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Abstract: The skin is the main barrier between the internal body environment and the external 
one. The characteristics of this barrier and its properties are able to modify and affect drug 
delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of 
many different compounds has been measured through several in vitro and in vivo techniques. 
Moreover, many different in silico approaches have been used to identify the correlation 
between the structure of the permeants and their permeability, to reproduce the skin behavior, 
and to predict the ability of specific chemicals to permeate this barrier. A significant number of 
issues, like interlaboratory variability, experimental conditions, dataset building rationales, and 
skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin 
permeability model. This review wants to show the main advances and the principal approaches 
in computational methods used to predict this property, to enlighten the main issues arised and 
to address the challenges to develop in future research.

1. INTRODUCTION

The skin is the largest organ of the body and provides the main barrier between the internal and external 
environment. It consists of three separate and diverse layers, each one with a distinct cellular 
composition, characteristic, and function: epidermis, dermis and hypodermis. The outermost layer, 
epidermis, is formed of the viable epidermis and non-viable stratum corneum, which provides the main 
barrier to permeation and is considered as the “rate-limiting step of permeation”1. The stratum corneum 
is a specialized tissue type, whose main function is to control the absorption of substances into the skin 
and to maintain the fluid homeostasis. The structure of this layer has been often compared to a wall 
built from bricks and mortar, in which the nonpermeable protein-rich corneocytes represent the building 
blocks, glued with space-filling mortar (intercorneocyte cholesterol, triglycerides, and ceramides). 
According to Nemes, the barrier function of normal epidermis depends on the quality of its bricks and 
mortar 2-4.

1.1 Skin permeation

A compound can permeate the stratum corneum by the intercellular, transcellular or appendageal routes, 
according to its size and its chemico-physical properties 5, 6.
Skin permeability is widely recognized as an essential parameter to be considered for the delivery of 
active substances 1, but it is also considered important for risk assessment purposes 7. Guidelines for in 
vitro and in vivo skin permeation tests have been drafted by the OECD 8, 9, but no universal protocol 
has been developed. Measuring skin permeability is generally time consuming due to experimental 
conditions which need to be optimized for each compound, alongside with a proper analytical method 
development or adaptation. Moreover, it is impossible to evaluate compounds not yet synthetized. 
Hence, it is crucial to use an efficient and accurate in silico model of human skin permeability in order 
to reduce product development costs in early stage screening 10, resolve ethical issues, understand the 
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mechanisms of absorption 1, and reduce measurements variability. In fact, it has been shown that the 
skin permeability can variate inter- and intra-subject 11. While inter-variability fits to a normal 
distribution, intra-variability is non-normally distributed 11. Furthermore, it has been demonstrated that 
skin barrier variability is chemical dependent 12 and that it is not correlated with trans epidermal water 
loss rates (TEWL), especially following physical damage (stripping), commonly performed on skin 
prior permeability experiments 13.

1.2 Skin Permeability parameters

The passive diffusion process of a chemical from a region of high concentration to low concentration 
in the skin is described by Fick’s first Law of diffusion at steady state:

 (eq.1) 𝑄 =
𝐷𝐴𝑇∆𝐶

ℎ
The steady state flux (Jss) through the skin can be described as:

(eq.2)J𝑠𝑠 =
Q

𝐴𝑇 =
𝐷∆𝐶

ℎ  

where Q is the amount of solute, D is the penetrant diffusivity in the membrane, A is the area of the 
membrane considered, T is time, ΔC is the penetrant concentration gradient across the membrane, and 
h is the membrane thickness (path length).
The most commonly used parameter to describe and measure permeability is the constant of 
permeability (or permeability coefficient, Kp), defined as:

(eq.3)K𝑝 =  
J𝑠𝑠

∆𝐶𝑣
 

where ΔCv is the concentration gradient 14, 15.
Moreover, it is possible to use Jmax, the maximum flux of penetrant through the skin when in contact 
with a saturated solution 16. 

1.3 Skin Permeability measurement conditions

The conditions in which permeability experiments can be performed may significantly vary. According 
to the amount of substance applied to the membrane we can distinguish between finite and infinite 
dosing. The application of a limited amount of substance, called finite dosing, is closer to the in vivo 
status, but depletion of the donor concentration will occur. In infinite dosing, the compound is applied 
in large volumes, allowing to consider the donor compartment concentration as constant, but this is 
unrepresentative of many real-life exposures and may potentially result in changes to the experimental 
conditions, for example through causing an occlusive effect 17.
Even though human skin is considered the gold standard, other animal models have been used to 
conduct permeability measurements because of the greater ease in obtaining them and the ability to 
more tightly control variable parameters such as age, race and donor site. For this reason and because 
of its structural similarity to human skin 18-20, porcine skin is often used as a surrogate for human skin. 
Furthermore, many models of skin diseases exist in mice 21-26 and thus mouse skin is another common 
substitute for human skin. Other kinds of skin, obtained in vitro, can be used to conduct permeability 
experiments. In fact, in vitro models of reconstructed human epidermis (RHE) and reconstructed human 
skin (RHS) are widely used to assess various types of toxicity, such as photo toxicity, corrosion, 
irritation and sensitization 27. In the absence of penetration enhancers and controlling the level of skin 
hydration, it is possible to establish an overall good relationship between values obtained during 
experiments using RHS models with those using skin from hairless rats or mice, even if for both these 
models the permeability values are higher compared to human skin 28. 
It is also possible to perform permeation experiments using specific skin sections or thicknesses 29. Full 
thickness human skin (FT) can be used in in vitro permeation experiments and is prepared by 
mechanically removing the hypodermal connective tissue. In order to further reduce variability between 
samples, FT skin can be dermatomed to a pre-set thickness 30, 31. Variation can be further reduced by 
the use of only stratum corneum or epidermal sheets. These can be prepared by either mechanical or 
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heat separation 32, 33. This type of skin section retains the principle barrier function of the stratum 
corneum, and its use reduces variation due to skin thickness and diffusional pathway length. 
Data on the stratum corneum thickness is limited 34. Even from a given region, the number of cell layers 
and their thickness can vary 35, and this affects skin permeation measurements 36-39. The total lipid 
content and its composition may vary as well, depending on region 40, 41 and species 42. It has been 
shown that a change in the lipid composition and organization is characteristic of skin inflammatory 
diseases, where the skin barrier is compromised 43, and may cause irregular lipid matrix and defective 
skin permeability function 22, 44-48.

2. COMPUTATIONAL MODELS TO PREDICT PERMEABILITY

The experience of standardizing the conditions of permeation generated challenging and generally 
unsuccessful experiments 49, 50. This leads to the need for other approaches that are able to coherently 
predict permeability values and rank accordingly old and new chemical entities. In this review, the 
authors have chosen to identify, comment and summarize the main advances and approaches on 
computational methods used to predict skin permeability. 

In order to give a complete and detailed insight over the permeability predictive models, papers covering 
the period from 1992 to date have been selected and included in this review.

2.1 Linear and nonlinear QSPR models

The fundamental principle of a QSPR (quantitative structure-property relationship) is that the structural 
and physicochemical characteristics of a compound, codified as descriptors, are correlated to the 
property of interest (e.g. permeability coefficient) through a mathematical equation. 
QSPRs have traditionally been generated for molecules associated with a measurable property 51-53, in 
this case mainly the Log Kp. But more generically, even binary or categorical responses (e.g. not-
permeable or permeable) have been used, applying discriminant analysis, logistic regression and 
classification methods such as random forest (RF), support vector machine (SVM), and bayesian 
classifiers 54-58.

2.1.1. Potts and Guy approach and linear QSPR models

In the early 1990s, Potts and Guy 59 developed the first QSPR model, successfully linking the 
permeability of a compound with its partition coefficient between water and octanol (LogP) and 
molecular size (in the form of molecular volume or molecular weight), and subsequently adding the 
Hydrogen Bond Activity 60. Another similar model was developed by Cronin et al. It showed the 
diversity between permeation mechanisms with excised human skin compared to polydimethylsiloxane 
membranes 61. The compounds melting point was later added by Barratt et al.62, since this parameter is 
strongly related to solubility, and their model used molecular volume instead of molecular mass. Using 
Principal Component Analysis (PCA) techniques, they divided the dataset as either steroids, 
pharmacologically active compounds, or small molecules. Since the initial QSPR on the 
pharmacologically active dataset revealed a poor regression correlation, the ultimate QSPR was built 
with a dataset obtained by means of combining small molecules and steroids, removing from this latter 
the hydrocortisone subset. It has been shown later that melting point has no statistical significance in 
this model 63. Further analysis on a similar basis confirmed that hydrophobicity and molecular size 
(quantified by molecular weight or volume) provided a good model, when these well-known 
hydrocortisone derivative outliers were removed 64.
These Potts and Guy and Cronin QSPR models 59, 61 have been further revised, updating the steroid 
permeability data. The newly generated model showed a high degree of similarity to the previous ones, 
but it was not statistically necessary to consider the steroids as outliers. This led to the conclusion that 
the transdermal penetration process of steroids is not significantly different from that for the other 
molecules considered in the database 65. Another approach following the Potts and Guy direction was 
performed by Buchwald and Bodor 66. Their aim was to decouple two interrelated variables involved 
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that are used to generate the model: molecular size and acceptor hydrogen bonds formed. Even if these 
two variables are not correlated from a theoretical point of view, the “drug-like” database used to build 
the model shows an intercorrelation between them, altering the reliability of the correlation 
measurements.
Molecular weight (MW) has been found as strictly correlated to Jmax from a given vehicle 67. Magnusson 
et al. analyzed data from aqueous vehicles only, showing that other physicochemical parameters found 
with stepwise regression, like the solubility in octanol, the number of hydrogen bond acceptor sites, and 
the melting point, were able to only marginally improve the results. A separate analysis of full and split 
thickness skin data was then performed, showing that Jmax is not significantly influenced by the dermal 
resistance. 
Despite the wide use of MW as a descriptor in permeability predictive models, Tayar et al. 68 excluded 
their correlation. The intracellular route model was then built using Log Poct and ΔLog Poct-hep (i.e. Log 
Poctanol – Log Pheptanol), that measures the H-bond donor acidity. Log Poct only was used instead of ΔLog 
Poct-hep in the case of transcellular route. 
The first attempt of using several kinds of descriptors can be found in the work of Gute et al. 69 using a 
database of Polycyclic Aromatic Hydrocarbons (PAH). In this hierarchical QSPR, four classes of 
parameters were used (topostructural, topochemical, geometric, and quantum chemical), alongside with 
well-established physicochemical properties (e.g. MW and Log P). It has been found that, for the 
chemicals in the database, the quantum chemical class was not able to make any improvement in the 
QSPR predictivity.
The multilinear regression model developed by Chang et al. 70, using Kp data derived by in vitro human 
skin experiments, identified, with the octanol-water partitioning coefficient, four other properties. 
Among the 3,224 descriptors calculated by the Dragon software 71, the electrostatic interactions between 
electric quadrupoles of van der Waals forces, the frequency of carbon-nitrogen bonding at a constant 
topological distance, and the similarity to antineoplastic compounds in molecular property were 
selected to predict Kp for dermal hazard assessment. The antineoplastic property similarity (Neoplastic-
80 72) has been identified in other models as a crucial descriptor, along with molecular cyclicity, 
topological distances between oxygen and chlorine atoms, and lipophilicity 73.
In an interesting analysis on benzoxazinones regioisomers 74, the descriptors classically used (log P, 
molecular weight and volume (MV), hydrogen bond donor (Hd) and acceptor (Ha)) were considered 
along with the molecular refractivity and the solvation enthalpy (ΔΔHsolv) defined as the difference 
between formation enthalpies in water and in octanol and represents the energy acquired or transferred 
during the change of phase from a solvent to another one. It was used as a “correction” of LogP, 
resulting in an improvement of the correlation coefficient from the Potts and Guy equation.
Surprisingly, lipophilicity and size are not always claimed as the most important properties to build a 
permeability predictive model. Even though they were present in the pool of descriptors used in the 
model built using stepwise forward multilinear regression by Lee et al. 75, they were not retrieved as 
important contributors to the correlation coefficient. The properties involved were indeed the hydrogen 
bond acceptor and donor activities, followed by the globularity parameter, the PISA (PI carbon-
hydrogen component of the solvent-accessible Surface Area), and electron affinity. The absence in the 
model selected of common descriptors, such as lipophilicity and solute size, could be explained with 
the vehicle composition, an aqueous solution of PEG 400. This polymer can act like a surfactant, 
contributing to reducing the difference of surface tension between the vehicle and the stratum corneum 
76. Therefore, in the presence of a vehicle containing a surfactant, lipophilicity may not be considered 
as an important factor to predict the permeability 75, but it is important to consider that this parameter 
can be affected by hydrogen bond donor and acceptor activities. The partitioning between water and the 
barrier phase is expected to show a correlation with lipophilicity values, but these latter could in some 
cases not be trustworthy77. Finally, the solute size is not completely outcast from the model. Even if not 
considered a major factor, this property can, in some extent, be correlated to the globularity parameter, 
of significant importance in the model. 
Biological parameters can easily be included as QSPR descriptors. Liou et al. 78 developed a multilinear 
regression on non-steroidal anti-inflammatory drugs (NSAIDs) using, alongside molecular weight, 
polarity factor (cLogP, Log Ko/w) and the solubility parameter (δ), other parameters as indicators of the 
biological state of the skin as a barrier. TEWL, hydration content, lipid content, resonance running time, 
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and elasticity were successfully used as atypical descriptors, revealing their ability to improve the 
correlation of the model.
Different approaches were tested by Roberts et al. 79, who compared a model obtained with the use of 
solvatochromic parameters to six other models: the classical lipophilicity/molecular size approach 59, 
the molecular group contribution 80, the H-bond donor ability 68 with and without the use of molecular 
size, a two-phase model and a solubility-based model. This comparison revealed that the group 
contribution model, the two-phase model and the solvatochromic approach were more predictive 
compared to the other methods. The solvatochromic approach uses three different parameters (intrinsic 
volume, polarizability, and a descriptor of H-bond donor and acceptor activity) to describe the transfer 
of a molecule from an aqueous to an organic solution 81. This method has been compared to theoretical 
chemistry-derived structural parameters, molecular connectivity and molecular shape 82. The hydrogen 
bonding acceptor activity was recognized as the main limiting factor in skin penetration. 
The additive group contribution mentioned previously 80 was based on two sets, an 11-predictor and a 
17-predictor, based respectively on empirically determined functional group and on the SMILES 
method of molecular description. The results shown with this approach were comparable to those 
retrieved by Potts and Guy 59. Another fragment based approach, the TOPS-MODE 83, is based on the 
computation of the spectral moments of the bond matrix 84, and was used to build a QSPR 85, resulting 
in conclusions similar to other studies previously mentioned 59, 61.
A more statistically rigorous approach was used by Chauhan and Shakya 86, who used a broad variety 
of descriptors (Dragon descriptors and Abraham descriptors). They divided the training and the test set 
by the Kennard-Stone algorithm 87, 88, developed a model combining regression methods and Partial 
Least Square (PLS), and determined an applicability domain for the model obtained. The descriptors 
retrieved were the octanol-water partition coefficient, the hydrogen bond number, and the Narumi 
simple topological index (a descriptor related to molecular branching 89).
A plethora of studies build their models on LFER method of Abraham (or Abraham descriptors). Firstly 
developed for neutral compounds 90, and later on for ionic species 91-94, this model is based on the 
calculation of an equilibrium coefficient for a series of solutes in a given system (e.g. in this case, Log 
Kp) as a multilinear regression of some specific molecular properties (the excess molar refraction, the 
dipolarity/polarizability coefficient, the hydrogen bond acidity and basicity, the McGowan’s 
characteristic molecular volume, and additional descriptors for ionic species). Models built with this 
predefined set of descriptors have been widely used 95-99 and show a good prediction for both ionic and 
non-ionic compounds 100.

Table 1 Linear QSPR models. Multilinear regression (MLR), principal component regression (PCR), linear free-
energy regression (LFER), and partial least square (PLS) are the most used methods to develop a linear QSPR. 

Computational 
method

N comp. Fitness 
parameters

Robustness and validation parameters Reference

MLR 93, 42, 
23, 19

None None 59

MLR 37 None Fischer test 60

Stepwise 
regression MLR

114 R2 T-value, least squares regression to 
identify outliers, Fischer test, σ

61

MLR 91 R2 q2 (leave-one-out), t-value, Fischer test, σ 62

Stepwise 
regression MLR

158 R2 Fischer test, t-value, σ 64

MLR 119 R2 q2 (leave-one-out), t-value, Fischer test, σ 65

MLR 98 R2 Fischer test, σ 66

Stepwise 
regression MLR

278 R2 P-value 67

MLR 22, 8, 11, 
18

R2 σ 68

Hierarchical 
approach

60 R2 Fischer test 69

Stepwise 
regression MLR

158 R2 None 70
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MLR 106 R2 P-value, Fischer test, σ, sum of squares, 
mean square, mean square error, absolute 
maximum error, average absolute error, q2

73

MLR 14 R2 P-value, Fischer test 74

Stepwise 
regression MLR

61 R2 Mean absolute error, q2 75

MLR 13 R2 q2 78

MLR 24 R2 P-value, Akaike’s Information Criterion 
(AIC)

79

MLR 91 R2 Studentized residual value (t-value), σ, 
95% confidence interval, p-value, H 
leverage

80

Stepwise 
regression MLR

21,
11, 6

R2 σ, Fischer test 82

Stepwise 
regression MLR

114 R2 σ, σCV, q2 (leave-one-out), p-value, 
Fischer test

85

MLR, PCR, PLS 
(RMSECV 
minimization)

211 R2 q2 (leave-one-out), RMSECV
86

MLR (LFER) 71 R2 σ, Fischer test 95

MLR (LFER) 112 R2 σ, t-test 96

MLR (LFER) 119 R2 σ, Fischer test 97

MLR (LFER) 47 R2 σ, Fischer test 98

MLR (LFER) 118 R2 σ, Fischer test, Predictive Standard 
Deviation leave-one-out (PSD)

99

MLR (LFER) 247 R2 σ, Fischer test, Predictive Standard 
Deviation leave-one-out (PSD), q2

100

To be described as predictive, a model should have an appropriate measurement of goodness of fit, 
robustness and predictivity. Among all the model previously described and shown in Table 1, R2 is 
unanimously used to represent the goodness of fit measurement. Predictivity and robustness have been 
measured mostly with Q2

LOO (Leave-One-Out), a Cross Validation parameter. It has been shown that 
this parameter alone is inadequate and incomplete 101-107, therefore Q2

LMO (Leave-Many-Out) or 
bootstrap methods should be used instead, and Y-randomization should be calculated in parallel to 
highlight casual correlations 101, 102, 108. The Root Mean Square Error and its cross validate counterpart 
(RMSE and RMSECV) can be useful in case of unevenly distributed data; RMSECV should be as low as 
possible and similar to RMSE to show a good standardization 109. Although, cross validation techniques 
provide a reasonable measure of the internal predictive power; furthermore, in order to consider the 
model truly predictive, the internal validation should be supported by external validation 110. In fact, 
during the cross validation process runs, the same data are “repeatedly used to build and assess the 
model” 102, 104. The external validation should be performed splitting a priori the dataset into a training 
and a test set. The most common external validation, suggested by the OECD 111, is performed through 
q2 form parameters 112, R2

ext measurements 106, and other types of metrics 113-115.

2.1.2. Non-linear QSPR models

In the past 30 years QSPR models evolved from simple Multi Linear Regressions with a few 
thermodynamic variables to non-linear models developed with a wide variety of descriptors 116, 117.
Many different approaches have been used to develop QSPRs models, including artificial neural 
networks, random forest, gaussian regressions and processes.
The artificial neural network (ANN) is a pattern of computational algorithms that reproduces the 
functionality of the connection in biological neural clusters 118, simulating in every way a “digital brain” 
that processes the information 119.
The ANN is compared to MLR by Fatemi and Malekzadeh 120, who built models with descriptors 
calculated with the software Codessa 121. A similar comparison has been made by Atobe et al. 122, who 
use the classical Potts and Guy descriptors, alongside other parameters that take into account the effect 
of different delivery vehicles. Additionally, Katritzky et al. 123 included fragment-based ISIDA 
modeling 124, 125 in the comparison. Lim et al. 126 used a feed-forward back-propagation neural network 
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to correlate skin permeability to descriptors calculated with Molecular Orbital (MO), such as dipole 
moment, polarizability, sum of charges of nitrogen and oxygen atoms, and sum of charges of hydrogen 
atoms bonding to nitrogen or oxygen atoms. Artificial Neural Network has also been used with 
Abraham Descriptors 127-129. ANN is often considered as superior because it generally performes better 
for a broad range of chemicals 122. Although this technique has been applied in building several models  
120, 122, 123, 126-129, Chen et al. 73 observed that models with not sufficient number of compounds show a 
trend of overfitted results 130. Moreover, it has been shown that ANNs can be trapped in local minima 
10 and that the structure of their network is difficult to determine properly 73.
The Random Forest technique is a particular Decision Ensembles of Trees algorithm 131. After bootstrap 
sampling, for each sample a certain number of decision trees are grown to the maximum possible size, 
using the Classification And Regression Trees (CART) algorithm 132. The boosted CART can be used 
to obtain permeability classes with an extended set of descriptors. Baert et al. compared this CART 
model with a MLR model built with the descriptors from the first model 133.
Other ensemble methods used are the Decision Forest 134 and the Random Forest 135. Among all the 
non-linear techniques, the tree-based ones show a good set of characteristics. They are able to identify 
relevant descriptors and to handle high dimensional-data, but they are not able to give a high prediction 
accuracy 56. In contrast to the other ensemble algorithms, RF is able to estimate prediction accuracy, 
descriptor importance in the model and similarity between chemical compounds analyzed 56. A Random 
forest approach with these characteristics has been used by Alves et al. 136, 137, to compare human and 
rodent permeabilities, showing a good predictive performance but a restricted applicability domain 
compared to other software138.
A similar model was generated by Baba et al. 10, that, after the calculation of 4803 descriptors with 
Dragon 71, developed and compared several QSPRs. The models were built through random forest and 
support vector machine (SVM). The support vector machine uses a kernel transformation, a 
mathematical function that projects the descriptor matrix in a space with high-dimensionality 139, 140. 
The SVM was used to find regression with both a linear or gaussian basis. The models were obtained 
by stepwise forward selection, using the Potts and Guy model 59 as a baseline. The number of descriptors 
selected in the RF were 9, in the SVM-Gaussian 11 and 17 in the SVM-Linear, showing that the random 
forest performed better than all the other models. Furthermore, the support vector regression and the 
random forest methods were used with greedy stepwise descriptor algorithm selection to predict the 
solvent effect on human skin permeability 141. In subsequent work, the SVM–Gaussian and the SVM-
Nonlinear were compared to the Potts and Guy model to investigate the permeability of ionic 
compounds142. The results showed the superiority of the nonlinear SVR model and the effectiveness of 
a new descriptor, Log D, that represents the octanol-water distribution coefficient measured at a specific 
pH and allows to predict the effects of ionization on the skin permeation process.
Machine learning methods can include the gaussian process regression with automatic resonance 
detection (GPRARD). This method was compared in different studies 143, 144 to gaussian process 
regression (GPR), and single linear networks (SLN). The use of GPR, in particular GPRARD, is able 
to quantify the covariance and the length scale of each descriptor in the model, giving a deeper 
comprehension of the significance of each feature 144. GPR methods have been applied to the 
exploration of skin membranes datasets other than human skin, and to investigate how the nature of the 
dataset may influence its analysis 145. Descriptors used to build this latter model are LogP, MW, the 
number of hydrogen bond donor and acceptor groups and solubility parameter defined by Fedors 146.
An iterative non-linear Gauss–Newton least-squares fit 147 was used by ten Berge 148 to estimate the 
regression coefficient for aqueous skin permeation, using the logarithm of the water-octanol partition 
coefficient, molecular weight and water solubility. The model can calculate various parameters, such 
as the aqueous permeation coefficient, the maximum dermal absorption, the lag time and, finally, the 
diffusivity in the stratum corneum. The maximum dermal absorption and lag time showed the same 
order of magnitude of the respective experimental measured properties.
Gaussian processes, along with SLN and k-nearest-neighbour regression (k-NN), were applied to 
predict the skin permeability coefficient, based on five molecular descriptors (MW, solubility parameter, 
lipophilicity, the number of Hydrogen acceptor and donor bonds). The results obtained were better than 
the classical LogP-MW model 149. k-NN has also been used with ridge regression 150, to predict skin 
permeability using molecular weight, octanol-water partition coefficient and solvation free energy 130.
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As shown in this review, the k-NN algorithm has been widely used in skin permeability predictions. 
This non-parametric method represents one of the simplest machine learning algorithms 151. The 
regression process estimates the value to predict according to a weighted average of the nearest 
neighbour, weighted by the inverse of their distance 152. The same method can be used to estimate 
outliers 153. A good example of this use of the k-NN methods is delivered by Lindh et al. 154. After using 
the RF and SVM regression approaches together with Conformal Prediction (CP), k-NN has been used 
to estimate the error for each compound. 
Conformal Prediction is able to estimate prediction ranges and significance levels for single compounds 
155, 156. Estimating the prediction range 157 and defining the error limits are procedures that quantify the 
maximum number of errors expected 155, 156 leading to increased confidence in the model.
Ridge regression (RR), also known as Tikhonov regularization or weight decay 150, is used in other 
models in order to take into account multicollinearity. After reducing the number of descriptors with a 
modified Gram-Schmidt variable reduction algorithm, Basak et al. 158 compared the RR to principal 
component regression (PCR) and partial least squares regression (PLS), showing that Ridge Regression 
outperforms the other approaches.
Skin permeability has also been predicted with other kinds of machine learning algorithms, such as 
neural fuzzy algorithms. Khajeh and Modarress 159 used Modified Particle Swarm Organization (MPSO) 
to select the descriptors and Adaptive Neuro-Fuzzy Inference System (ANFIS) 160 to correlate them 
with skin permeability experimental data. Fuzzy models have been compared to Flynn 161, Potts and 
Guy 59, 60, and Abraham 162 databases with promising results 163, even if the number of compounds 
should be increased. Furthermore, a Takagi-Sugeno fuzzy model, able to predict permeability from MW, 
octanol/water partition coefficient, and temperature, has been compared with a MLR model that used 
the same descriptors 164, showing the superiority of the first model over the second one.
After measuring the stratum corneum binding property and the extracted lipid partition coefficient of a 
number of compounds, Wang et al. 165 developed two QSPRs to predict the partition and binding 
coefficients. The two models built were combined in a two-phase compartmental nonlinear model able 
to predict the partition coefficient of solutes to the stratum corneum (Ksc/w).
Given that the greatest part of the QSPR mentioned have been developed using mixtures of different 
datasets prone to interspecies and interlaboratory variabilities, a novel statistical approach has been used 
to minimize this error 166. Fujiwara et al. assumed that each dataset has a relationship between the 
permeability and the descriptors, considering the different regression coefficients for each dataset as 
proportional (not identical) to the others. This approach, called “latent membrane permeability”, is a 
possible explanation of the reason why an absolute permeation rate cannot be predicted, and it is an 
effective way to compare different databases of skin permeability measurements.

2.1.3. QSPR models for mixtures and enhancers

All of the approaches to predicting skin permeation described above consider only the permeation of 
single compounds from aqueous solution. It is extremely rare that any chemical actually comes into 
contact with the skin as a simple aqueous solution, whether medicinal formulations, cosmetic products 
or accidental exposure to chemicals are being considered. Much more common is that the chemical 
comes into contact with the skin as a complex mixture of chemicals in a delivery vehicle that often 
contains aqueous and non-aqueous co-solvents. Therefore, in order to better reflect these real-world 
scenarios, numerous approaches have been used to describe behavior in situations closer to the actual 
skin delivery systems, where mixtures and permeability enhancers are commonly present. In fact, the 
use of permeability enhancers, chemicals that interact with skin constituents to promote drug flux 167, 
is one of the most commonly used approaches within the pharmaceutical industry to broaden the range 
of chemicals that can delivered into or across the skin.
To predict skin enhancement for hydrocortisone and hydrocortisone acetate, a Membrane-Interaction 
Quantitative Structure-Activity Relationship (MI-QSAR) was developed 168, using two enhancer data 
sets of 61 and 42 molecules. The MI-QSAR technique uses a model membrane, on which a Molecular 
Dynamics (MD) simulation is conducted, analyzing the permeability enhancer 169-172. General 
intramolecular solute descriptors, solute aqueous dissolution and solvation descriptors and solute-
membrane intermolecular descriptors were calculated. This latter category is extracted from the 
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trajectories of the MD simulations, making it possible to build a QSPR model considering the membrane 
properties.
MLR methods have been adapted for topical preparation mixtures 173 in order to predict ingredient 
modulation of dermal absorption of caffeine and salicylic acid. Physicochemical descriptors (such as 
density, vapor pressure, enthalpy of vaporization, flash point, index of refraction, molar refraction, 
hydrogen bond acceptors and donors, number of freely rotatable bonds, log P, log D, polar surface area, 
polarizability, surface tension, molar volume, boiling point, melting point, boiling point minus melting 
point, Henry’s Law constant, MW, and water solubility) were calculated and the models were obtained 
by stepwise forward regression. During a finite-dose diffusion experiment, using porcine skin, 
Ghafourian et al. 174 tested 12 different penetrants in 34 different solvent mixtures. From the data 
collected, through a stepwise regression analysis, it was possible to build a QSAR, employing two 
penetrant descriptors (octanol/water partition coefficient and the ninth order path molecular 
connectivity index) and one solvent property (the difference between the melting and boiling points). 
The extremely unusual negative relationship between skin permeability coefficient and Log P was 
correlated to the high lipophilicity of the compounds of this particular dataset. Then, combining this 
data with a previous dataset, a new QSAR was obtained, having as descriptors two penetrant properties 
(Wiener topological index and total dipole moment), the boiling point of the solvent, and the difference 
between the melting point of the penetrant and the melting point of the solvent 175.
Mixture-related effects were considered by Guth et al. 176, who developed a MLR QSPR to measure the 
dermal absorption of agrochemical formulations. Along with the five Abraham descriptors, physico-
chemical and structural properties were used to calculate the mixture factor (MF). The Abraham 
descriptors, enriched by a mixture factor (MF), were used by Riviere and Brooks 177, who compared a 
large number of models, showing the positive impact of a mixture factor on the predictivity of each of 
them. Adding a sixth term to the Abraham Descriptors, the MF, allowed the same authors, , to take into 
account the physicochemical properties and quantify the effect of the formulation on the dermal 
absorption 178 in the further study.
The LFER model of Abraham has been expanded and adapted in different ways to predict the 
permeability of mixtures. Xu et al. considered an equation for each Metal Working Fluid formulation, 
and then produced a condensed model 179. The validation is performed with the “leave-one-solute-out” 
method (a modified leave-one-out cross-validation) that correlates replicates from the same solute. 
The permeability enhancers (PE) analysis still represents a challenge, mainly because of their possible 
multiple mechanisms of action 180, 181. Drakulić et al. 182 used four drugs (5-Fluorouracil, Hydrocortisone, 
Estradiol and Diclofenac Sodium) to evaluate the role of 34 terpenes as permeation enhancers. 
Molecular modelling showed that the complexation between the PE and the drug could be responsible 
of the enhancement.
Discriminant analysis (DA) and classical machine learning methods, such as gaussian process 
regression, K-nearest-neighbour regression, single layer networks, radial basis function networks and 
SVM classifier algorithms have been successfully applied on permeation enhancers by Moss et al. 183, 
showing better predictions of GP compared to DA.
Another non-linear QSPR model has been developed by Yerramsetty et al. 184, where the ANN 
algorithm was used to predict permeability enhancement for insulin when combined with different 
permeability enhancers.

2.2 Other computational approaches 

2.2.1. Molecular Dynamics 

Molecular Dynamics is a useful technique to calculate, record, and analyze motions of a many particles-
system 185. In one of the earliest studies in this field, a statistical mechanical theory is used to establish 
the molecular distribution of a solute on a lipid bilayer, obtained as a function of lateral pressure and 
solute size and shape 186. Similarly, Das et al. 187 have calculated the diffusivity of water in several lipid 
bilayers, obtaining permeability values much smaller compared to the experimental ones. On the 
contrary, measuring the permeation of small molecules through a lipidic matrix, Gupta et al.188obtained 
values a few orders of magnitude higher than the experimental for the hydrophilic molecules.
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Molecular dynamics simulations have been used to support results obtained from other kind of in silico, 
or in vitro models, confirming the high selectivity of lipid membranes permeation to compound size 
and shape. In Marrink et al., a molecular dynamics simulation 189-191 was employed to study the transport 
of small molecules (water, oxygen, ammonia) through a phospholipidic bilayer 192, with the objective 
of determining if the size, hydrophobicity and asphericity of the permeants were related to their 
permeability coefficient. They concluded that the shape of the permeation resistance profile was mainly 
determined by the free energy of solvation.
To add a multi-component diffusion factor, Rim et al. proposed a multiscale framework model, 
considering the microscopic, mesoscopic and macroscopic aspect of transdermal diffusion. Molecular 
Dynamics in this case is used to find the diffusion coefficient in the lipid bilayers of the stratum corneum 
193 for drugs coupled with permeability enhancers.
Another multi-scale approach used multiple constrained molecular dynamics simulations (molecular 
scale simulation) to calculate the diffusivity coefficient. This was then used to run Finite Model Element 
(FEM) simulations to calculate the release profile of the compounds in the macroscopic model, the 
concentration gradient and the amount permeated through the stratum corneum 194. The study shows a 
good qualitative match with experimental data, but suffers from some limitations, such as skin lipids 
composition variability and experimental log Kp values variability.
The barrier properties of human skin have been analyzed in silico, simulating electron microscopy 
patterns on molecular dynamics simulations of a bilayer model. These results have been validated 
against cryo-electron microscopy data from near native skin 195, 196, showing a thermodynamically stable 
model and results compatible with values from human skin.
Rocco et al. 197 applied Steered Molecular Dynamics (SMD) of 80 compounds from Flynn’s refined 
database 198 on a SC model, to obtain lipophilicity and diffusion parameters. Further improvements have 
been obtained considering temperature-related parameters. The variables extracted from the SMD 
analysis have been correlated with the permeability coefficient measured experimentally. Even if still 
not enough accurate to represent a valid tool to predict permeability, this model can give useful insight. 
In fact, the assessment of the behavior of each compound in the different zones of the SC model can 
lead to the identification of the region that represents the “limiting step during the permeation process” 
of that compound.

2.2.2. Equation-based models

Other in silico methods have been developed with a theoretical approach, producing equations able to 
predict permeability and dermal absorption 199, mainly from compartmental models.
The multicompartmental spreadsheet-based model developed by Dancik et al. 200 considers the 
characteristics of skin layers and attaches to each one a corresponding equation, obtained as 
combination of diffusion principles and experimental coefficients, evaluating several exposure 
scenarios. Unfortunately, the model shows a great number of discrepancies with the experimental data 
but attempts to take into account situations not commonly addressed by QSPRs, like finite dose 
absorption.
Another two-dimensional mathematical multi-scale model was developed by Kattou et al. 201. Caffeine 
permeation via the intrafollicular route was predicted using partition properties in sebum collected from 
literature. The study confirmed the importance of this route for the permeation mechanism of caffeine, 
providing information difficult to obtain with in vivo or ex vivo experiments. Even if not exhaustively 
validated, the model is promising, offering quantitative prediction of intercellular, intracellular and 
follicular permeation pathways.
More recently, Wen et a. 202 developed a microscopic FEM in order to test different geometries, 
pathways and hydration levels. Not being derived purely from a theoretical approach, this study argued 
the unavoidable correlation between parameters experimentally derived and computed SC structures, 
therefore attributed the significant differences in lag-times and permeabilities predicted in multiple 
conditions to the lack of verified and standardized experimental transport parameters.
As previously mentioned, it is possible to compare different “skin geometries”. What all of these models 
have in common is a prototype in which the discrete corneocytes cells are embedded in a continuous 
lipidic matrix. This kind of model is well-known as the brick and mortar-based model 203, 204. Cuboid 
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models in two or three dimensions and tetrakaidekahedron in three dimensions are the most commonly 
investigated methods 205. Naegel et al. showed that the selected cell shape has a numerical influence on 
the barrier properties of the SC and that the tetrakaidekahedral shape had a “favorable barrier-to-volume 
ratio” 205.
Mitragotri developed several theoretical mathematical models considering structural properties of lipid 
bilayers and molecular properties of the compounds 206, 207. The Scaled Particle Theory 208 has been used 
to calculate the diffusion and partition coefficients in bilayers, considering statistical mechanics of lipid 
chains 206. It showed that the solute partition coefficients calculated are comparable with the octanol-
water partition coefficient, and that the diffusion coefficients of the compounds analyzed decreased 
with solute cross-sectional area. Other skin permeability analytical expressions based on solute radius 
and octanol-water partition coefficient have been subsequently developed, considering the importance 
of lateral lipid diffusion, aqueous pores diffusion, diffusion through shunts and lipid bilayers free-
volume diffusion 207.
Other mathematical mechanistic models have been developed in order to understand the microscopic 
principles of skin penetration. Among these a promising mathematical model validated through 
published clinical studies on nicotine skin patches, is able to predict solute concentration in the blood, 
integrating the skin penetration mechanism with the circulation kinetic one 209; unfortunately, as in other 
cases, the model still needs a proper validation with an appropriate sized database.
Mathematical models can be used not only to predict permeability, but also disposition of compounds 
in the skin layers 210; this latter study confirmed that the disposition and the absorption across the skin 
are related to the octanol-water partition coefficient, showing a non-linear correlation between these 
parameters.

3. CONCLUSION

In silico methods have a fundamental role in predicting skin permeability, to minimize product 
development costs, to address ethical issues, to reduce experimental skin variability, and to gain useful 
insights on the mechanisms of absorption and distribution on the skin layers. The aim of this review 
was to highlight the advances of in silico predictions of skin permeability. Many different approaches 
have been used in the past years, such as QSPRs (linear and non-linear), Molecular Dynamics 
simulations, and various theoretical methods. 
Above all these, QPRSs still represent the most widely used technique to predict skin permeability 
because of its ability to evaluate larger datasets and give faster results. Linear and non-linear models 
have been developed and validated with different extent of success. The poor correlation obtained in 
some cases can be attributed to the quality of databases. Many of the studies cited above were developed 
with databases obtained through experiments performed with mixed animal and human data, different 
measurement conditions, vehicles, and skin samples regions. As previously mentioned, skin 
permeability can hugely vary, and even measurements obtained with the same conditions, but in 
different studies can be affected by this atavist ensemble of errors, that make the data themselves not 
useful for prediction purposes. 
While the QSPRs developers are still struggling with the quality of data, other kind of approaches are 
trying to become independent from non-standardized parameters. Equation-based models describe the 
skin layers and the absorption mechanisms not only to give insights into the permeation and the skin 
barrier properties, but also to measure them. Unfortunately, the only validation of these models is still 
the experimental data that appears to be particularly lacking for some of the routes of permeation. 
Even though MD approaches tend to take many variables into account, rising therefore the chances of 
errors, they seem to be the next step towards experimentally-independent permeability prediction 
because of their ability to recreate a model of the skin environment. Furthermore, the improving 
calculation potency of computing machines is contributing to broaden the limits of this kind of 
approach. 
Despite more than 25 years of computational models’ development to predict human skin permeation, 
this field appears to be continuously expanding. Therefore, the entire spectrum of approaches analyzed 
in this review has to be considered a necessary and useful step in order to further build a validated 
satisfactory model of prediction and description of skin permeation pathways.
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LIST OF ABBREVIATIONS

- ANFIS, Adaptive Neural Fuzzy Inference System
- ANN, Artificial Neural Network
- CART, Classification And Regression Trees
- CV, Cross Validation
- DA, Discriminant Analysis
- FEM, Finite Element Method
- FT, Full-Thickness
- GA, Genetic Algorithm
- GPR, Gaussian Process Regression
- GPRARD, Gaussian Process Regression with Automatic Resonance Detection
- ISIDA
- k-NN, k-Nearest-Neighbour
- LFER, Linear Free-Energy Relationship
- LMO, Leave Many out
- LOO, Leave One Out
- MD, Molecular Dynamics
- MF, Mixture Factor
- MI-QSAR, Membrane-Interaction Quantitative Structure-Activity Relationship
- MLR, Multi Linear Regression
- MO, Molecular Orbitals
- MPSO, Modified Particle Swarm Organization
- MV, Molecular Volume
- MW, Molecular Weight
- NSAID, Non-Steroidal Anti-Inflammatory Drug
- OECD, Organization for Economic Co-operation and Development
- PAH, Polycyclic Aromatic Hydrocarbons
- PCA, Principal Component Analysis
- PCR, Principal Component Regression
- PE, Permeability Enhancer
- PISA, PI carbon-hydrogen component of the solvent-accessible Surface Area
- PLS, Partial Least Square
- QSAR, Quantitative Structure-Activity Relationship
- QSPR, Quantitative Structure-Property Relationship
- RF, Random Forest
- RHE, Reconstructed Human Epidermis
- RHS, Reconstructed Human Skin
- RMSE, Root Mean Square Error
- RR, Ridge Regression
- SC, Stratum Corneum
- SMD, Steered Molecular Dynamic
- SLN, Single Linear Network
- SMILES, Simplified Molecular Input Line Entry System
- SVM, Support Vector Machine
- SVR, Support Vector Regression
- TEWL, Trans Epidermal Water Loss
- TOPS-MODE, TOPological Sub-Structural MOlecular DEsign
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