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Current widespread descriptions of neuron morphology are static and inadequate for subcellular
characterizations. We introduce a new file format to represent multichannel information as well as an
open-source Vaa3D plugin to acquire this type of data. Next we define a novel data structure to
capture morphological dynamics, and demonstrate its application to different time-lapse experiments.
Importantly, we designed both innovations as judicious extensions of the classic swc format, thus
ensuring full back-compatibility with popular visualization and modeling tools. We then deploy the
combined multichannel/time-varying reconstruction system on developing neurons in live Drosophila
larvae by digitally tracing fluorescently labeled cytoskeletal components along with overall dendritic
morphology as they changed over time. This same design is also suitable for quantifying dendritic
calcium dynamics and tracking arbor-wide movement of any subcellular substrate of interest.
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Introduction

Neuroscientists have long recognized the importance of neuronal structure in defining circuit functlon
Ramén y Cajal began by drawing the complex shape of Golgi-stained neural arbors’?, and
neuromorphological investigations have thrived thereafter on numerous animal species, developmental
phases, and brain regions. In parallel to continuous improvements in labeling and imaging techniques,
methods to trace axonal and dendritic branchmg evolved from pencil-on-paper to digital encoding of tree
origins, bifurcations, and terminations’. Even though two-dimensional (2D) analyses of neuron
morphology have remained in practice®, the more complete and realistic three-dimensional (3D)
reconstructions became the standard in the field®. As the number of scientific publications describing 3D
digital tracings continued to increase, NeuroMorpho.Org emerged as a popular electronic repository to
store, annotate, publicly share, and freely reuse these labor-intensive datasets®. Although individual
neuroscience labs upload 3D reconstructions to NeuroMorpho.Org in more than 20 different formats
depending on the specific reconstruction system they use, all data are converted to, and can be
downloaded in, a common lingua franca, the swc file descriptor’. The open availability of neuronal
morphology digitally reconstructed in this form from a vast array of model systems, experimental
preparations, anatomical regions, and cell types enabled a diverse array of secondary studies. Among the
most flourishing applications are comparatwe morphometric analyses®, electrophysiological simulations’,
large-scale biophysically-detailed modeling'®, and algorithmic generation of virtual neurons'"'*.

While the advent of high-throughput automated tracing has dramatically expanded the sheer ‘volume
of experimental data'®, the existing representation of neural structure has two main limitations. First, 3D
reconstructions descr1be the overall morphology of neurons, but no information on intracellular
substrates. Rapid technolog1cal progress in serial immuno-staining'?, genetic fluorophore engineering'
and spectral unmixing'® now allow simultaneous labeling of multiple subcellular components, requlrmg a
co-evolution of the digital representation system. Second, current reconstructions are static, and do not
incorporate temporal dynamics of neural structure. In the past, neuroinformatic tools have been
developed to deal with subcellular'”"® and dynamic*>*' neural data. Nevertheless, major advancements
in live imaging techniques®>* necessitate an extension of the neuroanatomical file descriptors to
annotate morphological changes over time. In both cases, the ideal data structure should capture these
additional dimensions flexibly and precisely while preserving the intuitive simplicity of the original swc
format.

Here we present an expanded multichannel file format (swc) and the corresponding Vaa3D?* plugin
to acquire multi-signal reconstructions that incorporate subcellular information simultaneously with the
overall morphology of the neuron. This application repurposes the Eswc extension prev10usly introduced
in Vaa3D to explicitly incorporate specific morphological features for faster computation®®, We then
introduce a novel data structure (swcx) to represent temporal branching dynamics. These next-generation
neural tracing systems are well suited for studying the cytoskeletal effectors of neural growth and the
genetic programs that govern cytoskeletal dynamics®’. Specifically, fluorescently labeled multi-signal live
images of developing neurons from Drosophila larvae can aid i in eluc1dat1ng the biochemical mechanisms
underlying the known morphological diversity of neuron types*®. We thus demonstrate how multi-signal
and time-lapse reconstructions may be combined to describe subcellular structural dynamics in this
genetically tractable experimental system.

Results

The classic swc file format’ describes the three-dimensional reconstruction of (typically binary) neuronal
trees (Fig. 1) as a series of interconnected nodes. Specifically, swc files (see Supplementary Information for
EBNF syntax) are simple text lists with each node represented as a line of seven space-separated values:
(1) the node number; (2) an integer indicating the neurite type (1 =soma, 2 =axon, 3 = dendrite etc.);
(3-5) the X, Y, and Z coordinates; (6) the local radius; and (7) the number of the parent node in the path
to the origin. Each node and its parent constitute respectively the ending and beginning of the connected
frustums making up the neuronal tree (Fig. 1a). All digital reconstructions in NeuroMorpho.Org follow
this file format, as illustrated by Class I dendritic arborization (da) neurons (Fig. 1b,c), along with an
excerpt of the correspondmg swc file (Fig. 1d), and further exemplified by sensory neurons from the
mouse dorsal root ganglion® (Fig. le,f) and Class III da neurons from the fruit fly larva (Fig. 1gh). These
basic compartmental models allow systematic morphometric quantifications and computational
simulations of current flow in dendrites, but lack the means to describe subcellular densities or
structural changes.

Multichannel neuronal reconstruction

Since the morphology of neuronal trees corresponds to the continuous bounds of their cytosolic
membrane, the 3D location and thickness of each branch are typically traced from the image stack of the
membrane label. The spatial distribution of intracellular constituents, in contrast, is often non-uniform
and discontinuous. Thus, when an additional imaging channel reports a distinct subcellular element, its
staining intensity can vary within a given branch based on the local concentration. To capture such multi-
signal information in digital reconstructions, we designed an extension of the swc format. In this new
eswc descriptor (see Supplementary Information for EBNF syntax), the first seven fields still represent the
overall arbor morphology as in regular swc files, but up to three additional values describe the quantity of
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o ) c Index Type X Y zZ R Parent
Termination point 11 27981 2161 229 213 -1
j 2 1 28121 23.65 226 237 1
14 3 1 282.48 25.27 235 3.37 2
4 1 28360 27.18 2.47 386 3
13 Continuation 5 1 28612 27.81 248 391 4
Point 6 1 288.88 27.73 2.27 245 5
7 2 27816 1915 224 130 1
8 2 27656 1666 2.18 094 7
8 9 2 27496 14.16 2.13 0.72 8
10 2 27348 1159 219 0.84 9
6 11 2 27208 898 218 078 10
Branch 4 12 2 27069 636 215 072 11
// 1 13 2 268.68 4.21 231 1.05 12
» 14 2 26595 315 228 090 13
19 15 2 263.09 238 219 1.02 14
16 2 260.14 210 221 1.05 15
Frustums 17 2 25722 160 219 090 16
(compartments) 18 2 25427 136 218 0.66 17
19 2 25136 0.79 2.17 0.59 18

Figure 1. Examples of basic swc reconstructions. (a) Representation of neural structure as a tree, along with
graphical definitions of node, compartment, branch, branch point, continuation point, terminal point, and root
node. (b) Image stack, (c) reconstruction, and (d) excerpt of swc file of Class I da neuron from the Drosophila
larva. The swc nodes marked with the red arrow in ¢ are shown in d. The first six compartments described are
soma (Type 1), followed by an axon (Type 2) coming off from the soma and going up to node 19. Dendritic
nodes (Type 3) are not shown in d. (e) Maximum intensity projection of the image stack and (f) digital tracing
of mouse sensory receptor neurons from the dorsal root ganglion (Data Citation 1). (g) Image stack and (h)
reconstruction of Class III dendritic arborization (da) neuron from the Drosophila larva. Dendrites are depicted

in blue, axons in red, and somas in black. Scale bars in b,e,g: 100 pm.

each subcellular substrate at every node. Specifically, for each compartment delimited by the tracing point
location and its parent, we report (i) the volumetric fraction in which the signal is present, measured as
the proportion of voxels that are above threshold; (ii) the mean signal intensity of those voxels; and (iii)
their standard deviation (s.d.). While the mean signal intensity represents the overall local concentration
of the labeled substrate, the ratio above threshold and s.d. help distinguish between diffused and punctate
signals independently for each channel. A compartment with ratio near 1 and low s.d. signifies
homogenous substrate distribution, whereas a ratio close to 0 and high s.d. indicates strong punctate
signal expression. Thus, if two subcellular components are simultaneously imaged, the Eswc description
will consist of 13 values for each tracing point: 7 to reconstruct the arbor morphology and 3+3 to quantify
each of the two parallel channels.

We implemented this design in a newly developed multichannel_compute plugin for the Vaa3D
software suite (Vaa3D.org). Specifically, this plugin automatically generates the eswc file from the
multichannel image stacks and the corresponding standard swc file (see Methods). In addition to
outputting the eswc file, the Vaa3D multichannel_compute plugin also saves a backward-compatible
version of the swc file that can be opened using any existing swc viewer and other legacy tools. The
beginning of this file is identical to the original swc input, but the signal information from all additional
channels is appended as a pseudo-comment at the end. In principle, this system can quantify any number
of signals by adding three values for each imaged channel to every node. As an illustrative demonstration,
we apply this multi-channel reconstruction to simultaneously quantify the distributions of microtubule
(MT) and F-actin in a Class I da neuron from the fruit fly larva (Fig. 2). The polymerized forms of these
cytoskeletal proteins are genetically labeled in the red and green channels, respectively (Fig. 2a,b). After
reconstructing the overall morphology of this neuron (Fig. 1c), Vaa3D extracts the quantities of the two
signals into an Eswc file for their independent visualization (Fig. 2c,d) using the custom-developed
multichannel_render plugin (see Methods). Specifically, the subcellular components are displayed as
frustums internal to the overall external structure, representing the volumetric fraction occupied, while
signal intensity is coded by color (Fig. 2e-h). The underlying eswc file (see Supplementary Information of
digital data) stores the corresponding value for each channel (MT and F-actin) in every compartment
along with the arbor morphology (Fig. 2i). The combination of this file format and software tools thus
allows both quantitative acquisition and qualitative visualization of arbor-wide subcellular distributions.
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i 1 T X \4 z R P Ratio_MT Mean_MT SD_MT Ratio_F-act Mean_F-act SD_F-act
370 3 28032 3232 246 102 4 0.73 103.84  90.69 0.85 109.67 92.97
371 3 278.80 3436 214 075 370 0.68 95.26 72.24 0.66 58.43 38.92
372 3 27665 3632 225 080 371 070 84.08 | 64.25 0.62 38.17 21.32
373 3 27470 3855 235 1.02 372 057 80.04 | 65.61 0.64 76.40 66.61
374 3 27260 40.88 245 1.05 373  0.55 7112 6150 0.68 63.20 50.84
375 3 27097 43.13 250 0.86 374  0.62 65.78 | 59.99 0.60 45.58 28.41
376 3 27133 4583 279 1..09 375 0.80 78.51 70.50 0.70 69.20 65.09
377 3 27249 4468 2.89 046 376  0.67 86.07 | 76.56 0.72 79.20 70.52
378 3 27276 43.03 290 046 377  0.67 50.50 = 27.82 0.56 36.40 19.23
379 3 27345 41.89 275 046 378  0.42 56.20 | 59.63 0.75 47.33 28.25
380 3 27000 4871 3.25 075 376  0.67 73.76 | 73.04 0.61 76.89 74.41
381 3 268.17 5156 3.18 0.75 380  0.68 3416 | 14.66 0.36 26.90 7.48
382 3 26677 53.79 3.40 075 381  0.68 73.76 | 6179 0.78 62.17 45.82
383 3 264.69 5557 3.19 0.75 382 0.67 68.65 50.67 0.74 65.82 45.24
384 3 26647 5648 3.32 074 383 041 4173 | 1127 0.48 41.15 18.94
385 3 267.76 57.74 3.37 0.62 384 0.00 0.00 0.00 0.55 51.67 43.20
386 3 26210 58.11 3.09 075 383  0.54 50.58 | 29.27 0.60 48.76 26.44
387 3 259.89 60.45 2.80 0.79 38  0.67 73.79 | 58.80 0.74 74.58 62.04
388 3 257.72 6246 245 1.09 387  0.67 83.65  66.88 0.81 86.44 65.48

Figure 2. Example of an Eswc multi-signal reconstruction of a Class I da neuron. (a,b) Maximum-intensity
projection of mCherry-tagged microtubules (a) GFP-tagged F-actin (b). (c,d) Color-coded rendering of
reconstructed distributions of microtubules (c) and F-actin (d). The color represents the average signal
intensity (Mean) in each compartment. Low signal intensity (15) is shown in indigo blue and high signal
intensity (100+) in dark red. (e-h) are zoomed insets from (a-d), respectively with the overlaid external
structure (translucent white) representing overall arbor morphology. The proportion of voxels in which the
signal is present (Ratio) is represented by the internal volume of the compartment relative to the external
volume of the morphology. (i) contains a portion of the eswc file, from node 370 to 385, highlighted by the
dotted yellow arrows in (g,h). Scale bars: 100 pm in (a,b), 20 pm in (e,f). The complete eswc file corresponding
to this neuron is available in Supplementary Information.

Time-lapse neuronal reconstruction
Next, we introduce a data structure to describe time-varying neural reconstructions. This description of
dynamic changes (swcx) also constitutes a (different) extension of the swc format. An swcx file (see
Supplementary Information for EBNF syntax) represents the initial neuronal morphology in the first 7
fields as in the regular files and encodes every subsequent time point with additional values for each node.
Thus if the initial reconstruction corresponds to the ‘zeroth’ time step, the representation of the first time
step begins in the 8th field, followed by the second time step, and so on. This system requires the explicit
annotation not only of the type of morphological alteration at each dynamic location, but also of the
structural associations between corresponding static (unchanged) nodes across time points. We
distinguish five categories of dynamic events and numerically annotate them as the following. (a) New
branch extensions, including both terminal and interstitial branching: -1; (b) local scaling in branch
length (stretching/contracting) or radius (thickening/thinning): -2; (c) branch rotation or deformation:
-3; (d) terminal branch retraction: -4; and (e) branch re-emergence (a special case of branch extension
following a retraction at the same location): -5. For the stable (unchanged) nodes, the event index simply
points to the temporal parent, that is, the corresponding node in the previous time step. Thus, if node k in
the first time point corresponds to node j in the zeroth time point, the 8th entry of row k will be j.
To annotate nodes over time, the morphology corresponding to each time point is mapped node-by-
node onto the neuron reconstructed at the previous time point, starting from the first time point. This is
achieved by associating the identity of stable nodes and tagging the changed nodes with the
corresponding event label in the appropriate additional columns. Note that the swcx file must include a
line for every node present at any time point. Since nodes can appear and disappear dynamically, absent
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Portera-Cailliau Gage

P10

AP10-P12

P12

AP12-P14

P14

b Id Type X Y z R P P12 P14
1 2 1955 182.2 809 23 -1 1 1
2 2 206.5 1859 96.2 23 1 2

5

6

238.6 212.8 131.2 2.3
240.2 217.6 1354 2.6

280.2 254.5 206.4 2.4 16 17

2

2

2
18 2 283.1 258.2 2139 24 17 18
19 2 286.1 262.9 2184 25 18 19
49 2 309.6 319.5 505.7 2.5 48 49
50 2 3116 321.3 511.7 23 49 50
51 2 3173 318.2 521.6 2.3 50 51
57 2 354.6 289.9 5544 23 56 57
58 2 312.0 308.4 477.8 2.2 46 58
59 2 319.0 305.7 4713 2.5 58 59
66 2 366.0 269.3 4959 2.1 65 66
67 2 372.8 269.3 503.2 2.1 66 67
68 2 236.7 210.7 1383 23 6 68 68 68
106 2 148.3 275.1 473.5 2.4 105 106 106 106
107 2 148.7 277.2 485.4 2.4 106 107 107 107
108 2 147.8 277.7 490.8
109 2 147.7 280.5 500.6
110 2 146.2 283.4 511.7
120 2 122.6 330.1 578.1
121 2 117.6 342.1 579.1
130 2 95.6 409.1 608.1
131 2 946 4121 614.1
132 2 153.2 266.8 469.5
134 2 161.8 258.8 480.7
135 2 165.0 251.0 491.0 1.8 134 0 0 -1
136 2 168.0 242.0 502.0 1.8 135 0 0 -1
151 2 195.0 216.0 507.0 2.4 150 O 0 =1
152 2 196.0 213.0 509.0 2.4 151 0 0 -1
153 2 190.6 1803 750 23 1 0 | -1 | 153
154 2 184.8 1753 69.8 23 153 0 | -1 | 154
166 2 797 379 348 23 165 0 | -1 | 166
167 2 615 134 259 23 166 0 | -1 | 167
168 2 133.0 125.0 44.0 1.8 162 0 0 =il
182 2 29.0 2110 10.0 1.8 181 O 0 =1
183 2 188.0 173.0 74.0 23 154 0 0 =1
194 2 235.0 910 79.0 1.8 193 0 0 -1

Figure 3. Examples of dynamic time-lapse reconstructions. (a) Growing axon from the neonatal mouse
cortex (Data Citation 2); three static time points are displayed in gray corresponding to postnatal days 10, 12,
and 14 (P10, P12, and P14, respectively); the intermediate colored images represent the dynamics of the two
transitions: from P10 to P12 and from P12 to P14. The node indices of the root (in blue), branch points (in
green) and terminations points (in yellow) are displayed from all three time points. In the intermediate
transition images, green, red, blue, yellow, and pink branches signify elongation, retraction, re-emergence,
rotation, and local scaling, respectively. (b) Time-varying swcx file (abridged for ease of illustration: darker row
borders indicate discontinuities) corresponding to the dynamic morphology of a. (¢) Time-varying dendritic
structure in a developing dentate gyrus granule cell (Data Citation 3). Morphological dynamics through the ten
time points are color-coded: green, elongation; red, retraction; blue, re-emergence; and pink, local scaling. The

complete swcx file corresponding to this panel is available in Supplementary Information.

nodes at a given time point are annotated with ‘0" in the corresponding field. This process is then repeated
for every subsequent time point to produce the final swcx file, which contains arbor-wide structural
information across all time points represented in corresponding time columns (Supplementary Fig. 1).

We demonstrate the general applicability of this new design by annotating the time-lapse
reconstruction series from two independent experiments (Fig. 3). In both cases the original authors
had separately reconstructed the morphologies at each time point and deposited the corresponding static
tracing data into NeuroMorpho.Org, where they were converted into (classic) swc files. We transform
these static reconstructions from consecutive time points into the aforementioned swcx file format. The
first dataset consists of growing axons from neonatal mouse somatosensory cortex>’. The reconstruction
of one subtree over three time points is displayed along with the transition dynamics (Fig. 3a) and an
excerpt of the corresponding swcx file that represents the dynamical structural information using three
time columns (Fig. 3b). Supplementary Fig. 2 illustrates the explicit representation of the updated 3D
coordinates, neurite thickness, and structural connectivity for each time point. The second dataset
involves the developing dendritic trees of adult-born granule cells in the mouse dentate gyrus**. When
time-varying data are collected over long time spans, the majority of arbor nodes move relative to their
previous positions. Even in these cases, the final swcx file provides a time-based indexing of all nodes, so
one can annotate any substantial movement of a node as a disappearance and re-appearance at a different
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Figure 4. Time-lapse cytoskeletal (F-actin) dynamics of a growing branch in a fruit fly Class IV da neuron
(third instar larva) at two minute time intervals. The first and third rows correspond to cytosolic membrane
(labeled in green) and polymerized F-actin (labeled in red), respectively. The second row highlights growing
region of dynamic branch in green. The fourth row renders the overall morphology and subcellular dynamics
simultaneously. The overall morphology (translucent black external structure) changes simultaneously with the
internal F-actin quantity (indigo blue: low intensity; bright red: high intensity) across four time points (min 0 to
min 6). The bar graph on the right represents the relative percentage change in F-actin in three regions of the
arbor: (1) a stable branch, (2) a bifurcation point, and (3) a dynamic terminal. Scale bars: 3 pm. The complete
file representing the data illustrated in this figure using the eswc and swcx formats is available in Supplementary
Information.

location. The dynamic reconstructions captured in the swcx design illustrate in this example the arbor-
wide structural plasticity across ten time points by highlighting distinct categories of morphological
alterations, including elongation, local scaling, retraction, and re-emergences (Fig. 3c). The complete swcx
file for this time series (see Supplementary Information) comprehensively encodes the 3D location,
thickness, and connectivity of all nodes for each time point in addition to the type and location of any
structural changes as well as the temporal correspondence between unchanged nodes.

Combining multi-signal and time-lapse digital reconstructions

The eswc and swcx formats are independent and compatible extensions of the swc file system, and can
thus be combined to track simultaneously temporal changes and intracellular quantities from multi-
channel time-lapse experiments. In addition to the swc-like representation of overall arbor morphology
with 7 values per node, subcellular components from each time point are represented at each location
with three columns per imaging channel and seven columns per time point. We apply this quantitative
representation of multi-signal, time-varying data to describe intracellular cytoskeletal (F-actin) dynamics
within a growing dendritic branch from a mature Class IV da neuron from the fruit fly larva sensory
system (Fig. 4). Here, green fluorescent protein (GFP) and red fluorescent protein (RFP) genetically label
the neurite membrane and F-actin, respectively. The interplay between these two signals, reconstructed
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across four time points, suggests that F-actin polymerization promotes branch extension. The
combination of the eswc and swcx data structures (see Supplementary Information for digital data)
quantifies both the subcellular and morphological dynamics in one and the same digital representation.
Note that in both the eswc and swcx files the number of columns is not fixed, but instead depends on the
number of imaging channels acquired (eswc) or the number of time points captured (swcx). Such
information can be provided in the header of the files along with other useful metadata.

Discussion

The two-dimensional neural drawings by Cajal and his pupils not only demonstrated the remarkable
diversity in neuronal structures across and within brain regions and animal species, but also revealed
fundamental functional principles such as directional information flow and specificity of neural
connectivity. Several types of mathematical descriptors have since been developed to represent axonal
and dendritic morphology. Early neuron tracing systems first listed the tracing points in ASCII files as
separate text lines, recording local branch é)osition and thickness as well as the topological type (root,
bifurcation, continuation, or termination)®. Alternatively, the volume occupied by a neuron structure
can be defined by a collection of vertices connected to polygons. Such mesh-like description is often
employed in electron microscopy as well as in detailed numerical simulations of molecular diffusion®'
This representation, however, is overly data-intensive for the majority of morphological studies and
computational models. A more efficient method of capturing overall neural morphology represents
branching arbors as sequences of interconnected frustums. The resulting digital reconstructions are
especially suitable to describe relatively lower resolution image stacks from light microscopy. This basic
data structure has remained almost unaltered in the last forty years™ as further efforts towards technical
improvements have primarily focused on automating the tracing process’. Based on estimations from
NeuroMorpho.Org’s literature collection, more than 180,000 neurons have been digitally reconstructed to
date from at least forty species and over two hundred anatomical regions.

The swc format, introduced almost two decades ago’, remains highly popular due to its unsurpassed
simplicity. Over 70,000 neuronal reconstructions are freely available in this format from the centralized
repository NeuroMorpho.Org®>??, and dedicated open-source analysis tools have been also developed for
the swc system®. The main rationale for expanding the swc format instead of any other file system to
annotate temporal and subcellular information is precisely this existing (and growing) wealth of available
resources’. Instead of coming up with a completely new design, extending the swc system enables the
research community to continue leveraging a wide variety of data acquisition, analysis, and modelling
tools. The eswc and swcx file structures also largely preserve the simplicity and readability of swc.
Although here for the sake of clarity we have used separate file formats (Eswc and swcx) to describe these
two conceptually distinct extensions of the existing neural description system, in the future it may
become convenient to merge the two formats into a single extension along with additional expansions.

The combination of multi-signal and time-lapse digital reconstructions in principle allows the
subcellular quantification of any neuronal property that can be captured over time through light-
microscopic imaging, including biochemical concentrations, ion channel locations, and organelle
movement, among others. Progress in multi-signal/time-lapse imaging techniques have already started to
yield new findings on the subcellular and molecular organization of neurons. For instance, super
resolutron 1mag1ng has revealed the arbor-wide distribution of proteins associated with post-synaptic
receptors®>. Combining paired recording with array tomography enabled researchers to study the
1nterrelat10n between functional plasticity and molecular composition of synapses*’. The positions of
synapses have been detected with high spatial accuracy using mGRASP?’. Integrated systems for two-
photon 1mag1ng and photo-stimulation are well suited for systematic interrogations of structural
plasticity®®. Low-intensity live-imaging of fluorophore-tagged subcellular protein complexes allow long-
term tracking of mitochondrial trafficking in neurites™. Intensity of light emitted from calcium sens1t1ve
dyes can be measured from multiple distinct locations of the neural arbor across several time points*.
Calcium imaging combined with whole-cell patch clamp recording has revealed that spike back-
propagation triggers a path distance-dependent calcium rise in dendritic trees*'. Advanced genetic
toolkits also allow for optogenetlc activation of single neurons followed by measurement of activity in
functionally connected circuits*>. Combination of live-imaging and electron microscopy has revealed the
arbor-wide locations of synapses and their ultrastructural architecture®. Bimodal dendritic plasticity
dependent on visual stimulation has also been observed through live-imaging**. All the above examples
and many more are in principle suitable for digital reconstruction leveraging the novel data structures
introduced here.

Significant progress has been made in the annotation systems for multi-signa and time-lapse
neural images. However, the community needed a standard descriptor of neuro-structural dynamics*
capable of adding multiple dimensions of information. We demonstrated the newly introduced
multichannel (eswc) and time-lapse (swcx) data structures in da neurons from the Drosophila larva.
Measuring arbor-wide quantities of subcellular substrates in this model system may reveal the influence
of individual molecules on mature arbor morphology. Time-varying reconstructions enable the
identification and temporal linking of dynamic changes. Combining the multi-signal and time-varying
systems allow one to measure the exact changes in cytoskeletal quantity within branches as they elongate
or retract across the whole arbor, at the limit of light-microscopic resolution. Subcellular concentrations
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of growth mediating cytoskeletal proteins can be used as fundamental determinants of dendritic growth
in computational simulations, and time-varying reconstructions can be used to improve and validate
data-driven models. This type of dynamic data can then be analyzed, visualized and reproduced via
simulation®®. Notably, time-lapse imaging can capture information across a broad range of temporal
scales depending on the dynamics of the biological phenomena under consideration. Dendritic spines and
axonal varicosities can turn over in minutes while arbor structures change over weeks. The swcx system is
suitable to represents any and all time scales as illustrated in this report.

A complementary augmentation in neuron description not addressed in the present work is the
annotation of circuit connectivity’’. Connectivity columns can be added by annotating pre-synaptic and
post-synaptic neuron pairs. Useful anatomical information also includes the location and orientation of
reconstructed neurons relative to each other or to tissue layer boundaries. This additional knowledge, if
available, can also be encoded in the header of the new augmented files. While the data trends in
NeuroMorpho.Org suggests that most of the reconstructions in the near future will still be in the basic 3D
static format, we predict that the number of new time-lapse and multichannel datasets will soon start to
increase. Availability of simple file formats for these data may also facilitate the development of new tools
and resources for the analysis of live and multi-signal neural images*®.

Methods

Multichannel reconstruction

Multi-signal eswc reconstructions were generated starting from the multi-channel image data and the
standard swc reconstructions. First the basic swc file was created by tracing the overall neuronal structure in
neuTube®. This file was then used as input in the multichannel_compute plugin of Vaa3D*® along with the
image stacks for each channel. The plugin interface asks for a primary channel, a secondary channel, and
their intensity thresholds. Within each compartment (frustums defined by the basic swc file), the plugin then
identifies the voxels with intensities above the input threshold for the primary channel (in this case the
overall morphology signal) and then checks the intensity of the same voxels for the secondary signal. We ran
the plugin twice, once with microtubule and then with F-actin as the secondary signal, using 15 (on a 0-255
scale) as the voxel intensity threshold (any voxel below 15 is not considered). The plugin outputs two
multichannel files. The first file details the multichannel data in the Eswc format with three additional
columns for each channel, annotating (1) fraction of voxels above threshold, (2) mean intensity, and (3)
standard deviation of intensity. The second file, in a back-compatible swc format with the regular 7 columns,
appends the fraction and mean of subcellular channels at the end of the basic neuron tree after a
#CHANNELSWC tag. The Vaa3D multichannel_render plugin uses the simple multichannel file as input
and generates a multichannel render file as output, representing the secondary signal distribution as a
collection of internal frustums, and the overall morphology as the connected external frustums. The intensity
values for each frustum can be color-coded using the Color_render_eswc_feature plugin, where the input
parameters are the lower and upper limits of the intensity values.

Time-lapse reconstruction

We created the swcx files for both examples of time-varying reconstructions illustrated in Fig. 3 by manually
annotating each dynamic event along with the temporal correspondence of the static structure. First we
‘reverse-generated’ the static tracings into image stacks for every time point. Next we traced the first time
point into a basic swc file using neuTube. We then opened the image stack from the 2nd time point along
with the 1st time point swc in neuTube and started annotating the structural changes. Since neuTube only
handles the standard swc format, we temporarily repurposed the neurite type column (2nd field) of the swc
file to tag elongation, local scaling, retraction, re-emergence, and movement events in a ‘time-coded’ manner.
The header of the swc file is used to mark global changes across time points such as overall skeleton scaling.
Next we compared the original swc file (representing the first time point) and the edited swc file
(representing the second time point with all structural annotations). The ordering of nodes remains
unchanged across all time points, and new branches are simply inserted after their corresponding parent
nodes in case of terminal extension, and after the entire subtree in case of interstitial extension. This allows
for a straightforward assignment of temporal correspondence for all nodes present in both time points. After
this step we repeated the process by mapping the (edited) swc file from the 2nd time point onto the image
stack from the 3rd time point and continue until the last time point. At the end, we consolidated the series of
annotated swc files (one for each consecutive pair of time points) into a final swcx file with a time column for
each time point and with numeric codes for each kind of structural change. Additional columns for each
time point are allocated to explicitly update the 3D coordinates, radius, and structural connectivity of each
node (as well as any subcellular information in case of multi-channel neural images). The intermediate
dynamic swex files from each time point can be used as input for the multichannel_compute_plugin along
with the multi-signal image stacks to combine temporal and sub-structural information, as shown in Fig. 4.

Drosophila strains and confocal imaging

Drosophila stocks were reared at 25 °C on standard cornmeal-molasses-agar media. The following fly strains
were used in the study GAL4’*',UAS-mCD8:GFP (Class I); GAL4"*"?, UAS-mCD8::GFP (Class III); GAL4"”,
UAS-mCD8:GFP/CyO,tubP-GAL80; GAL4"*"°, UAS-mCD8::GFP (Class 1V); UAS-GMA:GFP; GAL4*,
UAS-mCherry:Jupiter; UAS-LifeAct-Ruby. Fluorescently labeled da neurons from age-matched third instar
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larvae were imaged via in vivo confocal imaging using previously established protocols>'. Briefly, larvae were

pl

aced on a microscope slide, immersed in 1:5 (v/v) diethyl ether:halocarbon oil 700 and covered with a

22 x50 mm coverslip. Neurons were visualized on a Zeiss LSM 780 confocal microscope. Three-dimensional

Z-
re

stacks were collected using a 20X/0.8 N.A. air objective at step-size of 1.0-2.0 pm and 1024 x 1024
solution. For time-lapse imaging, images were acquired in time series mode with a time interval of 2 min

between frames at a step-size of 2 pm and 1024 x 1024 resolution.
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