical
angles that cover the entire spatial directions, to a pre-defined
shape function d(θ) ∈ R+,∀θ ∈ Θ, It can be formulated to
the following optimization problem or its variants:

minw maxθ∈Θ |G(θ)− d(θ)| (1a)
s. t. Constant modulus constraint for w (1b)

to minimize the maximum matching error between G(θ) and
d(θ) over Θ. However, the constant modulus constraint makes
Problem (1) NP-hard in general [2], and its global optimal
solution is still unknown.

Due to the difficulty of meeting the constant modulus
constraint, all previous work study shaped beam synthesis
by using heuristic approaches. For instance, the authors in
[1] utilize the the subarray method [3] and beam-spoiling
techniques [4] to generate an approximate ”flattened” analog
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beam pattern. In [5], a desired beam pattern is synthesized
while maximally suppressing both the auto-correlation and
cross-correlation side lobes at/between given spatial angles.
The most recent work [6] applies the semidefinite program-
ming (SDP) and rank-one solution reconstruction to solve
the constant-modulus constrained problem. In [7], the sum
of matching errors between the beam pattern and the desired
shape function over Θ are minimized by using a Lagrange
programming neural network (LPNN) based approach [8].

Based on the basic idea of Problem (1), we formulate a
new optimization problem with a constant modulus constraint.
This work aims to efficiently find a local optimal solution to
this NP-hard problem and to achieve a better shaped beam
pattern. To make the problem tractable, we first relax the
constant modulus constraint to a convex constraint, and apply
an efficient alternating optimization algorithm to obtain a
locally optimal solution to this relaxed problem. If the obtained
solution is not constant modulus, a constant modulus solution
needs to be reconstructed. Interestingly, numerical results show
that the solutions of the relaxed problem are usually constant
modulus or almost constant modulus (all the elements are
constant modulus except for a few elements with small error),
which implies that the relaxation is usually tight and thus the
obtained locally optimal solutions of the relaxation problem
are usually also locally optimal for the original problem.

II. PROBLEM FORMULATION AND OPTIMIZATION

Consider the narrow-band and far-field transmission of an
M -antenna linear array. The steering vector is expressed as

a(θ) =
[
1, ej2πr2 cos θ/λ, · · · , ej2πrM cos θ/λ

]T
, (2)

where rm,m ∈ {2, · · · ,M} denotes the distance between the
m-th element and the first element, and θ ∈ Θ , [−π/2, π/2]
denotes the direction of departure/arrival of the signal.1

Let w , [w1, w2, · · · , wM ]T ∈ CM×1 be a phase shifter
for this array, where wm,∀m ∈ M , {1, 2, · · · ,M} denotes
the complex weight for the m-th antenna satisfying |wm|2 =
c2,∀m where c2 is defined as the fixed power per element.
By employing w, the beam pattern can be denoted by

G(θ) = |wHa(θ)|2, θ ∈ Θ, (3)

which in general consists of main lobe and side lobes cor-
responding to the angular ranges Θm and Θs, respectively,
where Θm∪Θs = Θ. We define |Θm| as the main beamwidth.

1In this model it is equally valid whether θ represents an angle in azimuth
where arrays are horizontal or angle in elevation with vertically mounted
arrays (one side).
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In mmWave systems, it is desired to generate an analog
beam pattern with a flat main lobe in order to estimate the
channel gain after transmit/receive beam alignment [1]. This
motivates us to formulate the following optimization problem

max
w

min
θ∈Θm

|wHa(θ)|2 s.t. |wm| = c, (4)

where we only maximize the minimum main lobe gain over
Θm in order to achieve a flat main lobe with the largest gain.
Problem (4) can be rewritten as the following problem

min
w,ε

ε (5a)

s.t. ||wHa(θ)| − d(θ)| ≤ ε,∀θ ∈ Θm (5b)
|wm| = c, ∀m ∈M, (5c)

where ε ≥ 0 denotes the maximum matching error between
|wHa(θ)| and d(θ) over Θm. Instead of defining a partially
achievable shape function as in Problem(1), we stress that
(d(θ))2 ∈ R+ in (5b) is defined as an upper bound of the
main lobe gain such that Problem (5) is equivalent to Problem
(4). Problem (5) is NP-hard because of the quadratic constraint
in (5b) and the constant modulus constraints in (5c). In order
to deal with the constraints (5b), it can be rewritten as∣∣∣wHa(θ)− ejψ(θ)d(θ)

∣∣∣ ≤ ε and ψ(θ) = ∠wHa(θ) (6)

where ψ(θ) ∈ [−π, π] is introduced as an auxiliary variable.
The equivalence between (6) and (5b) is based on

||wHa(θ)| − d(θ)| = |wHa(θ)− ej∠wHa(θ)d(θ)| (7a)

< ||wHa(θ)| − ejψ(θ)d(θ)|, ∀ψ(θ) 6= ∠wHa(θ). (7b)

Given ψ(θ), (6) becomes a convex constraint for w.
However, the non-convex constant modulus constraints (5c)

still exist. In order to make the problem tractable, we first
relax Problem (5) to the following optimization problem

min
w,ε,ψ(θ)

ε (8a)

s.t.
∣∣∣wHa(θ)− ejψ(θ)d(θ)

∣∣∣ ≤ ε, ∀θ ∈ Θm (8b)

|eTmw| ≤ c, ∀m ∈M, (8c)

where em is an M×1 zero-vector except for the m-th element
being one such that eTmw = wm. The constant modulus
constraint (5c) is relaxed to the constraint (8c), which is a
convex constraint. The optimal solution ψ(θ) to Problem (8)
is ψ(θ) = ∠wHa(θ) in (6). Except for the constant modulus
constraint relaxation, Problem (8) is equivalent to Problem (5).

Observe that Problem (8) is still not a jointly convex
problem with respect to (w.r.t.) {w, ε, ψ(θ)} because of the
constraints (8b). However, Problem (8) is jointly convex w.r.t.
{w, ε} when ψ(θ) is fixed, which can be optimally solved
by convex optimization toolboxes, and the optimal solution
of ψ(θ) is known when w is given. Therefore, we can apply
the alternating optimization algorithm to optimize {w, ε} and
ψ(θ) in an iterative fashion. We assume that Θm is evenly
sampled by K angles, i.e., {θk}K−1

k=0 . Then, the alternating
optimization algorithm can be described as follows.

1) Convergence and Optimality: In Algorithm 1, {w, ε}
and ψ(θ) are optimally solved in each iteration, respectively.

Algorithm 1 Alternating Optimization for Problem (8)

Initialization: i = 0, ψ(0)(θk) ∈ [−π, π],∀k and εth.
repeat

Given ψ(i)(θk), solve Problem (8) and obtain
{w(i+1), ε(i+1)};
Given w(i+1), let ψ(i+1)(θk) = ∠w(i+1),Ha(θk), ∀k.
i← i+ 1.

until |ε(i+1) − ε(i)| ≤ εth;

Thus, the objective values {ε(i)} form a monotonically de-
creasing sequence and this sequence is lower bounded, which
implies that Algorithm 1 always converges to a locally optimal
solution of Problem (8). For a non-convex problem with
multiple locally optimal solutions, the alternating optimization
algorithm might achieve different locally optimal solutions
with different initializations. For example, a good initialization
could lead to the global optimal solution, although we cannot
theoretically prove its global optimality.

2) The Choice of d(θ): Since (d(θ))2 is defined as an upper
bound of the beam pattern gain, we set it to be

(d(θ))2 ≥, ρ(θ) arg max
θ
G(θ) = ρ(θ)M2, ∀θ ∈ Θm (9)

where M2 is the maximum theorectical value of G(θ) achieved
at an angle θ when w = a(θ), and the scalar ρ(θ) ≥ 1,∀θ ∈
Θm can be used to control the shape of the main lobe.

3) Complexity: The main computation in Algorithm 1 is to
solve the optimization problem w.r.t. {w, ε} in each iteration,
which is a second order cone program (SOCP) and can
be efficiently solved by the CVX solver Sedumi based on
the interior-point method. Numerical results also imply that
Algorithm 1 only needs a few iterations for convergence. Thus,
Algorithm 1 has a reasonably low complexity. We remark that
the complexity of Algorithm 1 is not a critical problem, since
the analog beam-codebook can be generated offline.

III. SOLUTION ANALYSIS AND EXTENSION

In this section, we will analyze the solution of Problem
(8) by Algorithm 1 for an uniform linear array (ULA) with
element-spacing of half a wavelength, and provide sufficient
conditions when the constant-modulus relaxation is tight.

A. Solution Analysis

Define w? ,
[
|w?1 |ejφ

?
1 , |w?2 |ejφ

?
2 , · · · , |w?M |ejφ

?
M

]T
with

|w?m| ∈ [0, c] and φ?m ∈ [−π, π] as a solution to Problem
(8) by Algorithm 1. If we have |w?m| = c,∀m ∈ M, the
constant modulus constraint relaxation is tight, and w? will
also be locally optimal for Problem (5). Otherwise, we need
to reconstruct a constant modulus solution from w?. One
straightforward way is to let

ŵ?m , cw
?
m/|w?m|, ∀m ∈M (10)

be the m-th element of the constant modulus solution ŵ?.
Then, the modulus error can be expressed as δ , ŵ? −w?.

The beam pattern gain error caused by the reconstruction
(10) for each θ ∈ Θ can be defined as
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E(θ) , ||ŵ?,Ha(θ)|2 − |w?,Ha(θ)|2| (11a)

= ||δHa(θ)|2 + 2Re(δHa(θ)(a(θ))Hw?)|, (11b)

=

M∑
m=1

M∑
n=1

(c− |w?m|)(c+ |w?n|)×

cos(φ?m − φ?n + (n−m)π cos(θ)), (11c)

=
∑

m∈M0

(c2 − |w?m|2) +
∑

m∈M0

(c− |w?m|)
∑

n∈M\m

×

(c+ |w?n|) cos(φ?m − φ?n + (n−m)π cos(θ)), (11d)

whereM0 ⊆M denotes a set of elements of |w?m| < c,∀m ∈
M0. Interestingly, the results in Fig. 4 show that the solution
w? to Problem (8) from Algorithm 1 is constant modulus for
some main beamwidths (e.g., |Θm| = 20o, 30o, 80o, 90o, 100o)
and almost constant modulus (with a small ||δ||2 and only
one or two non-constant modulus elements) for |Θm| =
40o, 50o, 60o, 70o. It implies that E(θ) might be very small
in this case. However, without the knowledge of {φ?m}Mm=1, it
is not possible to exactly estimate the value of E(θ) based
on (11d). For statistical analysis, if we assume the phases
{φ?m} are randomly and independently distributed in [−π, π],
the expectation of E(θ) becomes

∑
m∈M0

(c2−|w?m|2). Thus,
the reconstruction (10) in general will not significantly change
the shaped beam pattern since both M and ||δ||2 are small.

Theorem 1 For an M -element ULA with with element-
spacing of half a wavelength, the optimal solution w? of
Problem (8) will be constant modulus if {φ?m} satisfy

min
m∈M


M∑

n=1,n6=m

cos (φ?n − φ?m + (m− n)π cos(θ))

 > −1

2
,

(12)

for each θ ∈ Θm. �

Proof: The beam pattern G(θ) can be rewritten to

G(θ) =

M∑
m=1

|w?m|2 + 2

M∑
m=1

M∑
n=1,n6=m

|w?m||w?n|×

cos (φ?n − φ?m + (m− n)π cos(θ)), (13)

where G(θ) is a quadratic function of each |w?m|. Thus, if
M∑

n=1,n6=m

|w?n| cos (φ?n − φ?m + (m− n)π cos(θ)) > −c/2

(14)

is fulfilled for ∀m ∈M, G(θ) will be monotonically increas-
ing between [ c2 , c]. In this case, the maximum of G(θ) will be
surely achieved at |w?m| = c. Suppose that G(θ) is monotoni-
cally increasing between [ c2 , c] for each |w?m|, ∀m ∈M, this
requires that (12) hold, since each |w?m| will be equal to c.

B. Extension to Side Lobe Suppression

Recalling that Problem (8) only maximizes the main lobe,
we desire to add a penalty to the objective function such
that the side lobes can be also simultaneously suppressed

but without a significant influence on the (almost) constant-
modulus property of the solution w?, which is formulated to
the following problem

min
w,ε,ψ(θ)

ε+ µ||wHAs||2 (15a)

s.t.
∣∣∣wHa(θ)− ejψ(θ)d(θ)

∣∣∣ ≤ ε, ∀θ ∈ Θm (15b)

|wm| = c, ∀m ∈M (15c)

where µ ≥ 0 is used to scale the impact of the penalty
term on the objective function, and ||wHAs||2 with As ,
[a(θ`)]θ`∈Θs

denotes the sum power of the side lobes. The
minimization of µ||wHAs||2 subject to |wm| ≤ c,∀m yields
w → 0, which conflicts with the main goal of |wm| = c,∀m.
Thus, it implies that the parameter µ should be small such that
it does not significantly influence both the main lobe shape and
the solution’s element-modulus. Problem (8) is a special case
of Problem (15) when µ = 0, and thus Problem (15) can be
also solved by Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we consider a unit-modulus analog beam-
forming design example for a 64-element ULA with element-
spacing of half a wavelength. The proposed shaped beam
synthesis approach is evaluated by solving the general Problem
(15) with different choices of µ ≥ 0.

First, we evaluate Algorithm 1 with one initialization of
ψ(0)(θk) = 0,∀k and another 99 random initializations all
for Θm = [−20o, 20o]. In Fig. 1, Algorithm 1 with different
initializations converges to the same solution for each µ. The
solution w? is unit-modulus for µ = 0.2, 0.4, and almost
unit-modulus for µ = 0, 0.6, 0.8 (only one or two non-unit-
modulus elements). The achieved beam patterns by ŵ? are
shown in Fig. 2, where the beam pattern for µ = 0.2, 0.4
maintains a similar flat main lobe shape but a suppressed side
lobe compared with that for µ = 0. However, as µ increases,
the main lobe gain will be also reduced (e.g., µ = 0.6, 0.8
in Fig. 2), which is not the desired outcome of maximizing
beam gain. Therefore, a small µ enables constant modulus
solutions and a more desired beam pattern. These simulations
imply that our proposed approach is effective (e.g., more than
30 dB gap between the average main lobe gain and average
side lobe gain when µ = 0.2) and the algorithm is also
robust to different initializations and has a reasonable low
complexity. For instance, Algorithm 1 takes about 10 iterations
for εth = 0.001 and about 0.97 second/iteration when it is
run by the CVX solver Sedumi in MATLAB2015a/Linux 7.1
environment on a 3-GHz Intel Xeon computer.

In Fig. 3, for Θm = [−20o, 20o] we provide a performance
comparison with several benchmarks: 1) One is computed by
the SDP-based algorithm employed in [6]. By defining W ,
wwH , Problem (4) can be rewritten as

max
W

min
θ∈Θm

trace(Wa(θ)a(θ)H) (16a)

s.t. trace(Weme
H
m) = c, ∀m ∈M (16b)

However, the solution W ? might not be rank-one and thus
we need to extract w? from W ?: The ”Largest eigen [6]”
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Fig. 1: Solution modulus w.r.t. different µ.
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Fig. 2: Shaped beam pattern w.r.t. different µ.

uses the largest eigenvector of W ? to approximate w. By the
randomization techniques, ”max mean rand [6]” and ”max min
rand [6]” are achieved by the ”best” random vectors among
one million ζ ∼ N (0,W ?) based on the criteria

max meanθ∈Θm |ζ̂
H
a(θ)|,max minθ∈Θm |ζ̂

H
a(θ)|, (17)

respectively. 2) The ”Subarray beam spoiling [1]” is obtained
by employing the subarray beam spoiling techniques used in
[1], where the 64-element ULA is divided into four 16-element
subarrays and each angle offset is 10o. 3) The ”LPNN based
Approach [7]” is based on the LPNN algorithm employed in
[8] by minimizing the sum matching errors

min
wHeeHw=1,∀m

( ∑
θ∈Θm

(
wHa(θ)aH(θ)w − d2

(θ)
)2

+
C0

2

M∑
m=1

(wHeme
H
mw − 1)2

)
, (18)

where C0 = 100 is chosen and 100, 000 iterations are run
in the simulations. Observe that the proposed algorithm with
µ = 0.2 achieves greater main lobe gain but also lower side
lobes compared with the baselines. Second, Algorithm 1 is
evaluated for different beamwidths, i.e., Θm from [−10o, 10o]
to [−50o, 50o], respectively. The sum modulus error ||δ||2 is
shown in Fig. 4, which shows that Algorithm 1 yields the
desired (almost) constant modulus solutions.
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V. CONCLUSION

In this work, numerical results imply that our proposed
constant modulus constraint relaxation is (almost) tight, and
thus the alternating optimization algorithm usually enables to
achieve a locally optimal solution for the constant modulus
constrained problem. Furthermore, compared with the bench-
marks, the proposed algorithm can generate a better analog
beam pattern with a flat main lobe and suppressed side lobes.
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