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Generation of Time Delays: Simplified Models of

Intracellular Signalling in Cerebellar Purkinje Cells

Abstract

In many neuronal systems, information is encoded in temporal spike patterns. The recog-

nition and storage of temporal patterns requires the generation and modulation of time de-

lays between inputs and outputs. In cerebellar Purkinje cells, stimulation of metabotropic

glutamate receptors (mGluRs) results in a delayed calcium and voltage response that has

been implicated in classical conditioning and temporal pattern recognition. Here, we anal-

yse and simplify a complex model of the intracellular signalling network that has been

proposed as a substrate for this delayed response. We systematically simplify the origi-

nal model, present a minimal model of time delay generation, and show that a delayed

response can be produced by the combination of negative feedback and autocatalysis,

without any intervening signalling steps that would contribute additive delays. The min-

imal model is analysed using phase plane methods, and classified as an excitable system.

We discuss the implication of excitability for computations performed by intracellular

signalling networks in general.
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Generation of Time Delays: Simplified Models of

Intracellular Signalling in Cerebellar Purkinje Cells

Introduction

Many neuronal systems use temporal coding for information processing (e.g. Bialek

et al., 1991; Gerstner et al., 1996; Thorpe et al., 1996; Laurent, 1996; Rieke et al.,

1997; deCharms & Zador, 2000; Ahissar & Arieli, 2001; Huxter et al., 2003). In order

to use temporal coding, a system has to be able to generate and control time delays in

neuronal interactions. Understanding the generation and control of neuronal time delays

is a prerequisite for understanding temporal coding in the brain.

An example of a system where delays could play an important role is the cerebellum.

In Purkinje cells in the cerebellar cortex, activation of metabotropic glutamate recep-

tors (mGluRs) by parallel fibre input induces a delayed voltage response that has been

attributed to a delayed increase in the cytoplasmic calcium concentration (Batchelor &

Garthwaite, 1993; Batchelor et al., 1994; Batchelor & Garthwaite, 1997; Tempia et al.,

1998; Finch & Augustine, 1998). The delay between mGluR stimulation and calcium re-

sponse can vary considerably among cells, and this variation in delays has been suggested

to underlie the adaptive timing of the classically conditioned eye-blink response (Fiala

et al., 1996; Steuber & Willshaw, 1997, 2004) and the recognition of temporal parallel

fibre patterns (Steuber & Willshaw, 1999, 2004). In other systems than the cerebellum,

delays have also been implicated in processes such as sound localisation and temporal

pattern recognition in general (Hopfield, 1995; Gerstner et al., 1996; Napp-Zinn et al.,

1996; Eurich et al., 1997, 1998; Hüning et al., 1998; Natschläger & Ruf, 1998).

The signalling cascade involved in generating the delay between the mGluR activation

and the Ca2+ response in Purkinje cells has not yet been fully characterised, but seems

to require Ca2+ release from intracellular stores (Finch & Augustine, 1998). A plausible

hypothesis is that the delay is based on mGluR evoked activation of phospholipase C,

generation of inositol (1,4,5)-trisphosphate (IP3) and IP3 induced Ca2+ release. This

hypothesis has been formalised in a complex mathematical model of the mGluR signalling

cascade (Fiala et al., 1996). Using their model, Fiala and collaborators showed that
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this signalling cascade can indeed generate a wide spectrum of delays between receptor

activation and response.

However, Fiala et al. did not pinpoint which interactions in the complex mGluR

signalling network are responsible for generating the delay. A possible explanation for

the delayed response could be that the delay is simply caused by the sum of the time

delays that are introduced by the successive signalling steps between mGluR stimulation

and Ca2+ response. A similar kind of additive mechanism has been used by Goldbeter

to generate a time delay between mRNA production and negative feedback in a model of

circadian oscillations of the Drosophila PER protein (Goldbeter, 1995).

Alternatively, the delayed response might not be based on the sum of individual delays,

but emerge from the set of specific interactions between a few components of the mGluR

signalling cascade. The full model is too complex to be able to exclude either of these

two alternatives. In order to identify the minimal requirements for the generation of the

delayed response, we simplify the Fiala model in several steps, from the original system of

12 ordinary differential equations (ODEs) first down to nine equations, then to five and

finally to a minimal model of two ODEs. We show that the simplified model reproduces

the behaviour of the full model, including the possibility of generating delays of different

lengths, and that the model belongs to a general class of excitable systems. Using our

minimal model, we identify Ca2+ dependent autocatalysis and negative feedback between

Ca2+ and activated receptors as the essential elements for the generation of the delayed

response.

The Fiala Model

Before presenting our simplifications we first describe the original Fiala model (Fiala et al.,

1996, see figure 1 and appendix). Fiala and collaborators suggest that the time delay

generated by the intracellular signalling cascade in cerebellar Purkinje cells is important

for classical conditioning of eye-blink responses (for review, see Thompson & Krupa, 1994;

Yeo & Hesslow, 1998). In eye-blink conditioning, repeated conjunctive presentations of

a conditioned stimulus (CS, for example a tone) followed by an unconditioned stimulus

(US, for example a periorbital shock) result in an association between CS and US. After
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training with paired CS and US, presentations of the CS alone trigger adaptively timed

eye-blink conditioned responses (CRs) at the time of the US onset during training.

It has been suggested that the association between CS and US that is formed during

eye-blink conditioning is based on a decrease in Purkinje cell responsiveness, which leads to

disinhibition of deep cerebellar nucleus neurons and increased output from the cerebellum

(see for example Thompson & Krupa, 1994; Yeo & Hesslow, 1998). Information about CS

and US reaches cerebellar Purkinje cells through parallel fibres (PFs) and climbing fibres

(CFs), respectively. In the Fiala model, CS evoked PF fibre input to the Purkinje cell

results in stimulation of mGluRs by glutamate. This activates an intracellular signalling

cascade in the Purkinje cell, leading to release of Ca2+ from intracellular stores and an

increase of the cytoplasmic Ca2+ concentration. After training, the CS mediated increase

in Ca2+ concentration results in an outward current through activated Ca2+ dependent

K+ (KCa) channels, a decrease of the Purkinje cell firing rate and execution of an eye-

blink CR.

The time delay between mGluR activation and Ca2+ response varies depending on the

density of available mGluRs at the PF synapse. The timing of the Ca2+ response is of

central importance in the Fiala model: eye-blink learning is restricted to Purkinje cells

where the Ca2+ response coincides with the production of cGMP in the cytoplasm that

is triggered by US evoked CF input (Ito & Karachot, 1992, see appendix). In these cells,

the paired presentations of CS and US result in persistent phosphorylation and activation

of KCa channels. Fiala and collaborators assume that there is an array of Purkinje cells

with Ca2+ response latencies betwen 100 ms and several seconds. They show that such a

Purkinje cell array can learn eye-blink CRs with latencies in the same range.

The network of interactions between the intracellular signalling components in the

Fiala model is shown in figure 1. In addition to the feedforward connections linking the

activation of mGluRs by glutamate with the change in Ca2+ concentration and mem-

brane voltage there are also several feedback connections. For example, phosphorylation

by protein kinase C (PKC) inactivates mGluRs and G-proteins (Nishizuka, 1988; Kawa-

bata et al., 1996; Yarfitz & Hurley, 1994). IP3 receptors contain stimulating as well as

inhibitory binding sites for Ca2+, leading to a biphasic dependence of Ca2+ flux on the

cytoplasmic Ca2+ concentration (Bezprozvanny et al., 1991). Furthermore, a Ca2+ ac-
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tivated form of phospholipase C (PLC) provides a positive feedback loop between Ca2+

and IP3 production (Mignery et al., 1992). In the following sections, we simplify the

Fiala model in several steps and show that the combination of feedforward and feedback

connections can generate the delayed response.

Initial Simplification of the Model

Our first step towards simplifying the Fiala model is to categorise the components into

different groups. First, it is possible to classify the components according to their position

in the mGluR signalling network. The earliest of the components that show a delay is

Ca2+. As a consequence, only components upstream from Ca2+ can be involved in the

generation of the delayed response. Components without any direct or indirect influence

on Ca2+ are unable to contribute to the time delay. Thus, cGMP, calcineurin, the max-

imum KCa channel conductance and the membrane voltage can all be omitted from the

model. Only nine components exist whose dynamics can be responsible for the production

of the time delay: active mGluRs (B), PKC-inactivated mGluRs (A), G-protein GPLCα

(G), IP3 (I), DAG (D), Ca2+ (C), Ca2+-activated IP3 receptors (Ra), Ca2+-inactivated

IP3 receptors (Ri) and PKC (P).

A second criterion that can be used to classify the components is their qualitative

temporal behaviour in response to receptor activation. As can be seen in figure 2, the

components can be divided into five different categories:

1. Components that rise quickly (within less than 20 ms) up to a plateau, stay constant

for a while and decrease rapidly back to the baseline: active mGluRs and glutamate.

2. Components that increase slowly over several hundred milliseconds and, after reach-

ing a peak, decrease quickly: G-protein GPLCα and Ca2+-activated IP3 receptors.

3. Components that, after a time delay of several hundred milliseconds, rise quickly,

reach a peak with a 10-90% rise time between 20 and 40 ms and decay quickly:

Ca2+, IP3, DAG, PKC, the membrane voltage1, and calcineurin.

1After training, the voltage response is a negative rather than a positive peak.
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4. Components that, after a time delay, rise quickly within 20-40 ms, reach a plateau

and decay very slowly (by approximately 10% over 250 ms): PKC-inactivated

mGluRs and Ca2+-inactivated IP3 receptors.

5. Components that, during each learning cycle, change by a small amount and keep

their new values: the maximum KCa channel conductance.

Based on the categorisation of the components, the following simplifications can be

made:

• Ca2+ and PKC are both category three components with a very similar time course,

and Ca2+ precedes PKC directly in the intracellular signalling cascade. As a conse-

quence, PKC can be omitted from the model and, in the simplified equations, the

effects of PKC can be represented as Ca2+ effects.

• Similarly, IP3 and DAG are both category three components and, because of the

choice of parameters in the Fiala model, they follow an identical time course. Thus,

only IP3 needs to be represented in the simpler version of the model.

• Both glutamate and glutamate-activated mGluRs are category one components. As

shown in figure 2, the mGluR plateau results in a slow increase of the category two

component GPLCα. As the temporal evolution of active mGluRs in the cell is not

known, a possible simplification of the model is to leave out GPLCα, reduce the rate

constant for mGluR activation so that the active mGluRs turn from a category one

component into a slowly increasing category two component, and replace all GPLCα

effects by mGluR effects.

• Reducing the rate constant of mGluR activation enables us to make another sim-

plification. Fiala and collaborators assume the existence of three separate receptor

pools: activated mGluRs (B), mGluRs that are inactivated by phosphorylation (A),

and mGluRs that are dephosphorylated and ready to be activated by glutamate

(Bmax - B - A). In their model, the activation of mGluRs is slowed down when the

accumulation of phosphorylated receptors leads to a decrease in the concentration

of receptors that can be activated. In the simplified model, the rate constant of

mGluR activation is more than two orders of magnitude smaller, which ensures
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that the receptor activation is slow enough without having to represent the phos-

phorylated receptors explicitly as a separate pool. The inactivated mGluRs can be

represented collectively by (Bmax - B), and the time course of activated receptors B

resembles the time course of activated G-protein GPLCα in the full model (compare

figures 2 (b) and 3 (a)).

The 5 components that are left and whose temporal evolution is described explicitly

by ODEs in the simplified model are active mGluRs (B), IP3 (I), activated IP3 receptors

(Ra), inactivated IP3 receptors (Ri) and Ca2+ (C). The change of the concentration of

active mGluRs in the 5 ODE model is given by:

dB

dt
= k1 (Bmax − B) [Glu] − k−1 B − k2 B C (1)

where [Glu] and Bmax are the concentrations of glutamate and total available mGluRs,

respectively. The third term in equation 1 represents the Ca2+ (C) dependent inactivation

of the receptors by PKC.

The activation of the mGluRs leads to an increase in the concentration of IP3, which

is modelled by:

dI

dt
= (Imax − I) (k7 B + k8

C2

C2 + KC

) − k9 I (2)

As in the Fiala model, the term k8 C2/(C2 + KC) describes the IP3 production by a

Ca2+ dependent form of phospholipase C.

IP3 binds to IP3 receptor Ca2+ channels on the membrane of the endoplasmic reticu-

lum. Required for the opening of the IP3 receptors is the binding of IP3 and the binding

of Ca2+ to an activation site. In the model, the change in the concentration of Ca2+-

activated IP3 receptors Ra is given by:

dRa

dt
= k12 (Rmax − Ra − Ri) C − k13 Ra − k14 Ra Cn + k15 Ri (3)

Activated IP3 receptors can be inactivated by dissociation of Ca2+ or by binding of

Ca2+ to an inhibitory site. The Ca2+ inactivation of the receptors exhibits a cooperativity

of n = 1.65 (Meissner et al., 1986), and the change of inactivated receptors Ri is described

by:
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dRi

dt
= k14 Ra Cn − k15 Ri (4)

The binding of IP3 is assumed to be in equilibrium with respect to the binding and

dissociation of Ca2+, and the concentration of open IP3 receptor channels Ro is given by:

Ro =
I

I + KI

Ra (5)

The release of Ca2+ through the open IP3 receptor channels Ro leads to an increase

in the cytoplasmic Ca2+ concentration C:

dC

dt
= k16 Ro (CER − C) − k17

C2

C2 + KATPase
(6)

where CER is the Ca2+ concentration in the endoplasmic reticulum. The second term

in equation 6 describes the removal of Ca2+ by the endoplasmic Ca2+ ATPase. In contrast

to the Fiala model, the 5 ODE model is not concerned with the electrogenic effects of the

Ca2+ currents, and the Na+/Ca2+ exchanger flux is therefore not modelled.

The 5 ODE model was implemented in C++ and the equations integrated numerically,

using a 5th order Runge-Kutta algorithm with adaptive step size control and the param-

eter values listed in table 1. Simulation results for the application of a 500ms glutamate

pulse to a model with a constant concentration of available mGluRs Bmax = 20µM are

shown in figure 3. The glutamate pulse results in a slow increase in the concentration of

active mGluRs, which in turn leads to a very slow increase in the concentrations of IP3

and Ca2+. After a time delay of approximately 250 ms, the IP3 and Ca2+ concentrations

begin to rise very quickly, and the model “fires” an IP3 peak and a Ca2+ peak, both of

which reach their maxima at t ≈ 300ms. A consequence of the Ca2+ rise is a fast decrease

in the concentrations of active mGluRs and IP3 receptors.

To understand the mechanism of the delayed response, it is crucial to understand

the transition between the slow rise of IP3 and Ca2+ during the first several hundred

milliseconds of glutamate application, and the fast rise during the upstrokes of the peaks.

A possible reason for this transition could be that the concentrations of IP3 or Ca2+ reach

a threshold where one or several regenerative processes lead to a large increase in the IP3

production and the Ca2+ release rates. In general, such a regenerative process could be

a direct autocatalytic effect of a single component on its own formation, or an indirect
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autocatalytic or cross catalytic interaction between two components, meaning that the

first component has a positive influence on the formation of the second component and

vice versa. Two examples for indirect autocatalysis can be found in the model (compare

figures 1 and 4):

1. Ca2+ has a positive effect on the formation of IP3, and IP3 stimulates release of

Ca2+ into the cytoplasm.

2. Ca2+ binds to and activates IP3 receptors, which leads to release of Ca2+ into the

cytoplasm.

Although the existence of autocatalysis might be able to explain the upstrokes of

the peaks, another mechanism is needed to generate the downstrokes, which reset the

IP3 and Ca2+ concentrations back to their baseline values. A possible reset mechanism

could be the Ca2+ dependent negative feedback through PKC phosphorylation of the

active mGluRs (see equation 1 and figures 1 and 4). To investigate if the combination of

autocatalysis and negative feedback is sufficient for the generation of the delayed response,

the 5 ODE model was further simplified down to a minimal model with 2 ODEs.

The Minimal Model

In the minimal model, the dynamics of activated mGluRs B and cytoplasmic calcium C

are described by two equations:

dB

dt
= ka (Bmax − B) [Glu] − kb B − kc B fa(C) (7)

dC

dt
= kd B fb(C) − ke fc(C) (8)

where Bmax is again the total concentration of available mGluRs. The three different

terms in equation 7 represent the activation of inactive mGluRs (Bmax−B) by glutamate,

the inactivation of active mGluRs by dissociation of glutamate and their Ca2+ dependent

inactivation by PKC phosphorylation. These terms correspond directly to those in the

original Fiala model, with the exception that, like in the 5 ODE model, active PKC
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is not modelled explicitly and the model has been simplified by making the receptor

phosphorylation directly dependent on Ca2+.

The two terms in equation 8 represent the release of Ca2+ from intracellular stores and

the removal of Ca2+ from the cytoplasm. The first term (kd B fb(C)) summarises all steps

connecting the activated mGluRs with the influx of Ca2+ into the cytoplasm, including

G-protein activation, production of IP3 and DAG by PLC, activation of IP3 receptors by

IP3 and Ca2+ flux through the IP3 receptors (in the Fiala model and the 5 ODE model,

these processes are modelled by equations 20 - 32 and equations 2 - 6, respectively, see

appendix and previous section). The production of IP3 by PLC and the activation of the

IP3 receptors are Ca2+ dependent; this is reflected by the term fb(C). The second term in

equation 8 represents the active transport of Ca2+ out of the cytoplasm and corresponds

directly to equation 29 in the Fiala model and equation 6 in the 5 ODE model.

In the previous section, we suggested that the time delay between receptor stimulation

and Ca2+ response might be based on the combined action of negative feedback and

autocatalysis. The following scenario could be responsible for the delayed Ca2+ peak:

1. Initially, the glutamate pulse leads to a slow increase in the concentration of active

receptors B and a very slow increase in the Ca2+ concentration C. As long as

C is smaller than a threshold concentration Θa, neither autocatalysis nor negative

feedback have a significant effect, and the rate of Ca2+ uptake back into the stores

is very low.

2. When C reaches Θa, the autocatalysis is switched on, leading to a large increase in

the Ca2+ release rate and the onset of the Ca2+ peak.

3. On the way to the top of the peak, C passes a second threshold concentration Θb

which results in a large increase in the Ca2+ uptake rate.

4. After C reaches a third threshold Θc, the negative feedback is activated and the

concentration of active receptors B is beginning to fall.

5. Consequence of the decrease in B is a decrease in the Ca2+ release rate until Ca2+

release and uptake compensate each other and the maximum of the peak is reached.
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6. The continued decrease in the rate of release of Ca2+ leads to the downstroke of the

peak and the return of the Ca2+ concentration to the baseline.

In the full model, the calcium dependent negative feedback, autocatalysis and removal

of calcium from the cytoplasm, which are summarised by the three functions fi(C), contain

sigmoidal dependencies on the calcium concentration. In the simplified model, these Ca2+

dependencies are represented by three Hill functions:

fi(C) =
Cn

Cn + Kn
i

(9)

When the cooperativity n is larger than one, a Hill function describes a sigmoid with a

steepness determined by n and a half-maximal value for C = Ki. Thus, in the model with

three Hill functions, the three constants Ki correspond to the threshold concentrations

Θa, Θb and Θc for the three Ca2+ dependent processes.

Compared to the original 12 ODE Fiala model and our 9 and 5 ODE models, the 2

ODE model can be much more easily analysed, and it is possible to display the temporal

evolution of the complete system in the phase plane. A first step towards analysing the

behaviour of the system is to determine the nullclines where the temporal derivative of

one of the variables is zero, and the fixed points where the temporal derivatives of both

variables are zero. In the 2 ODE model, the set of coordinates {B, C} that satisfy Ḃ = 0

defines a single B-nullcline:

B =
ka [Glu] Bmax (Cn + Kn

a )

ka [Glu] (Cn + Kn
a ) + kb (Cn + Kn

a ) + kc Cn
(10)

The model has two C-nullclines describing the coordinates {B, C} which are given by

Ċ = 0. The first of the C-nullclines is the B-axis, C = 0, and the second C-nullcline is

given by:

B =
ke (Cn + Kn

b )

kd (Cn + Kn
c )

(11)

The intersections of the B-nullcline with one of the two C-nullclines are the fixed

points of the system. For all possible combinations of parameter values, the B-nullcline

intersects the B-axis exactly once. At this intersection, the system has a fixed point:
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{B1, C1} = {
ka [Glu] Bmax

ka [Glu] + kb

, 0} (12)

Depending on the choice of parameters in the model, the B-nullcline can also intersect

the second C-nullcline (equation 11) at a single location. Thus, the model can have a

second fixed point {B2, C2} whose coordinates are:

B2 =

ke

(

2 Kn
b S − R +

√

R
2
− 4 S T

)

kd

(

2 Kn
c S − R +

√

R
2
− 4 S T

) (13)

C2 =





−R +

√

R
2
− 4 S T

2 S





1/n

(14)

where S, T and R are given by:

R = kakeK
n
b [Glu] + kakeK

n
a [Glu] + kbkeK

n
b + kbkeK

n
a

+ kckeK
n
b − kakdK

n
c − kakdK

n
a [Glu]Bmax (15)

S = kake[Glu] + kbke + kcke − kakd[Glu]Bmax (16)

T = kakeK
n
a Kn

b [Glu] + kbkeK
n
a Kn

b − kakdK
n
a Kn

c [Glu]Bmax (17)

Using the GRIND integration package (De Boer, 1983), the behaviour of the model was

investigated for different combinations of parameter values. We found that only parameter

sets that result in an intersection of the B-nullcline (equation 10) with the second C-

nullcline (equation 11), and therefore give rise to the second fixed point {B2, C2}, are able

to produce a time delay between the onset of the mGluR activation and the intracellular

Ca2+ response.

The existence of this fixed point is necessary for the model to generate a delayed

reponse, but it is not sufficient. When searching the parameter space of the model, we

could only generate delayed responses for Hill coefficients n ≥ 2, although parameter sets

with n = 1 can also lead to a stable fixed point at {B2, C2}. These empirical results

indicate that the sigmoidal shape of the Ca2+ dependencies favours the generation of

time delays in the model.
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Figures 5 and 6 summarise the behaviour of the minimal model for a cooperativity

n = 4 and the parameter values that are given in table 2. As shown in panel 5 (a),

the B-nullcline and the second C-nullcline divide the biologically meaningful area of the

phase plane where B and C are larger than or equal to zero into four regions with different

orientations of the direction vector {Ḃ, Ċ}. The fixed point {B2, C2} at the intersection

of the B-nullcline and the second C-nullcline is stable, and the fixed point {B1, C1} at the

intersection of the B-nullcline with the B-axis is a saddle point. Thus, if the initial Ca2+

concentration C(0) is equal to zero, the system will travel along the B-axis and end up

at {B1, C1}, and if C(0) is different from zero, the system will move through the phase

plane and come to rest at {B2, C2}.

The behaviour of the model in response to parallel fibre input is shown in panel 5

(b). Without any input to the cell, the glutamate concentration in the synaptic cleft

is at a very low level G1, and the system rests in the stable state S0 = {B2, C2} at the

intersection of the B-nullcline and the second C-nullcline (indicated by the empty circle in

the figure). When the cell receives an input, the glutamate concentration is temporarily

stepped up to a higher value G2 � G1. As a result of the glutamate step, the B-nullcline

(equation 10) is shifted in the phase plane, and the stable fixed point moves to a new

location S∗ = {B
∗

2, C
∗

2} (filled circle in panel 5 (b)). Thus, the current state of the system

S0 is no longer a fixed point, and the state vector S = {B, C} travels through the phase

plane until it settles into the new stable state at S∗. The temporal evolution of the system

in response to the G1 → G2 step can be divided into the following five phases:

1. A very slow increase in C and an increase in B while the state vector S crosses the

(++) region. The increase in B is initially fast (1.48µM/s at S0, see vector field in

panel 5 (b)) and slows down when the state vector approaches the B nullcline.

2. A very fast increase in C (reaching a maximum rate of 20.09µM/s) and a fast

decrease in B while crossing the (−+) region.

3. A fast decrease in C and a slow and very small decrease in B on the way through

the (−−) region.

4. A very small decrease in C and a very small increase in B while traversing the (+−)

region.
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5. Finally, a very small increase in C and B while S crosses the (++) region for a

second time before the system settles into the new stable state S∗.

Although the high-glutamate fixed point S∗ is close to the low-glutamate fixed point

S0, the state vector makes a large excursion through the phase plane, a phenomenon which

is called excitability (FitzHugh, 1960; Edelstein-Keshet, 1987). The long trajectory in the

phase diagram corresponds to a large transient increase in the concentrations of active

mGluRs and Ca2+. Two examples of delayed Ca2+ responses for different concentrations

of available receptors are given in panels 6 (a) and (b). Panel 6 (c) shows the dependence

of the time delay on the concentration of available mGluRs Bmax. Values of Bmax between

30 and 180 µM result in delayed responses with latencies between 160 and 600 ms. Like in

the Fiala model, larger concentrations of available mGluRs give rise to shorter latencies.

When the input to the cell is switched off, the glutamate concentration is reset to the

rest value G1, and the B-nullcline moves back to its original location. As a consequence,

the stable fixed point shifts back to S0 and the current state S = S∗ is destabilised. Thus,

the state vector S travels back to S0, this time without a large detour from the direct

route through the phase plane.

Discussion

In cerebellar Purkinje cells, stimulation of metabotropic glutamate receptors (mGluRs)

can result in a cytoplasmic calcium rise and a voltage response after a delay of several

hundred milliseconds (Batchelor & Garthwaite, 1993; Batchelor et al., 1994; Batchelor &

Garthwaite, 1997; Tempia et al., 1998; Finch & Augustine, 1998). In order to identify

the features of the mGluR activated signalling cascade that are critical for generating this

delayed response, as well as delayed responses in general, we have analysed and simplified

the Fiala model of mGluR dependent intracellular signalling in Purkinje cells (Fiala et al.,

1996). Based on the position of the components in the signalling network, the number

of ordinary differential equations (ODEs) in the model was first reduced from 12 to nine.

Categorising the components in terms of their dynamic behaviour enabled us to further

simplify the model down to five ODEs, and finally to a minimal model with two ODEs.

Like the original 12 ODE model, the 2 ODE model can generate delayed responses
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with different latencies. Thus, the basis of the time delay generation are specific inter-

actions between the components, and intervening steps that contribute additive delays

are not necessary. In the minimal model, the two ODEs represent the dynamics of ac-

tive mGluRs and cytoplasmic Ca2+. The critical features of the model that underlie the

delayed response are Ca2+ dependent negative feedback and autocatalysis.

The postulated requirement for autocatalysis and negative feedback can be tested

experimentally. The interaction between Ca2+ and the receptors is mediated by PKC,

and we predict that blocking PKC pharmacologically will prevent the generation of a

delayed response. The dependence on autocatalysis is more difficult to study, given that

the Ca2+ activation of IP3 receptors cannot currently be blocked without blocking IP3

dependent Ca2+ release completely. However, it should also be possible to measure the

shape of the Ca2+ dependencies in experiments. In numerical simulations of the 2 ODE

model, we did not manage to generate delayed responses unless the Ca2+ dependencies

were described by sigmoidal Hill functions with cooperativities of at least 2. Given that

there is no theoretical reason for this observation, the empirical simulation result should be

compared with experimental data. It would be interesting, albeit technically challenging,

to investigate systematically in experiments how the delayed Ca2+ response is influenced

by interfering with the exact shape of the different Ca2+ dependencies.

One of the advantages of the minimal model is that it can be analysed mathematically,

and that the behaviour of the system can be understood by plotting its temporal evolution

in the phase plane. It was found that the activation of receptors by glutamate leads only

to a small shift of the stable fixed point, but results in a large excursion of the state

vector through the phase plane. Thus, by simplifying the complex Fiala model of mGluR

dependent intracellular signalling in cerebellar Purkinje cells, we were able to show that

the signalling network has the characteristic features of an excitable system (FitzHugh,

1960; Edelstein-Keshet, 1987).

In the temporal domain, the large excursion in the Ca2+ - receptor phase plane cor-

responds to the firing of a Ca2+ spike. The ability of the system to generate Ca2+ spikes

could have several computational advantages. Unless the system is close to threshold,

small perturbations in the concentrations of its components do not affect the decision

whether or not a spike is generated. Fluctuations of the components have to cross thresh-
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old in order to have an effect on spiking; noise that stays below threshold does not influence

the spike output and is ignored. Thus, excitability produces resistance to subthreshold

noise. Furthermore, a spike based system provides a wide range of possible coding schemes

that can be used, including simple rate codes where the information is represented by the

number of spikes in a sampling interval, or temporal codes where the input is encoded by

the timing of the spikes. Interestingly, it has been suggested previously that rate coded

Ca2+ signals can be decoded by calmodulin (CaM) dependent kinase II (Putney, 1998;

De Koninck & Schulman, 1998).

Negative feedback and direct or indirect autocatalysis can be found in many intracel-

lular pathways, and sigmoidal activation functions are ubiquitous in biochemical networks

(Bray, 1995). Thus, the postulated delay generation mechanism might be a common fea-

ture of intracellular signalling systems. The generation of time delays plays an important

part in many different processes such as rhythm generation (Goldbeter, 1995), auditory

processing (Gerstner et al., 1996), classical conditioning (Fiala et al., 1996) and temporal

pattern recognition (Hopfield, 1995).

Apart from generating time delays, intracellular signalling networks can have various

other computational functions. It has been suggested that networks of proteins can per-

form logical operations (Bray, 1995), and that bistability in biochemical networks can

be used to store information (Bhalla & Iyengar, 1999). To fully understand neuronal

information processing, it will therefore be necessary to understand the computations

performed by the network of intracellular signalling components, and how this network

interacts with the ion channels in the neuronal membrane. Given the complexity of intra-

cellular networks, a multi-level modelling approach, where complex models are studied in

parallel with simplified ones, seems to be the best strategy to pursue this goal.
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Appendix: Mathematical Description of the Fiala Model

In the Fiala model, PF input to the Purkinje cell results in activation of mGluRs by

glutamate ([Glu]). Activated receptors B can be inactivated by dissociation of glutamate

or by phosphorylation by PKC (P ), which gives rise to phosphorylated receptors A. Thus,

the change of the concentrations of activated (B) and phosphorylated (A) mGluRs is given

by

dB

dt
= k1 (Bmax − B − A) [Glu] − k−1 B − k2 B P (18)

dA

dt
= k2 B P − k3 A (19)

where Bmax is the total concentration of available mGluRs. A larger Bmax results in

faster production of activated receptors B, which speeds up the whole signalling cascade

and shortens the time delay between mGluR activation and calcium release.

The activated mGluRs trigger the dissociation of a phospholipase C (PLC) specific G-

protein into subunits Gβγ and GPLCα. Fiala et al. (1996) assume that the active subunit

GPLCα can be inactivated by PKC phosphorylation and they represent the change of its

concentration G by:

dG

dt
= k4 (Gmax − G) B − k5 G − k6 G P (20)

The next step in the intracellular signalling cascade is the activation of PLC by GPLCα

and the formation of inositol (1,4,5)-trisphosphate (IP3) and diacylglycerol (DAG) from

phosphatidylinositol (4,5)-bisphosphate (PIP2). As there is also a Ca2+ dependent form

of PLC (Mignery et al., 1992), the production of IP3 (I) and DAG (D) is modelled as:

dI

dt
= (Imax − I) (k7 G + k8 PLC( C )) − k9 I (21)

dD

dt
= (Dmax − D) (k7 G + k8 PLC( C )) − k9 D (22)

with a Ca2+ (C) dependent PLC activity:

PLC( C ) =
C2

C2 + KPLC

(23)

IP3 activates IP3 receptor Ca2+ channels on the membrane of the endoplasmic reticu-

lum (ER) leading to release of Ca2+ into the cytoplasm. In addition to the dependence on
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IP3, Ca2+ release through the IP3 receptors (IP3Rs) also shows a bell-shaped dependence

on cytoplasmic Ca2+ (Bezprozvanny et al., 1991). In the model, the bell shaped Ca2+

dependence is based on the interaction of Ca2+ with two antagonistic binding sites, one

with a stimulating effect on IP3R opening and one that inhibits it. The inhibitory site

binds Ca2+ with a cooperativity of n = 1.65 (Meissner et al., 1986). The binding and dis-

sociation of IP3 is assumed to be much faster than all other reactions in the model. Thus,

the IP3 binding is in equilibrium with respect to the Ca2+ binding and the concentration

of open IP3R channels Ro is given by

Ro =
I

I + KI
Ra (24)

where Ra is the concentration of IP3R channels with Ca2+ bound to the stimulating,

but not to the inhibitory site, and I
I+KI

is the fraction of channels with bound IP3. Because

of the fast IP3 binding, the concentrations of Ca2+ activated receptors Ra and inhibited

receptors Ri can be modelled with two differential equations:

dRa

dt
= k12 (Rmax − Ra − Ri) C − k13 Ra − k14 Ra Cn + k15 Ri (25)

dRi

dt
= k14 Ra Cn − k15 Ri (26)

The Ca2+ which enters the cytoplasm through the IP3Rs is removed by the Na+/Ca2+

exchanger in the plasma membrane and the Ca2+ ATPase in the ER membrane. The

change of the cytoplasmic Ca2+ concentration C is given by the sum of three terms:

dC

dt
=

dC

dt
(IP3 ) −

dC

dt
(ATPase) −

dC

dt
(NaCa) (27)

The IP3 induced Ca2+ release increases linearly with the concentration of open IP3Rs

Ro and the Ca2+ concentration difference between ER and cytoplasm:

dC

dt
(IP3 ) = k16 Ro (CER − C) (28)

The activity of the ER ATPase is modelled by a Hill function with a coefficient of 2

(Lytton et al., 1992):

dC

dt
(ATPase) = k17

C2

C2 + KATPase
(29)
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The Na+/Ca2+ exchanger carries Na+ and Ca2+ ions with a stoichometry of 3:1 in

opposite directions across the plasma membrane. The Ca2+ flux is outward if the cyto-

plasmic concentration is larger than the equilibrium concentration Ceq (Carafoli, 1987):

Ceq = Cext

[Na+]3cyt

[Na+]3ext

exp(
V F

R T
) (30)

where Cext and [Na+]ext are extracellular calcium and sodium concentrations, [Na+]cyt

is the sodium concentration in the cytoplasm, V represents the membrane voltage, T the

thermodynamic temperature, R the gas constant and F the Faraday constant. The Ca2+

flux through the exchanger is modelled by (Hodgkin & Nunn, 1987):

dC

dt
(NaCa) = k18

C − Ceq

C − Ceq + KNaCa
(31)

The rise in the cytoplasmic Ca2+ concentration triggers the activation of protein kinase

C (PKC). PKC is transformed into its active form (P ) by binding one Ca2+ ion and one

molecule of DAG (D):

dP

dt
= k10 (Pmax − P ) D C − k11 P (32)

Two currents mediate the effect of Ca2+ on the membrane potential: an outward

current through the KCa channels and, for sufficiently elevated Ca2+ concentrations, an

inward current through the Na+/Ca2+ exchanger. Thus, the change of membrane poten-

tial is described by

dV

dt
= k19

dC

dt
(NaCa) − ḡKCa mKCa(C, V ) (V − VK) − k20 (V − Vbase) (33)

where Vbase = −50mV is the elevated in vivo baseline potential and k20 is given by

the ratio of leakage conductance and membrane capacitance.

The outward current through the KCa channels is modelled as the product of three

terms: the driving force given by the difference between membrane potential V and

potassium equilibrium potential VK = −85 mV , the maximum conductance ḡKCa, and

the Ca2+ and voltage dependent activation variable mKCa(C, V ). The activation of the

channels by Ca2+ rise and membrane depolarisation is assumed to be instantaneous:
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mKCa(C, V ) = mKCa,∞(C, V ) =
C2.6 s−1S−1

C2.6 + exp( 11−V/mV
22.5

) µM2.6
(34)

The maximum conductance of the KCa channels ḡKCa is increased by PKC phospho-

rylation. Persistent phosphorylation of the KCa channels by PKC requires simultaneous

inhibition of PP-1. In analogy to one of the hypothesised mechanisms for AMPA receptor

LTD (Ito & Karachot, 1992; Linden & Connor, 1993; Daniel et al., 1998; Schweighofer &

Ferriol, 2000), Fiala and collaborators have suggested that the inhibition of PP-1 by CF

input is mediated by a signalling cascade through nitric oxide (NO) and cyclic guanosine

monophosphate (cGMP). In their model, the CF evoked rise of cGMP in the Purkinje

cell is described explicitly by:

[cGMP ] =







[cGMP ]max

(

exp( tCF −t
τ1

) − exp( tCF −t
τ2

)
)

(t > tCF )

0 (t ≤ tCF )
(35)

where [cGMP ]max is the maximum concentration of cGMP, τ1 and τ2 are the decay and

rise time constants and tCF is the onset of the cGMP rise. The cGMP rise in the Purkinje

cell cytoplasm activates protein kinase G (PKG) which phosphorylates and activates the

PP-1 inhibitor G-substrate. The resulting change of the KCa channel conductance ḡKCa

is given by:

dḡKCa

dt
= k23 (ḡKCa,max − ḡKCa) P [cGMP ] − k24 ḡKCa N (36)

The second term in Eq. 36 describes the KCa channel dephosphorylation caused

indirectly via PP-1 activation and G-substrate inhibition by the protein phosphatase

calcineurin (N). Calcineurin is activated by Ca2+/calmodulin with a cooperativity of

approximately 3 (Stemmer & Klee, 1994). Thus, the concentration change of active

calcineurin N is modelled by:

dN

dt
= k21 (Nmax − N) C3 − k22 N (37)

The network of interactions between the components of the Fiala model is summarised

in figure 1.
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Tables

Table 1: Parameters of the 5 ODE model

Parameter Description Value

k1 rate constant for glutamate binding to mGluRs 0.1µM−1s−1

k
−1 rate constant for glutamate dissociation from mGluRs 0.01s−1

k2 rate constant for PKC phosphorylation of mGluRs 4.0µM−1s−1

k7 rate constant for G-protein activated formation of IP3/DAG 0.2µM−1s−1

k8 rate constant for Ca2+ activated formation of IP3/DAG 40.0s−1

k9 rate constant for IP3/DAG degradation 80.0s−1

k12 rate constant for Ca2+ activation of IP3Rs 60.0µM−1s−1

k13 rate constant for dissociation of Ca2+ from activated IP3Rs 48.6s−1

k14 rate constant for Ca2+ inactivation of IP3Rs 7.55µM−1.65s−1

k15 rate constant for dissociation of Ca2+ from inactivated IP3Rs 0.0

k16 rate constant for release of Ca2+ from ER 2.0µM−1s−1

k17 rate constant for removal of Ca2+ by the ATPase 50.0µMs−1

KC activation constant for Ca2+ activation of PLC 20.0µM 2

KI activation constant for IP3 activation of IP3Rs 0.2µM

KATPase binding constant for Ca2+ binding to the ATPase 0.2µM2

Bmax total mGluR concentration 20.0µM

Imax total (bound and unbound) IP3 concentration 1.0µM

Rmax total concentration of available IP3Rs 1.0µM

CER reticular Ca2+ concentration 1mM
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Table 2: Parameters of the 2 ODE model

Parameter Description Value

ka rate constant for glutamate activation of mGluRs 0.00125µM−1s−1

kb rate constant for glutamate dissociation from mGluRs 0.0025s−1

kc rate constant for Ca2+ dependent inactivation of mGluRs 0.25s−1

kd rate constant for Ca2+ release from intracellular stores 0.25s−1

ke rate constant for Ca2+ uptake into intracellular stores 2.5µMs−1

Ka Hill constant for Ca2+ dependent inactivation of mGluRs 1.2µM

Kb Hill constant for Ca2+ release from intracellular stores 1.2µM

Kc Hill constant for Ca2+ uptake into intracellular stores 2.0µM

Bmax total mGluR concentration 30− 180µM

n Hill coefficient for Ca2+ dependent processes 4.0
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Figures
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Figure 1: Diagram summarising the interactions between the intracellular signalling com-

ponents in the Fiala model (Fiala et al., 1996). Solid arrows between two components

indicate that an increase in the first component results in an increase in the second com-

ponent. Broken arrows indicate interactions where an increase in the first component

triggers a decrease in the second one. The individual components are: Glu glutamate,

cG cGMP, B activated mGluRs, A inactivated mGluRs, G activated G-protein GPLCα, I

IP3, D DAG, P protein kinase C, C calcium, Ra activated IP3 receptors, Ri inactivated

IP3 receptors, N calcineurin, gK maximum KCa channel conductance and V membrane

voltage.
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Figure 2: Behaviour of the Fiala model in response to a 10µM glutamate pulse from

t = 0 to t = 500ms. For easier comparison, all concentrations X and the voltage V are

normalised by plotting X/max(X) and (V −min(V ))/(max(V )−min(V )), respectively.

(a) activated mGluRs (solid) and inactivated mGluRs (dashed). (b) GPLCα (solid), IP3

(dashed) and PKC (dotted). (c) active IP3 receptors (thin solid line), inactive IP3 re-

ceptors (dashed), Ca2+ (thick solid line) and the membrane voltage (V , dotted). (d)

calcineurin (solid), gKCa (dashed), and cGMP (dotted). The extreme values of the dif-

ferent variables are: max(B) = 64.044µM , max(A) = 65.624µM , max(G) = 0.478µM ,

max(I) = 0.259µM , max(C) = 0.972µM , max(Ra) = 0.521µM , max(Ri) = 0.995µM ,

max(C) = 6.765µM , max(V ) = −45.46mV , min(V ) = −50.03mV , max(N) =

1.918µM , max(gKCa) = 0.076S, max([cGMP ]) = 2.646µM . All parameters are as in

Fiala et al. (1996), with the exception of the concentration of available mGluRs, which is

set to Bmax = 66.5µM .
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Figure 3: Behaviour of the 5 ODE model in response to a 10µM glutamate pulse from

t = 0 to t = 500ms. A concentration of available mGluRs Bmax = 20µM implements

a time delay of ∆t ≈ 300ms. (a) active mGluRs (solid) and IP3 (dashed). (b) active

IP3 receptors (thin solid line), inactive IP3 receptors (dashed) and Ca2+ (thick solid

line). For easier comparison, all concentrations X are normalised by plotting X/max(X).

The maximum values of the variables are: max(B) = 3.657µM , max(I) = 0.255µM ,

max(Ra) = 0.507µM , max(Ri) = 1.00µM , max(C) = 6.931µM . Simulation parameters

are given in table 1.

Glu B C

Ri

Glu B CI

Ra

Figure 4: Diagram summarising the interactions between the intracellular signalling com-

ponents in the 5 ODE model (left) and the minimal 2 ODE model (right). Solid and

broken arrows represent positive and negative effects of a component on another one,

respectively. The components are: Glu glutamate, B active mGluRs, I IP3, C calcium,

Ra calcium-activated IP3 receptors and Ri calcium-inactivated IP3 receptors.
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Figure 5: Phase plane diagrams for the minimal model with two ODEs representing the

dynamics of active mGluRs B and Ca2+ C. (a) B-nullcline (red) and C-nullclines (green)

of the model for a glutamate concentration G2 = 10.0µM and the parameter values in

table 2. The system has a saddle point at the intersection of the B-nullcline with the B-

axis (represented by x), and a stable fixed point at the intersection of the B-nullcline with

the second C-nullcline (the filled circle in the figure). The nullclines divide the phase plane

into four regions with different orientations of the direction vector {Ḃ, Ċ}: (++) indicates

Ḃ > 0 and Ċ > 0, (−+) Ḃ < 0 and Ċ > 0, (−−) Ḃ < 0 and Ċ < 0 and (+−) Ḃ > 0 and

Ċ < 0. (b) Response of the model to a transient increase of the glutamate concentration

[Glu] from G1 = 0.02185µM to G2 = 10.0µM . The B-nullclines for G1 = 0.02185µM

and G2 = 10.0µM are indicated in blue and red, repectively. The C-nullcline is shown in

green. The empty and the filled circle mark the location of the stable fixed points S0 for

[Glu] = G1 and S∗ for [Glu] = G2. The arrows indicate the direction vectors {Ḃ, Ċ} at

different values of {B, C}. For clarity, each direction vector has been scaled by 50 % and

points from {B, C} to {B + Ḃ/2, C + Ċ/2} (note that the plot is double logarithmic). In

response to the G1 → G2 step, the state vector S = {B, C} travels from S0 to S∗ through

the phase plane (thick solid line).
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Figure 6: Dependence of the time delay between mGluR activation and Ca2+ response in

the minimal model on the concentration of available receptors Bmax. (a), (b) Temporal

evolution of the concentrations of active mGluRs (thin line) and Ca2+ (thick line) in

response to a step increase in glutamate concentration from G1 = 0.02185µM to G2 =

10.0µM at t = 0. The concentrations of available receptors Bmax in (a) and (b) are 120µM

and 60µM , respectively (other parameter values as in figure 5). For easier comparison,

the Ca2+ and receptor concentrations have been normalised to their maximum values. (c)

Larger concentrations of available receptors Bmax result in shorter time delays.

33


