
 
 
 
 

 
Citation for the published version:  
 
Zhang, Z., Day, R., Wang, K., Wu, H., & Yuan, Y. (2018). Thermal Performance Analysis of 
an Underground Closed Chamber with Human Body Heat Sources under Natural 
Convection. Applied Thermal Engineering. DOI: 10.1016/j.applthermaleng.2018.09.068 
 
  
Document Version:  Accepted Version 
 
This manuscript is made available under the CC-BY-NC-ND license 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 
 
Link to the final published version available at the publisher:  
 
https://doi.org/10.1016/j.applthermaleng.2018.09.068  

 

 

 

General rights 

Copyright© and Moral Rights for the publications made accessible on this site are retained by the 
individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied and it is a 
condition of accessing publications that users recognise and abide by the legal requirements 
associated with these rights. You may not engage in further distribution of the material for any 
profitmaking activities or any commercial gain. You may freely distribute both the url 
(http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or 
not-for-profit purposes without prior permission or charge. 

Take down policy 

If you believe that this document breaches copyright please contact us providing details, any such 
items will be temporarily removed from the repository pending investigation. 

Enquiries 

Please contact University of Hertfordshire Research & Scholarly Communications for any enquiries at 
rsc@herts.ac.uk 

https://doi.org/10.1016/j.applthermaleng.2018.09.068


1 

 

Thermal Performance Analysis of an Underground Closed Chamber with 1 

Internal Heat Sources under Natural Convection  2 

Zujing Zhang
a,c

, Rodney Day
b
, Kequan Wang

c
 , Hongwei Wu

b*
, Yanping Yuan

a** 
3 

 4 
a
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China 5 

b
School of Engineering and Technology, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom 6 

c
Chongqing Research Institute of China Coal Technology & Engineering Group, Chongqing, 400037 , China 7 

 8 
*
Corresponding author. Email: h.wu6@herts.ac.uk.  9 

**
Corresponding author. Email: ypyuan@home.swjtu.edu.cn  10 

 11 

Abstract：In this article, a combined experimental and numerical study has been performed to 12 

investigate the thermal performance of mine refuge chamber (MRC) under natural convection. By 13 

using heat lamps to simulate human heat loss, a 20-hour heating experiment is carried out in a 14 

fifty-person MRC laboratory. A proposed numerical model is validated against the experiment. 15 

Furthermore, sensitivity analysis is performed by Fluent software to investigate the effects of 16 

thermal parameters of rock. Results indicated that: (1) the experimental data and the corresponding 17 

numerical prediction have the same trend in air temperature rising with time, and the deviation 18 

between the two is less than 10%, which proves that the numerical model is effective; (2) the 19 

temperature rise process in a MRC can be divided into air temperature rapid increase stage and air 20 

temperature slow increase stage; (3) a new analytical method with simplified for predicting air 21 

temperature is proposed, it shows that the air temperature growth trend becomes slow with the 22 

increase of thermal conductivity, density and specific heat capacity of the rock; (4) the surface heat 23 

transfer coefficient of vertical walls is the largest and it increases linearly with air temperature. 24 

Keywords: Mine refuge chamber; Coal mine safety;Temperature; Natural convection; Surrounding 25 

rock; Thermal performance.  26 
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Nomenclature   

  
Thermal diffusivity of rock,           

m
2
/h 

   Fluctuating temperature 

  Area, m
2
    Initial rock temperature, °C 

b Assuming temperature variables, °C   Air velocity, m/s 

   Turbulence model parameter   
 ,   

  
Corresponding fluctuating velocity components 

in the i and j directions 

   Turbulence model parameter x, y Coordinate direction vector 

    Turbulence model parameter Subscripts 

    Turbulence model parameter a Air 

   Thermal capacity of air, J/(kg K) c Cross section of the original tunnel 

   Thermal capacity of rock, J/(kg K)   flow air 

   Fourier Number n Numerical simulation 

  Gravitational acceleration, m
2
/s i, j 

Elemental directions (i, j = 1, 2 and 3 

corresponding to the x, y, and z directions) 

   
Generation of turbulence kinetic energy due to 

buoyancy (J/s m3
) 

u Unaffected by the external Environment 

   
Generation of turbulence kinetic energy due to 

the mean velocity gradients (J/s m3
) 

w Walls in a MRC 

   Grashof number,               Greek symbols 

  
Natural convective heat transfer coefficient 

between air and wall, W/(m
2 K) 

   Air volume expansion coefficient 

   
Initial Natural convective heat transfer 

coefficient between air and wall, W/(m
2 K) 

  Coefficient of thermal expansion, 1/K 

k Turbulent kinetic energy (J/kg)   Difference 

   Gradient for surface heat transfer coefficient   Turbulent energy dissipation (J/kg s) 

   Assuming constants for K   Density, kg/m
3
 

K Gradient for air temperature increasing   Thermal conductivity, W/(m K) 

  Turbulence length scale, m   Dynamic viscosity, kg/m s 

m, n Assuming constants for K   Time, h 

  Number of people in a MRC    Turbulent eddy viscosity, (kg/m s) 

  Pressure, Pa   Kinematic viscosity (m
2
/s) 

   Planck number,           Turbulence model parameter 

  Heat flux on wall surface, W/m
2
    Turbulence model parameter 

   Heat generation rate per person, W 
Acronyms 

  Total heat generation rate, W 

  Radius of the surrounding rock, m MRC Mine refuge chamber 

   Equivalent radius of the cylinder, m PCM Phase change material 

  Modulus of the mean rate-of-strain tensor UB Underground building 

  Temperature, °C Re Reynolds number 

  27 
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1. Introduction 28 

With the rapid development and application of underground energy and space, the safety of 29 

underground space is becoming an important issue [1]. According to statistics of underground fire 30 

and explosion accidents, only a few people among the deaths died directly from the fire and blast 31 

wave, and up to 80% of the people indirectly died from carbon monoxide and suffocation [2-5]. The 32 

application of underground emergency refuge system, such as the tunnel rescue station in subway, 33 

mine refuge chamber (MRC) and movable shelter in mine, plays an important role in reducing 34 

deaths for underground accidents [6-8].  35 

MRC is the most important emergency refuge system for underground mine in China, it is also 36 

applied in other developed mining countries. A MRC normally consists of a living room and two 37 

transition rooms [9], and it needs to serve at least 96 h [10, 11]. Due to the heat generated by human 38 

metabolism, the air temperature in the MRC may beyond the allowable range of human’s thermal 39 

tolerance. The recommended apparent temperature in MRC is below 35 °C [12]. Li et al. [13] 40 

concluded that human responses change significantly when exposed in an environment with the 41 

temperature of 33 °C or the relative humidity of 85% in MRC. Du et al. [14] recommend that the 42 

temperature and relative humidity in MRC should be less than 31 °  and 80% RH. It needs to be 43 

mentioned here that the conventional refrigeration technology can’t be applied in MRC, because the 44 

power may be interrupted after an accident. Therefore, it is imperative to seek new cooling methods for 45 

MRC. Jia et al. [15] proposed a temperature control strategy by using ice storage capsule for 46 

movable MRC. The accuracy of the strategy was verified by a 24-h experiment in a closed cabin. 47 

Wang et al. [16] developed an ice thermal storage system, the system was determined in a 48 

fifty-person MRC for approximately 64.57 h. Xu et al. [17] proposed a non-electric cooling scheme 49 

for placing the encapsulated ice plates directly in the MRC, one plate has an average cooling load of 50 

14.3 W. Yang et al. [7] designed an open cycle carbon dioxide refrigerator system. A test showed 51 

that the system had 1200 W cooling power. Yuan et al. [18] proposed a coupled cooling method and 52 

application of phase change material (PCM) combined with pre-cooling of the envelope for MRC, 53 

the method considered the applicable temperature range of PCM and the cold storage function of 54 

the rock. Gao et al. [19, 20, 21] studied the temperature controlling characteristics of PCM plates 55 

and PCM seats used in a fifty-person MRC, the coupled heat transfer characteristics of surrounding 56 

rock, air and PCM were considered in their model.  57 

The heat transfer between the heat source, air and surrounding rock in MRC is a dynamic 58 

coupling process, thus the calculation of heat transfer is very complex. In recent years, some studies 59 

on coupling heat transfer characteristics of air and surrounding rock in the underground building 60 

(UB) have been reported. Yuan et al. [22, 23] established a mathematical heat transfer model for 61 

underground engineering envelope, the model provided a rapid and accurate solution for calculation 62 

of heat transfer. Their results indicated the thermal conductivity of the rock is an important factor of 63 

the heat transfer. Xiao et al. [24] proposed a method to calculate the transient heat flow through the 64 

envelope of an underground cavern and proved that the method has a good agreement with the 65 

numerical results. Liu et al. [25] presented a numerical model for the simultaneous heat transfer 66 

between air and the tunnel surface. The model was validated against experimental data applied to an 67 

underground tunnel. Kajtar et al. [26] presented a dimensioning method for shallow buried UB in 68 

terms of heat transfer characteristics and thermal comfort. The method was in favor of the quick 69 

sizing of the required heating and cooling performance of UB. Szabó et al. [27] developed a new 70 

dynamic dimensioning method for shallow buried UB. According to the method, there is no 71 

significant change in air and wall temperature after 1000 h, as well as the heat flux through the wall. 72 

https://www.sciencedirect.com/science/article/pii/S1359431113007266#!
https://www.sciencedirect.com/science/article/pii/S0360544216302523#!
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Sasmito et al. [28] studied the thermal management strategies of a dead end ventilated through a 73 

pipe in an underground mine, their results showed that several control parameters, such as virgin 74 

rock temperature, ventilation temperature and ventilation amount, have a significant effect on air 75 

temperature control. Habibi et al. [29] built a ventilation model calibrated against pressure, quantity 76 

and temperature results to simulate the airflow and heat conditions for a coal mine. For both flow 77 

and temperature, the predicted results agreed to within 90% accuracy of the actual measurements. 78 

Li et al. [30] pointed out that relative roughness plays an important role in the heat transfer of 79 

underground tunnels. As the relative roughness increase, the temperature drop and the cooling 80 

efficiency increase gradually.  81 

In summary, for the temperature control in MRC, the development of non-powered refrigeration 82 

technology has attracted much attention, few studies have focused on the thermal performance of 83 

the MRC. In this article, the characteristics of the dynamic coupling heat transfer process between 84 

the surrounding rock and the air in a heated MRC are mainly studied. A fifty-person MRC is 85 

selected as a study case. A heating experiment is carried out in a MRC laboratory to present the air 86 

temperature rising trend. Then ten cases with different parameters are designed to investigate the 87 

thermal performance of MRC under natural convection by using Fluent 18.0 software. 88 

2. Experimental setup 89 

2.1. Experimental environment  90 

A MRC is usually located in a deep underground coal mine. Due to the safety needs of the coal 91 

mine and the lack of mineral intrinsic safety heating equipment in the market, the heating 92 

experiment is conducted in a shallow MRC laboratory. The laboratory can accommodate 50 people 93 

in the living room with 20 m in length, 4 m in width and 3 m in height. The top of the living room is 94 

0.6 m above the ground. The wall was made of concrete with the density of 1600 kg/m
3
, the specific 95 

heat capacity of 840 J/(kg·K) and the thermal conductivity of 0.81 W/(m·K). The thickness of the 96 

vertical and bottoms wall is 0.6 m, 0.4 m for the top wall. A polyurethane insulation layer is covered 97 

on the top wall with a thickness of 0.08 m. The thermal conductivity of polyurethane is 0.024 98 

W/(m·K). In addition, the MRC laboratory is located in a factory, it can avoid the sun shining on the 99 

walls of the MRC laboratory. 100 

The experiment is performed in September, the heating process starts at 8 a.m. The atmospheric 101 

temperature ranges at 22 ~ 26 ℃ during the day (from 8 a.m. to 7 p.m.) and 18 ~ 22 ℃ in the night. 102 

2.2. Measurement and data acquisition 103 

When a man sitting quietly in the MRC, the heating rate can be assumed to be 120 W and the rate 104 

of CO2 released is 0.30~0.35 ml/min [9, 31, 32]. Some measures need to be taken to remove the 105 

CO2 gas. When calcium hydroxide is used to remove CO2, the heat load is 20-25 W per person. But 106 

the heat load may not be released into MRC through a reasonable design of purification equipment. 107 

If CO2 is removed by fresh air, there will be no heat generated. Therefore, the heat generated by 108 

facilities in MRC is not considered in our study. 109 

In the experiment, 40 heat lamps with 150 W, representing the heat production of 50 persons, are 110 

divided into 4 rows×10 columns. The row spacing is 1 m and the column spacing is 1.2 m. All heat 111 

lamps are 1 m above the bottom as illustrated in Fig. 1. Six measuring points are respectively set at 112 

the three horizontal levels of 0.5 m, 1 m, and 1.5 m. The distance from these measuring points to the 113 

near side wall is 1 m. The location of the measuring points can be seen in Fig. 1.  114 

 115 
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 116 

Fig. 1. Distribution of heat lamps and temperature sensors. 117 

 118 

The calibrated PT100 (model: WZP-PT100 A; manufacturer: Hangzhou Meacon automation 119 

technology Co., Itd, China) with a measuring range of -50 ~ 250 °C and accuracy of 0.15 °C is 120 

chosen to measure the air temperature. And a calibrated infrared thermal imager (model: CEM 121 

DT-9868; manufacturer: Shenzhen CEM Co., Itd, China) with a display accuracy of 0.1 °C is used 122 

to test the initial temperature of the surrounding rock wall surface. The air temperature is collected 123 

by a data acquisition subsystem, then transmitted to a temperature monitoring platform and 124 

automatically recorded once per minute. The power stability of the heating lamps is guaranteed by a 125 

stable voltage power control cabinet. The working condition of the heating lamps and the air 126 

temperature measurement system can be controlled in an independent control room. Fig. 2 shows 127 

the schematic of the experimental apparatus. 128 

 129 

Data acquisition subsystem

Power control cabinet

Power switch

PT100
Thermal Imager

Heat lamp
0.6 m

0
.6

 m

3
.6

 m

0
.6

 m1
 m

Temperature monitoring platform

 130 

Fig. 2. Schematic of the experimental apparatus. 131 

 132 

2.3. Experimental procedure 133 

The key steps of the experiment are as follows: 134 

(1) Check to make sure that make sure that all heating lamps and all temperature sensors can 135 

work properly and the data can be automatically recorded.  136 

(2) Prior to heating, measure five points on each wall, the average temperature of all measuring 137 

points is taken as the initial temperature of the wall. The value is 22.3 °C. After the measurement, 138 

the tester leaves the lab and closes the laboratory’s door. 139 

(3) Prior to heating, turn on the temperature monitoring platform half an hour before heating to 140 

test the initial air temperature, the average air temperature is taken as the initial air temperature in 141 
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the MRC laboratory. The value is 25 °C.  142 

(4) Turn on the heating lamps in the control room, heating lasts more than 20 h. 143 

(5) End the experiment and save the experimental data.  144 

Fig. 3 shows the actual heating scene in the experiment. 145 

 146 

 147 
Fig. 3. Normal operation of the heating experiment. 148 

 149 

3. Computational details 150 

3.1. Analytical model 151 

The buried depth of an underground mine is usually greater than 100 m. According to [33], the 152 

heat transfer characteristics of underground buildings with a buried depth greater than 12 m are not 153 

affected by the ground environment temperature. The thermal performance of deep buried 154 

underground buildings can be analyzed based on the semi-infinite object heat transfer theory. The 155 

controlling equations can be established in the one-dimensional coordinate system.  156 

The equation for calculating the changes in the temperature of MRC is: 157 

       

  
  

        

   
                             (1) 158 

Boundary conditions can be described as  159 

 
         

  
 
   

                

      
       

  
  

                   (2) 160 

Initial condition can be described as  161 

                                     (3) 162 

In order to simplify the heat transfer process in a heated MRC under the natural convection, 163 

several assumptions could be made as follows:  164 

(1) The shape of the MRC is cylindrical. Huang et al. [33] proved that the temperature contour 165 
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in the rock formation is approximately circular for different shape tunnels. The equivalent 166 

radius of the cylinder can be calculated as         ; 167 

(2) The heat production rate of each person is equal and constant because people in MRC are 168 

basically quiet; 169 

(3) The heat absorbed by air can be ignored because the specific heat capacity of air is much 170 

smaller than that of rock; 171 

(4) Heat transfer on the wall surfaces is uniform and can be regarded as a constant because the 172 

thermal parameters of the surrounding rock are uniform;  173 

(5) The temperature inner the surrounding rock is equal everywhere at the initial time because 174 

the heat transfer characteristics of MRC is not affected by the environment temperature. 175 

Therefore, in the cylindrical coordinate system, the governing equation of heat conduction can be 176 

described as follows  177 

       

  
   

        

   
 

 

 

       

  
                          (4) 178 

The boundary conditions can be described as 179 

 
         

  
 
    

   
 

  
 

    

  
        

   
   

            
                   (5) 180 

The initial condition is 181 

                                      (6) 182 

An approximate solution regarding the temperature of the wall surface was recommended as [33] 183 

           
    

 

       

         
   (        

  )               (7) 184 

According to Newton’s law of cooling 185 

                                              (8) 186 

  Thus, the air temperature in a MRC can be calculated as  187 

           
 

 
 

  

 

       

         
                    (9) 188 

The natural convective heat transfer coefficient between the air and wall can be calculated as [21] 189 

  
     

 
 

  

 
             

 

                          (10) 190 

The air temperature increase value in the MRC was then computed by 191 

                  
 

 
 

  

 

       

         
               (11) 192 

The radius of the heat transfer zone of the rock can be calculated as [34]  193 

                                     (12) 194 

According to the Eq. (9), it can be seen that the final air temperature in a MRC has a direct 195 

relationship with the rock initial temperature. However, according to the Eq. (11), the air 196 

temperature increasing value in MRC has nothing to do with the initial rock temperature, it's just 197 

affected by the thermal parameters of the rock and the heat load on the walls. It is obvious that the 198 

increased value is linearly proportional to the heat load on the walls. The heat load is mainly 199 

determined by the power of heat sources and the total surface area of the walls, which has nothing 200 

to do with the shape and size of the heat sources (miners in the MRC). In addition, as the buried 201 

depth of a MRC is much larger than 12 m, the depth will no longer affect the heat transfer 202 
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characteristics of the MRC. Therefore, in the following numerical study, the burial depth of MRC, 203 

the initial rock temperature, the human heat loss, as well as the shape and size of human bodies will 204 

not be considered as the main influencing factors. And the effects of the thermal conductivity and 205 

the specific heat capacity, as well as the density of the rock on heat transfer characteristics will be 206 

emphasized. 207 

3.2. Computational model 208 

A computational model of MRC is built with the same inner sizes of the MRC laboratory (length209 

×width×height: 20×3×4 m). The thickness of the wall is 1.5 m. The surface area of a human body 210 

model is 2 m
2
. 50 bodies are divided into 4 rows, as shown in Fig. 4. For the two rows adjacent to 211 

the two sides of the room, each row has 13 bodies, the back of the body is 0.3 m from the wall. For 212 

the two rows in the middle, each row has 12 bodies, The distance between two bodies’ backs is 0.4 213 

m. The center distance between the two adjacent bodies in a row is 1 m. Meanwhile, in order to 214 

obtain a high-quality boundary layer grid, the bottom surface of human body is above the bottom 215 

0.35 m. 216 

 217 

 218 

Fig. 4. Geometric model of the fifty-person MRC. 219 

 220 

The computational grids are generated by software ANSYS ICEM 18.0. Six grids (with a number 221 

of grids as 10.2×10
5
, 13.8×10

5
, 17.6×10

5
, 27.5×10

5
, 35.0×10

5
, 41.4×10

5
, respectively) are tested to 222 

ensure that the solver and numerical schemes implementation yield results are independent from the 223 

grid, as shown in Fig. 5.  224 

 225 
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 226 

Fig. 5. Comparison of air temperature at three different time under six different grids. 227 

It has been concluded that the mesh with 17.6×10
5
 grids is sufficient. The maximum grid size of 228 

the inner wall surface is 0.1 m. In the fluid zone. 4 prism layers are created along the surrounding. 229 

The maximum grid size of human body surfaces is 0.06 m. The maximum grid size of the fluid zone 230 

and the solid zone is 0.3 m and 0.5 m, respectively.  231 

 232 

3.3. Numerical methodology 233 

Human bodies are defined as solid zones with a constant temperature of 37 ° . Shadow surfaces 234 

will be generated automatically at the surfaces of human bodies in the Fluent software. The surfaces 235 

of the human bodies adjacent to the fluid zone are defined as constant heat flux boundary with 60 236 

W/m
2
, and the shadow surfaces adjacent to the human body solid zones are defined as heat flux 237 

boundary with 0 W/m
2
. The inner walls of the surrounding rock are defined as the coupled boundary. 238 

The outer walls of the surrounding rock are defined as heat flux boundary with 0 W/m
2
. 239 

  In combination with the thermal parameters of the surrounding rock of the MRC laboratory and 240 

the thermal parameters of common rocks in mine, ten different cases are designed, see Table. 1.  241 

 242 

Table. 1 Thermal physical parameters for the ten numerical cases 243 

NO 
                      

℃ ℃ W/(m·K) kg/m
3
 J/(kg·K) h h 

1 25 22.3 0.81 1600 840 64.81 60 

2 20 20 1 2400 920 86.25 60 

3 20 20 1.50 2400 920 57.50 20 

4 20 20 2 2400 920 43.12 20 

5 20 20 2.50 2400 920 34.50 20 

6 20 20 3 2400 920 28.75 20 

7 20 20 2 2400 800 37.5 20 

8 20 20 2 2400 1100 51.56 20 

9 20 20 2 2000 920 35.93 20 

10 20 20 2 1500 920 26.95 20 

 244 
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The parameters in the NO.1 case correspond to the experiment. The remaining cases are designed 245 

to investigate the effects of thermal parameters of the rock, the initial temperature of the air and the 246 

rock are set as 20 °C. According to Eq. (12), the time that the heat transfer characteristics of the 247 

MRC model unaffected by the external environment for each case is different, the unaffected time 248 

(  ) for each case is shown in Table. 2. The numerical simulation time (  ) for NO.1 and NO.2 is 60 249 

h, for the remaining cases,    is 20 h.  250 

3.4 Turbulence model 251 

The airflow velocity near the walls in the MRC induced by buoyancy is estimated as 0.02 ~ 0.3 252 

m/s, the Reynolds number (Re) is calculated as 0.22×10
5 

~ 1.08×10
5
. Therefore, the air flow in the 253 

MRC is considered to be turbulent. 254 

The effects of turbulence are modeled frequently by using the three models of Standard k–ε, 255 

RNG k–ε and Realizable k−ε [35]. Wu et al. [36] proved that, for conjugate turbulent natural 256 

convection in a differentially heated cavity, the three models were acceptable in terms of the 257 

performance of predicting the time-averaged quantities, and the variation between them was very 258 

small. Franke et al. [37] indicated that realizable k−ε turbulence model had a general good 259 

performance for wind flow around buildings. Sørensen et al. [38] indicated that the Realizable k−ε 260 

had an overall good performance for indoor air flow. Through a study of the natural convection 261 

phenomena inside a wall solar chimney, Bacharoudis et al. [39] proved that the realizable k−ε 262 

model was likely to provide superior performance for flows boundary layers under strong adverse 263 

pressure gradients. Piña-Ortiz et al. [40, 41] proved that the Realizable k−ε model was the best 264 

model for natural convection in a cubic cavity with the lowest temperature difference. Therefore, 265 

the Realizable k−ε model is selected for the current study. 266 

The buoyancy-induced turbulent air flow within the MRC is governed by the following unsteady 267 

Reynolds Averaged Navier–Stokes equations [36]: 268 

The continuity equation is 269 

   

  
 

        

   
                                 (13) 270 

The momentum equation is 271 

   

  
 

        

   
  

 

  

  

   
 

 

  

 

   
   

   

   
 

   

   
      

    
 

            
 
             (14) 272 

The Boussinesq approach is applied for the effect of gravity force, the energy equation with 273 

Boussinesq assumpion is  274 

  

  
 

      

   
 

 

  

 

   
   

   

   
 

   

   
      

                               (15) 275 

The realizable k−ε model consists of the followin  two transport equations[42]:  276 

 

  
      

        

   
 

 

   
    

  

  
 

  

   
                         (16) 277 

 

  
      

        

   
 

 

   
    

  

  
 

  

   
      

       

  

      
      

 

 
         (17) 278 

3.5 other settings 279 

The gravity value is 9.81 m/s
2
. The operating pressure is 102325 Pa. The air operating density is 280 

1.225 kg/m
3
. The enhanced wall treatment with pressure gradient effects and thermal effects are 281 

taken into account, as well as the full buoyancy effect. Pressure-implicit with splitting of operators 282 

(PISO) is used for the pressure-velocity coupling. The pressure is discretized by using the body 283 
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force weighted schemes. The energy and momentum are discretized by using the second-order 284 

upwind schemes. The convergence absolute criteria for energy is set to 10
-6

, for other items is 10
-3

. 285 

The time step is 10 s.  286 

4. Results and discussion 287 

4.1. Model validation 288 

Fig. 6 plots the variation of average air temperature with heating time at three different levels, i.e. 289 

0.5 m, 1 m, 1.5 m. 290 

 It is observed from Fig. 6 that the average air temperature at the three levels has the same 291 

growth trend, the air temperature monotonically increases over time. However, there are slight 292 

differences in temperature at different height levels, indicating that the temperature increases with 293 

the height. During the period from 2 to 10 h, the air temperature at 1 m level is 0.3~0.4 °C higher 294 

than that at 0.5 m level, but 0.2~0.4 °C lower than that at 1.5 m level. 295 

 296 

 297 

 298 

Fig. 6. Variation of air temperature at three different levels, i.e. 0.5 m, 1 m, 1.5 m, with heating time 299 

 300 

Fig. 7 shows the comparison of average air temperature between the experimental data and the 301 

numerical results of NO.1 case.  302 

 303 
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 304 

Fig. 7. Comparison of numerical results and experimental data. 305 

 306 

It can be seen from Fig. 7 that the average air temperature obtained through the experiment and 307 

numerical method has the same trend of rising monotonically with time. In the experiment, the 308 

average air temperature in the MRC rises from 25 °C to about 29.5 °C in less than 0.5 h after the 309 

heating lamps work. Afterward, the rising trend gradually becomes slow over time. It can be found 310 

that the predicted air temperature is higher than the experimental one. 311 

According to Eq. (12), the    value is 10.37 h. From 0.5 h to 10.3 h, the average air temperature 312 

difference between the experimental value and the predicted value is 0.6~0.8 °C. The temperature 313 

deviation between the experimental temperature and the predicted temperature ranges from 8.5% to 314 

14.5%, referencing to the initial air temperature (25 ℃) in the MRC. When taking the initial 315 

surrounding rock temperature (22.3 ℃) as the reference, the deviation value is 6.3%~9.5%. The 316 

temperature difference is mainly attributed to two aspects: firstly, the location of the measuring 317 

points is relatively low, the measuring value may be smaller than the actual value; secondly, the 318 

MRC laboratory experienced a period of time prior to heating, the internal temperature of the rock 319 

may not be uniform. From 10.3 h to 20 h, the air temperature rising trend in the experiment 320 

becomes slower, and the temperature difference and the deviation both increase with the heating 321 

time. It could be explained by the fact that after about 10 h of heating, the experiment began to be 322 

affected by the external environment.  323 

At the beginning of the heating, since the experimental result shows that the air temperature is 324 

very sensitive and the initial air temperature is higher than the rock temperature, it is not appropriate 325 

to take the initial air temperature as the reference. According to Eq. (9), the rock initial temperature 326 

is a reasonable reference. So during the unaffected time of the MRC laboratory, the deviation value 327 

is less than 10%. On the other hand, it can be easily found that both the numerical results and the 328 

experimental data have an obviously similar trend in air temperature increases. Therefore, it can be 329 

concluded that the numerical model is effective. 330 

4.2. Air temperature distribution in the MRC 331 

Fig.8 shows the temperature contours of the center cross-sectional at different time.  332 
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 333 

 334 
Fig. 8. Contours of temperature distribution at different time. 335 

It can be seen from Fig. 8 that the air temperature in MRC is not uniform. The air temperature 336 

above the top surface of the human body is higher than that below the top. In the above part, the air 337 

temperature decreases with the height. In the below part, the air temperature increase with the height. 338 

The air temperature difference between the top and bottom increases with the heating time.  339 

4.3. Trend of air temperature rising in the heating process 340 

Fig. 9 and Fig. 10 demonstrate the variation of average air temperature with heating time ( ) and 341 

the square root of heating time (  ) in 60 h for NO.1 case, respectively.  342 

 343 
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 344 

Fig. 9. Air temperature varies with  .    345 

It can be seen from Fig. 9 that the air average temperature in the MRC monotonically increases 346 

with time. At the beginning of heating, the air temperature in the room rises quickly, the 347 

temperature increasing from 25 °C to 30.2 °C only experiences 0.35 h. Afterward, the increasing 348 

rate gradually slows down, the air temperature rising to 35 °C takes about 20 h.  349 

 350 

   351 

 Fig. 10. Air temperature varies with   . 352 

It can be seen from Fig. 10 that the air temperature rising trend approximately exhibits two linear 353 

growth stages. The gradient of air temperature rising in        h is obviously larger than that in 354 

       h. Therefore, the process of the air temperature rising in the heated MRC can be divided 355 

into two stages, they are air temperature rapid increase stage and air temperature slow increase 356 

stage. 357 

During the air temperature rapid increase stage, assume that the air temperature is evenly 358 

distributed, according to the principle of energy conservation, there is 359 

                                              (18) 360 
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The time of the air temperature rapid increase stage is short (less than 0.5 h), during this time, the 361 

temperature of the rock surface changes less. Therefore, it can be assumed that the temperature of 362 

the walls does not change. If the initial air temperature is equal to the initial rock temperature, that 363 

is 364 

                                       (19) 365 

The Eq. (18) can be solved as 366 

      
 

 
    

 
   
    

 
                         (20) 367 

During the air temperature slow increase stage, it can be easily found from Fig. 10 that the air 368 

temperature is obviously linearly related to the square root of heating time, that is 369 

                           
 

 
                (21) 370 

4.4. Convective heat transfer coefficient on wall of enclosure structure 371 

Fig. 11 shows the surface heat transfer coefficient of the bottom, the top, as well as the vertical 372 

walls changes with the average air temperature in the MRC.  373 

 374 

 375 

Fig. 11. Wall convective heat transfer coefficient varies with temperature. 376 

 377 

It can be seen from Fig. 11 that the surface heat transfer coefficient value in different directions 378 

are not equal. The value on the vertical wall is the largest and on the bottom is the smallest. The 379 

value of the vertical wall increase monotonically linearly with air temperature, but for the bottom 380 

and the top wall, it does not change substantially. It means that, for MRC with same space volume, 381 

the trend of air temperature rising can be slowed down by increasing the surface area of the vertical 382 

walls. The predicted average natural convection heat transfer coefficient is 3.9~4.8 W/m
2
·K in the 383 

31~39 ℃ environment. Yoon et al. [43] found that the average natural convection heat transfer 384 

coefficient is 4.53 W/m
2
·K, by performing a test in an underground tunnel on a summer day with 385 

atmospheric temperature range from 23.84 °C to 29.47 °C. But in their test, the sampling points are 386 

located on the both-side vertical walls, and the effect of the wall roughness on the value is not well 387 

estimated. To some extent, the predicted value is close to the test one. 388 

For the average surface heat transfer coefficient of the MRC, the value shows a linear increase 389 
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with the air temperature, that is 390 

                                                (22) 391 

The difference in the convection heat transfer coefficient is mainly due to the uneven distribution 392 

of air velocity in the MRC. Fig.12 shows the air velocity magnitude distribution in the MRC at 40 393 

h.  394 

 395 

 396 
Fig. 12. Air velocity magnitude distribution in the room. 397 

 398 

According to Fig. 12, as far as the air velocity direction is concerned, the air moves upward 399 

around the heat source bodies, moves horizontally both near the top surface and the bottom surface, 400 

moves downward along the vertical wall surfaces. Regarding the air velocity magnitude, the wind 401 

speed near the vertical wall is the largest, near the bottom wall is smallest. The maximum wind 402 

speed near the vertical wall is 0.25 m/s, 0.12 m/s near the top, and 0.02 m/s near the bottom. 403 

4.5. Effect of thermal parameters of surrounding rock 404 

Fig. 13 plots the air temperature increase with time for the nine different cases NO.2~NO.10.  405 

It can be seen from Fig. 13 that the air temperature monotonically increases with time. At the 406 

initial stage of the heating, the air temperature rapidly rises to 27.8~28.3 °C from 20 °C in less than 407 

0.5 h, the curves of the air temperature basically coincide in the nine different cases, it indicates that, 408 

during the air temperature rapid increase stage, the  ,   and    of surrounding rock have no 409 

obvious effect on the air temperature rise, which is in good agreement with Eq. (20). When the 410 

heating time       h, the air temperature rising trend with time gradually becomes slow, and the 411 

greater the  ,   and    of the rock, the slower the air temperature rises. It can be concluded that, 412 

during the air temperature slow increasing stage, the air temperature rise rate decreases as the  ,   413 

and    of the rock increase. 414 
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 415 

Fig. 13. Air temperature increase with time for different  ,   and    within 20 h. 416 

 417 

Fig. 14 shows the variation of average air temperature with    at different  ,   and    .  418 

 419 

 420 

Fig. 14. Variation of average air temperature with    at different  ,   and   . 421 
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It can be seen from Fig. 14 that, when        h, the average air temperature increases linearly 422 

with   . It is not difficult to judge that the value of  ,   and    mainly influences the linear 423 

growth gradient (K), the K value decreases as the  ,   and    of the rock increase. 424 

4.6. Accurate prediction at the air temperature slow increase stage 425 

(1) Establish the new analytical method  426 

Fitting the original data in Fig. 9 and Fig. 13, the linear fitting formula for different  ,   and    427 

of the rock is obtained, as shown in Table. 2. 428 

 429 

Table. 2 The fitting relation for different  ，    and   of the rock. 430 

       
Linear fitting formula K R

2
 

W/(m K) kg/m
3
 J/(kg K) 

0.81 1600 840 y = 1.3014x + 29.772 1.3014 0.9999 

1 2400 920 y = 0.9082x + 27.688 0.9082 1 

1.5 2400 920 y = 0.7349x + 27.652 0.7349 1 

2 2400 920 y = 0.6323x + 27.645 0.6323 0.9999 

2.5 2400 920 y = 0.5601x + 27.643 0.5601 0.9999 

3 2400 920 y = 0.5094x + 27.636 0.5094 0.9998 

2 1500 920 y = 0.7915x + 27.639 0.7915 0.9999 

2 2000 920 y = 0.6842x + 27.657 0.6842 0.9996 

2 2400 920 y = 0.6323x + 27.645 0.6323 0.9999 

2 2400 800 y = 0.6764x + 27.645 0.6764 0.9998 

2 2400 1100 y = 0.5768x + 27.651 0.5768 1 

     431 

Fig. 15 plots the K value varies with      (value of   and    are same) and 432 

            (  value is same), respectively, as well as the corresponding fitting line.  433 

 434 

 435 
Fig. 15. Gradient K varies with      and             436 
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It can be seen from Fig. 15 that the K value has a linear relationship with     . Therefore, the 437 

Eq. (21) can be further expressed as follow: 438 

        
 

  
                   

 

 
                     (23) 439 

It can be also seen from Fig. 15 that the K value has a linear relationship with            . 440 

Therefore, the Eq. (21) can be further expressed as follow: 441 

            
 

    
              

 

 
                 (24) 442 

According to Eq. (23) and Eq. (24), K can be expressed as: 443 

                
 

  
    

 

    
                       (25) 444 

Taking the thermal parameters in these ten cases and the corresponding K values into Eq. (25), it 445 

can be solved that          ,          ，        . So K can be expressed as: 446 

                   
 

  
       

 

    
                         (26) 447 

Taking Eq. (26) and   
    

                
       into Eq. (21), then converting the unit of   448 

from second (s) to hour (h), there is 449 

            
 

  
       

 

     
           

 

 
                   (27)   450 

 (2) Applicability analysis of the new analytical method 451 

Fig. 16 shows the air temperature changes over time though three methods for NO.1 and NO.2. 452 

 453 

 454 
Fig. 16. Comparison of the curves obtained by three different methods for NO.1 and NO.2 455 
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It can be found in Fig. 16 that, for case NO.1 and NO.2, the air temperature calculated by Eq. (27) 456 

is closer to the numerical results than the result of Eq. (9). At 60 h, the temperature difference 457 

between the value calculated by Eq. (27) and the numerical result is less than 0.2 °C for NO.1, and 458 

less than 0.1 °C for NO.2. At 100 h, the temperature value calculated by Eq. (27) is 1.03 °C higher 459 

than the value calculated by Eq. (9) for NO.1. Taking the initial rock temperature as a reference, the 460 

difference ratio of temperature is 5.03% for NO.1 and less than 3.5% for NO.2. 461 

Regarding the prediction of air temperature in a heated MRC under natural convection, the 462 

existing analytical method has a relatively slow temperature growth trend. The new analytical 463 

method presented in this paper are closer to numerical results than the existing methods. The 464 

difference ratio between air temperature calculated by the proposed method and the existing 465 

analytical method is less than 5% during 96 h. The proposed method is more simple and clear than 466 

the existing method in terms of expression. 467 

5. Conclusions 468 

In this study, a heating experiment is conducted and a corresponding numerical case are 469 

performed. Furtherly, another nine numerical cases with different thermal physical parameters of 470 

rock are designed to study the effect of heat conductivity, density and specific heat capacity of the 471 

rock on the thermal performance of MRC. According to the results, the following conclusions can 472 

be drawn: 473 

(1)The experimental data and the corresponding numerical case results have similar air 474 

temperature increasing trend, which effectively validates the numerical model.  475 

(2) The process of the air temperature increase in MRC under natural convection is divided into 476 

air temperature rapid increase stage and air temperature slow increase stage. During the previous 477 

stage, air temperature is nearly unaffected by the  ,   and    of the rock. During the later stage, 478 

air temperature growth trend becomes slow with the increase of  ,   and    of the rock.  479 

(3) The surface heat transfer coefficient of the vertical wall is the largest, and it shows an obvious 480 

linear growth trend with the temperature. The predicted average natural convection heat transfer coefficient 481 

is close to a test result 482 

(4) A new analytical calculation method for predicting the air temperature in a heated MRC under 483 

natural convection is proposed. During 96 h, the difference ratio of temperature predicted by the 484 

proposed method and the existing method is less than 5%.  485 

The significance of the results is that it doesn't just show that, for MRC with same space volume, 486 

the trend of air temperature rising can be slowed down by increasing the surface area of the vertical 487 

walls. More importantly, through the proposed analytical method, it can be predicted in advance 488 

whether the air temperature in a MRC will exceed the allowed temperature during the 96-hour 489 

service time under natural convection, to determine whether it needs to take cooling measures in the 490 

MRC. Furthermore, it also indicates that the decoration of MRC walls by using decorative sheets 491 

with small thermal conductivity is not conducive to the heat dissipation of surrounding rocks. 492 
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