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At a distance of 1.8 parsecs1, Barnard’s star (Gl 699) is a red dwarf with the 

largest apparent motion of any known stellar object. It is the closest single star to 

the Sun, second only to the a Centauri triple stellar system. Barnard’s star is also 

among the least magnetically active red dwarfs known2,3 and has an estimated 

age older than our Solar System. Its properties have made it a prime target for 

planet searches employing techniques such as radial velocity4,5,6, astrometry7,8, 

and direct imaging9, all with different sensitivity limits but ultimately leading to 

disproved or null results. Here we report that the combination of numerous 

measurements from high-precision radial velocity instruments reveals the 

presence of a low-amplitude but significant periodic signal at 233 days. 

Independent photometric and spectroscopic monitoring, as well as the analysis of 

instrumental systematic effects, show that this signal is best explained as arising 

from a planetary companion. The candidate planet around Barnard’s star is a 

cold super-Earth with a minimum mass of 3.2 Earth masses orbiting near its 

snow-line. The combination of all radial velocity datasets spanning 20 years 

additionally reveals a long-term modulation that could arise from a magnetic 

activity cycle or from a more distant planetary object. Because of its proximity to 

the Sun, the proposed planet has a maximum angular separation of 220 milli-

arcseconds from Barnard’s star, making it an excellent target for complementary 

direct imaging and astrometric observations. 

 

Barnard’s star is the second closest red dwarf to the Solar System, after Proxima 

Centauri, and thus an ideal target to search for exoplanets with potential for further 

characterisation10. Its very low X-ray flux, lack of Ha emission, low chromospheric 

emission indices, slow rotation rate, slightly sub-solar metallicity, and membership of 

the thick disc kinematic population indicate an extremely low magnetic activity level 

and suggest an age older than the Sun. Because of its apparent brightness and very low 

variability, Barnard’s star is often regarded as a benchmark for intermediate M-type 

dwarfs. Its basic properties are summarized in Table 1. 

 

An early analysis of archival radial velocity datasets of Barnard’s star up to 2015 

indicated the presence of at least one significant signal with a period of ~230 days but 

with rather poor sampling. To elucidate its presence and nature we undertook an 

intensive monitoring campaign with the CARMENES spectrometer11, collecting 



precise radial velocity measurements on every possible night during 2016-2017, and 

we obtained overlapping observations with the ESO/HARPS and HARPS-N 

instruments. The combined Doppler monitoring effort of Barnard’s star, including 

archival and newly acquired observations, resulted in 771 radial velocity epochs 

(nightly averages) with typical individual precisions of 0.9 to 1.8 m s-1, obtained over 

a timespan exceeding 20 years from seven different facilities and yielding eight 

independent datasets (ED Table 1).  

 

While each dataset is internally consistent, relative offsets may be present because of 

uncertainties in the absolute radial velocity scale. The analysis considered a zero-point 

value and a noise term (jitter) for each dataset as free parameters to be optimized 

simultaneously with the planetary models, and a global linear trend. We used several 

independent fitting methods to ensure the reliability of the results. The parameter space 

was scanned with hierarchical procedures (signals are identified individually and 

added recursively to the model) and multi-signal search approaches (fitting two or 

more signals at a time). Furthermore, we used the Systemic Console12 to assess the 

sensitivity of the solutions to the datasets used, error estimates and eccentricities. 

Figure 1 and ED Figure 1 illustrate the detection of a signal at a period of 233 days 

with high statistical significance assuming white noise (p-value or false-alarm 

probability, FAP ~ 10–15) and also show evidence for a second, longer-period signal. 

 

To assess the presence of the long-term modulation we considered an alternative 

method of determining the relative offsets by directly averaging radial velocity 

differences within defined time intervals for overlapping observations. All datasets 

were subsequently “stitched” together into a single radial velocity time-series. These 

combined measurements indicate long-term variability consistent with a signal at a 

period greater than 6000 days. We thus performed additional fits leaving the relative 

offsets as free parameters and assuming two signals, one with a prior allowing only 

periods > 4000 days. The model fit converges to two periodic signals at 233 days and 

~6600 days, and has comparable likelihood (D ln L < 5) to the one obtained by 

manually “stitching” the datasets. We conclude that the significance of the 233-day 

signal remains unaltered irrespective of the model used for the long-term variability, 

and also that the long-term variability is significant. 

 



Stellar activity is known to produce periodic radial velocity modulations that could be 

misinterpreted as arising from planetary companions. Rotation period values of 130 

days and 148.6 days have been reported for Barnard’s star respectively from 

photometry13 and from spectroscopic indices3. We analysed data from long-term 

monitoring in photometry and spectroscopy, the latter being Ha and Ca II H&K 

chromospheric fluxes measured from the spectra used for radial velocity 

determination. Periodograms are shown in Figure 2. The photometric time-series 

yields a statistically significant signal with a period of 144 days, the Ha measurements 

present a complex periodogram with a highly significant main peak at 133 days, and 

the Ca II H&K chromospheric index shows significant periodicity at 143 days. All 

these values can be tentatively associated to the stellar rotation period, which we 

hereby estimate to be 140±10 days. Furthermore, two of the activity tracers suggest 

the existence of long-term variability. The analysis rules out stellar activity 

periodicities in the neighbourhood of 230 days. Also, the 233-day signal in radial 

velocity increases significance mostly monotonically with time as additional 

observations are accumulated (ED Figure 2), which is suggestive of a deterministic 

Keplerian motion rather than the more stochastic nature of stellar activity variations. 

 

Although stellar activity does not appear to be responsible for the periodic 233-day 

signal in radial velocity, it could affect the significance and determination of the model 

parameters. We therefore carried out a detailed study considering different models for 

correlated noise, based on Moving Averages (MA) and Gaussian Processes (GP). The 

MA models yield results comparable with the analysis assuming white noise and 

confirm the high statistical significance of the 233-day periodicity, with a FAP of 5·10–

10. The GP framework strongly reduces the signal significance, with a FAP no more 

significant than ~10%. However, GP models have been shown14 to underestimate the 

significance of the signals, even in the absence of correlated noise.  

 

Despite the degeneracies encountered with certain models, and after extensive testing 

(see Methods for further details), we conclude that the 233-day period signal in the 

radial velocities is best explained as arising from a planet with minimum mass of 3.2 

Earth masses in a low-eccentricity orbit of 0.40 au semi-major axis. The median 

parameter values from our analysis are provided in Table 1 and ED Table 2, while 



Figure 3 shows the models of the radial velocities. Standard Markov chain Monte 

Carlo (MCMC) procedures were used to sample the posterior distribution. The MCMC 

analysis yields a secular trend significantly different from zero. Both the trend and the 

long-term modulation could be related to a stellar activity cycle (as photometric and 

spectroscopic indicators may suggest) but the presence of an outer planet cannot be 

ruled out. In the latter case, the fit would suggest an object of ≳ 15 Earth masses, in 

an orbit with ~4 au semi-major axis. The orbital period is compatible with that claimed 

by ref. 6 from an astrometric long-term study, but the Doppler amplitude is 

inconsistent, unless the orbit is nearly face-on. On the other hand, the induced 

nonlinear astrometric signature over ~5 yr would be up to 3 milliarcseconds, making 

it potentially detectable with the Gaia mission. 

 

ED Figure 1 shows that some marginally significant signals may be present in the 

residuals of the two-signal model (e.g., at 81 d), but current evidence is inconclusive. 

We can, however, set stringent limits on the exoplanet detectability in close-in orbits 

around Barnard’s star. Our analysis is sensitive to planets with minimum masses 0.7 

and 1.2 Earth masses at respective orbital periods of 10 and 40 days, which correspond 

to the inner and outer optimistic habitable zone limits15. Barnard’s star seems to be 

devoid of Earth-mass planets and larger in hot and temperate orbits, which stands in 

contrast with the seemingly high occurrence of planets in close-in orbits around M-

type stars found by the Kepler mission16,17.  

 

The proximity of Barnard’s star and the relatively large orbital separation makes the 

system ideal for astrometric detection. The Gaia and HST missions can reach an 

astrometric accuracy of 0.03 mas18,19. Depending on the orbital inclination they could 

detect the planet signal or set a constraining mass upper limit20. Also, for the calculated 

orbital separation the contrast ratio between the planet and the star in reflected light is 

of the order of a few times 10–9 depending on the adopted values of the geometric 

albedo and orbital inclination. This is beyond the capabilities of current imaging 

instrumentation by three orders of magnitude. However, the maximum apparent 

separation is 220 mas, which should be within reach of planned direct imaging 

instruments for the next decade21, potentially revealing a wealth of information.  

 



The candidate planet Barnard’s star b lies almost exactly at the expected position of 

the snow-line of the system, located at about 0.4 au (ref. 22). It has long been suggested 

that this region might provide a favourable location for forming planets23,24, with 

super-Earths being the most common planets formed around low-mass stars25. Recent 

models incorporating dust coagulation, radial drift, and planetesimal formation via the 

streaming instability support this idea26. Although this has yet to be shown to be part 

of a general trend, observational evidence would significantly constrain theories of 

planetary migration27.  

 

The long-term intensive monitoring of Barnard’s star and the precision of the 

measurements, gathering data from all precise high-resolution spectrometers in 

operation, pushes the limits of the radial velocity technique into a new regime of 

parameter space, namely super-Earth type planets in cool orbits. This provides a bridge 

with the microlensing technique, which has traditionally been the only probe to explore 

the occurrence of small planets in orbits around the snow-line28,29. 
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Table 1: Information on Barnard’s star and its planet.  

We derive fundamental parameters of Barnard’s star as in ref. 30. The luminosity is 

calculated from a well-sampled spectral energy distribution and the effective 

temperature is used to derive the stellar radius. The age interval is estimated by 

considering kinematic parameters, stellar rotation, and magnetic activity indicators. 

The parameters of the planet and their uncertainties are determined by calculating the 

median values and 68% credibility intervals of the distribution resulting from the 

MCMC run. The equilibrium temperature value is calculated assuming only external 

energy sources, with the upper limit corresponding to a null Bond albedo.  

 

  

	Star	parameter	 Value	

		Spectral	type	 M3.5	V	

		Mass	(M¤)	 0.163±0.022	

		Radius	(R¤)	 0.178±0.011	

		Luminosity	(L¤)	 0.00329±0.00019	

		Effective	temperature	(K)	 3278±51	

		Rotation	period	(d)	 140±10	

		Age	(Ga)	 7–10	

Planet	parameter	 Value	

	 Barnard’s	star	b	

Orbital	period	(d)	 232.80RS.TUVS.WX	

Radial	velocity	semi-amplitude	(m	s-1)	 1.20±0.12	

Eccentricity	 0.32RS.UZVS.US	

Argument	of	periastron	(deg)	 107R[[VU\	

Mean	longitude	at	BJD2455000.0	(deg)	 203±7	

Minimum	mass	(M	sin	i;	MÅ)	 3.23±0.44	

Orbital	semi-major	axis	(au)	 0.404±0.018	

Irradiance	(Earth	units)	 0.0203±0.0023	
Equilibrium	temperature	(K)	 ≲105±3	

Minimum	astrometric	semi-amplitude	(a	sin	i;	mas)	 0.0133±0.0013	

Angular	separation	(mas)	 221±10	



 
Figure 1: Two-dimensional likelihood periodogram. A multi-dimensional 

generalised Lomb-Scargle scheme assuming a white noise model was used to explore 

combinations of periods to fit the data. The colour scale shows the improvement of the 

logarithm of the likelihood function D ln L as a function of trial periods. D ln L > 18.1 

corresponds to a significant detection (FAP < 0.1%) for one signal, while two signals 

require D ln L > 36.2.  The highest likelihood value corresponds to periods of 233 days 

and 1890 days (D ln L = 71), but any combination of 233 days with periods longer than 

2500 days yields D ln L > 65 and thus are statistically equivalent. The proposed 

solution discussed in the text (P1 = 233 d, P2 = 6600 d) is indicated with a dashed 

ellipse. 
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Figure 2: Periodicities in stellar activity indicators. The panels show periodograms 

of time series in the central flux of the Ha line (a), the emission in the Ca II H&K lines 

(b) and photometry (c). These indicators are associated to the presence of active 

regions on the stellar surface. Likelihood periodograms were obtained by including 

one signal at a time (sinusoids) as in the analysis of the radial velocities. The vertical 

dashed blue line indicates the location of the planetary signal from the radial velocity 

analysis, at a period of 233 days, while the dotted red line shows the FAP=0.1% 

detection threshold. The shaded region marks the most likely stellar rotation interval.  
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Figure 3: Radial velocity time-series fits. Panel a shows the phase-folded 

representation of the best-fitting 233-day circular orbit (black line) to the different sets 

(circles). The black squares represent the average velocity in 16 bins along the orbital 

phase. The lower panels show the time series of the radial velocity observations with 

the fitted model superimposed (b) and a blow-up of the time region around 

CARMENES observations (c). The model fit corresponds to a solution assuming two 

signals (one of them forced to P > 4000 days, for reasons discussed in the text). In all 

cases, 1s error bars on the measurements are shown.  
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METHODS 
 
Description of the individual radial velocity datasets 
 

As in other recent low-amplitude exoplanet discoveries, combining information from 

several instruments (historical data and quasi-simultaneous monitoring) is central to 

unambiguously identifying significant periodicities in the data. The suite of 

instruments used for this study and relevant information on the observation time 

intervals, the number of epochs, and the references of the observational programs 

involved are provided in ED Table 1. 

 

The HIRES, PFS, and APF datasets were obtained respectively with the HIRES 

spectrometer31 on the Keck I 10-m telescope atop Mauna Kea in Hawaii, the Planet 

Finding Spectrometer (PFS) (ref. 32) on Carnegie’s Magellan II 6.5-m telescope, and 

the Automated Planet Finder (APF) (ref. 33) on the 2.4-m telescope atop Mt. Hamilton 

at Lick Observatory. In all cases, radial velocities were calibrated by placing a cell of 

gaseous iodine in the converging beam of the telescope, just ahead of the spectrometer 

slit. The iodine superimposes a rich forest of absorption lines on the stellar spectrum 

over the 5000–6200 Å region, thereby providing a wavelength calibration and proxy 

for the point spread function (PSF) of the spectrometer. Once extracted, the iodine 

region of each spectrum is divided into 2 Å wide chunks, resulting in ~700 chunks for 

both the APF and HIRES, and ~800 for PFS. Each chunk produces an independent 

measure of the absolute wavelength, PSF, and Doppler shift, determined using the 

spectral synthesis technique described in ref. 34. The final reported Doppler velocity 

of each stellar spectrum is the weighted mean of the velocities of all the individual 

chunks. The final uncertainty of each velocity is the standard deviation of all chunk 

velocities about the weighted mean. 

 

Further radial velocity measurements of Barnard’s star were obtained with the two 

HARPS spectrometers, ESO/HARPS35 at the 3.6-m ESO telescope at La Silla 

Observatory and HARPS-N36 at the 3.5-m Telescopio Nazionale Galileo in La Palma. 

These are high-resolution echelle spectrometers optimized for precision radial 

velocities covering a wavelength range 3800–6800 Å. High stability is achieved by 

keeping the instrument thermally and mechanically isolated from the environment. All 



observations were wavelength-calibrated with emission lines of a hollow-cathode 

lamp and reduced with the Data Reduction Software (DRS). For the ESO/HARPS 

instrument, two distinct datasets are considered (HARPSpre, HARPSpost) 

corresponding to data acquired before and after a fibre upgrade that took place in June 

2015. Radial velocities were obtained using the TERRA37 software, which builds a 

high signal-to-noise template by co-adding all the existing observations and then 

performs a maximum likelihood fit of each observed spectrum against the template 

yielding a measure of the Doppler shift and its uncertainty. The analysis of the initial 

HARPSpre dataset, which spans about 6 years, revealed a very prominent signal at a 

period compatible with 1 year. Thorough investigation led to the conclusion that this 

is a spurious periodicity caused by the displacement of the stellar spectrum on the 

detector over the year and the existence of physical discontinuities in the detector 

structure38. We calculated new velocities by removing an interval of ±45 km s-1 around 

the detector discontinuities to account for the amplitude of Earth’s barycentric motion. 

After this correction, all search analyses showed the 1-year periodic signal 

disappearing well below the significance threshold, although some periodicity remains 

(possibly related to residual systematic effects in all datasets).  

 

We also use radial velocity measurements of Barnard’s star obtained with the UVES 

spectrograph on the 8.2-m VLT UT2 at Paranal Observatory in the context of the M-

dwarf programme executed between 2000 and 2008 (ref. 4). New radial velocity 

measurements were obtained by reprocessing the iodine-based observations as in ref. 

10 using up-to-date reduction codes as those used in the HIRES, PFS, and APF 

spectrometers.  

 

Barnard’s star was observed almost daily in the context of the CARMENES survey of 

rocky planets around red dwarfs39, which employs the CARMENES instrument, a 

stabilized visible and NIR spectrometer on the 3.5-m telescope of Calar Alto 

Observatory. The data were pipeline-processed and radial velocities and their 

uncertainties were measured with the SERVAL algorithm40, which is based on a 

template-matching scheme. For this study we employed visual-channel radial 

velocities, which correspond to a wavelength interval 5200–9600 Å. Because of 

instrument effects, data are further corrected by calculating a night-to-night offset 

(generally below 3 m s-1) and a nightly slope (less than 3 m s-1 peak to peak) from a 



large sample of observed stars. Barnard’s star was excluded from the calibration to 

avoid biasing the results. The origin of the offsets is still unclear but they are probably 

related to systematics in the wavelength solution, light scrambling, and a slow drift in 

the calibration source during the night. After the corrections, CARMENES data have 

similar precision and accuracy to those from ESO/HARPS41. 

 

Barycentric correction, secular acceleration and other 
geometric effects 
 

Although stellar motions on the celestial sphere are generally small, the measurement 

of precision radial velocities must carefully account for some perspective effects, 

including both the motion of the target star and the observer. This includes, in 

particular, secular acceleration4. A thorough description of a complete barycentric 

correction scheme down to a precision of <1 cm s-1 is given in ref. 42. We ensured that 

the barycentric corrections employed in all our datasets agree with the code written by 

ref. 42.  Given its proximity to the Sun and high proper motion, Barnard’s star is 

particularly susceptible to errors due to unaccounted terms in its motion. We 

systematically revised the apparent Doppler shifts accounting for the small but 

significant changes in the apparent position over time.  

  

Uncertainties in the astrometry (parallax, radial velocity, and proper motion) could 

propagate into small residual signals in the barycentric correction. We performed 

numerical experiments to assess the impact of such uncertainties. ED Figure 3 shows 

the spurious one-year signal expected by introducing a shift of 150 mas (10 times 

larger than the uncertainties in the Hipparcos catalogue) in both right ascension (R.A.) 

and declination (Dec.) over a time-interval between years 2000 and 2018. The peak-

to-peak amplitudes for such errors are of the order of 4 cm s-1. The next larger terms 

are those that couple the proper motion with the tangential velocity of the star and the 

tangential velocity of the observer. For this experiment we introduced errors of 15 mas 

yr-1 in both proper motions in the direction of increasing R.A. and Dec., and 15 mas in 

the parallax (10 times larger than the uncertainties in the Hipparcos catalogue). The 

spurious signals caused by proper motion contain a trend (change in secular 

acceleration) and signal with a period of 1 yr growing in amplitude with time. The 1-

yr periodicities are rather small and not significant, but the secular trend can produce 



detectable effects mostly due to the error in the parallax. The effect of errors at 1, 3 

and 10s level of HIPPARCOS uncertainties are shown in the bottom panel of ED 

Figure 3. Crucially, this signal consists of a trend which is easily included in the model 

without any major impact on the significance of the planet candidate signal. 

 
Models and statistical tools 

Doppler model. The Doppler measurements are modeled using the following 

equations: 

𝑣(𝑡h) = 𝛾klm + 𝑆 · (𝑡h − 𝑡S) +r𝑓t(𝑡h)
u

tvU

 

𝑓t(𝑡h) = 𝐾t cos	[ 𝜈t z𝑡h; 	𝑃t,𝑀S,t, 𝑒t� + 𝜛t] + 𝑒t cos𝜛t, 

where gINS (constant offset of each instrument) and S (linear trend) are free parameters. 

All signals are included in the Keplerian fp, and for each planet is the Doppler semi-

amplitude, Pp is the orbital period, M0,p is the mean anomaly at t0, ep is the orbital 

eccentricity and vp is the argument of periastron of the orbit. Precise definitions of the 

parameters and the calculation of the true anomaly np can be found in, e.g., ref. 48. In 

some cases, the orbits are assumed to be circular and the Keplerian term simplifies to: 

𝑓t,�h��(𝑡h) = 𝐾t cos �
2𝜋
𝑃t
(𝑡h − 𝑡S) +𝑀S,t� 

which only has three free parameters (Kp, Pp, and M0,p). This model is used in initial 

exploratory searches or when analyzing time-series that do not necessarily contain 

Keplerian signals (e.g., activity proxies). 
 

Statistical figure-of-merit. The fit to the data is obtained by finding the set of 

parameters that maximize the Likelihood function, L, which is the probability 

distribution of the data fitting the model. L can take slightly different forms depending 

on the noise model adopted. For measurements with normally distributed noise it can 

be written as 

𝐿 =
1
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𝑟h = 𝑣h,��� − 𝑣(𝑡h) 

Where ri is the residual of each observation i, Cij are the components of the covariance 

matrix between measurements, and |C| is its determinant. Starting from this definition, 

there are three types of models that we consider. 
 



White noise model (W). If all observations are statistically independent from each 

other, all variability is included in v(ti) and the covariance matrix is diagonal. In this 

case, the logarithm of L simplifies to: 

ln 𝐿� = −
𝑁���
2 ln2𝜋 −

1
2 r ln(𝜖h[ + 𝑠klm[ ) −
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2 r

𝑟h[

𝜖h[ + 𝑠klm[ 	 ,
l���

hvU

l���

hvU

 

where 𝜖h is the nominal uncertainty of each measurement, and sINS is an excess noise 

component (often called jitter parameter) for each instrument. We call this model, the 

white noise model (W) as it implicitly assumes that the noise has a uniform power 

distribution in frequency space. 
 

Moving average (MA). Auto-Regressive Moving Average models can also be used 

(ARMA, ref. 49) when measurements depend on the previous ones in a way that is 

difficult to parameterize with deterministic functions (e.g., quasi-periodic variability, 

Brownian motion, impulsive events, etc.). In our case, we use an ARMA model only 

containing one Moving Average (MA) term assuming that each measurement is related 

to the previous residual as 
𝑟h,�� = 𝑣h,��� − z𝑣(𝑡h) + 𝑟hRU,��𝛼klm𝑒R(��R�� ¡) ¢£¤¥⁄ �	. 

This model contains two additional parameters for each instrument: the coefficient aINS 

and the time-scale tINS, representing the strength and time-coherence of the correlated 

noise, respectively50. 
 

Gaussian Process (GP). Finally, the most general model, often called Gaussian 

Processes (or GP), consist of parameterizing the covariance matrix51, and can be 

generally written as: 
𝐶h�[ = 𝑠klm[ 𝛿h� + 𝜅(𝜏h�) 

where 𝜅 is the so-called kernel function, and it is a function of the time difference 

between observations tij	 º	 |ti	 –	 tj| and some other free parameters. Many kernel 

functions exist with different properties. Here we consider the stochastically-driven 

damped Simple Harmonic Oscillator52 (SHO), which has the form: 
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Where Prot is the stellar rotation period, Plife is the lifetime of active regions, C0 is a 

scaling factor proportional to the fraction of stellar surface covered by active regions, 



and h	=	|1	–	(2pPlife/Prot)–2|1/2. This model is popular in astrophysical applications 

because its three parameters can be associated to physical properties. 
 

False Alarm Probability (or p-value). We use the frequentist concept of False Alarm 

Probability of detection (FAP hereafter) to assess statistical significance. FAP is 

formally equivalent to the so-called p-value used in other applications. The statistical 

significance of the detection of a planet is a problem of null hypothesis significance 

test, where the null hypothesis is a model with n signals (null model), and the model 

to be benchmarked contains n+1 signals with a correspondingly larger number of 

parameters. The procedure is as follows: 
i. We start computing ln L of the null model, containing all n detected signals and 

nuisance parameters (jitters, trend, etc.) 

ii. Next, ln L is maximized by adjusting all the model parameters together with 

the parameters of a sinusoid for a list of test periods for signal n+1. Then, the 

logarithm of the improvement of the likelihood function with respect to the null 

model is computed (D	ln	LP,n+1) at each test period P and plotted against each 

other generating a so-called log-likelihood periodogram53.  

iii. The largest D	ln	LP,n+1 (peak in periodogram) indicates the most favoured period 

for the new signal. This value is then compared with the probability of 

randomly finding such an improvement when the null hypothesis is true, which 

is the desired FAP54. A FAP around 1% would be considered tentative 

evidence, and below 10-3 (or 0.1%) is considered statistically significant.  

All FAP assessments and significances presented in this work, including Doppler data 

and activity indicators, are computed using this procedure. We note that FAPs will 

depend on the adopted model (W, MA or GP). 
 

Bayesian tools and analyses. We also applied Bayesian criteria to the detection of 

signals (Bayesian factors as in ref. 14), but these lead to conclusions and discussions 

qualitatively similar to those presented, so they are omitted for brevity. 
 

Concerning median values and credibility intervals presented in tables, a standard 

custom-made code implementing a Markov Chain Monte Carlo (MCMC) algorithm 

as presented in ref. 55. In all the cases, uniform priors in all the parameters were 

assumed, with the exception of the periods. In that case, the prior was chosen to be 



uniform in frequency and an upper limit to the period was set to twice the timespan of 

the longest dataset (~12 000 days). 
 

Noise models and experiments applied to our datasets 
If the presence of spurious Doppler variability caused by stellar activity is suspected, 

checking the significance of the detections under different assumptions about the noise 

is advisable56. The significance assessments in the main manuscript are given 

assuming an MA model for the radial velocity analyses, and W models for all other 

sets (photometry, activity indices). This section provides the justification for such 

assumption. White noise models are good for preliminary assessments but they are 

prone to false positives14. On the other hand, GPs tend to produce overly conservative 

significance assessments leading to false negatives. 

 

We investigated the performances of the different noise models (W, MA, and GP) by 

analysing the combination of three datasets in more detail: HIRES, HARPSpre and 

CARMENES. These are the relevant ones because they contribute most decisively to 

the improvement of the likelihood statistic (largest number of points, widest timespan, 

and higher precision). The W model found the signal at P = 233 days with D	ln	L	=	42 

(FAP~3.3·10–14), and the MA model yielded a detection with D	 ln	L	=	22.3 (FAP~ 

8.6·10–6). On the other hand, a GP using the SHO kernel, yielded a detection with only 

D	ln	L	=	11.6 (FAP~27%). Despite this rather poor significance, GPs account for all 

covariances including those produced from real signals, which prompted us to carry 

out a deeper assessment. 

 

We performed simulations by injecting a signal at 233 days (1.2 m s–1) and attempted 

the detection using W, MA and GP models. We first generated a synthetic sinusoidal 

signal (no eccentricity) and sampled it at the observing dates of the three sets. Random 

white noise errors were then associated to each measurement in accordance to their 

formal uncertainties and jitter estimates of each set. When using W and MA models, a 

one-planet search trivially detected the signal at 233 days yielding D	ln	L	=	43 (FAP 

~1.22·10–14) and D	ln	L	=	32 (FAP~6.3·10–10) respectively, indicating high statistical 

significance. On the other hand, adding one planet when using GPs led to a D	ln	L	=	

14 (FAP ~2.7%), indicating that an unconstrained GP (all parameters free) absorbed 



D	 ln	 L	~	 29, even in the absence of any true correlated noise. This reduction is 

comparable to that observed in the real dataset (from D	ln	L	=	42 for the W model, to 

D	 ln	 L	 =	 11.6 when employing a GP model as discussed earlier), supporting the 

hypothesis that the GP is substantially absorbing the real signal, even if its parameters 

are set to match the rotation period of the star derived from spectroscopic indices and 

photometry (see ED Figure 4, for a visual representation of the effect).  

 

The filtering properties of GPs can be better understood in Fourier space (frequency 

domain). As discussed in ref. 52, GPs fit for covariances within a range of frequencies 

filtered by the power spectral distribution (PSD) of the kernel function used. In 

particular, for an SHO kernel, the PSD is centred at the frequency of the oscillator, n	

=	 2p/Prot, and has full-width-at-half-maximum 2/Plife. The activity indices of 

Barnard’s star imply that n and 2/Plife are comparable and of the order of 10–2 day–1. 

Consequently, the GP strongly absorbs power (i.e., D ln L) from signals in a frequency 

range 10–2±10–2 day–1, which spans periods from 50 days to infinity as illustrated by 

the black line in ED Figure 4. Most of the proposed kernels in the literature are very 

similar to the SHO kernel, so similar filtering properties are to be expected. 

 

In a separate set of simulations, we checked the sensitivity of W, MA and GP models 

to false positives by creating synthetic data generated from covariances. The results 

were in general agreement with ref. 14 in the sense that the MA models have best 

statistical power. Furthermore, 300 000 data sets were generated using the MCMC 

sampling of the SHO parameters. Prot and Plife pairs were derived from MCMC fits to 

the Ha time series and the corresponding C0 parameters were obtained from an 

empirical relationship obtained from fitting GP kernels with fixed Prot and Plife to our 

real RV datasets. Next, synthetic observations were obtained using a multivariate 

random number generator from the covariance matrix for all the epochs. Reported 

uncertainties and jitter estimates for each observational dataset were added in 

quadrature and consistent white noise was also injected. Finally, a synthetic set was 

only accepted if having a root mean square within 0.1 m s–1 of the real value. We then 

performed a maximum likelihood search using the MA model, and the solution with 

maximum likelihood was recorded in each case. This process produced a distribution 

of false alarms as a function of D ln L and Prot as illustrated in ED Figure 5. This leads 



to a FAP ~ 0.8% for our candidate signal. Although this is not an extremely low value, 

we consider it sufficiently small to claim a detection given that we followed a rather 

conservative procedure, and given the existing degeneracies between signals and 

correlated noise models. Crucially, if we had carried out a deep scrutiny of each of the 

false alarms as we did with our real dataset we would have discarded the fraction 

failing our sanity checks (steady growth in signal strength, existence of a significant 

signal in populated dataset pairs, consistent offsets in overlapping regions, etc). This 

would reduce the numerical value of the estimated FAP using this procedure.  

 

In summary, we find that the most adequate models to account for the noise and 

maximize the detection efficiency in this period domain are those using MA terms, 

and that the 233-day signal is statistically significant under these models. 

 
Zero-points between datasets 
 

Calculation of the zero-points between the different datasets is a key element to ensure 

unbiased results, detection of genuine signals and to avoid introducing spurious 

effects. The best-fitting model is a self-consistent fit of the datasets allowing for a 

variable zero-point offset that is optimized via maximum likelihood together with the 

search for periodicities. To validate these results, we used a complementary approach 

based on searching for overlapping coverage (typically a few nights) between different 

datasets to calculate average differences and thus directly measure zero-point offsets. 

We worked recursively, piecing datasets together one by one depending on the 

existence and size of overlap regions. We optimised the averaging window and 

selected that providing the best agreement in a 3-way comparison. This is a trade-off 

between window size, number of points, and measurement error. Periods below the 

window duration are affected by this process but our focus lies in a period of 233 days. 

Any window size smaller than a few tens of days does not impact the results. 

  

The window parameters and the differences between the manually-computed zero-

point offsets and the values resulting from the optimization routine (considering a 

long-period signal) are given in ED Table 3. The compatibility of the zero-points 

calculated using two completely independent methods is very good. Only for UVES 

does a difference significantly larger than 1 sigma appear. This can be attributed to the 



sparse sampling of the observations leading to small overlap between the datasets. 

Also, the zero-point is based on a few measurements from HIRES that appear to 

deviate systematically from the average. Because of the reduced overlap, the resulting 

zero-point is critically dependent on the window size and thus is quite unreliable. The 

most populated datasets (HIRES, HARPSpre and CARMENES) have excellent zero-

point consistency. Additionally, the agreement of the general offsets of the combined 

Set1 (HIRES, UVES, HARPSpre, APF, PFS) and Set 2 (CARMENES, HARPS-N, 

HARPSpost) is remarkable (ED Table 3). This is related to the presence of the long-

term signal, which is found naturally when calculating manual offsets and confirmed 

from the global optimization including a long-period prior. 

 

Stellar activity analysis 
Barnard’s star is considered to be an aged, inactive star, but it appears to have small 

changing spots that make its rotation period tricky to ascertain. Spectroscopic indices 

(Ha and Ca II H&K) and photometric measurements were used to estimate the period 

range in which signals from stellar activity are present. In all cases, the modelling of 

the data was performed using the same methodology as for the radial velocities, 

including the optimization of zero-point offsets and jitter terms for the different 

instruments, but assuming sinusoidal signals (zero eccentricity). As a result of the 

analysis, the stellar rotation period can be constrained to be in the range 130–150 d 

from all indicators, and there is also evidence for long-period modulation, which could 

be related to an activity cycle. No significant variability related to magnetic activity is 

present around 233 days, where the main radial velocity periodic signal is found. A 

thorough review and analysis of all data on activity indicators for Barnard’s star will 

be presented in a separate publication. 

 

Spectroscopy - Ha index. Stellar activity was studied using the available 

spectroscopic data on Barnard’s star. The Ha index was calculated using three narrow 

spectral ranges covering the full Ha line profile and two regions on the pseudo-

continuum at both sides of the line, after normalizing the spectral order with a linear 

fit3.  The error bars were estimated by adopting the standard deviation of the fluxes in 

a small local continuum region close the core of the lines as the uncertainty of the 

individual fluxes. The Ha index was measured in 618 night-averaged spectra acquired 



with seven different instruments covering a timespan of 14.5 years. The analysis of the 

resulting time series (Figure 2) yields a high-significance (FAP<<0.1%) periodic 

signal at 133 days, and a second also highly-significant signal at 191 days. We interpret 

the 133-day periodicity as tracing the stellar rotation period. This value is in relatively 

good agreement with a previous determination of 148 d (ref. 3). The longer period 

signal could be a consequence of the non-sinusoidal nature of the variability, the finite 

lifetime of active regions or the presence of differential rotation. The analysis of the 

Ha index does not reveal any significant long-term (P > 1000 d) modulation. 

 

Spectroscopy – S-index. The S-index43 derived from the Ca II H&K lines was only 

available for five instruments (APF, HARPS-N, HARPSpost, HARPSpre, and 

HIRES). The S-index was estimated from 384 night-averaged spectra covering a 

similar time span as Ha. Two long-period signals were extracted from the analysis of 

the time series (Figure 2) at periods of 4300 days and 560 days. The next strongest 

significant signal, with FAP~10-4, has a period of 143 days, and it is probably 

associated with stellar rotation. Using an empirical relationship44, the activity-induced 

RV signal corresponding to this rotation period is predicted to be ~0.6 m s-1. The long-

term signal found from the S-index is consistent with estimates of activity cycles from 

photometric time series in other M stars of similar activity levels45.  

 
Photometry. Photometry from the literature includes data from the All Sky Automated 

Survey (ASAS, ref. 46) and the MEarth Project47 database. We also used unpublished 

photometry from the 0.8-m Four College Automated Photoelectric Telescope 

(FCAPT, Fairborn Observatory, Arizona, USA) and the 1.3-m Robotically-Controlled 

Telescope (RCT, Kitt Peak National Observatory, Arizona, USA). In addition, new 

observations were acquired within the RedDots2017 campaign (https://reddots.space/) 

from the following facilities: the 0.90-m telescope at Sierra Nevada Observatory 

(Granada, Spain), the robotic 0.8-m Joan Oró telescope (TJO, Montsec Astronomical 

Observatory, Lleida, Spain), Las Cumbres Observatory network with the 0.4-m 

telescopes located in Siding Spring Observatory, Teide Observatory and Haleakala 

Observatory, the ASH2 0.40-m robotic telescope at San Pedro de Atacama (Celestial 

Explorations Observatory, SPACEOBS, Chile), and from 14 observers of the 

American Association of Variable Stars Observers (AAVSO). A comprehensive 



summary of these measurements and contributors will be given in a paper in 

preparation. The data cover about 15.1 years of observations with 1634 epochs, an rms 

of 13.6 mmag and a mean error of 9.8 mmag. The analysis of the combined datasets 

(Figure 2) indicates long-term modulations of 4500 days and 1300 days (semi-

amplitudes of 10 and 5 mmag, respectively) and two significant periods at 144 days 

and 201 days (semi amplitudes of ~3 mmag). The interpretation is that the long-term 

modulation may be caused by an activity cycle while the signals at 144 days and 201 

days are likely related to the base stellar rotation period and to the effects of the finite 

lifetime of active regions and differential rotation at different latitudes. The resulting 

periods are consistent with the results from the spectroscopic indices. A rotation period 

of 130.4 days and ~5 mmag semi-amplitude had been previously reported13 from 

photometric observations albeit with low significance (FAP~10%). 
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Code availability. The SERVAL template-matching radial velocity measurement tool 

used for CARMENES data can be found at https://github.com/mzechmeister/serval. 

The TERRA template-matching radial velocity measurement tool and various custom 

periodogram analysis and MCMC tools are codes written in Java by G. Anglada-

Escudé and are available upon request. Other public codes and facilities used to model 

the data include GLS (http://www.astro.physik.uni-

goettingen.de/~zechmeister/gls.php), Systemic Console (https://github.com/stefano-



meschiari/Systemic-Live), Agatha (https://github.com/phillippro/agatha), Celerite 

(https://github.com/dfm/celerite.git) and EMCEE (https://github.com/dfm/emcee).  

 

Data availability. The public high-resolution spectroscopic raw data used in the study 

can be freely downloaded from the corresponding facility archives 

(http://koa.ipac.caltech.edu for HIRES; http://archive.eso.org for UVES, HARPSpre 

and HARPSpost; http://archives.ia2.inaf.it/tng for HARPS-N, and 

https://mthamilton.ucolick.org/data for APF). Proprietary raw data are available from 

I.R. on reasonable request. The nightly-averaged, fully-calibrated radial velocities, 

spectroscopic indices and photometric measurements are available online. 

 

  



 
Extended Data Table 1: Log of observations of Barnard’s star with seven 

different facilities.  In the case of ESO/HARPS, the “pre” and “post” tags indicate 

data obtained before and after a hardware upgrade in June 2015. A secular acceleration 

term of 4.497 m s–1 yr–1 due to change in perspective over time (ref. 4) was removed 

from all the sets when applying the barycentric correction to the raw Doppler 

measurements. †: H7aH, K01H, N02H, N03H, N05H, N06H, N10H, N12H, N14H, 

N15H, N19H, N20H, N22H, N24H, N28H, N31H, N50H, N59H, U01H, U05H, 

U07H, U08H, U10H, U11H, U12H, U66H, H38bH, A264Hr, A285Hr, A288Hr, 

C110Hr, C168Hr, C169Hr, C199Hr, C202Hr, C205Hr, C232Hr, C240Hr, C275Hr, 

C332Hr, H174Hr, H218Hr, H238Hr, H244Hr, H257Hr, H305Hr, N007Hr, N014Hr, 

N023Hr, N024Hr, N054Hr, N085Hr, N086Hr, N095Hr, N108Hr, N118Hr, N125Hr, 

N129Hr, N131Hr, N134Hr, N136Hr, N141Hr, N145Hr, N148Hr, N157Hr, N168Hr, 

U009Hr, U014Hr, U023Hr, U026Hr, U027Hr, U030Hr, U052Hr, U058Hr, U064Hr, 

U077Hr, U078Hr, U082Hr, U084Hr, U115Hr, U131Hr, U142Hr, Y013Hr, Y065Hr, 

Y292Hr 

  



 
Extended Data Table 2: Additional fit parameters and fit results. The individual 

zero-points and jitter terms are optimized for each dataset by maximizing the 

likelihood function. The model included a global time trend that results in a best-fitting 

value of +0.33±0.07 m s–1 yr–1. It should be noted that the original individual datasets 

were previously shifted to have null relative offsets in the overlapping regions (see ED 

Table 3) and referred to the zero-point level of the Keck/HIRES dataset. This implies 

that the optimized g parameters in the table are not totally arbitrary but expected to be 

relatively similar. The parameters and their uncertainties are determined by calculating 

the median values and 68% credibility intervals of the distribution resulting from the 

MCMC run.  

 

  



Extended Data Table 3: Zero-point offsets between overlapping radial velocity 

datasets from different instruments. Manual offsets are calculated from common 

regions of pairs of datasets for window sizes selected to ensure sufficient statistics and 

consistency in the cases of 3-way overlap. The last column lists the difference between 

the zero-points calculated manually and those resulting from the global optimization, 

showing general good agreement (values compatible with zero), except for the UVES 

dataset. Also, two distinct time regions are identified in the data and can be compared. 

Set 1 includes data from HIRES, UVES, HARPSpre, APF and PFS. Set 2 contains 

data from CARMENES, HARPS-N and HARPSpost. The relative zero-point between 

these two sets is poorly defined because of very limited overlap but the consistency 

between the manual and optimized values is found to be very good. All error bars 

correspond to 1s values. 

 

  



 
Extended Data Figure 1: Hierarchical periodogram analysis. Panel a shows the 

magnitude of the window function of the combined datasets. The rest of the panels 

show the likelihood periodogram of the radial velocity measurements considering, 

subsequently, first signal search (panel b), the residuals after modelling a long-period 

(6600 days) signal as explained in the text (panel c) and the residuals after modelling 

long-period and 233-day periodicities (panel d). No high-significance signals are left, 

in particular in the 10–40-day region, corresponding to the conservative habitable 

zone. The region below 10 days is not shown for clarity, but it is also devoid of 

significant periodic signals down to the Nyquist frequency of the dataset (2 days). Two 

different scales for the horizontal axis are used to improve visibility of the low 

frequency range. 

  



 
Extended Data Figure 2: Evolution of the significance of the 233-day signal. The 

top panel shows the power spectral density57 (PSD) of a stacked periodogram58,59 while 

the bottom panel depicts a cumulative measurement of the semi-amplitude of the 

signal. The horizontal red dotted line, green dashed line, and blue solid line show the 

10%, 1% and 0.1% FAP thresholds. The evolution of the significance is stable with 

time and the variations in the amplitude over the last 9 years of observations are smaller 

than 5% of the measured amplitude. Both the steady increase in signal significance 

and the stable amplitude are consistent with the expected evolution of the evidence for 

a signal of Keplerian origin. 

  



 
Extended Data Figure 3: Propagation of astrometric errors to radial velocity 

systematics. Panel a shows the spurious radial velocity effect that would be caused by 

offsets with respect to the catalogue coordinates (black and red) and proper motions 

(green and blue). Panel b illustrates the radial velocity effect caused by an offset in the 

parallax with respect to the catalogue value. The uncertainties of the astrometric 

parameters for Barnard’s star from the Hipparcos catalogue were used in the 

barycentric corrections, and they are approximately 10 times smaller than the values 

used in this plot (15 mas in position, 1.5 mas yr–1 in proper motion, and 1.5 mas in 

parallax), implying that catalogue errors introduce undetectable signals. 

  



 
Extended Data Figure 4: Effect of Gaussian Processes (GP) modelling when 

applied to synthetic and real data. Blue squares represent the improvement of the 

ln-likelihood using a GP to model the correlated noise when trying to detect a first 

signal. The same procedure is applied to simulated observations generated with white 

noise and a sinusoidal signal consistent with the planet candidate parameters (red 

circles). Even in absence of true correlated noise, the GP absorbs a substantial amount 

of significance (D ln L ~ 30 for this selection of kernel parameters). The adopted kernel 

is a damped stochastic harmonic oscillator (SHO), with a damping timescale of t = 

Plife = 100 days and each point corresponds to different values for the oscillator 

frequency n (x-axis).  The power spectral distribution (PSD) of an SHO kernel with n 

= 140–1 day–1 and t = 100 days is depicted as a black line. The greater reduction in 

significance occurs when the trial frequency approaches that of the oscillator, but this 

reduction in significance extends out to a broad range of frequencies therefore acting 

as a filter. The planet candidate period is marked with a vertical dashed line, and the 

likely rotation period derived from stellar activity is marked with a vertical dotted line. 

  



 
Extended Data Figure 5: Distribution of empirical false alarms from synthetic 

observations with correlated noise. These simulations were obtained by generating 

synthetic observations following kernels derived from the observations, and then fitted 

to MA models. The resulting distribution of false alarms shows a clear excess around 

the measured rotation period of the star (vertical dashed blue line), and at low 

frequencies (long periods) due to the use of the free offsets in the model (left of the 

rotation period). The empirical FAP was computed by counting the number of false 

alarms in the interval D	ln	L	Î	[32,¥] and frequency Î	[0,1/230] (left of the green 

line and above the red line) and dividing it by total number of false alarms in the same 

frequency interval (left of the green line). Empirical FAP threshold lines of 10%, 1% 

and 0.1% are shown for reference. The candidate signal under discussion is shown as 

a red square and has an empirical FAP of ~0.8%. The orange histogram at the bottom 

shows the distribution of false alarms in frequency (arbitrary normalization). 
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