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Abstract

The UK’s Initial Operational Response (IOR) is a revised process for the medical manage-

ment of mass casualties potentially contaminated with hazardous materials. A critical ele-

ment of the IOR is the introduction of immediate, on-scene disrobing and decontamination

of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin

with dry absorbent materials has previously been identified as a potential means of facilitat-

ing emergency decontamination. The purpose of this study was to evaluate the in vitro oil

and water absorbency of a range of materials commonly found in the domestic and clinical

environments and to determine the effectiveness of a small, but representative selection of

such materials in skin decontamination, using an established ex vivo model. Five contami-

nants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and

potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with

ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamina-

tion was consistently more effective than a standard wet decontamination method (“rinse-

wipe-rinse”) for removing liquid contaminants. However, dry decontamination was ineffec-

tive against particulate contamination. Collectively, these data confirm that absorbent mate-

rials such as wound dressings and tissue paper provide an effective, generic capability for

emergency removal of liquid contaminants from the skin surface, but that wet decontamina-

tion should be used for non-liquid contaminants.

Introduction

Mass casualty incidents arising from the accidental or deliberate release of hazardous materials

require a rapid and efficient response from emergency personnel in order to minimise the

injurious effects of exposure to toxic materials. Until recently, the UK’s Model Response to

chemical, biological, radiological and nuclear, or hazardous material incidents involved
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delaying disrobing and decontamination until the arrival of specialist response assets, such as

mass decontamination units. However, recent work has demonstrated that a more rapid

response is required for chemical exposures and that self-decontamination may be performed

by contaminated individuals using any available absorbent material [1]. Moreover, there is evi-

dence to suggest that showering contaminated skin with water may lead to the “wash-in

effect”—the enhanced dermal absorption of particular chemicals [2–6]. In response to such

practical challenges, the UK emergency services have adopted a revised process known as the

Initial Operational Response (IOR). This new approach advocates dry decontamination as the

default option for an emergency response [7]. A variety of bespoke decontamination products

are commercially available and have been previously evaluated in our laboratory [8]. However,

such products are not appropriate or practical for use in mass casualty decontamination [9].

Dry decontamination can be defined as the topical application of absorptive materials to

passively remove liquid contaminants from the skin surface [10]. In theory, any absorbent

material should have some degree of effectiveness for skin decontamination. However, there is

a paucity of data on the clinical effectiveness of absorbent materials for the purpose of dry

decontamination.

The purpose of this study was to measure the skin decontamination efficacy of absorbent

materials that might be readily available on emergency vehicles (ambulances) or in clinical

environments (e.g. hospital emergency departments). The current water-based protocol for

clinical decontamination, known as the “rinse-wipe-rinse” (R-W-R) technique [11], was

included to provide a benchmark against which the test products were evaluated.

The skin contaminants chosen for the study were selected on the basis of their historical use

as chemical warfare agent simulants in human volunteer studies or dermal toxicity. Methyl

salicylate and diethyl malonate are established simulants for sulphur mustard and soman,

respectively [12, 13]. Parathion, phorate and potassium cyanide have demonstrable percutane-

ous toxicity and so were included as examples of toxic industrial chemicals [14–16].

Materials and methods

This study consisted of two parts. First, 35 materials identified from site visits to an emergency

department and ambulance station were assessed using an empirical system that measured the

relative capacity of each product to absorb water and oil. Four of the test materials were then

selected for evaluation regarding their efficacy in decontamination. For this purpose we used a

bespoke ex vivo diffusion cell system containing pig skin, which has previously been described

and validated for assessment of skin decontamination systems [17]. The association between

the initial absorption capability of each material and its usefulness in decontamination was

evaluated retrospectively.

Chemicals and decontaminants

Radioactive (14C-labelled) contaminants methyl salicylate (MS), parathion (PT), diethylmalo-

nate (DEM), phorate (PH) and potassium cyanide (KCN) were purchased from American

Radiolabeled Chemicals, Inc. (ARC; Missouri, USA) and were reported to be>99% pure.

Unlabelled contaminants, also with>99% purity, were purchased from Sigma Chemical Com-

pany (Dorset, UK). The radioactive liquid chemicals (MS, PT, DEM and PH) were diluted

with the same unlabelled compound to achieve a working solution of 0.25 μCi μL-1. Similarly,
14C-radiolabelled and unlabelled KCN were mixed in an appropriate ratio in deionised water

to produce a saturated aqueous solution (0.25 μCi μL-1).

Ethanol (absolute, laboratory reagent grade, >99%) and propan-2-ol (HPLC grade,

99.97%) were purchased from Fisher Scientific, Leicestershire, UK. Ultima Gold for liquid
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scintillation analysis and Soluene-350 for tissue digestion were purchased from Perkin Elmer,

Waltham, MA, USA. Deionised water (18.2 MOcm) was produced in house using a Milli-Q1

Integral 3 water purification system from Millipore.

The materials identified for initial (in vitro) absorbency testing were acquired either directly

from an operational ambulance (Welwyn Garden City Ambulance Station, UK) or from a

domestic environment (Table 1).

For the ex vivo skin diffusion cell study, DEB FloraFree (detergent) was purchased from

Pakex, Welwyn Garden City, UK. MoliNea Plus Underpad (“Green Absorbent Pad”), Maxiflex

Dressing (manufactured by Reliance, UK), Kimberly Clark Professional Wypall Brand L20

(“blue roll”) and the Ambulance Service decontamination sponge were kindly provided by

Welwyn Garden City Ambulance Station, UK.

In vitro absorbency test

Circular swatches (5 cm diameter) of each test material were weighed using a fine balance

(Mettler Toledo, New Classic MF model MS304S/01, Mettler Toledo Ltd., Leicester, UK) prior

to being gently placed into a glass Petri dish containing ~15 mL of either MS or water. After 5

s, the swatch was removed and held above the Petri dish to allow excess liquid to flow off. The

swatch was then touched against the side of the Petri dish (to remove any residual liquid) and

re-weighed. The absorbance of each material was calculated as the difference between the ini-

tial weight of the swatch and the weight after contact with liquid MS or water. If the thickness

of the test material was less than 0.5 cm, the material was folded repeatedly to attain a mini-

mum thickness of 0.5 cm.

Ex vivo skin absorption

Full thickness skin was obtained post mortem from female pigs (Sus scrofa, large white strain,

weight range 15–25 kg) purchased from a reputable supplier. The skin was close clipped,

excised from the dorsal aspect of each animal, wrapped in aluminium foil and stored flat at

−20˚C. Prior to the start of each experiment, skin from one animal was removed from cold

storage and thawed for approximately 24 hours. Sections of the upper layer of the skin were

subsequently prepared using a dermatome (Humeca Model D80, Eurogsurgical Ltd., Surrey,

UK). This involved pinning out each skin section on a dissection board and drawing the der-

matome over the (epidermal) skin surface using light downward pressure to produce a con-

sistent, 1000 μm sample of tissue. This was then cut into 8 cm discs and mounted into the

Table 1. Summary of products derived from ambulance and domestic environments for in vitro

assessment of liquid absorbency.

Origin Product

Ambulance (1) Stretcher bedding (cotton blanket), (2) MoliNea Plus Underpad (“Green Absorbent Pad”),

(3) non-proprietary white absorbent (incontinence) pad, (4) blue absorbent (incontinence)

pad, (5) yellow perforated sponge, (6) triangular bandage, (7) No. 3 Dressing, (8) wound care

pack dressing towel, (9) wound care pack dressing swabs, (10) Zetuvit absorbent dressing

pad, (11) Bastos Viegas absorbent dressing pad, (12) Maxiflex wound dressing, (13)

stretcher bedding pad, (14) Mediwrap Stretcher bedding, (15) Kimberly Clark Professional

Wypall Brand L20 (“blue roll”) and (16) Ambulance Service polyurethane decontamination

sponge.

Domestic (17) Weetabix™ breakfast cereal, (18) toilet roll, (19) paper tissue, (20) kitchen roll, (21)

washing-up sponge, (22) cotton bib, (23) baby wet wipes, (24) non-proprietary “super

absorbent” cloth, (25) microfibre anti-grease pads, (26) “all-purpose” cloth, (27) leather

wipes, (28) kitchen wipes, (29) cotton wool, (30) muslin, (31) cotton T-shirt, (32) baby nappy

(diaper), (33) cat litter, (34) A4 paper, (35) cotton kitchen cloth.

doi:10.1371/journal.pone.0170966.t001
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diffusion cells. Skin diffusion cells were manufactured by Protosheet Ltd., Kent, UK as previ-

ously described [17]. The upper (donor) chamber was modified to allow full access to the

skin surface. The base of the donor chamber contained a port to allow liquid effluent to be

collected, where appropriate. A fine steel mesh was used to support the skin sample, which

was recessed into the base of the diffusion cell to give an area available for diffusion of 19.64

cm2 above a 12.5 mL flow-through receptor chamber. The receptor chamber was filled with

50% aqueous ethanol and was fed via a peristaltic pump (520S series, Watson Marlow, Corn-

wall, UK) at a rate of ~30 mL h-1. When clamped together, the top and bottom chambers

could be angled through 0, 22.5, 45, 67.5 and 90˚ using a clamp screw and latch mechanism

to allow adjustment of skin orientation where appropriate. The diffusion cells were heated

using custom manufactured heat pads (Holroyd Components Ltd., Essex, UK) placed under

each diffusion cell to establish a skin surface temperature of 32˚C (as confirmed by infrared

thermometry).

Six diffusion cells were each allocated a specific treatment. Each experiment was repeated

six times, following a pseudo-Latin square design (so that no treatment was performed repeat-

edly in the same diffusion cell position within the fume hood), to give a total of n = 6 replicates

per treatment. Treatment groups were: control (no decontamination), R-W-R decontamina-

tion method, green absorbent pad (product #2 of Table 1), Maxiflex Dressing (#12), blue roll

(#15), and ambulance service decontamination sponge (#16). The latter four products were

selected as being representative of the range of absorbencies measured during the prior in vitro
studies. Each experiment was started by the addition of a 20 μL droplet of a 14C-radiolabelled

(5 μCi) contaminant (MS, PT, DEM, PH, or KCN) to the skin surface, while it was in a hori-

zontal position. All contaminants were added as undiluted (neat) liquid, except KCN, which

was added as a saturated solution in water (0.7 g mL-1).

Decontamination was performed 15 minutes after skin contamination, in alignment with

revised UK emergency response timescales [1]. Each of the four dry decontamination products

was cut into 5 cm diameter swatches and applied directly to the skin surface. An aluminium

foil disc (4.8 cm diameter) was layered onto the product and a 70 g weight (4 × 4 cm) was then

placed on the foil to ensure even contact between the product and the skin surface. After 5 s,

the weight and foil were removed, and the test swatch was lifted off the surface of the skin and

placed into a glass vial containing 20 mL of isopropyl alcohol. The R-W-R procedure involved

rinsing the skin with 10 mL detergent solution (5% DEB FloraFree), dabbing the skin surface

with dry gauze, and rinsing with 10 mL tap water. The rinse procedures required the diffusion

cells to be tilted until the skin was at an angle of 22.5˚ to the horizontal, to allow the detergent

solution and water rinse effluent to be collected in pre-weighed glass vials via a port at the bot-

tom of the donor chamber. The R-W-R procedure took ~90 s to perform. Vials containing

samples of liquid effluent were reweighed and immersed in 10 mL isopropyl alcohol. The skin

surface was then dried using a gauze pad, which was placed into a 20 mL pre-weighed vial with

20 mL of isopropyl alcohol.

Samples of receptor chamber fluid were collected before skin contamination (baseline) and

then at 10 minute intervals after skin exposure for up to 1 hour. Each sample was collected in

pre-weighed 20 mL glass vials.

At the end of the experiment, all skin surfaces were swabbed with cotton gauze to collect

any residual contamination. The swabs were placed in pre-weighed vials and immersed in iso-

propyl alcohol (10 mL). The diffusion cells were then dismantled and the skin removed for

digital autoradiography prior to immersion in Soluene-350 (50 mL) to dissolve the samples.

Autoradiography was performed using a Typhoon FLA 7000 (GE Healthcare, USA) non-

confocal variable mode laser scanner. Each image comprised six skin samples (derived from

the same study) and was calibrated for spatial and intensity measurements using a micro-scale

Evaluation of absorbent materials for use as ad hoc dry decontaminants
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slide (ARC, Missouri, USA) containing discrete areas of radioactivity ranging from 30–862

nCi g-1. Corresponding measurements of the intensity and area of 14C-contamination were

assessed using ImageJ software (v1.48, U.S. National Institutes of Health, Bethesda, Maryland,

USA) to provide a quantitative assessment of skin contamination (skin surface spreading).

All samples (skin surface swabs, dissolved skin and receptor chamber fluid) were analysed

by liquid scintillation counting using a Perkin Elmer Tri-Carb liquid scintillation counter

(Model 2810 TR), with an analysis time of 2 minutes per sample and using the manufacturer’s
14C-quench curve specific to the brand of liquid scintillation cocktail (Ultima GoldTM) used

in this study. The amount of radioactivity in each sample was converted to a quantity of chem-

ical by comparison to standard preparations (containing known quantities of the 14C-radiola-

belled analogues) that were measured simultaneously.

Data analysis

The amount of each contaminant not removed by each test product from ex vivo skin (%R;

residual percentage of applied dose) was calculated from Eq 1.

%R ¼
Q1 þ Q2 þ Q3

Q0

� �

� 100 ð1Þ

Where Q is the quantity (μg) of radiolabelled contaminated recovered from skin surface swabs

(Q1), solubilised skin (Q2) and receptor chamber fluid (Q3) as a proportion of the applied dose

(Q0).

Where appropriate, a non-parametric analysis of variance (Kruskal–Wallis) was performed

on the data with a Bonferroni-corrected multiple comparisons post-test (Dunn’s). Linear

(Pearson) correlations were derived using GraphPad Prism (Prism version 6.04 for Windows,

GraphPad Software, La Jolla California USA).

Results

In vitro absorbency

There was a strong linear correlation (p<0.001) between the measured water and methyl salic-

ylate absorbency of the test materials (Fig 1), approximating to the equation y = x (r2 = 0.629).

There was a wide range of absorbencies (0.06–18.07 g/g); hence, four representative products,

sponge (#16), blue roll (#15), Maxiflex dressing (#12) and green absorbent pad (#2), were

selected for the subsequent ex vivo skin studies.

Ex vivo studies

All four test products and the R-W-R method reduced skin surface spreading of 14C-MS by

>60% (Fig 2A). This effect was statistically significant (p<0.05) for two of the test products

(green pad and blue roll). Each of the test products reduced the residual amount of MS by

>80% of the applied dose (Fig 2B). However, this effect was statistically significant (p<0.05)

only for the green incontinence pads, Maxiflex wound dressing and blue roll tissue paper.

Comparing treatments, the green incontinence pad was significantly more effective at remov-

ing 14C-MS than were the R-W-R method and the sponge.

The phorate results were broadly similar to those obtained with MS (Fig 3A and 3B), the

two main differences being that the Maxiflex wound dressing also significantly reduced skin

surface spreading of 14C-PH and that the R-W-R method was statistically less effective in

reducing skin surface spreading than green pads, Maxiflex dressing or blue roll.

Evaluation of absorbent materials for use as ad hoc dry decontaminants
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The test products were ineffective against KCN (Fig 4A and 4B). In contrast, the R-W-R

method significantly (p<0.05) reduced both the skin surface spreading and the residual

amounts of KCN.

With the exception of the sponge, all test products were significantly effective in reducing

the skin surface spreading and residual amounts of 14C-DEM (Fig 5A and 5B).

Whilst the effect was not statistically significant, green pads and Maxiflex dressing reduced

the spreading of parathion by ~60% (Fig 6A). Only blue roll was statistically effective (p<0.05)

in reducing the spreading of 14C-PT. Three test products (green pads, Maxiflex dressing and

blue roll) were significantly effective in reducing residual skin contamination of PT (Fig 6B).

Comparison of in vitro and ex vivo models

There was no significant correlation between the ex vivo effectiveness of the four test products

(green absorbent pad, blue roll, Maxiflex wound dressing and ambulance sponge) against
14C-MS and their in vitro absorbency.

Discussion

This study demonstrated that absorbent materials commonly found in clinical environments,

such as hospitals and ambulances, are generally more effective than the standard R-W-R tech-

nique for the decontamination of liquid chemicals from the skin surface. These data are in

agreement with previous in vitro, in vivo and human volunteer studies, which indicated that

dry decontamination is effective for the removal of liquid chemicals [18]. Moreover, dry

decontamination requires considerably less time (<5 s) than does the R-W-R method (90 s).

However, the dry decontamination products were ineffective against potassium cyanide,

whereas the R-W-R method was highly effective. This disparity is most probably due to the

presentation of the contaminant on the skin surface: unlike the other (liquid) contaminants

Fig 1. Performance of clinical (1–16; open circles) and domestic (17–35; filled circles) products in

terms of ability to absorb water or methyl salicylate (expressed as weight of MS or water absorbed per

weight of test product; w/w). All values are mean ± standard deviation of n = 7 measurements. Products 2,

12, 15 and 16 were selected for in vitro skin studies. For a description of each product (1–35), see Table 1.

doi:10.1371/journal.pone.0170966.g001
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Fig 2. (A) Skin surface spreading and (B) recovery of 14C-methyl salicylate (expressed as percentage of

applied dose) remaining on, within or penetrated through dermatomed pig skin following

decontamination (after 15 minutes) with test products (green incontinence pads, Maxiflex wound

dressing, absorbent tissue paper (blue roll) or polyurethane sponge) or the rinse-wipe-rinse method

(RWR). All values are mean ± standard deviation of n = 6 replicates. Asterisks indicate significant differences

between treated and untreated (control) skin: *p<0.05; **p<0.01; ***p<0.001. Horizontal brackets indicate

significant differences (p<0.05) between treatment groups.

doi:10.1371/journal.pone.0170966.g002
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Fig 3. (A) Skin surface spreading and (B) recovery of 14C-phorate (expressed as percentage of applied

dose) remaining on, within or penetrated through dermatomed pig skin following decontamination (after

15 minutes) with test products (green incontinence pads, Maxiflex wound dressing, absorbent tissue

paper (blue roll) or polyurethane sponge) or the rinse-wipe-rinse method (RWR). All values are

mean ± standard deviation of n = 6 replicates. Asterisks indicate significant differences between treated and

untreated (control) skin: *p<0.05; **p<0.01; ***p<0.001.

doi:10.1371/journal.pone.0170966.g003
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Fig 4. (A) Skin surface spreading and (B) recovery of 14C-potassium cyanide (expressed as

percentage of applied dose) remaining on, within or penetrated through dermatomed pig skin

following decontamination (after 15 minutes) with test products (green incontinence pads, Maxiflex

wound dressing, absorbent tissue paper (blue roll) or polyurethane sponge) or the rinse-wipe-rinse

method (RWR). All values are mean ± standard deviation of n = 6 replicates. Asterisks indicate significant

differences between treated and untreated (control) skin: *p<0.05; **p<0.01; ***p<0.001. Horizontal

brackets indicate significant differences (p<0.05) between treatment groups.

doi:10.1371/journal.pone.0170966.g004
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Fig 5. (A) Skin surface spreading and (B) recovery of 14C-diethyl malonate (expressed as percentage of

applied dose) remaining on, within or penetrated through dermatomed pig skin following

decontamination (after 15 minutes) with test products (green incontinence pads, Maxiflex wound

dressing, absorbent tissue paper (blue roll) or polyurethane sponge) or the rinse-wipe-rinse method

(RWR). All values are mean ± standard deviation of n = 6 replicates. Asterisks indicate significant differences

between treated and untreated (control) skin: *p<0.05; **p<0.01; ***p<0.001. Horizontal brackets indicate

significant differences (p<0.05) between treatment groups.

doi:10.1371/journal.pone.0170966.g005
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Fig 6. (A) Skin surface spreading and (B) recovery of 14C-parathion (expressed as percentage of

applied dose) remaining on, within or penetrated through dermatomed pig skin following

decontamination (after 15 minutes) with test products (green incontinence pads, Maxiflex wound

dressing, absorbent tissue paper (blue roll) or polyurethane sponge) or the rinse-wipe-rinse method

(RWR). All values are mean ± standard deviation of n = 6 replicates. Asterisks indicate significant differences

between treated and untreated (control) skin: *p<0.05; **p<0.01; ***p<0.001. Horizontal brackets indicate

significant difference (p<0.05) between treatment groups.

doi:10.1371/journal.pone.0170966.g006
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used in this study, potassium cyanide is a solid and so was dissolved in water for topical appli-

cation. Fifteen minutes after skin exposure (at the time of decontamination), the water was

observed to have evaporated, leaving a crystalline deposit on the skin surface. Thus, the experi-

ments with cyanide reflect contamination of the skin with particulate material rather than liq-

uid. Therefore, these data confirm that, whilst dry decontamination should be the default

option for skin contaminated with liquid chemicals, aqueous decontamination is required to

remove particulate contamination.

A second outcome of this study was that an in vitro measure of absorbency was not pre-

dictive of a test product’s ex vivo effectiveness as a skin decontaminant. The findings of the

ex vivo study may be considered as robust, as they were derived from a validated skin diffu-

sion cell model [17,19,20] that has been used extensively for assessing decontamination

products [21–34]. The lack of predictive accuracy of the in vitro test is disappointing, as a

simple method for identifying potentially effective skin decontaminants would have practi-

cal utility for the rapid screening of a wide range of products. It is conceivable that the dis-

parity between the in vitro and ex vivo models was due to a threshold effect: any material

with a degree of oil or water absorbency would be likely to demonstrate at least some ability

to remove contaminants from the skin surface. Further work is required to investigate this

hypothesis.

It should be noted that this study used a statistical analysis that included a mathematical

(Bonferroni) correction to account for multiple comparisons. This method of analysis will sub-

stantially increase the threshold at which results are deemed significant. Whilst this is good

practice for comparing multiple data sets, it represents a very conservative method of analysis.

It should be considered that, whilst some of the test products showed no statistically significant

effect in reducing residual skin contamination, the green absorbent pads, Maxiflex dressing

and blue roll all consistently attained >90% removal of liquid skin contaminants. In contrast,

the R-W-R method was ~85% effective. Thus, it is important to make a distinction between

statistical significance and clinical relevance: removing 85–90% of a toxic skin contaminant

will almost certainly be of some benefit to the casualty.

A final consideration is the decontamination procedure used in the ex vivo study. Each

absorbent product was placed on the skin surface for a brief period (5 s) with slight pressure

(~4.4 g cm-2). No attempt was made to rub the skin or perform a blotting motion. Thus, the ex
vivo study may have underestimated the performance of dry decontaminants. Whilst this

would not affect the lack of correlation observed with the in vitro absorbency test, it does indi-

cate scope for further improvement in the effectiveness of decontamination.

In summary, materials that display absorbent characteristics may provide a generic capabil-

ity for emergency skin decontamination. In particular, absorbent products such as wound

dressings, incontinence pads and tissue paper appear to be highly effective for removing liquid

contaminants from the skin surface.
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