A single weekly Kt/Vurea target for peritoneal dialysis patients does not provide an equal dialysis dose for all

Sally El-Kateb MD, Sivakumar Sridharan PhD, Ken Farrington FRCP, Stanley Fan, Andrew Davenport FRCP

1 UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, Rowland Hill Street, London NW3 “QG, UK
2 Renal Unit, Lister Hospital, Coreys Mill Lane Stevenage SG1 4AB, UK
3 University of Hertfordshire, College Lane Hatfield AL10 9AB, UK
4 Barts Health NHS Trust, Whitechapel Rd, London E1 1BB, UK

Sally El-Kateb sallyelkateb@yahoo.com
Sivakumar Sridharan sivakumar.sridharan@nhs.net
Ken Farrington ken.farrington@nhs.net
Stanley Fan fan.stanley@nhs.net
Andrew Davenport andrewdavenport@nhs.uk

Address for correspondence
Andrew Davenport andrewdavenport@nhs.net

contact andrewdavenport@nhs.net

UCL Centre for Nephrology, Royal Free Hospital, University College London
Medical School, Rowland Hill Street, London NW3 2PF
tel 44-2074726457 fax 44-2073178591

short title resting and total energy expenditure in peritoneal dialysis patients

key words peritoneal dialysis resting energy expenditure
total energy expenditure total body water body surface

area Kt/Vurea

word count abstract 250
body 2178
figures 3
tables 3
references 31

Funding grant -British Renal Society, Dr El-Kateb was awarded an International Society for Nephrology fellowship
No author has any conflict of interest
Abstract

Dialysis adequacy is traditionally based on urea clearance, adjusted for total body volume (Kt/Vurea), and clinical guidelines recommend a Kt/Vurea target for peritoneal dialysis (PD). We wished to determine whether adjusting dialysis dose by resting (REE) and total energy expenditure (TEE), would alter the delivered dialysis dose.

We determined REE and TEE by equations based on doubly labelled isotopic water studies, and adjusted Kt/urea for REE and TEE.

We studied 148 PD patients, 97 male (65.5%), 54 diabetic (36.5%), mean age 60.6±17.6 years. The mean REE was 1534±241 kcal/day and TEE 1974±414 kcal/day. Adjusting Kt for REE showed a reduced delivered dialysis dose (ml/kcal/day) for women vs men (5.5±0.4 vs 6.2±0.6), age < 65 vs > 65 years (5.6±0.56 vs 6.4±0.5), weight < 65 kg vs >80 kg (5.8±0.6 vs 6.1±0.5), low co-morbidity vs high co-morbidity (6.2±0.6 vs 5.9±0.6), all p<0.01. Adjusting for TEE showed reduced dosing for those employed vs no employment (4.3±0.7 vs 4.8±0.8), low frailty vs high frailty score (4.5±08 vs 5.0±0.7), both p<0.01.

Adjusting the dialysis target dose for REE shows that for the same Kt urea, women, younger, smaller and less co-morbid patients would all receive less dialysis, and adjusting for TEE additionally shows that those employed and physically fitter would receive less dialysis. The current paradigm for a single target Kt/Vurea for all PD patients does not take into account energy expenditure and metabolic rate, and may lead to lowered dialysis delivery for the younger more active female patient.
Introduction

More than 2 million patients with end stage kidney disease are currently treated by dialysis worldwide, with around 300,000 treated by peritoneal dialysis. As with for haemodialysis, there are clinical guidelines recommending that patients receive a minimal amount of dialysis based on urea clearance [1]. These urea based clearance targets are derived from observational studies [2]. However prospective studies comparing different peritoneal dialysis regimes designed to achieve different urea clearance targets consistently failed to demonstrate any advantage for greater urea clearance, in terms of patient morbidity or mortality [3-5]. Indeed peritoneal dialysis technique and patient survival have been linked to preservation of residual renal function [6], rather than peritoneal dialysis urea clearance [7].

The amount of urea clearance, Kt/Vurea, for dialysis patients are currently based on volume of distribution of urea, total body water (TBW) derived from anthropomorphic measurements [8]. However total body water varies with body composition, as some tissues, such as muscle contain more water than fat [9], and also varies between racial groups [10], and patients with diabetes and other co-morbidities [11]. As such for the same Kt/Vurea, the delivered urea clearance has been suggested to differ between patients [12].

Rather than dosing the amount of dialysis required on urea clearance based on volume of distribution, an alternative approach based upon metabolic activity has been proposed [13]. Urea is generated as a by-product of
intra- cellular nitrogen metabolism. Total body metabolic activity is a composite of
resting metabolic rate and that due to physical activity. Previous studies in
peritoneal dialysis patients have concentrated on measuring resting energy
expenditure (REE) [14,15], but this underestimates total energy expenditure
(TEE), by excluding that due to activity energy expenditure (AEE).

We recently validated an assessment of TEE, and REE in dialysis patients
using a patient self-reported questionnaire and double isotopic labelled water
[16]. To establish whether there is a difference in the amount of dialysis
delivered for a fixed Kt/Vurea target, we calculated urea clearance adjusted
for energy expenditure, to determine whether some groups of patients would be
disadvantaged under current clinical guideline recommendations.

Patients and methods

Adult patients with end stage kidney disease established on
peritoneal dialysis were recruited from University College London partner
hospitals when attending for outpatient assessments of peritoneal dialysis
adequacy. Corresponding spent dialysate effluent, 24 hour urine collections and
serum samples were analysed by standard methods, and weekly dialysis dose
calculated as Kt/Vurea. Protein Nitrogen Appearance rate was estimated using
the Bergström equation, and normalised for body weight (nPNA) g/kg/day [17].

Patient demographics were obtained from computerised hospital records and
comorbidity determined using a self-administered co-morbidity grading [18], and
a recognised frailty score [19].
Total body water was calculated using the Watson equation [20]. In addition we measured total body water by bioimpedance (InBody 720, InBody, Seoul, South Korea; Body Composition Monitor (BCM), Fresenius, Bad Homberg, Germany) which was performed in a standardised manner in 118 patients [21,22]. Bioimpedance measurements made by the BCM and InBody were standardised using previously derived equations [23]. Body surface area was calculated using the Gehan and George equation as recommended by the European Best Clinical Practice guidelines [24].

Physical activity data was obtained using the Recent Physical Activity Questionnaire (RPAQ) [16], which collects information about both activity and the time spent performing activities over the preceding four weeks; encompassing activities performed at home, work and during leisure time. The RPAQ has been validated against doubly labelled water technique in general population [16], and has been shown to be a reliable tool for estimation of energy expenditure in patients with chronic kidney disease [25]. Physical activity data was determined by each reported activity being assigned a Metabolic Equivalent of Task (MET) value according to the Compendium of Physical Activities [26]. The equations for calculating REE and TTE are detailed in the Appendix.

UK clinical guidelines recommend a minimum weekly Kt/V of 1.7 [1]. Hence, in order to compare minimum dialysis targets using alternative scaling parameters, weekly Kt was calculated as $Kt = 1.7 \times V$. Corresponding target values of Kt/BSA, Kt/REE and Kt/TEE were calculated by dividing daily Kt by the respective parameters.
Ethical approval was granted by the UK National Research Ethics Committee - Essex and the study was registered in UK Clinical Research Network (CRN) Portfolio number 14018. All patients provided written informed consent in keeping with the declaration of Helsinki.

Statistical analysis

Statistical analysis was by students' t test, or Mann Whitney U test, ANOVA and Kruskal Wallis, with appropriate post hoc correction, Pearson or Spearman's test for univariate correlation (GraphPad Prism version 6.0, San Diego, USA) and step backward linear regression, of variables on univariate analysis of p<0.1, with log transformation of variables which were not normally distributed, and removal of variables which were not statistically significant unless they improved model fit, and models were checked for collinearity (SPSS version 22, University of Chicago, Illinois, USA), and Bland Altman comparison (Analyse-It version 3.0, Leeds, UK). Data are presented as mean ± standard deviation, median (inter quartile range), or mean and 95% confidence limits (CL), or as a percentage.

Results

We studied 148 patients, 97 male (65.5%), 54 diabetic (36.5%), mean age 60.6±17.6 years, with a median duration of peritoneal dialysis 9.1 (3.5-25.2) months. The median co-morbidity score was 2 (0-3.8), and frailty score 4 (2-5). 43.2% of patients were Caucasian, 27.1% African-Afro-Caribbean, 24.3% South
Asian, and 5.4% Far Asian. A minority, 20.3% of patients had some form of employment.

Mean haemoglobin was 109.9 ± 14.8 g/l, with a serum albumin 36.5 ± 5.5 g/l and serum C reactive protein (CRP) $6 (2-16)$ mg/l. Mean weight of the cohort was 73.6 ± 16.7 kg, BMI 26.0 ± 4.9 kg/m², and BSA 1.86 ± 0.24 m². The majority of patients were treated by automated peritoneal dialysis cyclers (APD) 85.8% vs 14.2% by continuous ambulatory peritoneal dialysis (CAPD). The median total weekly $\text{Kt/V}_{\text{urea}}$ was $2.15 (1.8-2.71)$, with a median 24 hour urine volume of $946 (450-1249)$ ml/day. The mean REE was 1534 ± 241 kcal/day and TEE 1974 ± 414 kcal/day. Mean PNA was 64.5 ± 19.7 g/day and nPNA 0.89 ± 0.26 g/kg/day.

Male patients were heavier than female (77.0 ± 15.6 vs 72.6 ± 16.6 kg), and had greater REE and TEE (table 1). Patients who were employed, those with greater weight, and greater PNA had higher TEE (Table1), whereas those with greater frailty and co-morbidity, and those who were diabetic and Asian patients tended to have lower TEE.

We then adjusted a weekly $\text{Kt/V}_{\text{urea}}$ of 1.7 for all patients for both BSA and TBW. Bland Altman analysis showed that for both men and women the adjusted $\text{Kt/V}_{\text{urea}}$ was greater for smaller patients with a relatively greater BSA to TBW, and lower for larger patients with a relatively lower BSA compared to TBW (Figure 1).

In a subset of 118 (79.7%) of the study group; 75 male (63.6%), 33 diabetic (28.5%), mean age 59.3 ± 18.2 years, with a median duration of peritoneal dialysis 9.4 (3.8-25.5) months, we also measured TBW by bioimpedance. The
The mean weight of this cohort was 73.1±16.6 kg with a body mass index of 26.0±4.9 kg/m², with a median co-morbidity grade of 2 (0-4) and frailty score of 4 (2-5), and did not differ from the main study group. There was no significant difference in TBW: Watson equation 40.3±6.1 vs bioimpedance 40.6±3.4 L, mean difference on Bland Altman analysis 0.72 L (Figure 2). There were positive correlations between BSA and both REE and TEE (r=0.92, p<0.001 and r =0.59, p<0.001) and also between TBW and both REE and TEE (r=0.85, p<0.001 and r=0.62, p<0.001) respectively.

We then calculated Kt values for a prescribed Kt/V of 1.7 using for both Watson and bioimpedance estimates of TBW. These values were then patients from adjusted by BSA, REE and TEE. The results are shown in Table 2 and Figure 3 for different patient groups. For the same prescribed dialysis dose, women, younger patients, those employed and those weighing less (Figure 3) received less dialysis than men, older patients, those not employed and heavier patients (table 2). In addition, generally patients with less co-morbidity and frailty and non-Asian races also tended to receive less dialysis than those who were more co-morbid, frail and of Asian ethnicity.

We used a step backward approach to develop multivariable models of adjusted Kt, including all variables with p<0.1 on univariate analysis, and then eliminating variables which were not significant or did not improve model fit to determine associations with adjusted dialysis dose. Sex was a significant predictor of Kt/BSA. Sex and age were significant predictors of Kt/REE. The predominant variables (table 3). For Kt/TEE, sex, age and employment were
common predictive factors whether Kt was derived using TBW derived by Watson and bioimpedance methods. Both high co-morbidity, and diabetes were additional predictive factors for TEE adjusted using the Watson formula for TBW (table 3).

Discussion

Traditionally the target dialysis for patients with end stage kidney failure has been based on urea clearance adjusted for total body water volume. However multiple prospective trials have failed to show an association between greater peritoneal dialysis urea clearance and survival [3,4,7]. Cellular metabolism, in particular protein turnover generates waste products which accumulate in patients with end stage kidney failure. As these azotaemic toxins are generated by cellular metabolism, it has been suggested that the amount of dialysis required for patients should be based on metabolic rate, rather than urea clearance [2]. Studies to-date have concentrated on measuring resting metabolic rate [3], but this ignores physical activity, and as such potentially under estimates energy expenditure. We used equations based on patient self-reported physical activity questionnaires, which have been validated using doubly labelled isotopic water [4], to estimate REE and TEE. As expected energy expenditure was associated with body weight, male sex and younger age group [27]. Patients with higher REE and TEE had greater PNA rate due to increased urinary and peritoneal urea losses However we also noted that although REE was
similar, TEE was lower with increasing frailty and co-morbidity, in particular
diabetes, and those without employment compared to those patients with lower
frailty and co-morbidity scores, who were not diabetic or those with
employment. We also found that patients from an Asian background had lower
TEE compared to Caucasoids and African-Afro-Caribbean patients. This is in
keeping with previous observations of lower energy expenditure, particularly
with South Asians, and this has been suggested to be due to differences in
terms of body composition, related to brown fat tissue stores [28].

We then compared the delivered dialysis dose for the minimum weekly
KtVurea target as recommended by clinical practice guidelines [1], using Kt
calculated by both the Watson formula [20], and also total body water measured
by bioimpedance [29]. We found no significant difference between total body
water by either method, although previous reports from haemodialysis patients
have reported differences [9]. However the major differences between total
body water derived by the Watson formula and bioimpedance were with obese
patients with a body mass index of > 35, and in our study group < 2% had a body
mass index of this level. We adjusted the delivered dialysis dose by both BSA,
which is relatively greater for patients with lower total body water, and
relatively lower for those with greater total body water and also for both REE
and TEE. Adjusting Kt for BSA, which has been advocated for haemodialysis
patients, we found that this resulted in a lower dose being delivered to women
and those with a high protein nitrogen appearance rate and lower body weight.
Whereas adjusting for REE, then female patients, and those who were younger,
weighed less, and who had lower protein nitrogen appearance along with those
with frailty and co-morbidity scores, and other ethnicities than Asian all
received relatively less delivered dialysis. When Kt was adjusted for TEE, then
women, younger patients and those weighing less, who were employed, and those
with less frailty, in particular those with diabetes, all would receive less
delivered dialysis dosing compared to men, heavier patients, those without
employment and the more frail, co-morbid patient and those with diabetes.

Previous studies targeting a dialysis dose defined by a weekly Kt/Vurea
for peritoneal dialysis patients have not shown an advantage for one target
compared to another [3,4]. Our study shows that achieving the same urea
clearance does not equate to the same delivered dose of dialysis, and as such
potentially adds explanation as to why prospective studies have failed to show a
significant benefit for one Kt/Vurea target for all patients. Although we
accepted that using Kt/Vurea for dialysis dosing has some limitations [31], more
recent observational studies have suggested an advantage for adjusting Kt for
BSA [30]. However we found that although adjusting for BSA detected a
difference between sexes and body weight, those who had higher nitrogen
appearance rates. Whereas in particular adjusting for TEE showed that in
addition, younger fitter patients received relatively less dialysis dose delivered
compared to older, more frail, co-morbid and diabetic patients. As such we
suggest that a single Kt/Vurea target dose is not applicable to all patients, and
the dose of dialysis should be increased for those who are more physically
active with greater TEE.
The authors have no conflict of interest

None of the data contained in this report has been previously published in whole or part form

Funding grant British Renal Society
Dr El-Kateb was awarded a scholarship by the International Society of Nephrology

References

31. Daugirdas JT. Kt/V (and especially its modifications) remains a useful measure of haemodialysis dose. Kidney Int. 2015;88(3):466-73

Figure 1: Relationship between body surface area (BSA) and Watson total body water for man and women.

Figure 2: Bland Altman analysis of total body water (TBW) measured by bioimpedance or calculated by Watson equation. Mean difference 0.72 L (95% limits of agreement -9.2 to +10.7 L).

Figure 3: Adjusted daily urea clearance according to body weight. Fixed weekly Kt of 1.7urea adjusted for body surface area (BSA) and resting energy (REE) and total energy (TEE) expenditure using Watson total body water (W) or bioimpedance measured total body water (BIA).* p <0.05, and **p<0.01 vs weight < 64 kg after Bonferroni correction.
Table 1. Estimates of daily resting energy expenditure (REE) and total energy expenditure (TEE) in patients according to age, co-morbidity, frailty and ethnicity groupings. Daily protein nitrogen appearance (PNA) g/day. Results expressed as mean ± standard deviation, or median (interquartile range). *p<0.05, ** p<0.01 comparing groups, adjusted for multiple comparisons (Bonferroni method).

<table>
<thead>
<tr>
<th>variable</th>
<th>REE kcal/day</th>
<th>TEE kcal/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>1597±217</td>
<td>2029±423</td>
</tr>
<tr>
<td>female</td>
<td>1412±240**</td>
<td>1868±377*</td>
</tr>
<tr>
<td>Age < 65 years</td>
<td>1646±209</td>
<td>2173±392</td>
</tr>
<tr>
<td>Age > 65 years</td>
<td>1408±211**</td>
<td>1750±314**</td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>1522±233</td>
<td>2021±435</td>
</tr>
<tr>
<td>diabetic</td>
<td>1556±254</td>
<td>1893±366*</td>
</tr>
<tr>
<td>employed</td>
<td>1577±237</td>
<td>2305±511</td>
</tr>
<tr>
<td>not employed</td>
<td>1523±242</td>
<td>1890±340**</td>
</tr>
<tr>
<td>Low comorbidity</td>
<td>1532±245</td>
<td>2012±441</td>
</tr>
<tr>
<td>High comorbidity</td>
<td>1539±231</td>
<td>1862±300</td>
</tr>
<tr>
<td>Low frailty score</td>
<td>1533±227</td>
<td>2049±453</td>
</tr>
<tr>
<td>High frailty score</td>
<td>1535±256</td>
<td>1894±353*</td>
</tr>
<tr>
<td>Weight < 64 kg</td>
<td>1305±151</td>
<td>1706±306</td>
</tr>
<tr>
<td>Weight 64-80 kg</td>
<td>1514±142**</td>
<td>1973±414**</td>
</tr>
<tr>
<td>Weight > 80 kg</td>
<td>1775±159**</td>
<td>2233±339**</td>
</tr>
<tr>
<td>PNA < 60 g/day</td>
<td>1450±214</td>
<td>1826±317</td>
</tr>
<tr>
<td>PNA > 60 g/day</td>
<td>1622±229**</td>
<td>2133±438**</td>
</tr>
<tr>
<td>Non Asian</td>
<td>1561±225</td>
<td>2060±462</td>
</tr>
<tr>
<td>Asian</td>
<td>1522±243</td>
<td>1866±359*</td>
</tr>
</tbody>
</table>
Table 2. Comparison for a fixed total weekly Kt/V of 1.7 (urea clearance L/m²/day, or ml urea clearance/kcal/day) adjusted for body surface area (BSA), resting energy expenditure (REE), total energy expenditure (TEE) for peritoneal dialysis patients comparing sexes, age (years), diabetic, employment status, and co-morbidity, weight and ethnicity. Diabetic (DM), High (H) and Low (L) frailty, co-morbidity (Comorb), protein nitrogen appearance (PNA) employed (employ +), not employed (employ -), ethnicity (Asian vs other races). *p<0.05 **p<0.01 after Bonferroni post hoc correction for multiple testing.

<table>
<thead>
<tr>
<th>variable</th>
<th>Kt/BSA</th>
<th>Kt/REE
W</th>
<th>Kt/TEE
W</th>
<th>Kt/REE
BSA</th>
<th>Kt/TEE
BSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>5.13±0.36</td>
<td>6.15±9.61</td>
<td>4.96±0.71</td>
<td>6.23±0.62</td>
<td>4.93±0.70</td>
</tr>
<tr>
<td>Female</td>
<td>4.42±0.40**</td>
<td>5.50±0.41**</td>
<td>4.23±0.65**</td>
<td>5.64±0.64**</td>
<td>4.27±0.71**</td>
</tr>
<tr>
<td>Age < 65</td>
<td>4.83±0.46</td>
<td>5.58±0.55</td>
<td>4.29±0.53</td>
<td>5.93±0.73</td>
<td>4.52±0.81</td>
</tr>
<tr>
<td>Age > 65</td>
<td>4.95±0.42</td>
<td>6.38±0.49**</td>
<td>5.18±0.61**</td>
<td>6.12±0.62</td>
<td>4.93±0.65**</td>
</tr>
<tr>
<td>DM yes</td>
<td>4.96±0.45</td>
<td>6.03±0.58</td>
<td>5.00±0.69**</td>
<td>5.92±0.65</td>
<td>4.93±0.69*</td>
</tr>
<tr>
<td>DM no</td>
<td>4.84±0.46</td>
<td>5.90±0.66</td>
<td>4.53±0.82</td>
<td>6.06±0.71</td>
<td>4.57±0.78</td>
</tr>
<tr>
<td>H frailty</td>
<td>4.91±0.47</td>
<td>6.06±0.66</td>
<td>4.96±0.75</td>
<td>6.01±0.61</td>
<td>4.90±0.71</td>
</tr>
<tr>
<td>L frailty</td>
<td>4.86±0.43</td>
<td>5.85±0.60*</td>
<td>4.46±0.78**</td>
<td>6.01±0.75</td>
<td>4.54±0.78**</td>
</tr>
<tr>
<td>HComorb</td>
<td>4.99±0.43</td>
<td>6.19±0.63</td>
<td>5.14±0.66</td>
<td>5.91±0.63</td>
<td>4.90±0.63</td>
</tr>
<tr>
<td>LComorb</td>
<td>4.85±0.45</td>
<td>5.87±0.62**</td>
<td>4.55±0.80**</td>
<td>6.05±0.71</td>
<td>4.62±0.81</td>
</tr>
<tr>
<td>Employ -</td>
<td>4.89±0.43</td>
<td>5.99±0.61</td>
<td>4.87±0.72</td>
<td>5.96±0.73</td>
<td>4.81±0.75</td>
</tr>
<tr>
<td>Employ +</td>
<td>4.89±0.54</td>
<td>5.82±0.71</td>
<td>4.07±0.82**</td>
<td>6.19±0.51</td>
<td>4.31±0.72**</td>
</tr>
<tr>
<td>H PNA</td>
<td>4.79±0.40</td>
<td>5.91±0.62</td>
<td>4.75±0.78</td>
<td>5.77±0.70</td>
<td>4.56±0.70</td>
</tr>
<tr>
<td>L PNA</td>
<td>4.95±0.48*</td>
<td>5.98±0.68</td>
<td>4.62±0.87</td>
<td>6.23±0.59*</td>
<td>4.81±0.81</td>
</tr>
<tr>
<td>Asian</td>
<td>4.87±0.46</td>
<td>5.97±0.65</td>
<td>4.67±0.85</td>
<td>6.10±0.65</td>
<td>4.71±0.76</td>
</tr>
<tr>
<td>Other</td>
<td>4.87±0.42</td>
<td>5.90±0.60</td>
<td>4.79±0.69</td>
<td>5.79±0.76*</td>
<td>4.64±0.80</td>
</tr>
</tbody>
</table>
Table 3. Multivariable step backward models for weekly Kt adjusted for Body surface area (BSA), resting energy expenditure (REE), and total energy expenditure (TEE), using both total body water calculated by Watson equation (W) and measured by bioimpedance (BIA). Unstandardised β (β), standard error (StE), standardised β (Standard β), 95% Confidence limits (95% CL). Protein nitrogen accumulation rate (PNA).

Adjusted for BSA model $r^2$0.60, adjusted 0.59, model adjusted for REE_W $r^2$0.60, adjusted 0.59, model adjusted for $\text{REE}_\text{BIA} r^2$0.42, adjusted 0.37, model adjusted for $\text{TEE}_W r^2$0.42, adjusted 0.3, and adjusted for $\text{TEE}_\text{BIA} r^2$0.35, adjusted 0.33.

Sex (female vs male), age years, high co-morbidity (H).

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>StE β</th>
<th>Standard β</th>
<th>t</th>
<th>95% CL</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kt_{urea}/BSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex (M)</td>
<td>0.70</td>
<td>0.05</td>
<td>0.77</td>
<td>13.5</td>
<td>0.6-0.87</td>
<td><0.001</td>
</tr>
<tr>
<td>Kt_{urea}/REE_W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex (M)</td>
<td>0.58</td>
<td>0.08</td>
<td>0.44</td>
<td>7.5</td>
<td>0.43-0.74</td>
<td><0.001</td>
</tr>
<tr>
<td>age</td>
<td>0.02</td>
<td>0.01</td>
<td>0.54</td>
<td>9.3</td>
<td>0.2-0.25</td>
<td><0.001</td>
</tr>
<tr>
<td>$Kt_{urea}/\text{REE}_\text{BIA}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNA</td>
<td>0.01</td>
<td>0.01</td>
<td>0.37</td>
<td>4.4</td>
<td>0.01-0.02</td>
<td><0.001</td>
</tr>
<tr>
<td>sex (M)</td>
<td>0.39</td>
<td>0.12</td>
<td>0.28</td>
<td>3.2</td>
<td>0.15-0.63</td>
<td>0.002</td>
</tr>
<tr>
<td>age</td>
<td>0.01</td>
<td>0.01</td>
<td>0.19</td>
<td>2.3</td>
<td>0.01-0.01</td>
<td>0.025</td>
</tr>
<tr>
<td>Kt_{urea}/TEE_W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex (M)</td>
<td>0.59</td>
<td>0.10</td>
<td>0.35</td>
<td>6.1</td>
<td>0.40-0.79</td>
<td><0.001</td>
</tr>
<tr>
<td>age</td>
<td>0.02</td>
<td>0.01</td>
<td>0.44</td>
<td>7.5</td>
<td>0.02-0.013</td>
<td><0.001</td>
</tr>
<tr>
<td>no employment</td>
<td>0.52</td>
<td>0.11</td>
<td>0.26</td>
<td>4.5</td>
<td>0.29-0.74</td>
<td><0.001</td>
</tr>
<tr>
<td>comorbidity H</td>
<td>0.30</td>
<td>0.11</td>
<td>0.16</td>
<td>2.7</td>
<td>0.01-0.52</td>
<td>0.009</td>
</tr>
<tr>
<td>diabetic</td>
<td>0.21</td>
<td>0.10</td>
<td>0.12</td>
<td>2.0</td>
<td>0.01-0.41</td>
<td>0.045</td>
</tr>
<tr>
<td>$Kt_{urea}/\text{TEE}_\text{BIA}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sex (M)</td>
<td>0.51</td>
<td>0.13</td>
<td>0.33</td>
<td>3.8</td>
<td>0.25-0.77</td>
<td><0.001</td>
</tr>
<tr>
<td>age</td>
<td>0.01</td>
<td>0.01</td>
<td>0.32</td>
<td>7.5</td>
<td>0.01-0.02</td>
<td><0.001</td>
</tr>
<tr>
<td>no employment</td>
<td>0.44</td>
<td>0.15</td>
<td>0.24</td>
<td>3.0</td>
<td>0.15-0.74</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Appendix

Resting Energy Expenditure (REE) was estimated from a newer novel predictive equation which was derived and validated in a cohort of HD patients [18].

\[\text{REE} = -2.497 \times \text{Age(years)} \times \text{Factor}_{\text{age}} + 0.011 \times \text{Height}^{2.023} \times \text{Weight}^{0.6291} + 83.573 \times \text{Factor}_{\text{sex}} \]

where \(\text{Factor}_{\text{age}} \) is 0 if \(\text{age} < 65 \) and 1 if \(\geq 65 \) and \(\text{Factor}_{\text{sex}} \) is 0 if female and 1 if male.

Physical activity data - Each reported activity was assigned a Metabolic Equivalent of Task (MET) value as per the Compendium of Physical Activities [19]. Sleep time per day was assumed to be 8 hours and any unreported time during the day was assumed as the time performing light activities at home. A Mean daily MET value was calculated.

Total Energy Expenditure (TEE) was estimated from the following equation.

\[\text{TEE} = \text{REE} \times \text{Mean Daily MET} \]