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Abstract 

A one-step hydrothermal synthesis of nitrogen and silicon co-doped fluorescence carbon quantum dots (N,Si-CQDs) from 

citric acid monohydrate and silane coupling agent KH-792 with high product yield (PY) of 52.56% and high quantum yield 

(QY) of 97.32% was developed. This greatly improves both PY and QY of CQDs and provides a new approach for a large-

scale production of high-quality CQDs. Furthermore, N,Si-CQDs were employed as phosphors without dispersants to 

fabricate white light-emitting diodes (WLEDs) with the color coordinates at (0.29, 0.32). It is suggested that N,Si-CQDs have 

great potential as promising fluorescent materials to be applied in WLEDs. 

Keywords: high product yield, high fluorescence quantum yield, carbon quantum dots, hydrothermal reaction, silane coupling 

agent 

 

1. Introduction 

Various methods have been explored to synthesize carbon quantum dots (CQDs) [1-5], but the low product yield (PY) and 

quantum yield (QY) limit a further application of CQDs. PY is determined to a relative amount of CQDs obtained once, and 

the higher PY stands for a more economical method and the higher efficiency. Currently, most of CQDs were prepared in a 

small amount each time, and studies on CQDs’ PY are relatively scarce. Chen, Hou and Zhu et al. reported that the PY values 

of CQDs were 41.8%, 56% and 58%, respectively [3-5]. Specifically, Tan et al. [6] chose isophorone diisocyanate (IPDI) as 

the single carbon source, and the PY value of the nitrogen-doped oil-soluble CQDs prepared by the microwave method was 

about 83%. However, IPDI is harmful to the environment and against the concept of green chemistry. Therefore, an 

exploration of a green synthesis method of CQDs with high PY for a large-scale of production is necessary. 

In addition, another factor limiting a further application of CQDs is the low QY. And QY is an important index to judge 

whether CQDs are a good type of fluorescent materials, and also an important evidence to consider a practical application of 

CQDs. Therefore, QY must be taken into account when improving the PY of CQDs. Over recent years, more and more 

investigations about exploring PY and QY of CQDs have been reported. Hou, Zhu, Dang and Wu et al. investigated the PY 

and QY of CQDs, respectively [4,5,7,8]. However, their QY values did not exceed 90%. Subsequently, Liu et al. [9] have 

synthesized CQDs with the QY of 94.5%, however, the PY of CQDs have not been studied. This indicates that it is still a 

challenge to prepare CQDs with high PY and QY simultaneously. 

In CQD’s synthesis, Singh et al. adopted red pomegranate [10,11], glucose [12], and beetroot aqueous extract [13] to 

synthesize CQDs. But their QY is 6% and generally low. Citric acid including rich hydroxyl and carboxyl groups is widely 

used [4,5,14]. Silane coupling agent KH-792 is a kind of nitrogen-containing additives with long-chains, both acting as a 

nitrogen dopant and a passivating agent. Zhang et al. [15] synthesized CQDs with the QY value of 57.3% with a 
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hydrothermal method using citric acid monohydrate (CA) and KH-792. However, they have not studied the PY of CQDs and 

the QY of CQDs prepared by them is not high enough. 

Therefore, in order to improve CQD’s PY on the premise of ensuring high QY, herein, through optimization of synthesis 

conditions of CQDs, N,Si-CQDs with high PY (52.56%) and high QY (97.32%) were synthesized by a one-step 

hydrothermal process through the dehydration condensation of CA and KH-792. It is found that this simple green synthesis 

method of N,Si-CQDs could provide a new way for a large-scale production of N,Si-CQDs. Benefiting from high QY and 

good film formability, white light-emitting diodes (WLEDs) were also fabricated with these N,Si-CQDs. Results have 

indicated that N,Si-CQDs could be the new phosphor for WLEDs. A specific synthesis diagram is shown in Figure 1. 

2. Experimental section 

2.1 Materials 

Citric acid monohydrate and N-(β-Aminoethyl)-γ-aminopropyl trimethoxysilane (KH-792) were provided from Tianjin 

Guangfu Chemical Reagent Co., Ltd with their analytical grades. Deionized water was used throughout all experimental 

processes in this study. 

2.2 Synthesis of N,Si-CQDs 

N,Si-CQDs were synthesized according to the hydrothermal method reported previously [15]. In a specific experimental 

process, citric acid monohydrate, the silane coupling agent KH-792 and deionized water were added into a Teflonlined 

stainless-steel autoclave with 100 mL capacity, heated to certain temperature and kept for a period of time. The molar ratio 

between CA and KH-792 was set at 1:20. After naturally cooling to the ambient temperature, products were collected and 

filtered through a polyethersulfone membrane with a 0.22 µm mesh. The obtained orange-yellow N,Si-CQD solution was 

further purified by a dialysis bag (cutoff molecular weight: 1000 Da). This N,Si-CQD solution was dialyzed for 3 h each time 

(the total dialysis duration can be termed as an accumulative dialysis duration, which is defined as each individual dialysis 

duration multiplied by the number of dialysis times). Finally, the solution was lyophilized to obtain powder for later 

characterization.  

2.3 Characterizations 

Transmission electron microscopy (TEM) was conducted and high resolution TEM (HRTEM) images of N,Si-CQDs were 

obtained by a JEOL JEM-2010 microscope. Fourier transform infrared (FTIR) spectra were measured with a Bruker Tensor 

27 spectrometer. X-ray photoelectron spectroscopy (XPS) was performed by a Kratos AXIS ULTRA DLD X-ray 

photoelectron spectrometer with mono X-ray source Al Kα excitation (1486.6 eV). Elemental analysis (EA) measurements 

were acquired with an ELEMENTAR vario EL cube. Ultraviolet-visible (UV-vis) absorption was recorded on a Hitachi 

U3900 UV-vis spectrophotometer. The excitation and emission spectra of N,Si-CQD solutions were measured with a Horiba 

Fluoromax-4 luminescence spectrometer using a Xe lamp as an excitation source. Transient Fluorescence & Phosphorescence 

(FLS 980) was adopted for measuring the fluorescence decay status and further evaluating the fluorescence lifetime of the 

N,Si-CQDs. 

2.4 Calculation of quantum yield (QY) 

QY of N,Si-CQDs was obtained by a comparative method. Quinine sulfate (QY=54±0%) in 0.10 M H2SO4 was chosen as 

the reference to determine the QY value of N,Si-CQDs in aqueous solution at different concentrations. All the absorbance 

values of the solutions were measured at 360 nm. Absorbance values were kept under 0.1 at the excitation wavelength for 

minimizing re-absorption effects. The integrated emission intensity was the area under the emission curve from 380 to 700 

nm. The linear fitting lines of the integrated emission intensity against the absorbance were plotted. Finally, QY was 

calculated as follows: 

 

Q = 𝑄𝑠𝑡(𝐾/𝐾𝑠𝑡)(𝜂/𝜂𝑠𝑡)2     (1)
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Figure 1. Schematic of N,Si-CQD synthesis 

(a. Hydrothermal reacted for a period of time under certain temperature, b. filtered through a polyethersulfone membrane 

with a 0.22 µm mesh, c. further purified by a dialysis bag (cutoff molecular weight: 1000 Da), d. lyophilized to obtain powder, 

e. manufacture WLEDs) 

  

Table 1. The PY values of N,Si-CQDs under different reaction conditions (dialysis duration each time was 3 h, the mass of 

CA was 1.0507 g (0.005 mol), the volume of KH-792 was 21.8 mL (0.1 mol)) 

Samples 

Accumulative dialysis 

duration/h- Reaction 

temperature/°C- 

Reaction duration/h 

PY/% 

Mean/% 
Standard 

deviation/% 
1 2 3 

S1 0-200-6 60.85  60.69 60.02 60.52 0.4 

S2 3-200-6 53.75  52.82 51.10 52.56 1.1 

S3 6-200-6 36.80  37.96 37.28 37.35 0.5 

S4 9-200-6 25.37  26.88 26.28 26.18 0.6 

S5 3-180-6 46.49  48.48 47.56 47.51 0.8 

S6 3-220-6 37.46  36.62 35.88 36.65 0.6 

S7 3-200-3 41.15  39.90 37.79 39.61 1.4 

S8 3-200-9 29.94  30.58 31.66 30.73 0.7 

Note: N,Si-CQDs were repeated synthesized under different reaction conditions for three times, and labeled as 1, 2, 3, 

respectively 
 

Table 2. The QY values of N,Si-CQDs under different reaction conditions (dialysis duration each time was 3 h, the mass of 

CA was 1.0507 g (0.005 mol), the volume of KH-792 was 21.8 mL (0.1 mol)) 

Samples 

Accumulative dialysis 

duration/h- Reaction 

temperature/°C- 

Reaction duration/h 

QY/% 

Mean/% 
Standard 

deviation/% 
1 2 3 

S1 0-200-6 91.51 90.33 85.98 89.27 2.4 

S2 3-200-6 97.94 97.37 96.65 97.32 0.5 

S3 6-200-6 97.79 97.13 95.33 96.75 1.0 

S4 9-200-6 93.87 93.30 90.15 92.44 1.6 

S5 3-180-6 90.74 90.38 88.09 89.73 1.2 

S6 3-220-6 91.37 91.10 90.41 90.96 0.4 

S7 3-200-3 84.91 84.52 83.82 84.42 0.4 

S8 3-200-9 84.86 83.84 83.61 84.10 0.5 

Note: N,Si-CQDs were repeated synthesized under different reaction conditions for three times, and labeled as 1, 2, 3, 

respectively 

 

where Q is QY, K is the slope of the liner fitting line, and η is refractive index of the solvent. In the solutions of this study, 

η/ηst=1. The subscript “st” refers to quinine sulfate standard solution. 
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2.5 Determination of product yield (PY) 

PY of N,Si-CQDs was obtained by a comparative method. The N,Si-CQDs’ solution was transferred to a rotary bottle and 

placed in an ultra-low temperature refrigerator at 80°C for 12 h to be frozen. Then, the rotary bottle was attached to the 

freeze-dried for 48 h to obtain N,Si-CQD solid. The N,Si-CQD solid was ground and placed on a tray balance for weighing. 

Finally, PY was calculated as follows: 

 

PY =
𝑚𝐶𝑄𝐷𝑠

𝑚𝐶+𝑚𝐻
× 100%               (2) 

 

where, mC refers to the mass of citric acid monohydrate, mH refers to the mass of KH-792, and mCQDs refers to the mass of the 

N,Si-CQD solid. 

2.6 Preparation of WLEDs 

The UV LED chip was purchased from Shenzhen Guanghuashi Technology Co., Ltd. A UV chip with the peak 

wavelength centered at 365 nm was fixed on the bottom of the LED base. Two threads on the LED were applied to connect to 

the external power supply. Then 10, 15 and 20 mg mL
-1

 of N,Si-CQD solution was softly dripped onto the inner wall of the 

optical lens, respectively, followed by leaving the optical lens in a drying oven at 80°C for 3 h. Finally, the optical lens was 

solidly fixed on the bottom of the LED chip to realize the fabrication of a WLED. 

3. Results and discussion 

3.1 Optical properties of N,Si-CQDs 

Accumulative dialysis duration (Dd), reaction temperature (T) and reaction duration (Dr) are three major factors affecting 

both PY and QY of N,Si-CQDs, as shown in Tables 1 and 2. 

The formation of N,Si-CQDs includes dehydration, polymerization and carbonization [4]. As shown in Figure S1, it can be 

seen that the color of CA alone and KH-792 alone after hydrothermal treatment is colorless, while the color of the mixed 

solution of CA and KH-792 is yellow-green. Which confirm that KH-792 is carbonized after mixing with CA in the 

hydrothermal treatment. First, small fluorescent molecules were generated as CA reacted with KH-792. Subsequently, the 

small fluorescent molecules were further condensed to form fluorescent polymer chains (FPCs), Next, FPCs were carbonized 

to form N,Si-CQDs. However, fluorescent small molecules and FPCs might not be completely reacted so that they existed 

alone or were on the surfaces of N,Si-CQDs. The chemical interactions between fluorescent molecules and N,Si-CQDs can 

be covalent bonds,  supramolecular interactions or physical blending [16]. In summary, as Dd was increased from 0 to 9 hours 

(h), N,Si-CQDs’ PY value was decreased from 60.52% to 52.56% in the first 3 h, then further decreased to 26.18%, however 

the QY value was increased from 89.27% to 97.32% in the first 3 h, then decreased again up to 92.44%. As Dd was gradually 

increased, the relatively small fluorescent CQDs will be dialyzed out except for the incompletely reacted small molecules, 

resulting in a gradual decrease of PY values. The QY value mainly depends on the number of FPCs [17]. When Dd was 

increased from 3 to 6 h, unreacted small molecules of raw materials could be dialyzed out, therefore the QY value was 

increased; when Dd was increased to 9 h, the number of FPCs was also decreased as small CQDs were dialyzed out, so QY 

decreased. In summary, when Dd was 3 h, the PY value was 52.56% and QY value reached the highest. Thus, Dd of 3 h has 

been chosen for the comprehensive consideration of the purity and QY of N,Si-CQDs. 

As shown in Tables 1 and 2, when T was increased from 180°C to 220°C, PY and QY both showed a trend of first 

increasing and then decreasing. This is consistent with the results reported by the literature [4]. As mentioned early, in the 

formation of N,Si-CQDs, at first, small fluorescent molecules were generated by an amidation reaction. Then FPCs were 

formed by condensation, which has an effect on both PY and QY. When T was increased from 180 to 200°C, FPCs were 

carbonized to form N,Si-CQDs, therefore the PY value was increased from 47.51% to 52.56%. As T was further increased to 

220°C, N,Si-CQDs continued to grow and formed large carbon particles and other by-products, resulting in a decrease of the 

PY to 36.65%. However, QY of N,Si-CQDs mainly depends on the number of FPCs [17]. At 180–200°C, on one hand, short 

FPCs were extended to form long FPCs, and on the other hand, parts of the FPCs were consumed for the nucleation of N,Si-

CQDs. Since the formation of FPCs is faster than its consumption, the amount of FPCs was gradually increased, and the QY 

value was increased from 89.73% to 97.32%. At 200–220°C, the formation rate of FPCs is slower than its consumption rate, 

relatively speaking, the number of FPCs was gradually decreased, resulting in a QY drop to 90.96%. It is suggested that 

200°C should be the optimal reaction temperature. 
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It can also be seen that when Dr was increased from 3 h to 9 h, both PY and QY displayed the similar trend of first increase 

and then decrease. For the PY of N,Si-CQDs, the PY value was increased from 39.61% to 52.56% as Dr was increased from 3 

to 6 h. And the PY value was decreased to 30.73% as Dr was increased to 9 h. With a further increase of Dr, N,Si-CQDs 

continued to grow into large carbon particles and other by-products, resulting in a significant decrease in PY values [4]. For 

the QY of N,Si-CQDs, when Dr was increased from 3 to 6 h, the number of FPCs was gradually increased as the reaction 

proceeded, and the QY was increased from 84.42% to 97.32%. Nucleation of N,Si-CQDs began to occur when the number of 

FPCs reached a critical saturation point [18]. This is consistent with the results reported by the literature [4]. So when Dr was 

increased to 9 h, the QY value was gradually decreased to 84.10% due to more and more FPCs being used for nucleation of 

N,Si-CQDs [4,17]. Therefore, a period of the 6 h was chosen as the optimal Dr. 

Overall, PY of N,Si-CQDs was decreased gradually with a change of Dd, but first increased followed by a decrease with a 

change of either T or Dr. However, QY of N,Si-CQDs was first increased followed by a decrease with a change of Dd, T and 

Dr. Therefore, it is suggested that the optimal reaction conditions for preparation of N,Si-CQDs are accumulative dialysis 

duration of 3 h, reaction temperature of 200
o
C and reaction duration of 6 h. 

 

Table 3. Comparison of product yield (PY) and quantum yield (QY) values of CQDs synthesized using different raw 

materials and methods 

Year 
Experimental 

materials 

Synthesis 

methods 
PY/% 

Relative 

QY/% 

Absolute 

QY/% 
References 

2017 
citric acid, 

ethylenediamine 
microwave - 75.96 - [19] 

2017 
1,3,6- 

trinitropyrene 
solvothermal 90 65.93 - [8] 

2017 p-Phenylenediamine (PPDA) solvothermal - - 52.46 [20] 

2016 
citric acid 

tris(hydroxylmethyl)aminomethane 
microwave 88.1 99.3 ~99.3 [14] 

2016 citric acid, dicyandiamide solvent-free 56 73.2 - [4] 

2016 
hydroquinone, ethylenediamine 

(EDA) 

water at room 

temperature 
- - 24.6 [21] 

2016 

polyamide resin 

ethylenediamine (EDA) 

silane coupling agent KH570 

ultrasound at 

room temperature 
25.7 ∼28.3 - [7] 

2014 
citric acid, Mg(OH)2, 

ethylenediamine (EDA) 
hydrothermal - 83.0 - [22] 

2014 chinese ink oxidized and cut 78 - - [23] 

2018 
citric acid monohydrate 

KH-792 
hydrothermal 52.56 97.32 - this article 

 

Table 3 shows a comparison between PY and QY values of CQDs synthesized by adopting different raw materials and 

methods. As shown in Table 1, the PY value of N,Si-CQDs is 52.56% in the optimal reaction conditions and is much lower 

value than the QY value of ~90% reported by the literature [8]. In reference [8], Wu et al. produced CQDs with a high yield 

of 90% by adopting 1,3,6-trinitropyrene as the reaction material. The reasons for high PY of CQDs may lie in three aspects. 

First, 1,3,6-trinitropyrene has a large benzene ring conjugate structure, and has high carbon-carbon double bond content, 

which is beneficial to high PY of CQDs [24]. Second, long reaction duration (12 h) favors the carbonization of CQDs which 

leads to a high PY. Third, there is a difference in purification methods. Their CQDs were purified only by a preliminary 
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filtration while our N,Si-CQDs were deeply purified by a further dialysis after filtration. In reference [14], the simple 

purification (centrifugation and filtration) results in a low loss of CQDs, which also makes CQDs show high PY. In reference 

[23], firstly, high reaction temperature (240
o
C) and long reaction duration (12 h) facilitate the carbonization and nucleation of 

CQDs, further contributing to the high PY of CQDs. Secondly, the different purification method (dialysis) also results in a 

low loss of CQDs. Thus, the CQDs have a higher PY. Table 2 shows that the greatest QY value of N,Si-CQDs is 97.32%, 

which is slightly lower than the ultra-high QY of 99.3% from Zhang et al. [14]. On the one hand, this super high QY (99.3%) 

is due to the different nature of the synthesized raw materials; on the other hand, the super high QY is due to a synergistic 

effect between graphite nitrogen and abundant hydroxyl groups of 1,1,1-tris (hydroxymethyl) ethane [8]. However, the QY 

value of N,Si-CQDs prepared in this paper was significantly higher than that of most reported CQDs due to the addition of 

KH-792 which had three effects. First, KH-792, as a surface passivator, introduced a new surface state, which referred to the 

interaction between the carbogenic core and the organosilane functional groups [25]. Second, KH-792, used as an electron 

donor, increased the electron cloud density and thereby raised the possibility of electron-hole radiation recombination. Third, 

KH-792 had a larger steric effect than oxygen-containing functional groups such as -COOH, which promoted the π-π 

interaction between the carbon core and the functional groups [26]. Therefore, the introduction of KH-792 increased the 

fluorescence emission intensity of N,Si-CQDs, thus leading to the QY improvement. 

 

 

 
Figure 2. (a) UV-vis absorption and excitation spectra and (b) PL spectra excited at various wavelengthes of the N,Si-CQD 

aqueous solution (Dd=3 h, T=200°C, Dr=6 h) 

 

Compared with Zhang et al. [15], the identical reaction conditions are Dd of 9 h, T of 200°C and Dr for 6 h, and the 

different reaction conditions is rotational speed of the magnetic rotor used in a dialysis process. The QY value of N,Si-CQDs 

is 92.44%, which is significantly greater than that (57.3%) reported by Zhang et al. This is mainly because the rotational 

speed of the magnetic rotor used in a dialysis process is inconsistent (10 rpm min
-1

 in this paper, 30 rpm min
-1

 by Zhang et 

al.). This indicates that the stirring rate of the magnetic rotor also affects the quality and speed of dialysis. The faster the 

magnetic stirring speed is, the more loss of small fluorescent molecules is, and the smaller QY values are.  

In the optimal conditions (Dd=3 h, T=200°C, Dr=6 h), the UV-vis spectrum shows that N,Si-CQDs present two 

characteristic absorption peaks at 242 and 359 nm (Figure 2a), which can be assigned to π–π* (C=C) transition and n–π* 

(C=O) transition, respectively. The excitation spectrum of N,Si-CQDs corresponds to the absorption spectrum. The PL 

spectra (Figure 2b) indicate that N,Si-CQDs have the property of excitation independence. It is generally agreed that the 

surface status of CQDs significantly affects PL properties, i.e., surface functional groups primarily respond to trap the 

excitons under excitation, and the radiative recombination of these surface-trapped excitons leads to the specific PL with 

corresponding energy. Consequently, CQDs with uniform surface states afford PL with unvaried energies under different 

excitation wavelengths. Therefore, the excitation-independent property implies uniform surface status of CQDs [20]. It is 

suggested that the optimal excitation and emission wavelength are 380 and 453 nm, respectively. Furthermore, the relative 

QY value of N,Si-CQDs was as great as 97.32±0.5% (using quinine sulfate as a reference). 
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Figure 3. (a) TEM images and (b) the corresponding size distribution histograms of N,Si-CQDs. Inset: HRTEM images of 

N,Si-CQDs. (Dd=3 h, T=200°C, Dr=6 h) 

 

 

 

 
Figure 4. FT-IR spectrum of the N,Si-CQDs (Dd=3 h, T=200°C, Dr=6 h) 
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Figure 5. (a) XPS spectra full scan and corresponding high resolution of (b) C1s, (c) N1s, (d) O1s of N,Si-CQDs (Dd=3 h, 

T=200°C, Dr=6 h) 

 

3.2 Morphology and structures of the N,Si-CQDs 

 
Figure 6. (a) The fluorescence-decay curves and (b) Spectral composition of N,Si-CQDs (Dd=3 h, T=200°C, Dr=6 h), IRF 

stays for instrumental response function 

The TEM (Figure 3) revealed that the N,Si-CQDs are nearly spherical and are well dispersed with an average diameter of 

2.57 nm. It can be seen from the inset in Figure 3a that N,Si-CQDs have no obvious lattice stripes but have the amorphous 

structure. 

The FTIR spectrum (Figure 4) demonstrated that the band around 3367 cm
−1

 corresponds to the vibrations of O–H and N-

H. The absorption peak at 1651 cm
-1

 is attributed to the vibration of -CONH- and the peaks at 1118 and 1033 cm
-1

 are 
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attributed to the Si-O-Si stretching vibration. These results revealed the occurrence of amidation, confirming that KH-792 

was involved in the formation of N,Si-CQDs. The 927 cm
-1

 is attributed to the out-of-plane deformation vibration of the –OH 

and O= bands, which has a positive effect on the hydrophilicity of the N,Si-CQDs in aqueous systems. 

In the XPS spectrum (Figure 5) of N,Si-CQDs (Dd=3 h, T=200°C, Dr=6 h), as shown in Figure 5a, the strong O1s and C1s 

peaks demonstrate that N,Si-CQDs mainly consist of carbon and oxygen, whereas the relatively weaker N1s and Si2p peaks 

demonstrate the formation of new surface states of N,Si-CQDs. As shown in Figure 5b, the C1s spectrum shows three peaks 

at 283.9, 284.6 and 285.3 eV, which is related to C-C/C=C, C-N and C-OH/C-O-C bonds. As shown in Figure 5c, the N1s 

spectrum shows two peaks at 398.7 and 399.3 eV, which is related to O=C-NH and C-N bonds. As shown in Figure 5d, the 

O1s spectrum shows two peaks at 530.4, 531.3 and 531.9 eV, which is related to C-O, C=O and C-OH/C-O-C bonds. 

Element analysis (EA) of N,Si-CQDs is shown in Table 4. EA was tested to analyze element types and its percentage content. 

EA results are consistent with the XPS spectrum of N,Si-CQDs. These results demonstrate an involvement of KH-792 in the 

surface passivation of N,Si-CQDs, which further contributed to the improvement of QY.  

To acquire further insight into the photoluminescence, the multidimensional time-correlated single photon counting 

(TCSPC) method was applied to evaluate the fluorescence lifetime of the N,Si-CQDs. As depicted in Figure 6a, both decay 

traces were fitted using the biexponential function R(t) in equation (3): 

 

Table 4. Element analysis of N,Si-CQDs (Dd=3 h, T=200°C, Dr=6 h) 

Sample N C H O Si 

N,Si-CQDs/% 15.29 36.25 7.98 14.71 25.77 

 

Table 5. Biexponential fitting values of N,Si-CQD aqueous solution (Dd=3 h, T=200°C, Dr=6 h) 

Sample B1 τ1 (ns) B2 τ2 (ns) χ
2
 〈τ〉 (ns) 

N,Si-CQDs 0.10 9.07 0.90 14.99 1.04 14.62 

 

Table 6. The performance indicators of WLEDs under different test parameters 

Concentration/(mg mL
-1

) Working voltage/V Color temperature/K Color coordinates 

10 

3.0 5650 (0.33,0.38) 

3.1 6027 (0.32,0.37) 

3.2 6546 (0.31,0.36) 

3.3 7321 (0.30,0.34) 

3.4 7960 (0.29,0.33) 

3.5 8269 (0.29,0.32) 

3.6 8225 (0.29,0.32) 

15 

3.0 5888 (0.32,0.37) 

3.1 6382 (0.31,0.36) 

3.2 7059 (0.30,0.34) 

3.3 8044 (0.29,0.32) 

3.4 8910 (0.28,0.31) 

3.5 9458 (0.28,0.31) 

3.6 9555 (0.28,0.31) 

20 

3.0 5530 (0.33,0.38) 

3.1 5880 (0.32,0.38) 

3.2 6369 (0.31,0.36) 

3.3 7118 (0.30,0.34) 

3.4 7765 (0.30,0.33) 

3.5 8160 (0.29,0.32) 

3.6 8285 (0.29,0.32) 
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Figure 7. (a) Emission spectrum and (b) CIE chromaticity diagram of WLEDs based on N,Si-CQDs. Inset (a) Emission 

spectrum of the UV-chip alone and (b) Image of the corresponding WLED at the voltage of 3.6 V (Dd=3 h, T=200°C, Dr=6 h) 

 

 

R(t) = B1 exp(−𝑡/𝜏1) B2 exp(−𝑡/𝜏2)               (3) 

 

where B1 and B2 are the pre-exponential factors for the time resolved decay lifetime of τ1 and τ2. Then, the average 

lifetime 〈τ〉 is acquired from equation (4):  
 

𝜏 =
𝐵1𝜏1

2 +𝐵2𝜏2
2 

𝐵1𝜏1+𝐵2𝜏2
              (4) 

 

The fluorescence decay (Figure 6a) and Table 5 showed that N,Si-CQDs (Dd=3 h, T=200°C, Dr=6 h) exhibit biexponential 

decay and their average lifetime is 14.62 ns. The RGB (blue-to-red) spectral composition (Figure 6b) of N,Si-CQDs is 

67.45%. A high RGB spectral proportion is conducive to a promotion in the efficiency of converting UV light into white light,  

which favours a high color rendering index (CRI) value in the WLEDs. Because the high RGB spectral composition may be 

attributed to the higher π-electron density on the surfaces of N,Si-CQDs so that it can reduce the energy band gap of π-π* 

transition in the N,Si-CQD surface state, consequently resulting in a redshift of the emission wavelength, which would make 

N,Si-CQDs more suitable for a phosphor application in WLEDs [19,27]. 

3.3 WLEDs application of the N,Si-CQDs 

WLED devices were obtained benefiting from high QY and unique film-forming property of N,Si-CQDs. Since the 

concentration of N,Si-CQD solution and the working voltage could affect the properties of WLEDs, they were investigated. 

As shown in Figure S2, as the concentration of N,Si-CQD solution was increased from 10 to 20 mg mL
-1

, the 

electroluminescent intensity of WLEDs was decreased, but the absorption of WLEDs in the UV region decreased 

significantly. Therefore, 20 mg mL
-1

 was chosen as the optimal concentration of N,Si-CQD solution. As shown in Figure S3, 

with an increase of the working voltage from 3.0 to 3.6 V, the intensity of WLEDs was gradually enhanced. In addition, as 

shown in Table 6, considering color coordinates and corresponding color temperature (CCT) of WLEDs, 3.6 V was chosen as 

the optimal working voltage. Under the optimal conditions, the optical performance of WLEDs was characterized. As shown 

in Figure 7a, it can be seen that the emission spectrum of the device covers the entire visible light region (380–780 nm). As 

shown in Figure 7b, the color coordinates are (0.29, 0.32), the CRI is 84 and the CCT is 8285 K, which belongs to the cool 

white gamut. These parameters suggest that N,Si-CQDs have a great potential to be employed in either office or outdoor 

lighting. 
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4. Conclusions 

In short, N,Si-CQDs with high PY (52.56%) and QY (97.32%) have been fabricated by one-step hydrothermal method 

with CA and KH-792. These synthesized N,Si-CQDs are nearly spherical and with the average particle size of 2.57 nm. The 

N,Si-CQD solution can emit blue fluorescence under UV light and has an excitation-wavelength independence and good 

film-forming property. As-prepared WLEDs have the coordinates of (0.29, 0.32), CRI of 84 and CCT of 8285 K. The results 

reveal that the N,Si-CQDs have an great potential application for office and outdoor lighting. Due to the low cost of raw 

materials and the simple synthesis approach of N,Si-CQDs, this simple and efficient synthesis method of high-quality CQDs 

has been developed, which will not only broaden the further application of CQDs, more importantly, but also open up a new 

approach for a large-scale preparation of CQDs. 
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